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F  MTF256, Assignment: Analysis of turbulent flow in
a channel

In this exercise you will use data from a Direct Numerical 8iation (DNS) for fully
developed channel flow. In DNS the unsteady, three-dimeasavier-Stokes equa-
tions are solved numerically. ThRe number based on the friction velocity and the
half channel width ifRe, = u,h/v = 500 (h = p = u, = 1 so thatv = 1/Re,).

A 96 x 96 x 96 mesh has been used. The streamwise, wall-normal and sganwis
directions are denoted by(z1), y (z2) andz (x3) respectively. The cell size inand
z directions areAx = 0.0654 and Az = 0.0164. Periodic boundary conditions were
applied in thex and z direction (homogeneous directions). All data have beenemad
non-dimensional by, andp.

You can do the assignment on your own or in a group of two. Yaukhwrite a
reportwhere you analyze the results following the headifhgtl 3. Itis recommended
(but the not required) that you uggiX(an example of how to write if'IpXis available
on the course www page). It is available on Linux. On Windows gan use, for
example, Lyx www.lyx.org ) or MikTex (www.miktex.org ) which are both free
to donwload.

F.1 Time history

At the course home pagehttp://www.tfd.chalmers.se/"lada/turbulent flow/
you find a fileu_v_time _4nodes.dat with the time history ofv; andwv,. The

file has eight columns of; andwv, at four nodes:zo/6 = 0.0039, z5/§ = 0.0176,

x9/d = 0.107 andz2 /6 = 0.47. With w, = 1 andv = 1/Re, = 1/500 this corre-

spond torg = 1.95, 25 = 8.8, z3 = 53.5 andxj = 235. The sampling time step

is At = 0.0033 (every second time step). The four points are located in theous
sublayer, the buffer layer and in the logarithmic layer, Beg 6.2at p.49.

Use the Matlab programpl _time.m which loads and plots the time history of.
Start Matlab and run the progrgoh _time . Recall that the velocities have been scaled
with the friction velocityu., and thus what you see is really/«.,. The time history of
vy @tz /0 = 0.0176 andxzy /6 = 0.107 are shown. Study the time history of the blue
line (z2/d = 0.0176) more in detail. Make a zoom between, for example; 10 and
t = 11 andwy in = 3 andwy i, = 21. This is conveniently done with the command

axis([10 11 3 21))
In order to see the value at each sampling time step, chargddhcommand to
plot(t,u2,’b-',t,u2,’'bo’)

Use this technique to zoom, to look at the details of the timhy. Alternatively,
you can use the zoom buttons above the figure.

Plot v; for all four nodes. How does the time variation of vary for different
positions? Why? Plot alse, at the four different positions. What is the differences
betweerv; andvy?

Plotv; andvy versus time{™ = tu. /v (viscous units). How fast are the variations
of v; andws in viscous time units?
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F.2 Time averaging

Compute the average of the velocity at node 2. Add the following code (before the
plotting section)

umean=mean(u2)

Here the number of samplesris= 5000 (the entireu2 array). Find out how many
samples must be used to get a correct mean value. Start by inyih 100 samples as

umean_100=mean(u2(1:100))

What is the maximum and minimum value®f? Compare those to the mean.

Do the same exercise for the other three nodes.

Compute and plot also the instantaneous fluctuatignat node 1, for example, is
computed as

ul_mean=mean(ul);
ul fluct=ul-ul_mean;

F.3 Histogram/probability density

Equation7.2 defines thdirst moment. Compute and plot the probability density for
the instantaneous velocity . . . v4 and for their fluctuations; use the Matlab command
hist (note that the probability density function of is different from that ofv}).
Normalize the probability functions, so that (here showmnfg

/OO for(v)dv =1 (F.1)

To carry out the integration you can, for example, use theldlatommandrapz
(typehelp trapz  in the Matlab command window). Investigate how a probapbilit
density changes as the number of bins changes (to find outawbat” is, typehelp
hist in the Matlab command window)

Consider the probability density functions of the fluctoa. The second moment
corresponds to the variance of the fluctuations (or the sgofthe RMS, see E¢:.5),
ie.

V2 = / V2 f(v)dv'

Asin Eq.7.4, v2 is usually computed by integrating in time.

A probability density function is symmetric if positive weds are as frequent and
large as the negative values. What abfjut ... f,/4, do they seem to be symmetric?
Instead of “looking” at the probability density functionse should use a definition of
the degree of symmetry, which is tekewnesdlt is defined as

V3 = / V2 f(0)du'

— 00

and is commonly normalized hy},, ., so that the skewnessS,, of v’ is defined as

1 (e o)
.

Ul,rms — o0
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Again, the integration can also be carried out in time, §g. = v{*/v} ,.,,,,. Compute
S for fur1 ... fora. Note that you must use a normalizédsee EqF.1).

There is yet another statistical quantity which sometinseased for describing
turbulent fluctuations, namely tHtness The variance (the square of RMS) tells us
how large the fluctuations are in average, but it does nouteif there are few very
large fluctuations or frequent very small ones. The flatn@sssghis information, and
it is defined computed from’ and normalized by?, .., i.e.

1 o
IR S

™ms —0o0
Using time integration is reads,, = vi*/v{ ... For a Gaussian distribution

fot') = ——exp <M> =-3

2
Urms 207 s

F.4 Mean flow

All data in the data files below have been stored euéty. time step.

Downloadthe filaivw_inst _small.dat ,y.dat andthe Matlab filgl _vel.m
which reads the data files. The data file includgsvs andvs from the same DNS as
above, but now you are given the time history ofaallnodes at one chosen andzxs
node. There arej = 98 nodes in ther, direction; nodel andnj are located at the
lower and upper wall, respectively.

Your data are instantaneous. Compute the mean velocityt itHdoth as linear-
linear plot and a log-linear plot (cf. Fi§.4).

Inthe log-linear plot, use; for the wall distance. Include the linear law, = x5,
and the log lawp; = k= 'Inaf + B (k = 0.41 is the von Karman constant and
B = 5.2). How far out from the wall does the velocity profile followeahinear law?
Atwhatz] does it start to follow the log-law?

Compute the bulk velocity

1 2
_ [ F.2
Vip 2h/0 v1dxa (F.2)

(recall thath denote half the channel width) What is the Reynolds numbsedan
V1, and centerline velocityy; ., respectively?

F.5 The time-averaged momentum equation

Let us time average the streamwise momentum equation. Siadow is fully devel-
oped and two dimensional we get
1 0p 0%v1 Ol

0= -2
p 01 +V8x§ 0z

(F.3)

This equation is very similar to fully developed laminar flashich you studied in As-
signment 2 inTMEQ75 Mechanics of solids and flujdsee Eq.3.24 the difference
is that we now have an additional Reynolds stress term. Rewlall terms in the
equation above represefotces(per unit volume). Let us investigate how these forces
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(the pressure gradient, the viscous term and the Reynaokessserm) affect fluid par-
ticles located at different, locations. Compute and plot the three terms. (the file
uvw_inst _small.dat does notincludg; setdp/dx = —1.)

If a term is positive it means that it pushes the fluid particléhe positivex;
direction. What about the viscous term? Is it always neg&tiwhere is it largest? At
that point, which term balances it? How large is the thirdnterwhy? The pressure
term should be driving force. The Reynolds stress term, where is it positive and&he
is it negative?

F.6 Wall shear stress
Compute the wall shear stress at both walls. They should aetlgequal. Are they?

F.7 Resolved stresses

In SectionF.4you computed the mean velocities. From the instantanealthamean
velocity, you can compute the fluctuations as

Uz/' =v; — U; (F4)

Now you can easily compute all stressgs’. Plot the normal stresses in one figure
and the shear stresses in one figure (plot the stresses eventine channel, i.e. from
xo = 0to x5 = 2h). Which shear stresses are zero?

F.8 Fluctuating wall shear stress

In the same way as the velocity, the wall shear stress candmrgmsed into a mean
value and a fluctuation. In general, any fluctuating variablean be decomposed into
a mean and fluctuation @= ¢ + ¢’. The root-mean-square (RMS) is then defined as

bruns = (7)) (F5)

Compute the RMS of the wall shear stress. This is a measuteedfuctuating tan-
gential force on the wall due to turbulence. If heat tran&envolved, the fluctuating
temperature at the wall inducing fluctuating heat transfay lme damaging to the ma-
terial of the walls causing material fatigue. This is prolyahe most common form of
fluid-solid interaction.

F.9 Production terms

In order to understand why a stress is large, it is usefuldé bt its transport equation,
see Eq9.12 Usually, a stress is large when its production tefy, is large (there
may be exceptions when other terms, such as the diffusiom &ne largest). Plot the
production terms for all non-zero stresses across theeedtiannel. Which ones are
zero (or close to)? Why? Does any production term changedaigme centerline? If
so, what about the sign of the corresponding shear stretiegio Sectiorf.7?
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F.10 Pressure-strain terms

The pressure-strain term reads (see €4

P ov’ 8’1}5
IL;; = = . F.6
T <8xj i O0x; (F6)

Our data are obtained from incompressible simulations, fclvthe pressure may
vary unphysically in timedp/0t does not appear in the equations). Hence, we prefer
to compute the velocity-pressure gradient term
" O’ v’ Op!
Hf.:_ﬂ_p__J_p, (F.7)
J p Ox;  p Ox;

see the second line in E§.3. The pressure diffusion term in thg* equation — which
is the difference between EgB.6 andF.7 (the two first terms in Eq9.8) — is small
except very close to the wall (see Fi§s2and9.3). Hence, the difference betweénﬁj
andll;; is small.

Download the data filp_inst _small.mat andthe Matlab filgl _press _strain.m
which reads the datafile. The time histories of the presdoreydivex; lines [(x1, x2, x3),
(1 £ Azq,xo, x3) and(x1, x2, x3 £+ Axs)] are stored in this file. This allows you to
compute all the three spatial derivativepbfUsing the velocities stored invw_inst _small.dat
(see Sectiolfr.4), you can compute all the terms in Bg7.

Plotthe pressure straifi;, for the three normal stresses and the shear stress across
the channel. For which stresses is it negative and positvike®?

Which term do you think is the largest source and sink terspeetively, in Eq9.12?

F.11 Dissipation

The dissipation of turbulent fluctuations (i.e. transfotimaof turbulent kinetic energy
into internal energy, i.e. increased temperature) reses £%9.12)

/ /
8vi 81)]-

V@mk al’k

Eij = (F.8)
Download the filediss _inst.mat  and the Matlab filgl _diss.m which reads it.
The data file includes the time history of the velocities gléine 25 lines [(x1, z2, 23),
(21 £ Az, 29, x3) and(z1, 22, z3 = Axg)] S0 that you can compute all spatial deriva-
tives. The data cover only the lower half of the channel. Cam@and plot all compo-
nents ofe;;. Which is largest and which are close to zero (they would leatigally
zero had | had provided more samples, i.e. longer time héstjit Plot alse = 0.5¢;,
ie.
. ov} Ov}
=y —
al’k 8:ck
Where is it largest and why? In which equation does this dtysayppear?
Let us now consider the equations for the mean kinetic enéfgy v,;7; /2 (Eq.8.29
and turbulent kinetic energy, = vv./2 (Eq.8.13. The dissipation in thé equation
reads

(F.9)

0v; 07;

S =V
mean &rk amk

(F.10)
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Figure F.1: Transfer of energy between mean kinetic enefgy, (urbulent kinetic
energy &) and internal energy (denoted as an increase in temperaife K =

19;9; andk = Zv/v!. The dissipations; ande,y,cqn, are defined in Eqs=.9 andF.10

respectively.

The flow of kinetic energy betweeR, £ and AT is illustrated in Fig.F.1L Compute
and plot als&, ..., andP,. Which is large and which is small? How is the major part
of the kinetic energy transformed frofd to AT? Is it transformed vi& or directly
from K to AT?

F.12 Two-point correlations

Two-point correlations are used to investigate over hogdapatial distance the tur-
bulence is correlated, see Sectibh 1 Usually it is normalized so that the two-point
correlation varies between one and minus one. Here we wilipzde the two-point
correlations ofv; in the z3 direction in which the flow (and turbulence) i®moge-
neougthis means that the derivative with respect to this spatiardinate of altime-
averagedjuantities is zero, i.€v1 /0x3 = 0, Qvjv}; /Ox3 = 0, 9e /Ox3 = 0 €tc).

Download the data filev.inst _k.mat andy_half _every _forth.dat , and
the Matlab filepl _twocorr.m  which reads the data files. The data file includes the
time history ofv} in the lower half of the channel and only for every fourth gpioint
in the z direction. For everyr, grid point the values along the; are included (only
every second point).

Now we will compute the two-point correlation between the= 0 node and all
otherzs nodes. For this case the normalized two-point correlatfost seads

. 1
oo (T2, &3) = 2 vs(z2, v3 = 0)vy(72, T3)
3,rms
1 : : ] (F.11)
) vg(w2)vy (22, £3)
3,rms

wherezs = x3 — 0 = x3 is the separation distance between the two point. Compute
and pIothé"Jém(:z:Q, &3) for differentz, locations. Does it increase or decrease for
increasingey? Explain why.

From the two-point correlation, the integral length scade e computed, see
Eq. 10.5 Compute the integral length scale and plot it versps The upper limit
in this integral is infinity (o). You can either carry out the integration using all avail-
able data in thexs direction; in general this may not be optimal and anotheroopt
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is to terminate the integration at the point where the twaypoorrelation becomes
negative. Compare these two options.

When plotting two-point correlations, it is no point shogihoth symmetric parts;
show only half of it (cf. the two-point correlations in Seail10.7).

The integral length scale is — as the word implies — the irtgge. an average) of
the size (length) of all eddies. It is mathematically eqoahie area below th&m°"™
function. How large is it compared to half the channel widtinich corresponds to the
boundary layer thickness)? How does the integral lengthpasmto the wall distance?
Can it be larger tham,? Can an eddy be larger than the wall distance?

F.13 Do something fun!

You have been provided with a lot of data which you have areyin many ways.
Now think of some other way to analyze the data. There are riraayesting things
yet to be analyzed!



