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F MTF256, Assignment: Analysis of turbulent flow in
a channel

In this exercise you will use data from a Direct Numerical Simulation (DNS) for fully
developed channel flow. In DNS the unsteady, three-dimensional Navier-Stokes equa-
tions are solved numerically. TheRe number based on the friction velocity and the
half channel width isReτ = uτh/ν = 500 (h = ρ = uτ = 1 so thatν = 1/Reτ ).

A 96 × 96 × 96 mesh has been used. The streamwise, wall-normal and spanwise
directions are denoted byx (x1), y (x2) andz (x3) respectively. The cell size inx and
z directions are∆x = 0.0654 and∆z = 0.0164. Periodic boundary conditions were
applied in thex andz direction (homogeneous directions). All data have been made
non-dimensional byuτ andρ.

You can do the assignment on your own or in a group of two. You should write a
report where you analyze the results following the heading H1–H13. It is recommended
(but the not required) that you use LATEX(an example of how to write in LATEXis available
on the course www page). It is available on Linux. On Windows you can use, for
example, Lyx (www.lyx.org ) or MikTex (www.miktex.org ) which are both free
to donwload.

F.1 Time history

At the course home pagehttp://www.tfd.chalmers.se/˜lada/turbulent flow/
you find a fileu v time 4nodes.dat with the time history ofv1 and v2. The
file has eight columns ofv1 andv2 at four nodes:x2/δ = 0.0039, x2/δ = 0.0176,
x2/δ = 0.107 andx2/δ = 0.47. With uτ = 1 andν = 1/Reτ = 1/500 this corre-
spond tox+

2 = 1.95, x+

2 = 8.8, x+

2 = 53.5 andx+

2 = 235. The sampling time step
is ∆t = 0.0033 (every second time step). The four points are located in the viscous
sublayer, the buffer layer and in the logarithmic layer, seeFig. 6.2at p.49.

Use the Matlab programpl time.m which loads and plots the time history ofv1.
Start Matlab and run the programpl time . Recall that the velocities have been scaled
with the friction velocityuτ , and thus what you see is reallyv1/uτ . The time history of
v1 atx2/δ = 0.0176 andx2/δ = 0.107 are shown. Study the time history of the blue
line (x2/δ = 0.0176) more in detail. Make a zoom between, for example,t = 10 and
t = 11 andv1,min = 3 andv1,min = 21. This is conveniently done with the command

axis([10 11 3 21])

In order to see the value at each sampling time step, change the plot command to

plot(t,u2,’b-’,t,u2,’bo’)

Use this technique to zoom, to look at the details of the time history. Alternatively,
you can use the zoom buttons above the figure.

Plot v1 for all four nodes. How does the time variation ofv1 vary for different
positions? Why? Plot alsov2 at the four different positions. What is the differences
betweenv1 andv2?

Plotv1 andv2 versus time,t+ = tuτ/ν (viscous units). How fast are the variations
of v1 andv2 in viscous time units?

http://www.tfd.chalmers.se/~lada/turbulent_flow/
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F.2 Time averaging

Compute the average of thev1 velocity at node 2. Add the following code (before the
plotting section)

umean=mean(u2)

Here the number of samples isn = 5000 (the entireu2 array). Find out how many
samples must be used to get a correct mean value. Start by trying with100 samples as

umean_100=mean(u2(1:100))

What is the maximum and minimum value ofv1? Compare those to the mean.
Do the same exercise for the other three nodes.
Compute and plot also the instantaneous fluctuations;v′1 at node 1, for example, is

computed as

u1_mean=mean(u1);
u1_fluct=u1-u1_mean;

F.3 Histogram/probability density

Equation7.2 defines thefirst moment. Compute and plot the probability density for
the instantaneous velocityu1 . . . v4 and for their fluctuations; use the Matlab command
hist (note that the probability density function ofv1 is different from that ofv′1).
Normalize the probability functions, so that (here shown for v1)

∫

∞

−∞

fv1(v)dv = 1 (F.1)

To carry out the integration you can, for example, use the Matlab commandtrapz
(typehelp trapz in the Matlab command window). Investigate how a probability
density changes as the number of bins changes (to find out whata “bin” is, typehelp
hist in the Matlab command window)

Consider the probability density functions of the fluctuations. The second moment
corresponds to the variance of the fluctuations (or the square of the RMS, see Eq.F.5),
i.e.

v′2 =

∫

∞

−∞

v′2f(v′)dv′

As in Eq.7.4, v′2 is usually computed by integrating in time.
A probability density function is symmetric if positive values are as frequent and

large as the negative values. What aboutfu′1 . . . fv′4, do they seem to be symmetric?
Instead of “looking” at the probability density functions,we should use a definition of
the degree of symmetry, which is theskewness. It is defined as

v′3 =

∫

∞

−∞

v′3f(v′)dv′

and is commonly normalized byv3
rms, so that the skewness,Sv′ , of v′ is defined as

Sv′

1
=

1

v3
1,rms

∫

∞

−∞

v′31 fv′1(v)dv
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Again, the integration can also be carried out in time, i.e.Sv′

1
= v′31 /v3

1,rms. Compute
S for fu′1 . . . fv′4. Note that you must use a normalizedf (see Eq,F.1).

There is yet another statistical quantity which sometimes is used for describing
turbulent fluctuations, namely theflatness. The variance (the square of RMS) tells us
how large the fluctuations are in average, but it does not tellus if there are few very
large fluctuations or frequent very small ones. The flatness gives this information, and
it is defined computed fromv′4 and normalized byv4

rms, i.e.

Fv′

1
=

1

v4
rms

∫

∞

−∞

v′41 fv′1(v)dv

Using time integration is readsFv′

1
= v′41 /v4

1,rms. For a Gaussian distribution

fg(v
′) =

1

vrms
exp

(

−
v′ − rrms

2v2
rms

)

= −3

F.4 Mean flow

All data in the data files below have been stored every10th time step.
Download the fileuvw inst small.dat , y.dat and the Matlab filepl vel.m

which reads the data files. The data file includesv1, v2 andv3 from the same DNS as
above, but now you are given the time history of allx2 nodes at one chosenx1 andx3

node. There arenj = 98 nodes in thex2 direction; node1 andnj are located at the
lower and upper wall, respectively.

Your data are instantaneous. Compute the mean velocity. Plot it both as linear-
linear plot and a log-linear plot (cf. Fig.6.4).

In the log-linear plot, usex+
2 for the wall distance. Include the linear law,v+

1 = x+
2 ,

and the log law,v+

1 = κ−1 lnx+

2 + B (κ = 0.41 is the von Kármán constant and
B = 5.2). How far out from the wall does the velocity profile follow the linear law?
At whatx+

2 does it start to follow the log-law?
Compute the bulk velocity

V1,b =
1

2h

∫ 2h

0

v̄1dx2 (F.2)

(recall thath denote half the channel width) What is the Reynolds number based on
V1,b and centerline velocity,V1,c, respectively?

F.5 The time-averaged momentum equation

Let us time average the streamwise momentum equation. Sincethe flow is fully devel-
oped and two dimensional we get

0 = −
1

ρ

∂p̄

∂x1

+ ν
∂2v̄1

∂x2
2

−
∂v′1v

′

2

∂x2

(F.3)

This equation is very similar to fully developed laminar flowwhich you studied in As-
signment 2 inTME075 Mechanics of solids and fluids, see Eq.3.24; the difference
is that we now have an additional Reynolds stress term. Recall that all terms in the
equation above representforces(per unit volume). Let us investigate how these forces
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(the pressure gradient, the viscous term and the Reynolds stress term) affect fluid par-
ticles located at differentx2 locations. Compute and plot the three terms. (the file
uvw inst small.dat does not includēp; set∂p̄/∂x = −1.)

If a term is positive it means that it pushes the fluid particlein the positivex1

direction. What about the viscous term? Is it always negative? Where is it largest? At
that point, which term balances it? How large is the third term? Why? The pressure
term should be adriving force. The Reynolds stress term, where is it positive and where
is it negative?

F.6 Wall shear stress

Compute the wall shear stress at both walls. They should be exactly equal. Are they?

F.7 Resolved stresses

In SectionF.4you computed the mean velocities. From the instantaneous and the mean
velocity, you can compute the fluctuations as

v′i = vi − v̄i (F.4)

Now you can easily compute all stressesv′iv
′

j . Plot the normal stresses in one figure
and the shear stresses in one figure (plot the stresses over the entire channel, i.e. from
x2 = 0 to x2 = 2h). Which shear stresses are zero?

F.8 Fluctuating wall shear stress

In the same way as the velocity, the wall shear stress can be decomposed into a mean
value and a fluctuation. In general, any fluctuating variable, φ, can be decomposed into
a mean and fluctuation asφ = φ̄+φ′. The root-mean-square (RMS) is then defined as

φrms =
(

φ′2

)1/2

(F.5)

Compute the RMS of the wall shear stress. This is a measure of the fluctuating tan-
gential force on the wall due to turbulence. If heat transferis involved, the fluctuating
temperature at the wall inducing fluctuating heat transfer may be damaging to the ma-
terial of the walls causing material fatigue. This is probably the most common form of
fluid-solid interaction.

F.9 Production terms

In order to understand why a stress is large, it is useful to look at its transport equation,
see Eq.9.12. Usually, a stress is large when its production term,Pij , is large (there
may be exceptions when other terms, such as the diffusion term, are largest). Plot the
production terms for all non-zero stresses across the entire channel. Which ones are
zero (or close to)? Why? Does any production term change signat the centerline? If
so, what about the sign of the corresponding shear stress plotted in SectionF.7?
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F.10 Pressure-strain terms

The pressure-strain term reads (see Eq.9.14)

Πij =
p′

ρ

(

∂v′i
∂xj

+
∂v′j
∂xi

)

(F.6)

Our data are obtained from incompressible simulations, in which the pressure may
vary unphysically in time (∂p/∂t does not appear in the equations). Hence, we prefer
to compute the velocity-pressure gradient term

Πp
ij = −

v′i
ρ

∂p′

∂xj
−

v′j
ρ

∂p′

∂xi
, (F.7)

see the second line in Eq.9.3. The pressure diffusion term in thev′22 equation – which
is the difference between Eqs.F.6 andF.7 (the two first terms in Eq.9.8) – is small
except very close to the wall (see Figs.9.2and9.3). Hence, the difference betweenΠp

ij

andΠij is small.
Download the data filep inst small.mat and the Matlab filepl press strain.m

which reads the data file. The time histories of the pressure along fivex2 lines [(x1, x2, x3),
(x1 ± ∆x1, x2, x3) and(x1, x2, x3 ± ∆x3)] are stored in this file. This allows you to
compute all the three spatial derivatives ofp′. Using the velocities stored inuvw inst small.dat
(see SectionF.4), you can compute all the terms in Eq.F.7.

Plot the pressure strain,Πp
ij , for the three normal stresses and the shear stress across

the channel. For which stresses is it negative and positive?Why?
Which term do you think is the largest source and sink term, respectively, in Eq.9.12?

F.11 Dissipation

The dissipation of turbulent fluctuations (i.e. transformation of turbulent kinetic energy
into internal energy, i.e. increased temperature) reads (see Eq.9.12)

εij = ν
∂v′i
∂xk

∂v′j
∂xk

(F.8)

Download the filediss inst.mat and the Matlab filepl diss.m which reads it.
The data file includes the time history of the velocities along fivex2 lines [(x1, x2, x3),
(x1 ±∆x1, x2, x3) and(x1, x2, x3 ±∆x3)] so that you can compute all spatial deriva-
tives. The data cover only the lower half of the channel. Compute and plot all compo-
nents ofεij . Which is largest and which are close to zero (they would be identically
zero had I had provided more samples, i.e. longer time histories)? Plot alsoε = 0.5εii,
i.e.

ε = ν
∂v′i
∂xk

∂v′i
∂xk

(F.9)

Where is it largest and why? In which equation does this quantity appear?
Let us now consider the equations for the mean kinetic energy,K = v̄iv̄i/2 (Eq.8.29)

and turbulent kinetic energy,k = v′iv
′

i/2 (Eq.8.13). The dissipation in theK equation
reads

εmean = ν
∂v̄i

∂xk

∂v̄i

∂xk
(F.10)
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Figure F.1: Transfer of energy between mean kinetic energy (K), turbulent kinetic
energy (k) and internal energy (denoted as an increase in temperature, ∆T ). K =
1

2
v̄iv̄i andk = 1

2
v′iv

′

i. The dissipations,ε andεmean, are defined in Eqs.F.9andF.10,
respectively.

The flow of kinetic energy betweenK, k and∆T is illustrated in Fig.F.1. Compute
and plot alsoεmean andPk. Which is large and which is small? How is the major part
of the kinetic energy transformed fromK to ∆T? Is it transformed viak or directly
from K to ∆T?

F.12 Two-point correlations

Two-point correlations are used to investigate over how large spatial distance the tur-
bulence is correlated, see Section10.1. Usually it is normalized so that the two-point
correlation varies between one and minus one. Here we will compute the two-point
correlations ofv′3 in the x3 direction in which the flow (and turbulence) ishomoge-
neous(this means that the derivative with respect to this spatialcoordinate of alltime-
averagedquantities is zero, i.e.∂v̄1/∂x3 = 0, ∂v′iv

′

j/∂x3 = 0, ∂ε/∂x3 = 0 etc).
Download the data filew inst k.mat andy half every forth.dat , and

the Matlab filepl twocorr.m which reads the data files. The data file includes the
time history ofv′3 in the lower half of the channel and only for every fourth gridpoint
in thex2 direction. For everyx2 grid point the values along thex3 are included (only
every second point).

Now we will compute the two-point correlation between thex3 = 0 node and all
otherx3 nodes. For this case the normalized two-point correlation of v′3 reads

Bnorm
v′

3
v′

3

(x2, x̂3) =
1

v2
3,rms

v′3(x2, x3 = 0)v′3(x2, x3)

=
1

v2
3,rms

v′3(x2)v′3(x2, x̂3)

(F.11)

wherex̂3 = x3 − 0 = x3 is the separation distance between the two point. Compute
and plotBnorm

v′

3
v′

3

(x2, x̂3) for different x2 locations. Does it increase or decrease for
increasingx2? Explain why.

From the two-point correlation, the integral length scale can be computed, see
Eq. 10.5. Compute the integral length scale and plot it versusx2. The upper limit
in this integral is infinity (∞). You can either carry out the integration using all avail-
able data in thex3 direction; in general this may not be optimal and another option
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is to terminate the integration at the point where the two-point correlation becomes
negative. Compare these two options.

When plotting two-point correlations, it is no point showing both symmetric parts;
show only half of it (cf. the two-point correlations in Section10.1).

The integral length scale is – as the word implies – the integral (i.e. an average) of
the size (length) of all eddies. It is mathematically equal to the area below theBnorm

function. How large is it compared to half the channel width (which corresponds to the
boundary layer thickness)? How does the integral length compare to the wall distance?
Can it be larger thanx2? Can an eddy be larger than the wall distance?

F.13 Do something fun!

You have been provided with a lot of data which you have analyzed in many ways.
Now think of some other way to analyze the data. There are manyinteresting things
yet to be analyzed!


