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1 Introduction
Graphics Processing Units (GPUs) are specialized hardware designed to accelerate the processing of graphics
and visualizations. In recent years, GPUs have become increasingly popular for a variety of non-graphics
related tasks, including scientific computing, machine learning, and data analysis. One of the main reasons
for this shift is the ability to utilize the parallel processing capabilities of GPUs to significantly increase the
speed of specific types of computations.

Writing code for the GPU is typically done in CUDA C/C++, or a higher-level languages such as Python,
Fortran, or C# with bindings to the CUDA API and can be used. In this report, we will discuss the use of
GPU-accelerated Python code for computational fluid dynamics, and provide a brief overview of the tools
and libraries available for GPU programming in Python. We will also discuss the issues that we have run
into when applying CUDA code to accelerate already existing Python CFD code.

2 Methodology
This section will firstly introduce the benefit of parallelizing a computation on the GPU. It will also briefly
presents the libraries available for GPU programming in Python that were introduced in the course. This
list is not all conclusive but shows the what the project has been based on. Furthermore, the approach taken
in this project will be explained.

2.1 Parallel discreatization
Parallel discretization is a method for dividing a continuous problem into discrete pieces, which is utilized
to be able to solve the problem on a GPU for example. There are several different approaches to parallel
discretization, but a common approach is to divide the continuous problem into a number of smaller discrete
elements that can be solved independently. These elements can then be solved concurrently, using multiple
processors to work on different parts of the problem simultaneously. This allows the solution to be computed
more quickly, as the workload is distributed across multiple resources.

One key difference between CPUs and GPUs is the way they are designed to handle parallelization. CPUs
have larger memory and are designed to handle a wide range of tasks, but they are not as efficient at handling
tasks that can be easily divided into smaller pieces and solved concurrently. In contrast, GPUs does not
have as much memory but are specifically designed to handle many small parallel processes concurrently
very efficiently.

To be able to solve the computation concurrently the the domain has to be divided into blocks, and these
blocks in turn contain a number of threads. The calculations are then performed on the threads inside of
the blocks, similarly to how serial computations are performed but each block can run concurrently.

2.1.1 Shared memory

Shared memory on Nvidia GPUs is a memory on the hardware that is available per thread block. Shared
memory is similar to an L1 Cache that is available on CPU architectures. The difference is that shared
memory can be managed by the programmer explicitly as oppose to L1 which is automatically managed.
Shared memory is available for the all the threads in a block and can be managed to exchange data between
threads, with predictable timing. Shared memory is faster and more efficient than global memory and can
be accessed with much lower latency, making it a useful tool for optimizing the performance of GPU kernels.
The drawback in managing shared memory is synchronizing threads to avoid race conditions, and having a
correct implementation for the problem we are trying to solve.
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2.2 Python libraries
2.2.1 Numba

Numba is a just-in-time (JIT) compiler for Python that allows developers to write high-performance code
using Python and execute it on the either CPU or GPU. Numba CUDA is a subset of Numba that provides
support for programming NVIDIA GPUs using the CUDA parallel computing platform and programming
model. It allows developers to write GPU-accelerated code using Python and execute it on NVIDIA GPUs.

2.2.2 CuPy

CuPy is an open-source library in Python that uses the GPU parallelization. The library is compatible
with the commonly used library for scientific computing, NumPy, meaning that it provides an interface and
functionality similar to NumPy, but is designed to make use of the parallel processing on GPUs to accelerate
the computations.

2.2.3 Advantages and disadvantaged

There are several advantage of using CuPy over Numba and vice versa which will be briefly discussed in this
section.

The first advantage of using CuPy being the NumPy compatibility, meaning that there is most likely lim-
ited rewriting necessary if the original program is based on NumPy. More over, CuPy in general allows
for writing code for on the GPU parallelization without having to write low-level CUDA C/C++ code, by
the use of RawKernels that can be compiled for CUDA inside a Python script. CuPy is also widely used
and a well-supported library that is actively developed and maintained, making it a reliable choice for GPU
acceleration in Python.

On the other hand, while CuPy is designed to be compatible with NumPy, it may not support all NumPy
functions and features. CuPy will provide significant performance improvements over NumPy for certain
types of array operations, however, it may not always be faster than Numba. As Numba is a just-in-time
compiler that it is designed to provide high performance for a wide range of applications it can be more
versatile.

2.2.4 Our approach

Although it is a great advantage to be able to use the NumPy framework that we are already familiar with,
we have decided to use Numba as a base for the acceleration of our code. This choice was made as it would
generate more learning and understanding as it requires to write code that is more similar to CUDA C/C++
although wrapped in a python package.

We would also like to note that we are aware of the fact that the algorithms used in these cases below are
not computationally optimal in general. As the course is about GPU-acceleration we decided to focus on
accelerating simple code, in this case the Gauss-Seidel solver (see section ??, rather than spending time on
finding the best algorithm and accelerating that. It would have been interesting to consider sparse matrices
though, as it is such a central concept for these problems. However, we found that in order to do that we
would have to rely on CuPy or SciPy or it would get much to complicated for this course, and we did not
want to do that according to the above discussion.

2.3 Linear Solvers
2.3.1 Gauss-Seidel solver

The Gauss-Seidel algorithm is an iterative method for solving systems of linear equations. It solves problems
by approximating the solutions of the governing equations on a grid and works by iteratively updating the
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values of the unknown variables at each grid point, based on the values of the unknowns at the neighboring
points. This is done in a sequential manner, starting from one corner of the grid and working towards the
opposite corner. The updated values are then used to update the values of the unknowns at the next grid
point, and the process is repeated until the solution has converged to a satisfactory level of accuracy.

2.3.2 Tridiagonal Matrix Algorithm

The Tridiagonal Matrix Algorithm (TDMA), is a method for solving systems of linear equations that are
in the form of a tridiagonal matrix. This matrix is a special type of matrix that has non-zero entries only
on the main diagonal and the two diagonals immediately above and below it, which is the case for this
diffusion problem. TDMA works by using the values of the unknowns at the neighboring points to eliminate
the unknowns at the intermediate points, and then using the resulting equations to solve for the unknowns
at the remaining points, similarly to the Gauss-Seidel algorithm. Although TDMA is generally faster and
more accurate than Gauss-Seidel as it only considers the non-zero entries of the matrix. However, it is only
applicable to systems of equations with a tridiagonal matrix structure and cannot be used for more general
systems.

3 Acceleration of Provided Simple Poisson Solver
As a first task the provided simple Poisson solver has been accelerated using Numba. In this section only
the Gauss-Seidel function (see explaination of algorithm in section 2.3.1) and the modification made to it
will be discussed, the full code including the set up for launching the GPU-kernel can be seen in Appendix
A. The code for the function to be computed on the CPU can be viewed below.

1 de f so lve_gs ( phi3d , aw3d , ae3d , as3d , an3d , al3d , ah3d , su3d , ap3d , tol_conv , nmax) :
2 pr in t ( ’ solve_3d gs ca l l ed , nmax=’ ,nmax)
3 acrank_conv = 1
4 f o r n in range (0 ,nmax) :
5 phi3d=((ae3d∗np . r o l l ( phi3d ,−1 , ax i s =0)+aw3d∗np . r o l l ( phi3d , 1 , ax i s =0) \
6 +an3d∗np . r o l l ( phi3d ,−1 , ax i s =1)+as3d∗np . r o l l ( phi3d , 1 , ax i s =1) \
7 +ah3d∗np . r o l l ( phi3d ,−1 , ax i s =2)+al3d ∗np . r o l l ( phi3d , 1 , ax i s =2) ) ∗acrank_conv+su3d ) /ap3d
8

9 r e s= ap3d∗phi3d−\
10 ( ( ae3d∗np . r o l l ( phi3d ,−1 , ax i s =0)+aw3d∗np . r o l l ( phi3d , 1 , ax i s =0) \
11 +an3d∗np . r o l l ( phi3d ,−1 , ax i s =1)+as3d∗np . r o l l ( phi3d , 1 , ax i s =1) \
12 +ah3d∗np . r o l l ( phi3d ,−1 , ax i s =2)+al3d ∗np . r o l l ( phi3d , 1 , ax i s =2) ) ∗acrank_conv+su3d )
13

14 r e s i d=np . sum(np . abs ( r e s . f l a t t e n ( ) ) )
15 r e turn phi3d , r e s i d

The function uses the NumPy feature "roll" which shifts the elements of an array circularly along a given axis
by a specified number of positions. To be able to split the computation into smaller pieces for parallelization
on the GPU using Numba, the numpy.roll function must be replaced with a proper matrix indexing. This
can be seen in the code below. Other difference made is the introduction of the @cuda.jit decorator which
modifies the function to run on the GPU. Furthermore, the indexing has been defined by the cuda.grid(3)
function, which defines the shape of the grid of threads that will be launched on the GPU to execute the
CUDA kernel. It is also customary practice to return empty for a GPU kernel as all arrays must have been
predefined on the device before hand as to allocate space. Finally, the for-loop used for the iteration has
been moved to outside of the kernel, meaning that the kernel is launched once per iteration. This was done
because keeping it inside generated incorrect results which will be shown and discussed in more detail in a
following section.

1 @cuda . j i t
2 de f so lve_gs ( phi3d , ap3d , aw3d , ae3d , as3d , an3d , al3d , ah3d , su3d , tol_conv , nmax , r e s ) :
3 pr in t ( ’ solve_3d gs ca l l ed , nmax=’ ,nmax)
4 acrank_conv = 1
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5 i , j , k = cuda . g r id (3 )
6

7 i f 0 < i < phi3d . shape [ 0 ] and 0 < j < phi3d . shape [ 1 ] and 0 < k < phi3d . shape [ 2 ] :
8

9 phi3d [ i , j , k ] = ( ( ae3d [ i , j , k ]∗ phi3d [ i −1, j , k]+aw3d [ i , j , k ]∗ phi3d [ i +1, j , k ] \
10 +an3d [ i , j , k ]∗ phi3d [ i , j −1,k]+as3d [ i , j , k ]∗ phi3d [ i , j +1,k ] \
11 +ah3d [ i , j , k ]∗ phi3d [ i , j , k−1]+al3d [ i , j , k ]∗ phi3d [ i , j , k+1]) \
12 ∗acrank_conv+su3d [ i , j , k ] ) /ap3d [ i , j , k ]
13

14 r e s [ i , j , k ] = ap3d [ i , j , k ]∗ phi3d [ i , j , k]−\
15 ( ( ae3d [ i , j , k ]∗ phi3d [ i −1, j , k]+aw3d [ i , j , k ]∗ phi3d [ i +1, j , k ] \
16 +an3d [ i , j , k ]∗ phi3d [ i , j −1,k]+as3d [ i , j , k ]∗ phi3d [ i , j +1,k ] \
17 +ah3d [ i , j , k ]∗ phi3d [ i , j , k−1]+al3d [ i , j , k ]∗ phi3d [ i , j , k+1]) \
18 ∗acrank_conv+su3d [ i , j , k ] ) /ap3d [ i , j , k ]
19

20 r e turn

Less related to the GPU set up, but still a difference in the code is the boundary condition. It was not
clear how the boundary condition was implemented in the provided CPU-code, so we decided to switch
the boundary condition to a Dirichlet boundary (constant as the initial condition) for all sides. This of
course changes the results slightly but not enough so that it is not clear that the solutions are the same on
the CPU and GPU. The grid also had to be greatly increased to utilize the GPU properly, the difference is
then very minimal as the source then becomes very small in comparison to the domain with the current set up.

Lastly, the final row of the residual computation in the function is missing in the GPU-function. It was
proven hard to reduce a matrix by summing all the all elements using Numba as the entire sum-functionality
would have to be written from scratch with indexing to allow for parallelization. Therefore, this last row
is now computed outside of the function using CuPy, where the sum-feature is already implemented for the
GPU, this can be seen in the code below. There are some problems with this approach, for one the arrays
has to be modified from Numba arrays to CuPy arrays which take unnecessary time. Also, as was mentioned
earlier, we do not know what exactly is done within the CuPy sum-function, so we are less in control of the
parallelization and we still don’t know how it is done which is the point of this course.

1 f o r n in range (0 , n i t e r ) :
2 so lve_gs [ b l o ck spe rg r id , th readspe rb lock ] ( p3d_gpu , ap3d_gpu , aw3d_gpu , ae3d_gpu , as3d_gpu ,

an3d_gpu , al3d_gpu , ah3d_gpu , su3d_gpu , convergence_l imit , n i t e r , res_gpu )
3 p3d = p3d_gpu . copy_to_host ( )
4 r e s = cp . asar ray ( res_gpu ) #probably slow to switch , but I can ’ t make i t work in numba
5 r e s i d = cp . sum( cp . abs ( cp . r av e l ( r e s ) ) ) . get ( )

Note that the second line simply copies the results generated in the GPU kernel back from the device to the
host and that the .get() extension on the last line does the same.

In the GPU code presented above the computation takes a naive approach of always accessing the global
memory. A better approach would be to introduce shared memory so that all threads in a block can be
solved directly without accessing the global memory. Just like with the reduction of an array, this code has
to be written from scratch. As to limit the complexity of the problem, this will not be introduced in this
three dimensional code. Instead we have moved on to a diffusion case, similar to this, but in two dimensions.
Although first the time savings for the current implementation will be presented in the following subsection.

3.1 Benchmarking
The benchmarking has been performed over 20 runs of 1 loop each for the Gauss-Seidel function using the
python function %timeit. The mean and standard deviation of the run times are presented in Table 1. Before
the benchmarking 20 runs we completed as a CPU and GPU warm-up as to make sure that the results are
as fair as possible.
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As can be seen in Table 1, the GPU-accelerated code performs more efficiently even for smaller simulations
with a cell count of 1000 cells, although very slightly. The larger simulation, with one million cells, saw an
even greater improvement, with a simulation time reduction of a factor of 12. This demonstrates that the
greatest advantage of GPU acceleration is its ability to parallelize larger problems.

Table 1: Run time, including standard deviation, for the simple Poisson solver on Chalmers’ computer
Number of cells Run time CPU Run time GPU

103 15.8 ms ± 971 µs 13.8 ms ± 86.3 µs
106 3.28 s ± 12.6 ms 263 ms ± 2.37 ms

4 Acceleration of 2D Diffusion Case
The CPU-code for the 2D Diffusion Case is a manipulation of the first task in the CFD-course, MTF072. As
previously mentioned, we are aware of the fact that the code is not optimal, but as it is developed as a means
to learn how to implement CFD-code it is also simple enough and a good baseline to modify for implemen-
tation on the GPU. The full modified CPU-code for the diffusion case can be found in Appendix B, where as
this section will handle the accelerated parts. A brief overview of the code will be given in this section though.

The code has been divided into three functions, Poisson, Mesh generation, and Gauss-Seidel Solver where
Poisson is the main function which includes both the other functions as well as the initialization of values
and set-up of the GPU-kernel. Plotting of the results is done outside of the these three functions. A fourth
function used to calculate the residual has been added after this profiling was done. This function has
therefore not been profiled and the calculation has not been used to measure convergence. The Gauss-Seidel
solver is run for a fix number of 100 iterations, where the function covers one iteration each meaning that it
is called multiple times, once per iteration. Running until convergence instead of a set number of iterations
would require much longer simulation times which would not be feasible to consider for benchmarking in
this project.

4.1 Profiling
As a means to decide what parts of the code to accelerate the code was profiled based on the cumulative
time of all processes. This was done using the python library cProfiling. The profiling showed that the
Gauss-Seidel solver function took the longest time to run in general, approximately 1.3 s per iteration, see
Table 2. As it was run also a total of 100 times this means a cumulative time of 130 s. The cumulative time
of the Poisson function, which includes the entire program except for some importing and final plotting, was
around 132 s. As expected this means that almost all time was spent on the calculations and that the set-up
is negligible. However, the meshing function is also rather slow, with a cumulative time of around 0.9 s, and
could be sped up as well. The main focus will be put into accelerating the Gauss-Seidel solver.

Table 2: Profiling of 2D diffusion case on the CPU
Function Number of calls Total time Per Call Cumulative time
Poisson 1 0.013 0.013 132.593

Gauss-Seidel 100 131.579 1.316 131.579
Generate mesh 1 0.998 0.998 0.998

4.2 Code acceleration
The CPU-code of the Gauss-Seidel function for the 2D diffusion case can be seen below. The input variables
are first the grid parameters in x and y direction, nI and nJ, followed by the coefficients aE, aW, aS, and
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aN. Finally there is the temperature, T, which is the variable that we are solving for, and lastly the source,
Su. Note that the loop for Gauss-Seidel iterations is outside of the function, meaning that the function is
called once per iteration.

1 # GAUSS−SEIDEL FUNCTION
2 de f so lve_gs ( nI , nJ , aE , aW, aN , aS , aP , T, Su) :
3 # Solve f o r T us ing Gauss−Se i d e l
4 f o r i in range (1 , nI −1) :
5 f o r j in range (1 , nJ−1) :
6 T[ i , j ] = (aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + aN [ i , j ] ∗ T[ i , j +1]
7 + aS [ i , j ] ∗ T[ i , j −1] + Su [ i , j ] ) / aP [ i , j ]

Before introducing the GPU-code with shared memory we will show the naive approach. The code is very
similar to the simple Poisson case, the difference is that the simple Poisson includes the calculation of residual
which is not considered in this case, otherwise the code and manipulations follows the same structure as
described in section 3.

1 # GAUSS−SEIDEL FUNCTION
2 @cuda . j i t
3 de f so lve_gs (aE , aW, aN , aS , aP , T, Su) :
4

5 # Global i n d i c e s
6 i , j = cuda . g r id (2 )
7

8 # Thread check
9 i f 0 < i < T. shape [0] −1 and 0 < j < T. shape [1 ] −1 :

10 T[ i , j ] = (aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + aN [ i , j ] ∗ T[ i , j +1]
11 + aS [ i , j ] ∗ T[ i , j −1] + Su [ i , j ] ) / aP [ i , j ]

4.2.1 Shared memory implementation

Two different, but very similar, approaches has been taken when implementing the shared memory, none
with a desirable outcome. As mentioned previously for the 3D simple Poisson case, incorrect results where
achieved when including the iteration-loop inside of the kernel. As the idea of shared memory is that the
global memory is copied into a local memory that can be accessed by all threads within a block the looping
has to be performed inside of the kernel for the full potential of the shared memory to be utilized. If the
looping is done outside of the kernel, the global memory will have to be copied into the local memory once
for every iteration which means that the advantages of shared memory will only be applied for the one
calculation instead of all calculations which means it will loose the main part of its benefit. Additionally,
the global memory will have to be copied to the local one multiple times, which will most likely make the
code slower than without using shared memory at all.

The other approach is to put the iteration loop inside of the kernel which should make the code faster,
but will generate an incorrect result. This approach is of course not desirable in any way as a code that
produces incorrect results can not be used in practice, but we have decided to show it anyway as it is an
interesting issue when it comes to GPU-programming. The code with shared memory can be seen below and
the correct/expected and incorrect results for 100 Gauss-Seidel iterations (i.e not converged) can be seen in
Figure 1.

1 # GAUSS−SEIDEL FUNCTION
2 @cuda . j i t
3 de f so lve_gs (aE , aW, aN , aS , aP , T, Su) :
4

5 # Def ine shared memory s i z e
6 SM_size = 32
7 SM_size_T = 34
8

9 # Global i n d i c e s
10 i , j = cuda . g r id (2 )
11

12 # Thread check
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13 i f 0 < i < T. shape [0] −1 and 0 < j < T. shape [1 ] −1 :
14

15 # Al lo ca t e shared memories f o r the c o e f f i c i e n t s
16 aE_sm = cuda . shared . array ( shape = (SM_size , SM_size ) , dtype = np . f l o a t 3 2 )
17 aW_sm = cuda . shared . array ( shape = (SM_size , SM_size ) , dtype = np . f l o a t 3 2 )
18 aN_sm = cuda . shared . array ( shape = (SM_size , SM_size ) , dtype = np . f l o a t 3 2 )
19 aS_sm = cuda . shared . array ( shape = (SM_size , SM_size ) , dtype = np . f l o a t 3 2 )
20 aP_sm = cuda . shared . array ( shape = (SM_size , SM_size ) , dtype = np . f l o a t 3 2 )
21 Su_sm = cuda . shared . array ( shape = (SM_size , SM_size ) , dtype = np . f l o a t 3 2 )
22

23

24 # Local i n d i c e s
25 l i = cuda . threadIdx . x
26 l j = cuda . threadIdx . y
27

28 # Load data in to the shared memory ar rays
29 aE_sm[ l i , l j ] = aE [ i , j ]
30 aW_sm[ l i , l j ] = aW[ i , j ]
31 aN_sm[ l i , l j ] = aN [ i , j ]
32 aS_sm [ l i , l j ] = aS [ i , j ]
33 aP_sm[ l i , l j ] = aP [ i , j ]
34 Su_sm[ l i , l j ] = Su [ i , j ]
35

36 #Temperature
37 T_sm = cuda . shared . array ( shape = (SM_size_T , SM_size_T) , dtype = np . f l o a t 3 2 )
38 # Local i n d i c e s
39 t i = cuda . threadIdx . x+1
40 t j = cuda . threadIdx . y+1
41

42 #Inner r eg i on
43 T_sm[ t i , t j ] = T[ i , j ]
44 #Outer r eg i on
45 i f t i == 1 :
46 T_sm[ t i −1, t j ] = T[ i −1, j ]
47 i f t j == 1 :
48 T_sm[ t i , t j −1] = T[ i , j −1]
49 i f t i == SM_size−1:
50 T_sm[ t i +1, t j ] = T[ i +1, j ]
51 i f t j == SM_size−1:
52 T_sm[ t i , t j +1] = T[ i , j +1]
53

54 cuda . syncthreads ( )
55

56 f o r n in range ( n I t e r a t i o n s ) :
57

58 T_sm[ t i , t j ] = (aE_sm[ l i , l j ] ∗ T_sm[ t i +1, t j ] + aW_sm[ l i , l j ] ∗ T_sm[ t i −1, t j ]
59 + aN_sm[ l i , l j ] ∗ T_sm[ t i , t j +1] + aS_sm [ l i , l j ] ∗ T_sm[ t i , t j −1]
60 + Su_sm[ l i , l j ] ) / aP_sm[ l i , l j ]
61

62 #cuda . syncthreads ( )
63 T[ i , j ] = T_sm[ t i , t j ]

The incorrect results in Figure 1b, show a temperature distribution that appear to be bounded by the blocks
instead of the smooth square source that has been defined in the set-up phase. It appears as though a
boundary condition has been implemented for every block making the temperature distribution incorrect.
The issue remains when the threads are synced after every iteration and we have not been able to find what
causes this behavior.

One possible idea of how it could be solved that has been found from looking at other examples of how shared
memory has been implemented, is to loop over each block separately to load the data into shared memory
arrays and then again when performing the calculations. We have tried to implement this approach without
success and can therefore not report on whether it is the solution or not. This proved to be a rather complex
implementation in regards with the indices on the matrices. In the implementation of shared memory we
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a)

b)

Figure 1: a) Expected results (100 iterations, not converged), b) Results produced by GPU-code with
iteration-loop inside of the kernel
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need to handle matrix multiplication differently from the simple case where we iterate over the block of
threads and allocate shared memory from part of the matrix and atomically add the sum. The indices in
the matrix T need to be shifted +1/-1 in position in the Gauss-Seidel equation. We could make use of halo
cells in the original result matrix, but it was too complex of a solution to find in time.

4.2.2 Benchmarking

In Table 3 the benchmarking for the 2D Diffusion Case run on two different meshes for three different graphic
cards can be seen. Note that the run times presented for this case is not the run time for a converged solution
but with a number of Gauss-Seidel iterations fixed at 100 and without running the residual calculation. As
in the previous case, the benchmarking has been performed over 20 runs of 1 loop each python function
%timeit with 20 runs of warm-up before hand. In this case it is the entire Poisson function that has been
time, i.e the set-up and meshing as well as the solver, although as the profiling showed the Gauss-Seidel is
the most time-consuming part.

Table 3: Run time, including standard deviation, for the 2D diffusion case using Gauss-Seidel
Number
of cells

Run time CPU
double-precision

Run time CPU
single-precision

Run time GPU
double-precision

Run time GPU
single-precision

Run time GPU
shared memory

NVIDIA GeForce GTX-1060 6GB
104 1.35 s ± 3.02 ms 1.37 s ± 2.9 ms 19.8 ms ± 90 µs 43.8 ms ± 613 µs 21.3 ms ± 180 µs
106 133 s ± 2.3 s 134 s ± 47.9 ms 1.13 s ± 5.34 ms 3.48 s ± 49 ms 1.93 s ± 10.6 ms

NVIDIA GeForce GTX-1650 4GB
104 2.09 s ± 14.2 ms 1.92 s ± 19.3 ms 61.4 ms ± 714 µs 60.5 ms ± 1.84 ms 49 ms ± 910 µs
106 210 s ± 519 ms 186 s ± 3.55 s 3.34 s ± 101 ms 3.21 s ± 61.1 ms 3.27 s ± 68.2 ms

NVIDIA GeForce RTX-3060 8GB
104 1.157 s ± 16.1 ms 0.98 s ± 6.5 ms 43.7 ms ± 414.5 µs 46.2 ms ± 467.5 µs 54.7 ms ± 232 µs
106 108.5 s ± 12.86 ms 94.7 s ± 876 ms 1.943 s ± 24.3 ms 1.726 s ± 18.3 ms 2.03 s ± 19.5 ms

The run time presented for the GPU-code with shared memory is the code with the iteration done inside
of the kernel even though this produces incorrect results. The reason for this is that if the looping is done
outside of the kernel the shared memory is regenerated for every iteration which defeats the purpose. When
the iteration is done inside of the kernel we can see that the run time is shorter than for the GPU-code
where shared memory is not implemented for two out of the three graphic cards as expected. The difference
is not as significant as we would have expected though. The minimal difference is probably cause by the fact
that there is something wrong with the results in the shared memory case making the two cases incomparable.

The important part to note is that the naive GPU code, without shared memory, is significantly faster than
the code run on the CPU. Already at a cell count of 10 000 the speed-up is around a factor of 20 depending
on the graphics card. When we have one million cells the speed-up is at a factor of 70. It should also be
noted that even though we have seen large impacts on the simulation time of the GPU-code, the original
CPU-code was not optimized to begin with. This means that if we had started with faster CPU-code, the
GPU speed-up might not have been as impressive. The idea was to also accelerate some faster method than
the Gauss-Seidel, for example TDMA, and compare the speed-up. Unfortunately, we ran out of time for this
due to spending the time on trying to solve the issues with shared memory. We believe that the run times
using TDMA would be much lower in general, due to it being a sparse matrix solver, however it would be
likely that this means that the speed-up would not be as significant as the code was more optimal to beging
with.

For the benchmarking showed above, both double and single precision has been used i.e floating-point
numbers that uses 64 or 32 bits respectively to represent a number. Because double precision uses twice
as many bits as single precision, it requires more memory and processing power to perform operations on
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double precision numbers but single precision provides less precision. For two out of the three GPUs, the
computational time is reduced by introducing single precision, although not by a large capacity. However, as
can be seen in this case the double-precision actually performs better than single-precision for the NVIDIA
GeForce GTX-1060 6GB. There is not a significant difference in most cases, except for the fine-mesh GPU-
case, where the time more than doubles for the single-precision. We cannot explain this behavior, and the
benchmarking has been rerun to double check the results without change. Overall, it can be said that there
should be a slight improvement in limiting the variable to single precision, that could be beneficial for larger
problems than this, but in this smaller case is barely noticeable.

5 Conclusion
The advantage of using the parallelization power of a GPU for CFD-simulations is clear. Even with quite
small efforts, large improvements of simulation time was achieved. However, it got very complicated fast
after that initial step. Although this group consisted of different backgrounds that could help in under-
standing the complexity of the problems, we did not have enough knowledge when trying our hands at more
complicated coding.

It is still unclear how much of a speed-up one would get when the baseline CPU- code is more optimized
than what has been used in this project. However, utilizing the GPU overall can provide a speedup given
that the underline computation is matrix multiplication, which is essentially faster on the external hardware.
In a production environment, even if the speedup is 10% that could translate into a significant amount of
hours for simulations that CFD engineers can save for example. Here is also important to mention that when
testing the performance of the code on a larger system such as a server, there might be also an additional
overhead of data transferring between the host CPU and the GPU since they might not be on the same
machine.

Writing the code in Python using the libraries provided, can be beneficial and fast to experiment and get
early results. We could easily avoid to have to deal with nested for loops for matrix multiplication, or writing
CUDA specific code, things we would have encountered doing it in C. But, in our opinion it is better for
debugging and understanding the system to use the native api to the heterogeneous hardware, rather than
depending on an external Python library. A better solution to do this would have been to use the Thrust
Cuda library that is available by Nvidia, and is made to mimic the standard template library in C++11 and
above version. It makes things easier, and is much more readable and easy to use rather than C. It is also
included in the latest version of CUDA 12, under the cuda namespace. However, there is no support yet for
shared memory, something that we tried to implement in this project. It would have been worthwhile to try
this solution, but it has been out of our scope given the timeline.
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Appendix

A Simple Poisson for GPU

1 import sys
2 import math
3 import time
4 from t ime i t import de fau l t_t imer as t imer
5 import numpy as np
6 import matp lo t l i b . pyplot as p l t
7 from numba import j i t
8 from numba import cuda , f l o a t 3 2
9 import cupy as cp

10

11 @cuda . j i t
12 de f so lve_gs ( phi3d , ap3d , aw3d , ae3d , as3d , an3d , al3d , ah3d , su3d , tol_conv , nmax , r e s ) :
13 pr in t ( ’ solve_3d gs ca l l ed , nmax=’ ,nmax)
14 acrank_conv = 1
15 i , j , k = cuda . g r id (3 )
16

17 #Inc lud ing shared memory should be f a s t e r
18

19 i f i < phi3d . shape [ 0 ] and j < phi3d . shape [ 1 ] and k < phi3d . shape [ 2 ] :
20

21 phi3d [ i , j , k ] = ( ( ae3d [ i , j , k ]∗ phi3d [ i −1, j , k]+aw3d [ i , j , k ]∗ phi3d [ i +1, j , k ] \
22 +an3d [ i , j , k ]∗ phi3d [ i , j −1,k]+as3d [ i , j , k ]∗ phi3d [ i , j +1,k ] \
23 +ah3d [ i , j , k ]∗ phi3d [ i , j , k−1]+al3d [ i , j , k ]∗ phi3d [ i , j , k+1]) \
24 ∗acrank_conv+su3d [ i , j , k ] ) /ap3d [ i , j , k ]
25

26 r e s [ i , j , k ] = ap3d [ i , j , k ]∗ phi3d [ i , j , k]−\
27 ( ( ae3d [ i , j , k ]∗ phi3d [ i −1, j , k]+aw3d [ i , j , k ]∗ phi3d [ i +1, j , k ] \
28 +an3d [ i , j , k ]∗ phi3d [ i , j −1,k]+as3d [ i , j , k ]∗ phi3d [ i , j +1,k ] \
29 +ah3d [ i , j , k ]∗ phi3d [ i , j , k−1]+al3d [ i , j , k ]∗ phi3d [ i , j , k+1]) \
30 ∗acrank_conv+su3d [ i , j , k ] ) /ap3d [ i , j , k ]
31

32 #re s i d=np . sum(np . abs ( r e s . f l a t t e n ( ) ) ) #Now done out s id e func t i on
33 r e turn
34

35 de f po i s son ( so lve r , n i t e r , convergence_l imit ) :
36

37 #globa l ni , nj , nk , x , y , z , p3d
38 #pr in t ( ’ \ nhostname : ’ , s ocke t . gethostname ( ) )
39 pr in t ( ’ \ nso lver , convergence_l imit , n i t e r ’ , s o l v e r , convergence_l imit , n i t e r )
40

41 # se t g r id x
42 xmax=1
43 ni=10
44 dx=np . f l o a t 3 2 (xmax/ ni )
45 x = np . l i n s p a c e (0 , xmax , ni , dtype=np . f l o a t 3 2 )
46

47 # se t g r id y
48 ymax=1
49 nj=10
50 dy=np . f l o a t 3 2 (ymax/ nj )
51 y = np . l i n s p a c e (0 , ymax , nj , dtype=np . f l o a t 3 2 )
52

53 # se t g r id z
54 zmax=1
55 nk=10
56 dz=np . f l o a t 3 2 (zmax/nk )
57 z = np . l i n s p a c e (0 , zmax , nk , dtype=np . f l o a t 3 2 )
58

59

60 # i n i t i a l c o e f f i c i e n t s
61 aw3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
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62 ae3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
63 as3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
64 an3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
65 al3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
66 ah3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
67 ap3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
68 su3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
69

70 # i n i t i a l s o l u t i o n
71 p3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗1e−20
72

73 # compute c o e f f i c i e n t s , s e e Chapter 4 , Eq . 17 where a 2D ve r s i on i s der ived
74

75 # http ://www. t fd . chalmers . se /~ lada /comp_fluid_dynamics/ l e c ture_note s . html
76

77 aw3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗dy∗dz/dx
78 ae3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗dy∗dz/dx
79

80 as3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗dx∗dz/dy
81 an3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗dx∗dz/dy
82

83 al3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗dx∗dy/dz
84 ah3d=np . ones ( ( ni , nj , nk ) , dtype=np . f l o a t 3 2 ) ∗dx∗dy/dz
85

86 ap3d=aw3d+ae3d+as3d+an3d+al3d+ah3d
87

88 su3d [ i n t ( 0 . 4∗ ni ) : i n t ( 0 . 6∗ ni ) , i n t ( 0 . 4∗ nj ) : i n t ( 0 . 6∗ nj ) , i n t ( 0 . 4∗ nk ) : i n t ( 0 . 6∗ nk ) ]=100∗dx∗dy∗
dz

89

90 ap3d_gpu = cuda . to_device ( ap3d )
91 aw3d_gpu = cuda . to_device (aw3d)
92 ae3d_gpu = cuda . to_device ( ae3d )
93 an3d_gpu = cuda . to_device ( an3d )
94 as3d_gpu = cuda . to_device ( as3d )
95 al3d_gpu = cuda . to_device ( a l3d )
96 ah3d_gpu = cuda . to_device ( ah3d )
97 su3d_gpu = cuda . to_device ( su3d )
98 p3d_gpu = cuda . to_device ( p3d )
99

100

101 th readspe rb lock = (8 , 8 , 8) #What should t h i s be to be e f f i c i e n t ?
102 blockspergr id_x = math . c e i l ( p3d . shape [ 0 ] / threadspe rb lock [ 0 ] )
103 blockspergr id_y = math . c e i l ( p3d . shape [ 1 ] / threadspe rb lock [ 1 ] )
104 blockspergr id_z = math . c e i l ( p3d . shape [ 2 ] / threadspe rb lock [ 2 ] )
105 b l o ck sp e r g r i d = ( blockspergr id_x , blockspergr id_y , b lockspergr id_z )
106

107 res_gpu = cuda . device_array ( ( ni , nj , nk ) )
108

109 # c a l l s o l v e r
110 f o r n in range (0 , n i t e r ) :
111 so lve_gs [ b l o ck spe rg r id , th readspe rb lock ] ( p3d_gpu , ap3d_gpu , aw3d_gpu , ae3d_gpu , as3d_gpu ,

an3d_gpu , al3d_gpu , ah3d_gpu , su3d_gpu , convergence_l imit , n i t e r , res_gpu )
112 p3d = p3d_gpu . copy_to_host ( )
113 r e s = cp . asar ray ( res_gpu ) #probably slow to switch
114 r e s i d = cp . sum( cp . abs ( cp . r av e l ( r e s ) ) ) . get ( )
115

116 r e turn nk , x , y , p3d
117

118 #Choose So lve r
119 s o l v e r=’ gs ’
120

121 # number o f i t e r a t i o n s in GS s o l v e r
122 n i t e r =100
123

124 # convergence l im i t
125 convergence_l imit=1e−7
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126

127 s t a r t= time . time ( )
128

129 nk , x , y , p3d = po i s son ( so lve r , n i t e r , convergence_l imit )
130

131 pr in t ( " time" , time . time ( )−s t a r t )
132

133 p l t . c l o s e ( ’ a l l ’ )
134 p l t . i n t e r a c t i v e (True )
135 p l t . rcParams . update ({ ’ f ont . s i z e ’ : 22})
136

137

138 ############# plo t r e s u l t s
139 f i g 1 , ax1 = p l t . subp lo t s ( )
140 p l t . subplots_adjust ( l e f t =0.20 , bottom=0.20)
141 # plo t r e s u l t s in mid−plane in z d i r e c t i o n
142 nk2=in t (nk/2)
143 p l t . contour f (x , y , p3d [ : , : , nk2 ] , 20 , cmap=’RdGy ’ )
144 p l t . y l ab e l ( ’ $y$ ’ )
145 p l t . x l ab e l ( ’ $x$ ’ )
146 p l t . t i t l e ( ’ $\phi$ in plane $z=z_{max}/2$ ’ )
147 p l t . c o l o rba r ( ) ;
148 p l t . s a v e f i g ( ’ po isson−p3d . png ’ , bbox_inches=’ t i g h t ’ )

B 2D Diffusion for CPU

1 # Packages needed
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import time
5 from numba import j i t
6

7 # SOLVER INPUTS
8 n I t e r a t i o n s = 100 # maximum number o f i t e r a t i o n s
9 r e sTo l e rance = 0.001 # convergence c r i t e r i a f o r r e s i d u a l s each va r i ab l e

10

11

12 # MESH GENERATION FUNCTION
13 de f mesh_gen (mI , mJ, xL , yL , dx , dy , x_M, y_M, x_N, y_N) :
14 # F i l l the coo rd ina t e s
15 f o r i in range (mI) :
16 f o r j in range (mJ) :
17 # For the mesh po in t s
18 x_M[ i , j ] = i ∗dx
19 y_M[ i , j ] = j ∗dy
20

21 # For the nodes
22 i f i > 0 :
23 x_N[ i , j ] = 0 . 5∗ (x_M[ i , j ] + x_M[ i −1, j ] )
24 i f i == (mI−1) and j >0:
25 y_N[ i +1, j ] = 0 . 5∗ (y_M[ i , j ] + y_M[ i , j −1])
26 i f j >0:
27 y_N[ i , j ] = 0 . 5∗ (y_M[ i , j ] + y_M[ i , j −1])
28 i f j == (mJ−1) and i >0:
29 x_N[ i , j +1] = 0 . 5∗ (x_M[ i , j ] + x_M[ i −1, j ] )
30

31 x_N[ −1 , : ] = xL # the x−coord inate o f nodes on the r i g h t ( ea s t ) boundary
32 y_N[ : , −1 ] = yL # the y−coord inate o f nodes on the top ( north ) boundary
33

34 r e turn
35

36

37 # GAUSS−SEIDEL FUNCTION
38 de f so lve_gs ( nI , nJ , aE , aW, aN , aS , aP , T, Su) :
39 # Solve f o r T us ing Gauss−Se i d e l
40 f o r i in range (1 , nI −1) :
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41 f o r j in range (1 , nJ−1) :
42 T[ i , j ] = (aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + aN [ i , j ] ∗ T[ i , j +1] + aS [ i , j ]

∗ T[ i , j −1]
43 + Su [ i , j ] ) / aP [ i , j ]
44

45

46 # TDMA FUNCTION
47 de f solve_tdma ( nI , nJ , aE , aW, aN , aS , aP , T, Su , Px , Qx, Py , Qy) :
48

49 # x−d i r e c t i o n
50 f o r j in range (1 ,T. shape [1 ] −1) :
51 i = 1
52 a = aP [ i , j ]
53 b = aE [ i , j ]
54 c = aW[ i , j ]
55 d = aN [ i , j ] ∗ T[ i , j +1] + aS [ i , j ] ∗ T[ i , j −1] +Su [ i , j ]
56

57 Px [ i , j ] = b / a
58 Qx[ i , j ] = (d + c ∗ T[ i −1, j ] ) / a
59

60 i = T. shape [0] −2
61 a = aP [ i , j ]
62 b = aE [ i , j ]
63 c = aW[ i , j ]
64 d = aN [ i , j ] ∗ T[ i , j +1] + aS [ i , j ] ∗ T[ i , j −1] + Su [ i , j ]
65

66 Px [ i , j ] = 0
67 Qx[ i , j ] = (d + c ∗ Qx[ i −1, j ] + b ∗ T[ i +1, j ] ) / ( a − c ∗ Px [ i −1, j ] )
68

69 f o r i in range (2 ,T. shape [0 ] −2) :
70 a = aP [ i , j ]
71 b = aE [ i , j ]
72 c = aW[ i , j ]
73 d = aN [ i , j ] ∗ T[ i , j +1] + aS [ i , j ] ∗ T[ i , j −1] + Su [ i , j ]
74

75 Px [ i , j ] = b / ( a − c ∗ Px [ i −1, j ] )
76 Qx[ i , j ] = (d + c ∗ Qx[ i −1, j ] ) / ( a − c ∗ Px [ i −1, j ] )
77

78

79 f o r i in r eve r s ed ( range (1 ,T. shape [0 ] −1) ) :
80 T[ i , j ] = Px [ i , j ] ∗ T[ i +1, j ] + Qx[ i , j ]
81

82 # y−d i r e c t i o n
83 f o r i in range (1 ,T. shape [0 ] −1) :
84 j = 1
85 a = aP [ i , j ]
86 b = aN [ i , j ]
87 c = aS [ i , j ]
88 d = aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + Su [ i , j ]
89

90 Py [ i , j ] = b / a
91 Qy[ i , j ] = (d + c ∗ T[ i , j −1]) / a
92

93 j = T. shape [1] −2
94 a = aP [ i , j ]
95 b = aN [ i , j ]
96 c = aS [ i , j ]
97 d = aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + Su [ i , j ]
98

99

100 Py [ i , j ] = 0
101 Qy[ i , j ] = (d + c ∗ Qy[ i , j −1] + b ∗ T[ i , j +1]) / ( a − c ∗ Py [ i , j −1])
102

103 f o r j in range (2 ,T. shape [1 ] −2) :
104 a = aP [ i , j ]
105 b = aN [ i , j ]
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106 c = aS [ i , j ]
107 d = aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + Su [ i , j ]
108

109 Py [ i , j ] = b / ( a − c ∗ Py [ i , j −1])
110 Qy[ i , j ] = (d + c ∗ Qy[ i , j −1]) / ( a − c ∗ Py [ i , j −1])
111

112 f o r j in r eve r s ed ( range (1 ,T. shape [1 ] −1) ) :
113 T[ i , j ] = Py [ i , j ] ∗ T[ i , j +1] + Qy[ i , j ]
114

115

116 # RESIDUALS FUNCTION
117 de f so lve_res ( nI , nJ , aE , aW, aN , aS , aP , T, Su , r e s i d u a l s ) :
118 r = 0
119 # F i s the temperature f l u x at the boundar ies
120 F = 0
121 F = np . sum(Su [ : , : ] )
122

123 f o r i in range (1 , nI −1) :
124 f o r j in range (1 , nJ−1) :
125 r += abs (aP [ i , j ] ∗ T[ i , j ] − (aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + aN [ i , j ] ∗

T[ i , j +1] \
126 + aS [ i , j ] ∗ T[ i , j −1] + Su [ i , j ] ) )
127

128 r = r /F
129 r e s i d u a l s . append ( r )
130

131

132 # MAIN FUNCTION
133 de f po i s son ( n I t e r a t i on s , r e sTo l e rance ) :
134 # GEOMETRIC INPUTS
135

136 mI = 20 # number o f mesh po in t s X d i r e c t i o n .
137 mJ = 20 # number o f mesh po in t s Y d i r e c t i o n .
138 xL = 10 # length o f the domain in X d i r e c t i o n
139 yL = 10 # length o f the domain in Y d i r e c t i o n
140

141 # Al lo ca t e a l l needed v a r i a b l e s
142 nI = mI + 1 # number o f nodes in the X d i r e c t i o n . Nodes
143 # added in the boundar ies
144 nJ = mJ + 1 # number o f nodes in the Y d i r e c t i o n . Nodes
145 # added in the boundar ies
146 Su = np . z e r o s ( ( nI , nJ ) ) # source term f o r temperature
147 T = np . z e ro s ( ( nI , nJ ) ) # temperature matrix
148 k = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t o f conduc t i v i t y
149 aE = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r ea s t node
150 aW = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r west node
151 aN = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r north node
152 aS = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r south node
153 aP = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r P node
154 Px = np . z e r o s ( ( nI , nJ ) )
155 Py = np . z e r o s ( ( nI , nJ ) )
156 Qx = np . z e r o s ( ( nI , nJ ) )
157 Qy = np . z e r o s ( ( nI , nJ ) )
158

159 r e s i d u a l s = [ ] # L i s t conta in ing the value o f the r e s i d u a l f o r each i t e r a t i o n
160

161 # Generate mesh and compute geometr ic v a r i a b l e s
162 # Control volume s i z e
163 dx = xL/(mI − 1)
164 dy = yL/(mJ − 1)
165

166 # Al lo ca t e a l l v a r i a b l e s matr i ce s
167 x_M = np . z e r o s ( (mI ,mJ) ) # X coords o f the mesh po in t s / c e l l c o rne r s
168 y_M = np . z e r o s ( (mI ,mJ) ) # Y coords o f the mesh po in t s / c e l l c o rne r s
169 x_N = np . z e r o s ( ( nI , nJ ) ) # X coords o f the nodes ( inner nodes , boundary nodes , . . . )
170 y_N = np . z e r o s ( ( nI , nJ ) ) # Y coords o f the nodes ( inner nodes , boundary nodes , . . . )
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171

172 # PARAMETERS
173 k = 10
174 Su [ i n t (0 . 45∗ nI ) : i n t (0 . 55∗ nI ) , i n t (0 . 45∗ nJ ) : i n t (0 . 55∗ nJ ) ] = 100 ∗ dx ∗ dy
175

176 # Def ine c o e f f i c i e n t s
177 aE [ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # East
178 aW[ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # West
179 aN [ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # North
180 aS [ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # South
181 aP [ 1 : nJ−1, 1 : nJ−1] = aE [ 1 : nJ−1, 1 : nJ−1] + aW[ 1 : nJ−1, 1 : nJ−1] + aN [ 1 : nJ−1, 1 : nJ−1] + aS

[ 1 : nJ−1, 1 : nJ−1] # P
182

183 # Di r i c h l e t boundary cond i t i on
184 T[ 0 , : ] = 0
185 T[ nI −1 , : ] = 0
186 T[ : , 0 ] = 0
187 T[ : , nJ−1] = 0
188

189

190 # Cal l the mesh gene ra t i on func t i on
191 mesh_gen (mI , mJ, xL , yL , dx , dy , x_M, y_M, x_N, y_N)
192

193 f o r n in range ( n I t e r a t i o n s ) :
194

195 # Cal l a l i n e a r s o l v e r
196 so lve_gs ( nI , nJ , aE , aW, aN , aS , aP , T, Su)
197 # solve_tdma ( nI , nJ , aE , aW, aN , aS , aP , T, Su , Px , Qx, Py , Qy)
198

199 # Compute r e s i d u a l s
200 so lve_res ( nI , nJ , aE , aW, aN , aS , aP , T, Su , r e s i d u a l s )
201

202 # pr in t ( ’ i t e r a t i o n : %d \n ’ % (n) )
203 # pr in t ( ’ r e s i d u a l : ’ , r e s i d u a l s [ −1] , ’\n ’ )
204

205 # Check convergence
206 i f r e sTo lerance>r e s i d u a l s [ −1 ] :
207 break
208

209 r e turn x_N, y_N, T
210

211 # Benchmark
212 s t a r t = time . time ( )
213

214 x_N, y_N, T = po i s son ( n I t e r a t i on s , r e sTo l e rance )
215

216 pr in t ( ’ time =’ , time . time ( )−s t a r t )
217

218 # # Plot r e s u l t s
219 p l t . f i g u r e ( )
220

221 # Plot temperature contour
222 # pl t . subplot ( 2 , 2 , 2 )
223 p l t . contour f (x_N, y_N, T)
224 p l t . c o l o rba r ( )
225 p l t . t i t l e ( ’ Temperature [ C ] ’ )
226 p l t . x l ab e l ( ’ x [m] ’ )
227 p l t . y l ab e l ( ’ y [m] ’ )
228 #pl t . ax i s ( ’ equal ’ )
229

230 p l t . show ( )

C 2D Diffusion for GPU

1 # Packages needed
2 import numpy as np
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3 import matp lo t l i b . pyplot as p l t
4 import math
5 from numba import cuda , v e c t o r i z e , j i t
6 import time
7

8

9 # SOLVER INPUTS
10 n I t e r a t i o n s = 100 # maximum number o f i t e r a t i o n s
11 r e sTo l e rance = 0.001 # convergence c r i t e r i a f o r r e s i d u a l s each va r i ab l e
12

13

14 # MESH GENERATION FUNCTION
15 de f mesh_gen (mI , mJ, xL , yL , dx , dy , x_M, y_M, x_N, y_N) :
16 # F i l l the coo rd ina t e s
17 f o r i in range (mI) :
18 f o r j in range (mJ) :
19 # For the mesh po in t s
20 x_M[ i , j ] = i ∗dx
21 y_M[ i , j ] = j ∗dy
22

23 # For the nodes
24 i f i > 0 :
25 x_N[ i , j ] = 0 . 5∗ (x_M[ i , j ] + x_M[ i −1, j ] )
26 i f i == (mI−1) and j >0:
27 y_N[ i +1, j ] = 0 . 5∗ (y_M[ i , j ] + y_M[ i , j −1])
28 i f j >0:
29 y_N[ i , j ] = 0 . 5∗ (y_M[ i , j ] + y_M[ i , j −1])
30 i f j == (mJ−1) and i >0:
31 x_N[ i , j +1] = 0 . 5∗ (x_M[ i , j ] + x_M[ i −1, j ] )
32

33 x_N[ −1 , : ] = xL # the x−coord inate o f nodes on the r i g h t ( ea s t ) boundary
34 y_N[ : , −1 ] = yL # the y−coord inate o f nodes on the top ( north ) boundary
35

36 r e turn
37

38

39 # GAUSS−SEIDEL FUNCTION
40 @cuda . j i t
41 de f so lve_gs (aE , aW, aN , aS , aP , T, Su) :
42

43 # Global i n d i c e s
44 i , j = cuda . g r id (2 )
45

46 # Thread check
47 i f 0 < i < T. shape [0] −1 and 0 < j < T. shape [1 ] −1 :
48

49

50 T[ i , j ] = (aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] + aN [ i , j ] ∗ T[ i , j +1] + aS [ i , j ] ∗ T
[ i , j −1]

51 + Su [ i , j ] ) / aP [ i , j ]
52

53

54 # RESIDUALS FUNCTION
55 @cuda . j i t
56 de f solve_res_gpu (aE , aW, aN , aS , aP , T, Su , r e s i dua l s , F) :
57 # Global i n d i c e s
58 i , j = cuda . g r id (2 )
59

60 # Thread check
61 i f 0 < i < T. shape [0] −1 and 0 < j < T. shape [1 ] −1 :
62

63 r e s i d u a l s [ i , j ] = abs (aP [ i , j ] ∗ T[ i , j ] − (aE [ i , j ] ∗ T[ i +1, j ] + aW[ i , j ] ∗ T[ i −1, j ] +
aN [ i , j ] ∗ T[ i , j +1]

64 + aS [ i , j ] ∗ T[ i , j −1] + Su [ i , j ] ) )
65

66 cuda . syncthreads ( )
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67

68

69

70 # MAIN FUNCTION
71 de f po i s son ( n I t e r a t i on s , r e sTo l e rance ) :
72

73 mI = 1000 # number o f mesh po in t s X d i r e c t i o n .
74 mJ = 1000 # number o f mesh po in t s Y d i r e c t i o n .
75 xL = 10 # length o f the domain in X d i r e c t i o n
76 yL = 10 # length o f the domain in Y d i r e c t i o n
77

78 # Al lo ca t e a l l needed v a r i a b l e s
79 nI = mI + 1 # number o f nodes in the X d i r e c t i o n . Nodes
80 # added in the boundar ies
81 nJ = mJ + 1 # number o f nodes in the Y d i r e c t i o n . Nodes
82 # added in the boundar ies
83 Su = np . z e r o s ( ( nI , nJ ) ) # source term f o r temperature
84 T = np . z e ro s ( ( nI , nJ ) ) # temperature matrix
85 aE = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r ea s t node
86 aW = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r west node
87 aN = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r north node
88 aS = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r south node
89 aP = np . z e r o s ( ( nI , nJ ) ) # c o e f f i c i e n t f o r P node
90

91 # Change the r e s i d u a l data s t r u c tu r e ( from l i s t to array )
92 r e s i d u a l s = np . z e r o s ( ( nI , nJ ) ) # L i s t conta in ing the value o f the r e s i d u a l f o r each

i t e r a t i o n
93

94 # Generate mesh and compute geometr ic v a r i a b l e s
95 # Control volume s i z e
96 dx = xL/(mI − 1)
97 dy = yL/(mJ − 1)
98

99 # Al lo ca t e a l l v a r i a b l e s matr i ce s
100 x_M = np . z e r o s ( (mI ,mJ) ) # X coords o f the mesh po in t s / c e l l c o rne r s
101 y_M = np . z e r o s ( (mI ,mJ) ) # Y coords o f the mesh po in t s / c e l l c o rne r s
102 x_N = np . z e r o s ( ( nI , nJ ) ) # X coords o f the nodes ( inner nodes , boundary nodes , . . . )
103 y_N = np . z e r o s ( ( nI , nJ ) ) # Y coords o f the nodes ( inner nodes , boundary nodes , . . . )
104

105 # PARAMETERS
106 k = 10
107 Su [ i n t (0 . 45∗ nI ) : i n t (0 . 55∗ nI ) , i n t (0 . 45∗ nJ ) : i n t (0 . 55∗ nJ ) ] = 100 ∗ dx ∗ dy
108

109 # Def ine c o e f f i c i e n t s
110 aE [ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # East
111 aW[ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # West
112 aN [ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # North
113 aS [ 1 : nJ−1, 1 : nJ−1] = k ∗ dy / dx # South
114 aP [ 1 : nJ−1, 1 : nJ−1] = aE [ 1 : nJ−1, 1 : nJ−1] + aW[ 1 : nJ−1, 1 : nJ−1] + aN [ 1 : nJ−1, 1 : nJ−1] + aS

[ 1 : nJ−1, 1 : nJ−1] # P
115

116 # Di r i c h l e t boundary cond i t i on
117 T[ 0 , : ] = 0
118 T[ nI −1 , : ] = 0
119 T[ : , 0 ] = 0
120 T[ : , nJ−1] = 0
121

122 # Copy to GPU
123 Su_gpu = cuda . to_device (Su)
124 T_gpu = cuda . to_device (T)
125 aE_gpu = cuda . to_device (aE)
126 aW_gpu = cuda . to_device (aW)
127 aN_gpu = cuda . to_device (aN)
128 aS_gpu = cuda . to_device ( aS )
129 aP_gpu = cuda . to_device (aP)
130 res iduals_gpu = cuda . to_device ( r e s i d u a l s )
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131

132 # Cal l the mesh gene ra t i on func t i on
133 mesh_gen (mI , mJ, xL , yL , dx , dy , x_M, y_M, x_N, y_N)
134

135 # Def ine block dimension
136 th readspe rb lock = (32 , 32)
137 blockspergr id_x = math . c e i l (T. shape [ 0 ] / threadspe rb lock [ 0 ] )
138 blockspergr id_y = math . c e i l (T. shape [ 1 ] / threadspe rb lock [ 1 ] )
139

140 b l o ck sp e r g r i d = ( blockspergr id_x , b lockspergr id_y )
141

142

143 # Normi l i za t i on f a c t o r F
144 F = np . sum(Su [ : , : ] )
145

146 f o r n in range ( n I t e r a t i o n s ) :
147

148 # Kernel launch f o r Gauss−Se i d e l
149 so lve_gs [ b l o ck spe rg r id , th readspe rb lock ] ( aE_gpu , aW_gpu, aN_gpu , aS_gpu , aP_gpu ,

T_gpu , Su_gpu)
150

151 # Kernel launch f o r r e s i d u a l computation
152 solve_res_gpu [ b l ock spe rg r id , th readspe rb lock ] ( aE_gpu , aW_gpu, aN_gpu , aS_gpu , aP_gpu

, T_gpu , Su_gpu , res iduals_gpu , F)
153

154 r e s i d u a l s = res iduals_gpu . copy_to_host ( )
155

156 # Normalize the r e s i d u a l
157 res iduals_norm = np . sum( r e s i d u a l s [ : , : ] ) /F
158

159 pr in t ( ’ i t e r a t i o n : %d \n ’ % (n) )
160 pr in t ( ’ r e s i d u a l : ’ , residuals_norm , ’ \n ’ )
161

162 # Check convergence
163 i f r e sTo lerance>residuals_norm :
164 break
165

166 T = T_gpu . copy_to_host ( )
167

168 r e turn T, x_N, y_N
169

170 # Benchmark
171 s t a r t = time . time ( )
172

173 T, x_N, y_N = po i s son ( n I t e r a t i on s , r e sTo l e rance )
174

175 pr in t ( ’ time =’ , time . time ( )−s t a r t )
176

177 # # Plot r e s u l t s
178 p l t . f i g u r e ( )
179

180 # Plot temperature contour
181 # pl t . subplot ( 2 , 2 , 2 )
182 p l t . contour f (x_N, y_N, T)
183 p l t . c o l o rba r ( )
184 p l t . t i t l e ( ’ Temperature [ C ] ’ )
185 p l t . x l ab e l ( ’ x [m] ’ )
186 p l t . y l ab e l ( ’ y [m] ’ )
187 p l t . s a v e f i g ( ’ i n i t i a l _ r e s u l t . svg ’ , format=’ svg ’ )
188 #pl t . ax i s ( ’ equal ’ )
189

190 p l t . show ( )
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