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Abstract

In this study, we performed a detailed evaluation of the use of GPUs
(Graphical Processing Unit) for CFD (Computational Fluid Dynamics) sim-
ulations. CFD is a widely used tool for analyzing the flow of fluids and
predicting their behavior in a variety of applications, including aerospace,
automotive, and chemical engineering.

In recent years, the use of GPUs has become increasingly popular in
scientific computing, particularly in the field of CFD. The high paralleliza-
tion capabilities of GPUs make them well-suited for handling the complex
calculations required for CFD simulations.

To evaluate the performance of GPUs in CFD, we implemented CFD
algorithms[1] using the Cupy library in Python. CuPy is a library that
allows users to perform array operations using a GPU, and is designed to
be used with the popular numerical computing library NumPy.

Our results showed that using a GPU with Cupy was able to significantly
improve the computation time for the CFD algorithms tested. In some cases,
the use of a GPU resulted in a speedup of over 110x compared to using a
CPU alone. Investigations also dive into different GPUs, matrix sizes and
block sizes.

Overall, our study demonstrates the potential of using GPUs, specifically
with the CuPy library in Python, for speeding up CFD simulations. This
approach should be considered as a viable alternative to traditional CPU-
based methods for those looking to improve the efficiency of their CFD
simulations.
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Abbreviations
CFD Computational Fluid Dynamics

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

float32 32bit Floating Point Number (Single Precision Data type)

float64 64bit Floating Point Number (Double Precision Data type)

GPU Graphical Processing Unit

VRAM Video Random Access Memory
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1 Background knowledge

1.1 CFD info
1.1.1 General Transport Equation

The Navier-Stokes equations are a set of equations that describe the motion of fluids
and can be derived from the conservation of mass, momentum and energy principles.
There are significant commonalities between the various equations. If we introduce a
general variable ϕ, the equations can be written in the following form, which is so-called
transport equation for propertyϕ[2].

∂(ρϕ)
∂t

+ div(ρϕu) = div(τgradϕ) + Sϕ

1.1.2 Explicit and Implicit Scheme

This distinction is commonly used in numerical analysis, where explicit and implicit
schemes refer to different ways of solving equations numerically.

For spercific CFD problem, an explicit scheme uses known information from the
previous time step to determine the next step, while an implicit scheme uses the unknown
information to determine the next step.

In an explicit scheme, the new values of the variables being solved for are calculated
using only the known, previously calculated values. This makes explicit schemes rela-
tively simple to implement, but they can be computationally expensive and may not be
stable for certain types of equations.

On the other hand, an implicit scheme uses the unknown values to calculate the
next step, which can make the scheme more stable and accurate. However, this also
means that the equations must be solved iteratively, which can be more computationally
complex.

Overall, the choice of whether to use an explicit or implicit scheme depends on the
specific problem being solved and the desired trade-offs between accuracy, stability, and
computational complexity.

For our problem, we have two explicit equations and one implicit Poisson equation,
which needs iterations to solve and consumes most of the time. The Gauss-Seidel method
is an iterative method for solving systems of linear equations. It is a variant of the Jacobi
method and is considered to be an ”implicit” method. This is because it uses the current
estimates of the solution at each iteration to update the solution for the next iteration.
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1.1.3 Pressure Velocity Coupling

From the previous general transport equation, we often assume ϕ is the unknown
parameter, while the velocity field is given before solving the equations. But the first
step is always to get the correct velocity and pressure field.

For the pure momentum equations where ϕ are u and v, the source term will be the
gradient of pressure., which will be derived through continuity equation. Therefore, we
need to solve momentum and continuity equation at the same time. During this process,
we achieve the so-called pressure-velocity coupling.

In our code, it’s an unsteady problem, the scheme is showed below. As you will see,
we need to use a linear solver or iterations to get the pressure field first and then iterate
to get the next time-step velocity field across the whole area.

1.1.4 Poisson Equation

For the discretized form poisson equation, each node depends on the four nodes
around it, which will form the so-called sparse matrix. It’s a penta diagonal matrix. As
we will see later, the Poisson solver takes more than 90% of total running time.

The variety of methods for solving Poisson equation[3] include:

• Direct methods

– Gaussian Elimination
– LU decomposition method

• Iterative methods

– Mesh relaxation methods
∗ Jacobi
∗ Gauss-Seidel
∗ Successive over-relaxation method(SOR)
∗ Alternating directions implicit(ADI) method

– Matrix methods
∗ Thomas tridiagonal form
∗ Sparse matrix methods
∗ Conjugate Gradient method
∗ Multi-Grid method

In our report, we mainly use the Gauss-Seidel method which is provided with the code.
It’s reasonable to try different solvers first before parallelization. However, since this is
a GPU course, we will focus more on GPU acceleration.
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1.2 Why GPU
GPUs are often used in scientific applications because they are able to perform

many calculations in parallel, which makes them much faster than CPUs for certain
types of computational problem. This is because GPUs are designed to handle many
threads (small programs executing simultaneously) at the same time, which is useful for
tasks that involve a large amount of data and can be broken down into many smaller,
independent calculations.

For this reason, GPUs are often used to accelerate the training of machine learning
models and the execution of other data-intensive tasks. They can significantly reduce
the time it takes to perform these tasks, making them more practical to run on large
datasets.

However, CPUs are still important for many other types of tasks, especially those
that require more complex control flow or involve interacting with other systems. In
addition, CPUs are typically more flexible than GPUs and can perform a wider range
of tasks, so they are still an important component of most computing systems.

1.3 CUDA
CUDA is a parallel computing platform and programming model developed by

NVIDIA for general-purpose computing on GPUs. This platform allows developers to
leverage the power of the GPU special architecture to perform complex calculations and
operations in parallel, leading to a significant improvements in performance and speed.
CUDA is widely used in a variety of fields, including scientific computing, machine
learning, image and video processing, and gaming.

1.3.1 CUDA Architecture

In CUDA, the host is the CPU and the device is the GPU. The host is responsible
for managing the overall operation of the system, while the device is responsible for
executing parallel tasks.

CUDA uses the concept of threads to divide a computation into smaller, independent
parts that can be executed concurrently. A thread is a sequence of instructions executed
by the device. In CUDA, threads are organized into thread blocks, which are groups
of threads that can be executed on the same GPU processing core. Thead blocks are
organized into grids, which are groups of thread blocks that can be executed on the
GPU.
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1.3.2 CuPy Library

CuPy is a library for GPU-accelerated computing in Python that provides a NumPy-
like interface. It was developed as a way to provide users with the ability to perform
fast numerical computations on their GPUs without having to learn a new API or write
CUDA code directly.

CuPy is implemented in C++ and CUDA, and it provides functions and classes
that mirror those in NumPy. This allows users who are familiar with NumPy to easily
transition to using CuPy, as the syntax and functionality are largely the same.

CuPy is designed to be highly performant, making it suitable for use in a wide range
of applications that require fast numerical computations. It can be used to accelerate
machine learning algorithms, scientific simulations, and other data-intensive tasks.

One of the key advantages of CuPy is that it can take advantage of the parallel
processing capabilities of the GPU to perform calculations much faster than would be
possible on the CPU alone. This is especially useful for tasks that involve processing
large amounts of data, such as training machine learning models on large datasets.

CuPy also provides many of the same functions and features as NumPy, such as sup-
port for array creation, indexing, slicing, and mathematical operations. It also includes
additional functionality for working with GPU arrays, such as the ability to copy data
between the CPU and GPU and the ability to perform reductions and broadcasts on
GPU arrays.

Overall, CuPy is a powerful tool for GPU-accelerated computing in Python that
allows users to perform fast numerical computations and leverage the power of their
GPUs without having to write CUDA code directly.

2 Problem description - CFD code

2.1 General Problem Description
We use the example Navier Stokes code[4]. It is a cavity flow problem. The domain

is rectangle. We have three varibles to solve, which are u-velocity, v-velocity and pres-
sure. We have three equations to discretize, which are two momentum equation and one
poisson equation derived from continuity equation.

∂u

∂t
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∂2p
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The initial condition is u, v, p = 0 everywhere, and the boundary conditions are:

• u = 1 at y = 2 (the ”lid”);

• u, v = 0 on the other boundaries;

• ∂p
∂y = 0 at y = 0;

• p = 0 at y = 2

• ∂p
∂x = 0 at x = 0, 2

2.2 Discretization Scheme
The momentum equation in the u direction:

un+1
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The momentum equation in the v direction:
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For above two equations, as we talk before, they are both explicit scheme, which means
the next time step exactly depends on the previous time step parameters. But for the
Poisson equation below, dut to the implicit nature of the Gauss-Seidel method also has
some drawbacks. For example, it requires the solution of a system of linear equations at
each iteration, which can be computationally expensive.

pn
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3 Performance improving methods
One of the key goals in this project is to make our CFD solver as fast as possible. This

will be achieved mainly through GPU acceleration. Some degree of code optimization
will also be considered, but is not part of the main focus of this report.

This section begins with an evaluation of the current state of the code via perfor-
mance profiling. Then, we look at the main performance bottleneck identified via the
profiling, the Poisson solver, and how this calculation is accelerated using CuPy GPU
acceleration.

3.1 Performance Profiling
In many types of simulation software it is common to have one or a few operations

that take a majority of the simulation run time. These operations then become a major
limiting factor when complexity of the simulated system increases. It is generally de-
sirable to increase the computational power of one’s computational tools, because this
allows the study of even more complex systems.

When we want to increase the computational power of any software tool, an impor-
tant first step is to identify performance bottlenecks. These bottlenecks are often in the
form of functions that take a long time to complete. There are specialized development
tools that help identify such bottlenecks, and in this project we have, among others, used
the Python tool line-profiler[5] for line-by-line profiling. This tool gives us fine-grained
information about the code that helps us decide where to focus our optimization efforts.
The best performance return on investment of development time is often given when
effort is dedicated to improving the slowest part of a program.

For the case studied in our report, the line-by-line profiling indicated that about 90%
of the simulation run time was spent on solving the Poisson equation for the pressure-
velocity coupling. From this result it is clear that the Poisson solver is going to be a
major factor in the performance of our entire CFD solver. For example, if we manage
to improve performance in this function by a factor two, then this will translate into an
almost factor two in increased performance for the CFD solver as a whole.

3.2 Performance of the Poisson equation solver
Since we know that the Poisson equation solver represents about 90% of the sim-

ulation run time, we spend extra effort studying this function. We see that the finite
difference discretization scheme that is implemented can be computed in parallel, so
called massive parallelism. This means that this code is very well-suited for running on
GPUs. The original code is written in Python, making heavy use of the NumPy library.
In order to run the code on a GPU, we rewrite parts of the implementation so that it
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uses the CuPy library instead of NumPy. The re-write is fairly simple and provides an
almost drop-in replacement to NumPy which is able to run on the GPU. This version of
the code runs all calculations on the GPU, the CPU is used mostly for organizing the
computations and synchronizing results back and forth from main computer memory.

In order to increase computational performance beyond the initial CuPy implemen-
tation, we sought to optimize the solver by looking at the operations performed behind
the scenes in the CuPy code. GPU performance profiling using the Nvidia tool nvprof
indicated that the CuPy code launches a large number of CUDA kernels. We assume
that CuPy launches a CUDA kernel for each individual mathematical operation. This
hints to a possible inefficiency in the code since it takes some time to launch each kernel.
Also, if the kernels are doing a single mathematical operation each, such as addition or
multiplication, then we lose the ability to optimize memory access patterns and memory
locality for even greater performance.

Finally, some additional performance was extracted by removing unnecessary oper-
ations such as redundant memory allocations and data copying.

3.3 Speedup affected by various factors
The overall speedup of a computation involving matrices can be affected by various

factors such as the size of the matrices, the block size used for parallelization, and
the specific GPU processor model being used. We run different tasks considering one
changeable variable while others are fixed.

3.3.1 Speedup as a function of matrix size

An important performance metric is how the simulation run time scales with the
size of the computational grid. In tables 1 and 2 we present run time measurements
as a function of grid size for a simulation of 10 time steps, each with 10 internal grid
update steps for the Poisson solver. In this simulation, the computational grid is a
structured two-dimensional rectangular grid with “matrix dimension” grid points in each
dimension. In other words, a matrix dimension of 128 means we have a 128 × 128
matrix as our grid. Simulation run times are reported for both the CPU solver and the
corresponding GPU solver. A factor speedup of the GPU solver relative to the CPU
solver is also presented. Note that in table 1 the two solvers use single-precision floating
point numbers (also referred to as float32) and in table 2 the solvers use double-precision
floating point numbers (float64). Profiling runs were performed on a Chalmers-provided
StuDAT computer with an Intel Core i5-9500 CPU and an NVIDIA GeForce RTX 2060
GPU. Also note that the grid sizes are powers of two, with the upper limit of 8192 chosen
due to restrictions on VRAM size on this particular GPU model.
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3.3.2 Speedup as a function of block size

In table 3, we conducted a simulation study to investigate the effect of different
block sizes on the run time of a Poisson equation solver. We tested block sizes ranging
from 2 to 1024, and measured the speedup performance as a function of block size.
The simulation consisted of 10 time steps, each with 10 internal grid update steps for
the Poisson solver. The experiments were performed on a StuDAT Linux computer
with an Intel(R) Core(TM) i5-9100 CPU and an NVIDIA GeForce GTX 1060 GPU. In
this simulation, the block size represents the number of threads in each block. For our
problem, if the block size is n, it means we have n2 threads in each block. The results
of our simulation showed that as the block sizes increased from 2 to 32, the speedup
performance also increased, from 4 to more than 40. However, on larger block sizes, the
speedup tended to be stable, indicating that there is a trade-off between the block size
and the speedup performance.

It is worth noting that, in general, the larger the block size, the more memory is
required. Therefore, it is important to carefully consider the trade-offs between block
size, speedup performance, and computational resources when choosing the block size
for a given problem.

3.3.3 Speedup as a function of GPU processor model

In table 4 we present a comparison of computational performance, measured by ex-
ecution times given two GPU processors of different generations. Also, in section 3.4,
we compare their execution times to the CPU performance. Here, again we are using
the StuDAT computers including the same CPU Intel(R) Core(TM) i5-7600 CPU @
3.50GHz. As for the GPU we are using a GTX 1060 with 6GB VRAM and next gener-
ation RTX2060 with the same amount of VRAM memory. In addition, we use the Alvis
cluster to get access to the Tesla T4. From the result, the general trend shows that the
two consumer Nvidia models GTX1060 and RTX2060 have quite powerful performance.
However, when we increase the grid size to 2048 we have noticeable performance gains
of more than 3 seconds. While with the Tesla T4 card we can observe noticeable dif-
ferences in performance earlier from the grid size of 1024 and then on bigger grid sizes
the performance gap is not big comparing with the consumer based GPUs. Especially,
the RXT2060 scores the best performance as it is optimized in computations in single
precision float. On the other side, when we compare with the CPU, as we noticed earlier
the performance is equivalent for grid sizes up to 1024 and then the GPUs have great
timing benefits.
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3.4 Kernel function code
There are several ways of approaching GPU acceleration in Python programming.

The two main alternatives are Numba and CuPy. Below we describe two implementa-
tions of our CFD solver, one using Numba and the other using CuPy.

For numba[6] code, the kernel first uses the cuda.grid(2) function to identify the
indices of the block and thread that is currently executing the kernel. It then uses an
if statement to check if the current thread’s indices are within the bounds of the input
array p. If the indices are within bounds, the kernel enters a for loop that iterates a
specified number of times (indicated by the variable nit). Within the for loop, the kernel
uses a series of if statements to check if the current thread’s indices are located on the
edge of the input array. If the thread is on the edge, the kernel assigns specific values
to the corresponding element of the input array p. In the next step kernel applies the
mathematical equation on the array p, the equation is a Poisson equation which is used to
calculate the pressure. It is a partial differential equation that describes the distribution
of a physical quantity such as pressure, temperature, or fluid flow in a given region.
Finally, the kernel uses the cuda.syncthreads() function to synchronize all threads after
one iteration of the for loop. This ensures that all threads have completed the current
iteration before moving on to the next iteration.

In cupy code, we give kernel function in another form which is much more straight
forward than Numba. It’s a C-language type script. The kernels, b equation,p equation,
u equation,v equation, are defined using the cupy.ElementwiseKernel method which
takes in several arguments. The first argument is the input parameter signature in the
form of Tparam1, Tparam2 ..., TparamN . It defines the types and names of the input
parameters. The second argument is the output parameter signature in the form of
Toutput. It defines the type and name of the output parameter. The third argument
is the kernel function in the form of a string expression. It defines the operation to
perform on the input parameters and assigns the result to the output parameter. The
fourth argument is the kernel name in the form of a string kernel name. The fifth
argument is options = cuda compile flags which is optional and tells the compiler to
use certain flags when compiling the kernel.

For our case with mainly matrix computation, Cupy would be the better choice as
it provides a NumPy-like interface for array computations on CUDA-enabled GPUs.
Cupy can be used as a drop-in replacement for NumPy and allows to perform matrix
computations on a GPU. This can greatly accelerate performance for large matrices and
complex computations.

Numba, on the other hand, is a just-in-time (JIT) compiler for Python code and
does not have a specific matrix operation, it can specify certain parts of the code should
be executed on the GPU, but it doesn’t provide a NumPy-like interface.

Compared to Cupy code, the numba is hard to implement because the difficuly of

12



defining the kernel for all functions. It’s also slower if we only use numba for poisson
kernel function, so we choose Cupy kernel for our problem.

1 @cuda.jit
2 def pressure_poisson (p, dx , dy , b):
3 i,j = cuda.grid (2)
4 # indentify the index of block and thread
5 if i < p.shape [0] and j < p.shape [1]:
6 for q in range(nit):
7 if i>0 and i<p.shape [0] -1 and j>0 and j<p.shape [0] -1:
8 #for each thread , we assign same operations .
9 p[i,j] = ((p[i+1,j]+p[i-1,j]) * dy **2 +(p[i,j+1]+p

[i,j -1]) * dx **2) /(2 * (dx **2 + dy **2)) - dx **2 *dy **2/ (2*( dx
**2+ dy **2))*b[i,j]

10 if i == p.shape [0] -1:
11 for x in range(p.shape [1]):
12 p[x,i] = p[x,i -1]
13 if j == 0:
14 for y in range(p.shape [1]):
15 p[j,y] = p[j+1,y]
16 if i == 0:
17 for z in range(p.shape [1]):
18 p[z,i] = p[z,i+1]
19 if j == p.shape [1] -1:
20 for m in range(p.shape [1]):
21 p[j,m] = 0
22 cuda. syncthreads ()
23 #For next iteration , sync all threads after one

iteration .

Listing 1: Pressure Poisson using numba

1 b_equation =cupy. ElementwiseKernel (’T ul , T ur , T uu , T ud , T vl ,
T vr , T vu , T vd , T rho , T dt , T dx , T dy’,#input parameters

2 ’T b’,# output parameters
3 ’b = (rho * (1 / dt * ((ur - ul) /(2 * dx) + (vd - vu) / (2 *

dy)) - ((ur - ul) / (2 * dx))*(( ur - ul) / (2 * dx)) - 2 * ((ud
- uu) / (2 * dy) * (vr - vl) / (2 * dx))- ((vd - vu) / (2 * dy

))*(( vd - vu) / (2 * dy))))’,# execution function
4 ’b_equation ’,# function name
5 options = cuda_compile_flags )
6

7

8 p_equation = cupy. ElementwiseKernel (’T pnu , T pnd , T pnl , T pnr , T
dx , T dy , T b’, ’T p’,
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9 ’p = ((( pnr + pnl) * dy*dy + (pnd + pnu) * dx*dx) / (2 * (dx*
dx + dy*dy)) - dx*dx * dy*dy / (2 * (dx*dx + dy*dy)) * b)’,

10 ’p_equation ’, options = cuda_compile_flags )
11

12 u_equation =cupy. ElementwiseKernel (’T un , T vn , T unl , T unr , T
unu , T und , T pl , T pr , T nu , T rho , T dt , T dx , T dy’, ’T u’,

13 ’u = (un -un * dt / dx * (un - unl) - vn * dt / dy * (un - unu)
- dt / (2 * rho * dx) * (pr - pl) + nu * (dt / dx*dx * (unr -

2 * un + unl) + dt / dy*dy * (und - 2 * un + unu)))’,
14 ’u_equation ’, options = cuda_compile_flags )
15

16 v_equation =cupy. ElementwiseKernel (’T vn , T un , T vnl , T vnr , T
vnu , T vnd , T pd , T pu , T nu , T rho , T dt , T dx , T dy’, ’T v’,

17 ’v = (vn - un * dt / dx * (vn - vnl) - vn * dt / dy * (vn -
vnu) - dt / (2 * rho * dy) * (pd - pu) + nu * (dt / dx*dx * (
vnr - 2 * vn + vnl) + dt / dy*dy * (vnd - 2 * vn + vnu)))’,

18 ’v_equation ’, options = cuda_compile_flags )

Listing 2: Cupy Kernel Function

Table 1: Simulation run time as a function of computational grid size for both the CPU
and GPU solvers. The simulation contained 10 time steps and 10 internal steps for the
Poisson solver for each time step. In this measurement, the two solvers used single-
precision floating point numbers (float32). Results were measured on a Studat computer
with Intel Core i5-9500 CPU and NVIDIA GeForce RTX 2060 GPU. The block size used
was 128.

Matrix dimension CPU time [s] GPU time [s] Factor speedup
128 0.0093 0.0155 0.5983
256 0.0268 0.0154 1.7385
512 0.1021 0.0158 6.4609
1024 0.5359 0.0160 33.5012
2048 2.8775 0.0418 68.7851
4096 12.1503 0.1583 76.7547
8192 47.4050 0.6207 76.3677

4 Discussion
Due to the nature of how GPUs operate, we expect CPUs to outperform GPUs for

very small problem sizes. This comes from the fact that GPUs need a few extra setup
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Table 2: Equivalent of table 1, but using double-precision floating point numbers (float64)
instead.

Matrix dimension CPU time [s] GPU time [s] Factor speedup
128 0.0161 0.0157 1.0246
256 0.0515 0.0158 3.2495
512 0.2226 0.0254 8.7664
1024 1.2647 0.0947 13.3479
2048 5.7884 0.3134 18.4685
4096 24.2251 1.1702 20.7015
8192 95.5761 4.5081 21.2010

Table 3: i5-9100 and NVIDIA GeForce GTX 1060 GPU, use different block sizes ranging
from 2 to 1024. Matrix size is 4096.

Block size CPU time [s] GPU time [s] Factor speedup
2 13.3661 2.1935 6.0935
4 13.2612 1.2404 10.6911
8 13.2649 0.6845 19.3790
16 13.4899 0.4329 31.1617
32 13.2649 0.3199 41.4658
64 13.2634 0.3095 42.8543
128 13.4924 0.3010 44.2068
256 13.2974 0.3008 44.2068
512 13.2589 0.3052 43.4433
1024 13.5870 0.3135 43.3397
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Table 4: Different GPU processors performance comparison with matrix size is 4096.
Speedup related to the fastest gpu architecture at the given grid - using single precision
float numbers.

Grid RTX2060 GTX1060 CPU Tesla T4 Factor Speedup
128 0.0154 0.0171 0.0092 0.0093 0.98
256 0.0154 0.0172 0.0268 0.0173 1.74
512 0.0163 0.0174 0.1021 0.0196 6,26
1024 0.0162 0.0224 0.5358 0.0180 39.48
2048 0.0419 0.0804 2.8775 0.0569 68,67
4096 0.1569 0.3042 12.1503 0.2477 77.43
8192 0.6116 1.1957 47.4050 1.126 77.50

256 512 1024 2048 4096 8192
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Matrix Dimensions

Speedup

Speedup versus different Matrix sizes

Figure 1: Speedup vs different Matrix sizes

tasks before they start a computation that CPUs do not need, for example copying
data and launching computational kernels. These extra tasks take time and delay the
start of the computation. If the computation itself is small, then the setup could take
significantly more time than the computation, leading to slow response times. This is
exactly what we see in, for example, the 128 × 128 case in table 1. The CPU finishes
more quickly than the GPU, whereas the GPU is faster in all other cases. It is also
interesting to note that the GPU run time in this measurement is practically constant
for matrix dimensions between 128 and 1024, a factor 64 increase in computational
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Figure 2: Comparison between float32 and float64
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CuPy vs CuPy+CUDA
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Figure 3: Comparison of speedup for the pure CuPy implementation and the hybrid
CuPy+CUDA version. The Hybrid version has purpose-written CUDA kernels in C++
for performance-critical code segments. The results clearly show that the hybrid version
is significantly faster than the pure CuPy implementation.
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Figure 4: Comparison between different block sizes
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Figure 5: Executing time(s) versus different GPU processors

requirements. This suggests that the constant setup time makes up a large fraction of
the computational time. This, in turn, is indicative of underutilization of the GPU due
to too small problem sizes.
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Figure 6: Executing time(s) versus different GPU
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Figure 7: Speed up versus different GPU

That GPUs outperform CPUs on larger problem sizes is also to be expected, es-
pecially for embarrassingly parallel workloads such as the CFD solver studied in this
project. GPUs generally have much more computational power than CPUs, and will
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therefore outperform CPUs as long as the setup time is small in comparison to the time
for actual computations. Setup time is generally constant in time, so it becomes insignif-
icant as the size of the computational problem increases. In other words, the bigger the
grid, the better the speedup when using GPUs, at least up to a point. Performance
again decreases for very large problem sizes, where the size of the GPU memory poses
a limiting factor. For these very large cases, performance is very dependent on how the
memory is used. It could be that GPUs still offer massive performance gains, or it could
be that CPUs once again become faster than GPUs. It is difficult to be more precise
without looking at a particular application. In this report we limit ourselves to problem
sizes that fit in device memory, so we have not studied the performance scaling of very
large grid sizes. We propose that future studies should look at how these memory issues
can be dealt with to minimize performance penalties as the grid size increases.

If we compare tables 1 and 2 we see that the CPU takes about twice as much time
to finish the simulation when using float64 as compared to when it uses float32. This
factor two difference in performance could be due to the fact that the float64 requires
twice as much data bandwidth from main memory. It could also be due to the fact that
CPUs often have a factor two better arithmetic performance when using float32, in part
due to vectorized processing of several data elements in a single clock cycle. The GPU,
on the other hand, performs much better with float32 than float64. This is likely due to
the fact that consumer-grade Nvidia GPUs are specialized on float32 computations, at
the expense of slower float64 ones.

In table 3 we see that block size is a relatively important consideration when running
computations on the GPU. In particular, it is important to have a sufficiently large
block size to achieve good performance on the GPU. From the table we see that block
sizes of 16 and below significantly reduce performance. Block sizes of 64 and above
have approximately the same performance, indicating that we need at least this block
size to achieve good performance. This knowledge has implications when choosing an
appropriate grid size. Ideally, we would like the number of grid points to be an integer
factor of at least 32 or maybe 64 for optimal performance. Larger block sizes can also be
used, but might result in sub-optimal performance when the grid size does not perfectly
match the block size up to an integer factor. Also, notice that CPU run time is essentially
constant in all cases. Block size does not affect CPU time because this size parameter
is GPU-specific.

In figure 3 we present the speedup as a function of grid dimension for two different
versions of the solver, the initial pure CuPy version and the CuPy+CUDA hybrid. The
large speedup of the hybrid version is attributed to more efficient use of memory locality
as compared to the pure CuPy version. We believe that the lower performance of the pure
CuPy version is due to each mathematical operation being performed by separate kernels.
This hinders the use of memory locality, leading to lower computational performance.
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The purpose-written CUDA kernels are able to achieve much better use of memory
locality, which leads to higher performance. The use of a CuPy+CUDA hybrid leads to
some increase in code complexity, but we believe that it is worth it due to the significant
performance increases.

Finally, table 4 shows the run time required to simulate our example CFD case,
both for the CPU solver and the GPU solver running on different GPUs. It is clear
that the GPUs are significantly faster than the CPU, and it is also clear that there
is clear difference between different models of GPUs. The fastest model is the Nvidia
RTX2060, then the Tesla T4 by small margin comparing to the GTX1060. This differ-
ence in performance is attributed to the different models having varying computational
capabilities.

5 Limitations and Future Work
In the limitations and future work section of this report, several areas for potential

improvement were identified. One potential area for improvement is the comparison
of the performance of utilizing a single GPU versus multiple GPUs in parallel. This
could potentially enhance the overall performance of the simulation by distributing the
computation across multiple GPUs. Furthermore, expanding the scope of the simulation
from the current cavity flow problem to more complex flow problems such as combus-
tion reaction flow could increase the applicability of the simulation to a wider range of
problems and provide new insights into various areas of research. Additionally, compati-
bility between the CPU and GPU should be taken into consideration when designing the
simulation in order to optimize performance. Implementing the simulation using CUDA
in C++, as opposed to Python, could also potentially enhance performance by utilizing
the lower-level programming capabilities and optimized libraries provided by CUDA.
Furthermore, experimenting with different sparse matrix solvers may also improve the
performance of the simulation. Additionally, optimization with different data structures
and algorithms, utilization of newer GPU architectures and technologies, scalability to
larger and more complex problems and use of machine learning techniques can also be
considered as potential areas for future work.

6 Conclusion
The Navier Stokes code used in this work is a cavity flow problem that involves

solving three variables (u-velocity, v-velocity, and pressure) using three equations (two
momentum equations and one Poisson equation). The line-by-line profiling showed that
about 90% of the simulation run time was spent on solving the Poisson equation for
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pressure-velocity coupling, making it a major factor in the performance of the entire
CFD solver. To improve performance, the code was rewritten using the CuPy library
to allow for massive parallelism on GPUs. Additional performance was also gained by
optimizing the solver through the use of purpose-written CUDA kernels and the removal
of unnecessary copy operations in the original NumPy code.

The GPU acceleration and code optimizations lead to an increase in computational
performance of more than a factor 70 for the single-precision case when compared to
the CPU solver. This facilitates the study of even larger physical systems, or better
statistical analyses on smaller such systems. Neither of these studies would be practical
using the original CPU code. Our results also indicate that it is important to choose the
block size parameter correctly since performance is dependent on this parameter being
at least 32, but preferably 128 or greater. Additionally, it is important to keep in mind
that the speedups are, to a large degree, hardware-dependent. For example, we found
that the best computational performance was achieved when using the RTX2060, out
of the GPU models we benchmarked. However, newer GPUs and CPUs will change the
relative effectiveness of GPU acceleration.
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