
Finite Element for 2D Solid Mechanics
GPU Accelerated Numerical Method with Python and CUDA

Congxiao Zhang
Author

Gayana Jinde Radhakrishna
Author

Fredrik Larsson
Supervisor

Abstract

GPU has evolved beyond its initial purpose as a
graphics accelerator to become a co-processor for
computation-intensive tasks. A substantial growth
in the speedup is evident for computationally dense
tasks when implemented on GPUs. This acceleration
could be achieved in two ways: Using GPU-targeted
libraries for algebraic operations or replacing the en-
tire matrix solver with one capable of GPU accel-
eration. Prominently, CUDA has provided develop-
ers with much broader set of software tool choices.
Hence, the project aims at developing a GPU acceler-
ated Finite Element Method solver written in python
and CUDA. This paper holds a brief overview of our
problem statement, background details, simple work-
flow of the FEM along with various implementation
details. Overall, we tend to provide a fair comparison
between different matrix solvers and data formats that
are exploited by such solvers.

Keywords: GPU, Python, Solid Mechanics, Finite Element
Method

1 Introduction

Generally, a two-dimensional elasticity problem can be ex-
pressed by a system of coupled second-order partial differen-
tial equations. The main variables are the displacements in
the coordinate directions. After solving for the displacements,
stresses and strains can be calculated from the derivatives of
displacements. We can also use the displacements to get a
new mesh structure and refine the mesh to get a more accurate
solution. However, when the grid size is small enough, the
problem will transfer to a large-scale problem. And the com-
putation cost (space and time) can be huge. As the Matrix is
sparse and nice, it’s possible for us to use GPU to accelerate
the whole computational process.

2 Basic Theory of Finite Element Method in
Solid Mechanics

2.1 Preliminary

Figure 1: 2D general solid element based in continuum equi-
librium

Figure 1 shows a common element structure based on contin-
uum equilibrium. If we use a General Approximation Method
to get the displacement 𝑢2𝐷 , we need to focus on one cell
(There are four cells in Figure 1.), which is shown in Figure
2.

Figure 2: General Element

2.2 Element (Cell)

2.2.1 Triangular Solid Elements

In General Cases, there are usually 2 kinds of Triangular Solid
Elements:

(a) Linear Triangular Element (b) Quadratic Triangular Ele-
ments

Figure 3: Triangular Element

In this project, we use the Linear Triangular Element. And
it can be transferred to a Constant Strain Triangle.
Consider now a triangular element as below. The nodes of the
element are numbered 1, 2, and 3 counter-clockwise

Figure 4: Constant Strain Triangle

Thus, we can assume the linear approximation function
between nodes as

𝑢2𝐷 =

[
𝑢

𝑣

]
=

[
𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2
𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2

]
(1)

For 2D solid elements, the field variable is the displacement,
which has two components (𝑢𝑖 and 𝑣𝑖), and hence each node
has two degrees of freedom (DOFs).
Since a linear triangular element has three nodes, the total
number of DOFs of a linear triangular element is six. For the
triangular element, the local coordinate of each element can
be taken as the same as the global coordinate since there is
no advantage in specifying a different local coordinate system
for each element.

Figure 5: Nodal Displacement of a constant strain triangle

Then we can give out the linear approximation of Nodal

Displacement as

𝑢2𝐷 =

[
𝑢

𝑣

]
=

[
𝑢1𝑁1 + 𝑢2𝑁2 + 𝑢3𝑁3
𝑣1𝑁1 + 𝑣2𝑁2 + 𝑣3𝑁3

]
(2)

2.3 Shape Function Construction
For General Case, we start with an assumption of shape func-
tions directly using polynomial basis functions with unknown
constants.
For a linear triangular element, we assume that the shape func-
tions are linear functions of x and y. They should, therefore,
have the form of

𝑁1 = 𝑎1 + 𝑏1𝑥 + 𝑐1𝑦 (3)
𝑁2 = 𝑎2 + 𝑏2𝑥 + 𝑐2𝑦 (4)
𝑁3 = 𝑎3 + 𝑏3𝑥 + 𝑐3𝑦 (5)

which can be rewritten in a concised form

𝑁𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 =
[
1, 𝑥, 𝑦

] 
𝑎𝑖
𝑏𝑖
𝑐𝑖

 (6)

Note that the above equation is written for the shape functions,
and not for the displacements. For this particular problem, we
use up to the first order of polynomial basis. Depending upon
the problem, we can use a higher order of polynomial basis
functions. The complete order of polynomial basis functions
in two-dimensional space up to the nth order can be given by
using the so-called Pascal triangle.
This can be really complicated in some cases. Considering

the matrix

𝑎𝑖
𝑏𝑖
𝑐𝑖

 in our case is full rank, we can simplify the

procedure of the construction of shape function by generate
𝑁𝑖 based on the Hamilton Principle

𝛿

∫ 𝑡2

𝑡1

𝐿𝑑𝑡 = 0 (7)

where The Langrangian functional, L, is obtained using a set
of admissible time histories of displacements, and it consists
of

𝐿 = Π − 𝑇 −𝑊 𝑓 (8)

where T is the kinetic energy, Π is the potential energy (for
our purposes, it is the elastic strain energy), and 𝑊 𝑓 is the
work done by the external forces.
This 𝛿 is a Kronecker delta, which states that the shape func-
tion must be a unit at its home node and zero at all the remote
nodes. For a two-dimensional problem, it can be expressed as

𝑁𝑖 (𝑥 𝑗 , 𝑦 𝑗) =
{

1 𝑖 𝑓 𝑖 = 𝑗

0 𝑖 𝑓 𝑖 ≠ 𝑗
(9)

So in our case the shape function can be generated as

[𝑁] =
[
𝑁1 0 𝑁2 0 𝑁3 0
0 𝑁1 0 𝑁2 0 𝑁3

]
(10)

=

[
1 − 𝑋1 − 𝑋2 0 𝑋1 0 𝑋2 0

0 1 − 𝑋1 − 𝑋2 0 𝑋1 0 𝑋2

]
(11)

So we can seperate the nodal displacements and shape func-
tions as

𝑢2𝐷 =

[
𝑁1 0 𝑁2 0 · · · 𝑁𝑛 0
0 𝑁1 0 𝑁2 · · · 0 𝑁𝑛

]


𝑢1
𝑣1
𝑢2
𝑣2
.

.

.

𝑢𝑛
𝑣𝑛


= [𝑁]𝑢𝑒

(12)
where [𝑁] is the shape function and 𝑢𝑒 is the nodal displace-
ment.

2.4 Strain Vector
Set the general structure of Strain Vector as

𝜀 =


𝜀11
𝜀22

2𝜀12

 =


𝜕𝑢
𝜕𝑋1
𝜕𝑣
𝜕𝑋2

𝜕𝑢
𝜕𝑋2

+ 𝜕𝑣
𝜕𝑋1

 (13)

Remember equation (4) only works for 2D cases.
As we have known that 𝑢𝑒 is constant, the differentiation only
applies to [𝑁].

𝜀 =


𝜕𝑁1
𝜕𝑋1

0 𝜕𝑁2
𝜕𝑋1

0 · · · 𝜕𝑁𝑛

𝜕𝑋1
0

0 𝜕𝑁1
𝜕𝑋2

0 𝜕𝑁2
𝜕𝑋2

· · · 0 𝜕𝑁𝑛

𝜕𝑋2
𝜕𝑁1
𝜕𝑋1

𝜕𝑁1
𝜕𝑋2

𝜕𝑁2
𝜕𝑋1

𝜕𝑁2
𝜕𝑋2

· · · 𝜕𝑁𝑛

𝜕𝑋1
𝜕𝑁𝑛

𝜕𝑋2





𝑢1
𝑣1
𝑢2
𝑣2
.

.

.

𝑢𝑛
𝑣𝑛


= [𝐵]𝑢𝑒

(14)

2.5 Stress Vector
By using the Strain Vector, the Stress Vector can be generated
as

𝜎 =


𝜎11
𝜎22
𝜎12

 = [𝐶]

𝜀11
𝜀22

2𝜀12

 = [𝐶]𝜀 = [𝐶] [𝐵]



𝑢1
𝑣1
𝑢2
𝑣2
.

.

.

𝑢𝑛
𝑣𝑛


= [𝐶] [𝐵]𝑢𝑒

(15)
In 2D, all of the stress or strains act in the same plane, and in
our case we are talking about the Plane-Strain Case (𝜀33 = 0).

[𝐶] = 𝐸

(1 + 𝜈) (1 − 2𝜈)


1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0
0 0 1−2𝜈

2

 (16)

where 𝐸 ↦→ Young’s Module and 𝜈 ↦→ Poisson’s Ratio.

2.6 Virtual Work
Next we are going to present how to get stiffness matrix and
nodal force vector.
Firstly, we must know the Principle of Virtual Work.

𝐼𝑉𝑊𝑒 = 𝐸𝑉𝑊𝑒 ↦→ continuum case (17)

which means

Internal Virtual Work ↦→ External Virtual Work (18)

Translate the equation(9) into mathematical knowledge,∫
𝑒

3∑︁
𝑖, 𝑗=1

𝜀∗𝑖 𝑗𝜎
∗
𝑖 𝑗𝑑𝑥 =

∫
𝜕𝑒

𝑡𝑛 · 𝑢∗𝑑𝑠 +
∫
𝑒

𝜌𝑏𝑢∗𝑑𝑥 (19)

The left side of the equation is the formula of Internal Virtual
Work, and we can simply that by the Vectors and Matrix we
have got before.∫

𝑒

3∑︁
𝑖, 𝑗=1

𝜀∗𝑖 𝑗𝜎
∗
𝑖 𝑗𝑑𝑥 =

∫
𝑒

([𝐵]𝑢∗𝑒) ([𝐶] [𝐵]𝑢𝑒)𝑑𝑥 (20)

There is something to remark. 𝑢∗𝑒 is not miswritten but it is
the virual nodal displacements (Well we don’t need to care
about it, and the reason is given below.) and 𝑢𝑒 is the actual
displacements (as we have talked before.).
To throw away 𝑢∗𝑒, some mathematical tricks are needed.∫

𝑒

([𝐵]𝑢∗𝑒) ([𝐶] [𝐵]𝑢𝑒)𝑑𝑥 =

∫
𝑒

(𝑢∗𝑒 [𝐵]𝑇) ([𝐶] [𝐵]𝑢𝑒)𝑑𝑥
(21)

Insert the External Virtual Work on the right side, we will get

𝑢∗𝑒

∫
𝑒

([𝐵]𝑇) ([𝐶] [𝐵])𝑑𝑥𝑢𝑒 =
∫
𝜕𝑒

𝑡𝑛 ·𝑢∗𝑑𝑠+
∫
𝑒

𝜌𝑏𝑢∗𝑑𝑥 (22)

Then deal with the External Virtual Work in a similar way.
Replace the general displacement vectors with nodal displace-
ment vectors.

𝑢∗𝑒

∫
𝑒

([𝐵]𝑇) ([𝐶] [𝐵])𝑑𝑥𝑢𝑒 =
∫
𝜕𝑒

𝑡𝑛 · 𝑢∗𝑑𝑠 +
∫
𝑒

𝜌𝑏𝑢∗𝑑𝑥

(23)

= 𝑢∗𝑒

∫
𝜕𝑒

[𝑁]𝑇 𝑡𝑛𝑑𝑠 +
∫
𝑒

𝜌𝑏(𝑢∗𝑒 [𝑁])𝑑𝑥

(24)

= 𝑢∗𝑒

∫
𝜕𝑒

[𝑁]𝑇 𝑡𝑛𝑑𝑠 + 𝑢∗𝑒

∫
𝑒

𝜌𝑏[𝑁]𝑇𝑑𝑥

(25)

It’s obvious we can cut off the 𝑢∗𝑒 on both sides of the equation
(14) – (16).
Then we get an efficient way to solve the Stiffness Matrix and
Nodal Force Vector.∫

𝑒

([𝐵]𝑇) ([𝐶] [𝐵])𝑑𝑥𝑢𝑒 =
∫
𝜕𝑒

[𝑁]𝑇 𝑡𝑛𝑑𝑠 +
∫
𝑒

𝜌𝑏[𝑁]𝑇𝑑𝑥
(26)

Then we have the Stiffness Matrix [𝑘𝑒]

[𝑘𝑒] =
∫
𝑒

[𝐵]𝑇 [𝐶] [𝐵]𝑑𝑥 (27)

𝑓𝑒 =

∫
𝜕𝑒

[𝑁]𝑇 𝑡𝑛𝑑𝑠 +
∫
𝑒

[𝑁]𝜌𝑏𝑑𝑥 (28)

In our case, we set 𝑓𝑒 = 0, so we can ignore it. And we have
our specific global equation as

Ka = 0 (29)

3 Specific Problem for our Project
Our aim in this Project is to analyze how the structure of the
plane changes when an external force is added to the plane.
This requests us to find out the new coordinates of each node
after the deformation happens.
We assume there is a wall on the right side, which means we
can add distributed forces at the bottom, top or left side of the
plane.

Figure 6: Problem Illustration

As we set the external forces equal to 0 in our case, we
realise the initialization by setting some specific values to the
displacement of the boundary nodes.
Therefore, we need to partition the Matrix used in our com-
putational process as[

K𝐹𝐹 K𝐹𝐶

K𝐶𝐹 K𝐶𝐶

] [
a𝐹
a𝐶

]
=

[
f𝐹
f𝐶

]
=

[
0
0

]
(30)

which is equivalent to

K𝐹𝐹a𝐹 = f𝐹 − K𝐹𝐶a𝐶 (31)
= −K𝐹𝐶a𝐶 (32)

where a𝐹 means the free DoFs and a𝐶 means the constraint
DoFs.

4 GPU Acceleration for FEM
As the name suggests, Graphic Processing Units (GPUs) were
initially designed to accelerate graphical computations. Over
years, GPUs have taken a new role of co-processors for dense
computations. With growing set of software tools, libraries
and frameworks, it has become crucial to implement hardware
that is capable of solving time-intense tasks with efficient
memory management techniques. There is an ever increasing
need for acceleration, given the trend for increasing model
size and complexity. Most engineering disciplines use Finite
Element Method as a common tool for analysis and thus we

tend to inspect the impact of accelerators on such tools in this
project, given that, FEM is the only component that could
be designed and optimized to perform better in most of the
cases. Toward this goal, software developers and researchers
are increasingly relying on GPUs, which provide increased
processing power and memory bandwidth while consuming
less power. Therefore, we evaluate the need for GPUs in
our problem, Stress-Strain relations of a 2D plane under the
influence of external force.

There are numerous software tools, packages and libraries,
that enable users to take advantage of GPU acceleration. De-
spite linear matrix solver being the most compute-intensive
and time-consuming part of the analysis, there has been sig-
nificant progress in accelerating other parts of the analysis
which include computation and assembly of the global stiff-
ness matrix. Thus brief understanding of the stages of the
FEM process and analysing the speedup that could be achieved
in each stage is necessary. This also helps users to understand
how implementation of certain software tools can help achieve
required acceleration.

4.1 WorkFlow

The CAD model generated using CAD software undergoes
pre-processing, followed by the Solver implementations and
finally, post-processing that gives visual results of the pro-
cess. Figure 7 gives an idea of how a typical FEM workflow
would look. The pre-processing step has 2 steps, CAD to
3D/ 2D model conversion and Mesh generation. Creating a
computational mesh might be time consuming for industries
that produce complex models and therefore could benefit from
the computational power of the GPU. However, since paral-
lel mesh generation is computationally tedious to achieve,
there are not many attempts made in accelerating this process.
Hence, accelerating the solver stage is given at-most priority
and known to consume approximately 30 to 35 percent of the
total computation.

The FEM Solver stage uses the information such as connec-
tivity, material properties and boundary conditions from the
previous mesh generation process and builds a global stiffness
matrix, ’K’ matrix in our problem. The stiffness matrix ’K’
is the integration of all the contributions of the individual el-
ements after being assembled together. This process in called
”K-Assembly” or ”Matrix-assembly”. Followed by the ma-
trix solver, which solves the linear systems of equations that
are large and sparse. There are two types pf solvers, itera-
tive solvers and direct solvers. Direct solvers work efficiently
for problems of small sizes and they do not suffer conver-
gence problems. While on the other hand, iterative solvers
are scalable. The preconditioning and sparse-matrix vector
multiplication operations are the most time-consuming parts
of iterative solvers. These operations are inherently paral-
lel and can usually be made more efficient by using special
data formats that exploit patterns found in the matrix structure
(diagonals, dense blocks, etc.). Global Stiffness matrix can
be built in 2 steps. First, stiffness matrix for each individual
element is computed (ke). Second, all the element stiffness
matrices are summed together into global stiffness matrix.
Since there is no data dependence between the elements, all

Figure 7: FEM WorkFlow

element stiffness matrices can be computed in parallel, since
the type of computations involved are inherently parallel.

The next process in Solver stage is the Matrix Solvers. Iter-
ative solvers were the first type of matrix solvers to be accel-
erated and most of which targeted Conjugate Gradient solver
that are symmetric and positive definite. Choosing optimal
sparse matrix data structure to achieve good performance and
scalability is necessary. However, studies have proven that the
”blocked sparse matrix” format provides faster execution on
both CPU and GPU. Since this type of data format was new to
us, we used CSR format that is Compressed Sparse Row ma-
trix format which is a well-known, computationally balancing
and appropriate to all solvers both in memory management
and performance. Further discussion on the various solvers
and results are provided in next section.

5 Results and Discussions
5.1 Hardware Information

1. CPU: Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz

2. GPU: NVIDIA GeForce RTX 3060 Laptop GPU

5.2 Numba
Firstly, we used scipy and numba. The running time is shown
in the figure below:

Figure 8: CPU and GPU Running Time Comparison with
Numba

The difference in running time between the CPU and
GPU is very slight. We tested 4 linear solvers for sparse
matrix: scipy.sparse.linalg.spsolve, scipy.sparse.linalg.cg,
scipy.sparse.linalg.cgs and scipy.sparse.linalg.minres.
Except for spsolve, CPU always runs faster than GPU, and as
cells number increases, minres has the least running time.

Particularly, strange things happened when we use cgs to solve
our problem with Cell Size equal to 0.01, Cells Number equal
to 23264 on GPU. We repeated the test many times, but it
still costs 160+ seconds. Considering this cgs is an iterative
solver, there must be some convergence issues for this special
case.

Solvers Cells Number CPU Running Time GPU Running Time
spsolve 5824 1.160 1.947
spsolve 23264 21.035 17.632
spsolve 36096 59.054 54.532

cg 5824 1.127 1.935
cg 23264 15.381 16.330
cg 36096 45.778 50.260
cgs 5824 1.098 3.685
cgs 23264 14.646 168.563
cgs 36096 45.393 49.858

minres 5824 1.162 1.858
minres 23264 16.789 17.606
minres 36096 46.966 47.547

Table 1: CPU and GPU Running Time Comparison with
Numba

The Results doesn’t look so nice, so we try to change the
solver alternatives. This test is only target on spsolve. Because
spsolve is the only one you can choose the solver alternatives,
others are iterative solvers, which means you can only change
the residual tolerance and set the max iterations.

Solver Alternatives Cells Number CPU GPU
MMD ATA 5824 0.091 0.404
MMD ATA 23264 16.622 18.251
MMD ATA 36096 48.090 52.806

MMD AT PLUS A 5824 0.090 0.607
MMD AT PLUS A 23264 25.078 27.346
MMD AT PLUS A 36096 55.355 61.136

Table 2: CPU and GPU Running Time Comparison with
Numba and spsolve: for sparse solver alternatives;

Thus, for spsolve, mode = ’MMD ATA’ works fastest.

5.3 An Example about the solution of this Problem

(a) Initial Mesh Structure (b) Mesh Structure of the Solu-
tion

Figure 9: EXAMPLE: Mesh Plots; Grid size = 0.3, Cells
Numbers = 42

5.4 Other Details
It’s really obvious that GPU didn’t do a great job on
acceleration for our case. So we need to check the Profiling
data we get more carefully to find out the reason. There
are no advantages to solve a problem with low computional

demands, so we will still focus on those 3 cases with largest
cells numbers.

5.4.1 A Matrix
Sometimes the sparseness of a Matrix we are dealing with can
effect the running time.

Cells Number Nonzero elements Size of Matrix A Sparseness
5824 12400 966 × 966 0.01328824

23264 278866 23366 × 23366 0.0000428
36096 441149 36223 × 36223 0.00033621

Table 3: CPU and GPU Running Time Comparison with
Numba and spsolve: for sparse solver alternatives;

The matrix is very sparse. Obviously, if we only consider
the sparseness, it should work well for all sparse solvers. Thus,
sparseness is not the reason we are looking for.

5.4.2 Details about Profiling Data
We asked python to show us 10 most cost functions. But there
will be only two or three of them account for more than 90
percent of the whole time cost.
< 𝑖𝑝𝑦𝑡ℎ𝑜𝑛 − 𝑖𝑛𝑝𝑢𝑡 − 541 − 58𝑐𝑑𝑒 𝑓 79𝑎07 𝑓 >: 39(<
𝑚𝑜𝑑𝑢𝑙𝑒 >) is the slowest step, and it cost almost 50 per-
cent time of the whole process. We don’t think we can cut
this part of the time, because it is the I/O execution at the be-
ginning of the whole code and the only way to make it faster
is to change the hardware.
We also try PyTorch on our project, but there are deadly dis-
advantages of this library: (1) If you want to call a function
to complete the multiplication between a sparse matrix and a
vector, you have to use a Linux-System Computer or install
OpenBLAS (which may be not working for all computers). (2)
PyTorch is really unhappy with sparse Matrix and a similar
thing happens to TensorFlow. This means you have to transfer
your ’Matrix.dtype’ back to the ’numpy.ndarray’, which will
literally cost so much time.
Another thing we want to talk about is that for this particular
case, I’m quite skeptical about the stability of Iterative solvers,
especially those using the Conjugate Gradient Squared itera-
tion algorithm.
The most efficient way to accelerate the computational pro-
cess, of course, is to write a Matrix Solver by hand. Addi-
tionally, there are some documents talking about GPU Accel-
erated Linear System Solvers on NVIDIA’s website, but most
of them are iterative solvers based on Cuda, dealing with a
heat conduction and diffusion equation or wave equation with
pretty nice diagonal dominance Stiffness matrix, which is
completely different from our case. So this can be a Potential
Research Question in the Future.

6 Acknowledgements

We want to extend our deepest gratitude to Fredrik Larsson
for his supervision and a special thanks to Lars Davidson for
his great enthusiasm in managing this course. Also we want
to thank Kim Luisa Auth for her Basic Code Framework.

6.1 Contributions
1. Congxiao Zhang:

Code: Assemble the whole code, Rewrite the Grid gen-
eration and Profiling; Write the PyTorch version of code
Report: Basic Theory; Specific Problem and Results and
Discussions.

2. Gayana Jinde Radhakrishna:
Code: Mesh Plot, Helped with profiling;
Report: Abstract, Introduction and GPU Acceleration for
FEM. Offered some good ideas about the Result Analysis.

3. We parsed the Basic Code Framework together.

6.2 Computer Code
The whole code has been uploaded on GitHub. And we will
also attach it as a zip file additionally.

