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Kaplan turbine of Hölleforsen and a slightly
simplified model
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Cavitation in unsteady vortex ropes
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(U)RANS, continuity & Boussinesq assumption

∂0Ui + Uj∂jUi = −1

ρ
∂iP + ν ∂j∂jUi − ∂j < u′

iu
′
j >

∂iUi = 0

− < uiuj > = 2νtSij −
2

3
kδij

Sij =
1

2
(∂jUi + ∂iUj)
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Wilcox k − ω turbulence model
νt = k/ω

∂0k + Uj∂jk = Pk + ∂j ((ν + νt/σk)∂jk) − ε

∂0ω + Uj∂jω = ∂j ((ν + νt/σω)∂jω) −
ω

k
(cω1Pk + cω2kω)

Pk = νt (∂jUi + ∂iUj) ∂jUi

ε = βωk

β = 0.09, cω1 = 5/9, cω2 = 3/40, σk = σω = 2
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Boundary conditions

Walls : Ui = 0 , k = 0, ω =
6ν

Cω2r2

Inlet : Ui = U exp
i , k = f(r)(∂rUaxial)

2

ω =

√
k

g(r)

Outlet : ∂0Ui + Ub∂nUi = 0, ∂n(·) = 0
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Parallel multiblock code: CALC-PMB
- Finite volume method
- Block structured hexahedral grid
- MPI
- Rhie-Chow interpolation
- Simplec algorithm
- TDMA
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Geometry and block structures
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Computational grids
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Case Grid Re Steady/Unsteady Grid Size HRN/LRN

1:1 1 Re0 Steady 100,000 HRN

1:2 1 Re0 Unsteady 100,000 HRN

2:1 2 Re0/10 Steady 100,000 HRN

2:2 2 Re0/10 Unsteady 100,000 HRN

3:1 3 Re0/10 Steady 781,250 LRN

3:2 3 Re0/10 Unsteady 781,250 LRN

Six cases, Re0 = 2.8 · 106
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Streamlines and wall pressure distribution
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In excellent agreement with experimental data...
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Not really.

•: Case 3:1; �: Case 2:1;�: Case 1:1;4: Experimental data
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Mean pressure profiles

•: Case 3:1; �: Case 2:1;�: Case 1:1.
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Iso-pressure surfaces, planes of pressure
distribution and vortex core
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Analogies to confined swirling flow
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Analogies to confined swirling flow: Calculation
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Analogies to confined swirling flow: Experiment
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Analogies to confined swirling flow
- Smearlines and velocity magnitude gradient,

(∂r|Ui|)
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Normalized helicity, ϕ = ΩiUi

|Ωi||Ui|
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Generation of asymmetric modes
- Grid topology?
- Asymmetric boundary conditions?
- Order of indices?
- CAD-geometry?
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Iso-pressure surfaces as indicator of asymmetry
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Instability
- The mean flow is very sensitive to

disturbances

ICEM spline conversion
- Do we get what we ask for?

Steady solutions
- Due to turbulence model or asymmetric

geometry?

Turbulence model
- Overestimates radial mixing in the forced

vortex region
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LES - Large Eddy Simulation
- Resolve large turbulent scales
- No need for boundary conditions for k and ε
- Weaker dependence on turbulence model
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