Modeling of Swirling Flow in a Conical Diffuser

Walter Gyllenram

Division of Thermo and Fluid Dynamics Chalmers University of Technology Göteborg, Sweden ©Walter Gyllenram, 2003

Thermo and Fluid Dynamics

Outline

Introduction

Introduction

Background

- Hydro power
- Water turbines
- Draft tubes and diffusers
- Vortex ropes

Introduction

Background

Numerical Considerations

- Equations
- Boundary conditions
- CALC-PMB
- Geometry
- Mesh

Introduction Background Numerical Considerations Results

- Comparison to experiments
- Analogies to confined swirling flow
- CAD imperfections

Introduction Background Numerical Considerations Results Conclusions

Introduction Background Numerical Considerations Results Conclusions Future Work

Thermo and Fluid Dynamics

Background and Motivation

Kaplan turbine of Hölleforsen and a slightly simplified model

Thermo and Fluid Dynamics

Background and Motivation

Cavitation in unsteady vortex ropes

Thermo and Fluid Dynamics

Background and Motivation

Project

Supervisor/Examinator: Dr. Håkan Nilsson

Numerical Considerations

(U)RANS, continuity & Boussinesq assumption

$$\partial_{0}U_{i} + U_{j}\partial_{j}U_{i} = -\frac{1}{\rho}\partial_{i}P + \nu \partial_{j}\partial_{j}U_{i} - \partial_{j} < u_{i}'u_{j}' >$$

$$\partial_{i}U_{i} = 0$$

$$- < u_{i}u_{j} > = 2\nu_{t}S_{ij} - \frac{2}{3}k\delta_{ij}$$

$$S_{ij} = \frac{1}{2}(\partial_{j}U_{i} + \partial_{i}U_{j})$$

Numerical Considerations

Wilcox $k - \omega$ turbulence model $\nu_t = k/\omega$ $\partial_0 k + U_j \partial_j k = P_k + \partial_j \left(\left(\nu + \nu_t / \sigma_k \right) \partial_j k \right) - \varepsilon_k$ $\partial_0 \omega + U_j \partial_j \omega = \partial_j \left((\nu + \nu_t / \sigma_\omega) \partial_j \omega \right) \frac{\omega}{k}(c_{\omega 1}P_k + c_{\omega 2}k\omega)$ $P_k = \nu_t \left(\partial_i U_i + \partial_i U_i \right) \partial_i U_i$ $\varepsilon = \beta \omega k$

 $\beta = 0.09, c_{\omega 1} = 5/9, c_{\omega 2} = 3/40, \sigma_k = \sigma_\omega = 2$

Numerical Considerations

Boundary conditions

 $Walls: \quad U_{i} = \mathbf{0}, k = 0, \ \omega = \frac{6\nu}{C_{\omega 2}r^{2}}$ $Inlet: \quad U_{i} = U_{i}^{exp}, k = f(r)(\partial_{r}U_{axial})^{2}$ $\omega = \frac{\sqrt{k}}{g(r)}$ $Outlet: \quad \partial_{0}U_{i} + U_{b}\partial_{n}U_{i} = \mathbf{0}, \ \partial_{n}(\cdot) = 0$

Numerical Considerations

Parallel multiblock code: CALC-PMB

- Finite volume method
- Block structured hexahedral grid
- MPI
- Rhie-Chow interpolation
- Simplec algorithm
- TDMA

Thermo and Fluid Dynamics

Numerical Considerations

Geometry and block structures

Thermo and Fluid Dynamics

Numerical Considerations

Computational grids

Numerical Considerations

Case	Grid	Re	Steady/Unsteady	GridSize	HRN/LRN
1:1	1	Re ₀	Steady	100,000	HRN
1:2	1	Re ₀	Unsteady	100,000	HRN
2:1	2	Re ₀ /10	Steady	100,000	HRN
2:2	2	Re ₀ /10	Unsteady	100,000	HRN
3:1	3	Re ₀ /10	Steady	781,250	LRN
3:2	3	Re ₀ /10	Unsteady	781,250	LRN

Six cases, $Re_0 = 2.8 \cdot 10^6$

Thermo and Fluid Dynamics

Results

Streamlines and wall pressure distribution

Results

In excellent agreement with experimental data...

Thermo and Fluid Dynamics

Results

Not really.

•: Case 3:1; \Box : Case 2:1; \diamond : Case 1:1; \triangle : Experimental data

Results

Mean pressure profiles

•: Case 3:1; : Case 2:1; : Case 1:1.

Thermo and Fluid Dynamics

Results

Iso-pressure surfaces, planes of pressure distribution and vortex core

Thermo and Fluid Dynamics

Results

Analogies to confined swirling flow

Thermo and Fluid Dynamics

Results

Analogies to confined swirling flow: Calculation

Results

Analogies to confined swirling flow: Experiment

Results

Analogies to confined swirling flow - Smearlines and velocity magnitude gradient, $(\partial_r |U_i|)$

Thermo and Fluid Dynamics

Results

Normalized helicity, $\varphi = \frac{\Omega_i U_i}{|\Omega_i||U_i|}$

Results

Generation of asymmetric modes

- Grid topology?
- Asymmetric boundary conditions?
- Order of indices?
- CAD-geometry?

Thermo and Fluid Dynamics

Results

Iso-pressure surfaces as indicator of asymmetry

Thermo and Fluid Dynamics

Results

Asymmetry is geometrically induced

Results

CAD-imperfection \rightarrow Forced symmetry breaking disturbance

Conclusions

- Instability
 - The mean flow is very sensitive to disturbances
- ICEM spline conversion
 - Do we get what we ask for?
- Steady solutions
 - Due to turbulence model or asymmetric geometry?
- Turbulence model
 - Overestimates radial mixing in the forced vortex region

Future Work

LES - Large Eddy Simulation

- Resolve large turbulent scales
- No need for boundary conditions for k and ε
- Weaker dependence on turbulence model