Transport Equations in Incompressible URANS and LES

Lars Davidson

Division of Fluid Dynamics
Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, May 2006
Transport Equations in Incompressible URANS and LES

L. Davidson
Division of Fluid Dynamics
Dept. of Applied Mechanics
Chalmers University of Technology
SE-412 96 Göteborg

December 8, 2021

Contents

1 The Transport Equation for the Reynolds Stresses 3
 1.1 Resolved turbulent kinetic energy \(\langle k \rangle \) 4
 1.2 Time-averaged kinetic energy \(\langle \bar{K} \rangle \) 5
 1.3 Resolved kinetic energy \(\bar{K}_{res} \) 6
 1.4 Equation for \(\bar{K} = u_i u_i / 2 \) 6
 1.5 SGS turbulent kinetic energy, \(k_T = 0.5(\bar{u_i} u_i - \bar{u_i} \bar{u_i}) \) 7
 1.6 Equation for modeled \(k_T \) ... 8
 1.7 Equation for resolved heat flux, \(\langle \bar{u_i} \bar{t} \rangle \) 8
 1.8 Equation for resolved temperature variance, \(\langle t^2 \rangle \) 9
1 The Transport Equation for the Reynolds Stresses

The filtered Navier-Stokes equation for \bar{u}_i reads

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_k}(\bar{u}_i \bar{u}_k) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_k \partial x_k} - \frac{\partial \tau_{ik}^a}{\partial x_k} - g_i \beta \bar{t}$$ \hspace{1cm} (1)

where τ_{ik} denotes modelled SGS stress or URANS stress. The SGS/URANS turbulent kinetic energy is defined as $k_T = 0.5 \bar{\tau}_{ii}$. Decompose \bar{u}_i and \bar{p} into a time-averaged (or ensemble-averaged) value and a resolved fluctuation as

$$\bar{u}_i = U_i + \bar{u}_i', \ \bar{p} = P + \bar{p}', \ \bar{t} = T + \bar{t}'$$

$$U_i = \langle \bar{u}_i \rangle, \ P = \langle \bar{p} \rangle, \ T = \langle \bar{t} \rangle$$ \hspace{1cm} (2)

where u_i'' is the SGS fluctuation. Insert this in Eq. 1 so that

$$\frac{\partial \bar{u}_i'}{\partial t} + \frac{\partial}{\partial x_k}((U_i + \bar{u}_i')(U_k + \bar{u}_k')) = -\frac{1}{\rho} \frac{\partial (P + \bar{p})}{\partial x_i} + \nu \frac{\partial^2 (U_i + \bar{u}_i')}{\partial x_k \partial x_k}$$

$$- \frac{\partial \tau_{ik}^a}{\partial x_k} - g_i \beta (T + \bar{t}')$$ \hspace{1cm} (3)

Time (ensemble) averaging of Eq. 3 yields

$$\frac{\partial}{\partial x_k} \langle U_i U_k \rangle = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_k \partial x_k} - \frac{\partial}{\partial x_k} \langle \bar{u}_i' \bar{u}_k' \rangle - \frac{\partial}{\partial x_k} \langle \tau_{ik}^a \rangle - g_i \beta \bar{t}'$$ \hspace{1cm} (4)

Now subtract Eq. 4 from Eq. 3

$$\frac{\partial \bar{u}_i'}{\partial t} + \frac{\partial}{\partial x_k}((U_i \bar{u}_k' + U_k \bar{u}_i') + \bar{u}_i' \bar{u}_k') =$$

$$-\frac{1}{\rho} \frac{\partial \bar{p}'}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i'}{\partial x_k \partial x_k} + \frac{\partial}{\partial x_k} \left(\langle \bar{u}_i' \bar{u}_k' \rangle + \langle \tau_{ik}^a \rangle - \frac{\partial \tau_{ik}^a}{\partial x_k} \right) - g_i \beta \bar{t}'$$ \hspace{1cm} (5)

Multiply Eq. 5 with \bar{u}_j' and a corresponding equation for \bar{u}_j' by \bar{u}_i', add them together, and time (ensemble) average

$$\langle \bar{u}_j' \frac{\partial}{\partial x_k} (U_i \bar{u}_k' + U_k \bar{u}_i' + \bar{u}_i' \bar{u}_k') \rangle + \langle \bar{u}_i' \frac{\partial}{\partial x_k} (U_j \bar{u}_k' + U_k \bar{u}_j' + \bar{u}_k' \bar{u}_j') \rangle =$$

$$- \langle \bar{u}_j' \frac{\partial \bar{p}'}{\partial x_i} \rangle - \langle \bar{u}_j' \frac{\partial \bar{p}'}{\partial x_j} \rangle + \nu \langle \bar{u}_j' \frac{\partial^2 \bar{u}_i'}{\partial x_k \partial x_k} \rangle + \nu \langle \bar{u}_i' \frac{\partial^2 \bar{u}_j'}{\partial x_k \partial x_k} \rangle$$

$$- \langle \bar{u}_j' \frac{\partial \tau_{ik}^a}{\partial x_k} \rangle - \langle \bar{u}_i' \frac{\partial \tau_{ik}^a}{\partial x_k} \rangle - g_i \beta \langle \bar{u}_j' \bar{t}' \rangle - g_j \beta \langle \bar{u}_i' \bar{t}' \rangle$$ \hspace{1cm} (6)
The two first lines correspond to the usual $\bar{u}_i u'_j$ equation in conventional Reynolds decomposition. The two last terms on line 2 can be re-written as

$$\nu \frac{\partial}{\partial x_k} \left\langle \bar{u}_i \frac{\partial u'_j}{\partial x_k} \right\rangle + \nu \frac{\partial}{\partial x_k} \left\langle \bar{u}'_i \frac{\partial \bar{u}'_j}{\partial x_k} \right\rangle - 2\nu \left\langle \bar{u}'_i \frac{\partial \bar{u}'_j}{\partial x_k} \right\rangle = \nu \frac{\partial^2}{\partial x_k \partial x_k} \left\langle \bar{u}'_i \bar{u}'_j \right\rangle - 2\nu \left\langle \bar{u}'_i \frac{\partial \bar{u}'_j}{\partial x_k} \right\rangle$$

(7)

The two first terms on the last line in Eq. 6 can be rewritten as

$$- \left\langle \frac{\partial}{\partial x_k} \left(\bar{u}'_j \tau^{\alpha}_{ik} \right) \right\rangle + \left\langle \tau^{\alpha}_{ik} \frac{\partial \bar{u}'_j}{\partial x_k} \right\rangle = \left\langle \frac{\partial}{\partial x_k} \left(\bar{u}'_i \tau^{\alpha}_{jk} \right) \right\rangle + \left\langle \tau^{\alpha}_{jk} \frac{\partial \bar{u}'_i}{\partial x_k} \right\rangle$$

(8)

Finally, we can now write the transport equation for $\langle \bar{u}'_i \bar{u}'_j \rangle$ as

$$\frac{\partial}{\partial x_k} \langle U_k \langle \bar{u}'_i \bar{u}'_j \rangle \rangle = -\langle \bar{u}'_i \bar{u}'_j \rangle \frac{\partial U_j}{\partial x_k} - \langle \bar{u}'_i \bar{u}'_j \rangle \frac{\partial U_j}{\partial x_k} - \frac{1}{\rho} \left\langle \bar{u}_i \frac{\partial p'}{\partial x_j} \right\rangle - \frac{1}{\rho} \left\langle \bar{u}'_i \frac{\partial p'}{\partial x_j} \right\rangle +$$

$$- \frac{\partial}{\partial x_k} \left\langle \bar{u}'_i \bar{u}_j \bar{u}'_k \right\rangle + \nu \frac{\partial^2}{\partial x_k \partial x_k} \left(\bar{u}'_i \bar{u}'_j \right) - 2\nu \left\langle \frac{\partial \bar{u}'_i \bar{u}'_j}{\partial x_k} \right\rangle - g_i \beta \left\langle \bar{u}'_i \bar{p}' \right\rangle - g_j \beta \left\langle \bar{u}'_j \bar{p}' \right\rangle -$$

$$- \left\langle \frac{\partial}{\partial x_k} \left(\bar{u}'_j \tau^{\alpha}_{ik} \right) \right\rangle + \left\langle \frac{\partial}{\partial x_k} \left(\bar{u}'_i \tau^{\alpha}_{jk} \right) \right\rangle + \left\langle \tau^{\alpha}_{jk} \frac{\partial \bar{u}'_i}{\partial x_k} \right\rangle + \left\langle \tau^{\alpha}_{ik} \frac{\partial \bar{u}'_j}{\partial x_k} \right\rangle$$

(9)

where the two last lines include all terms related to the SGS/URANS stresses. The third line represents diffusion transport by SGS/URANS stresses and the fourth line represents dissipation by SGS/URANS stresses. For an eddy-viscosity SGS/URANS model

$$\tau^{\alpha}_{ij} = -2\nu T \bar{s}_{ij}, \quad \bar{s}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right)$$

(10)

1.1 Resolved turbulent kinetic energy $\langle k \rangle$

Now we will derive the transport equation for the resolved turbulent kinetic energy $\langle k \rangle = \langle \bar{u}'_i \bar{u}'_i \rangle / 2$. Take the trace of Eq. 9 and divide by two

$$\frac{\partial}{\partial x_j} \langle U_j \langle k \rangle \rangle = -\langle \bar{u}'_i \bar{u}'_j \rangle \frac{\partial U_i}{\partial x_j} - \frac{\partial}{\partial x_j} \left(\frac{1}{\rho} \left\langle \bar{u}'_i \bar{p}' \right\rangle + \frac{1}{2} \langle \bar{u}'_i \bar{u}'_j \rangle \right) + \nu \frac{\partial^2 \langle k \rangle}{\partial x_j \partial x_j}$$

$$- \langle \bar{u}'_i \frac{\partial \bar{u}'_j}{\partial x_j} \rangle - g_i \beta \langle \bar{u}'_i \bar{p}' \rangle - \frac{\partial}{\partial x_j} \left(\tau^{\alpha}_{ij} \frac{\partial \bar{u}'_i}{\partial x_j} \right) + \left\langle \tau^{\alpha}_{ij} \frac{\partial \bar{u}'_i}{\partial x_j} \right\rangle$$

(11)

The pressure-velocity term was re-written as

$$\left\langle \bar{u}'_i \frac{\partial \bar{p}'}{\partial x_j} \right\rangle = \frac{\partial}{\partial x_j} \left\langle \bar{u}'_j \bar{p}' \right\rangle - \left\langle \bar{p}' \frac{\partial \bar{u}'_j}{\partial x_j} \right\rangle$$

(12)
where the last term is zero due to continuity.

The last term in Eq. 11 can be both positive and negative. However, if we introduce an eddy-viscosity model it can be shown that it is predominantly negative. If the approximation (using Eq. 10)

$$\tau_{ij}^a = \tau_{ij}^a - \langle \tau_{ij}^a \rangle = -2(\nu_T \bar{s}_{ij} - \langle \nu_T \bar{s}_{ij} \rangle) \simeq -2\nu_T s'_{ij}$$ \hspace{1cm} (13)$$

is made we find that the term is always negative. This is easily seen when inserting Eq. 13 into the last term of Eq. 11

$$\langle \tau_{ij}^a \frac{\partial \bar{u}_i'}{\partial x_j} \rangle \simeq -2\langle \nu_T s'_{ij}(s'_{ij} + \omega'_{ij}) \rangle = -2\langle \nu_T s'_{ij}s'_{ij} \rangle < 0 \hspace{1cm} (14)$$

where $\omega'_{ij} = 0.5(\partial \bar{u}_i'/dx_j - \partial \bar{u}_j'/dx_i)$. In Eq. 14 we have used the fact that the product of a symmetric and anti-symmetric tensor is zero.

The terms in Eq. 11 have the following physical meaning. The term on the left-hand side is the advection. The terms on the right-hand side are production of $\langle k \rangle$, transport of $\langle k \rangle$ by resolved fluctuations, viscous transport of $\langle k \rangle$, viscous dissipation of $\langle k \rangle$, production/destruction of $\langle k \rangle$ by buoyancy, transport of $\langle k \rangle$ by SGS/URANS turbulence and production/destruction of $\langle k \rangle$ by SGS/URANS turbulence.

1.2 Time-averaged kinetic energy $\langle \bar{K} \rangle$

The equation for the time-averaged kinetic energy $\langle \bar{K} \rangle = \frac{1}{2}U_iU_i$ is derived by multiplying the time-averaged (ensemble-averaged) momentum equation, Eq. 4, by U_i so that

$$U_i \frac{\partial}{\partial x_j} (U_iU_j) = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu U_i \frac{\partial^2 U_i}{\partial x_j \partial x_j} - U_i \frac{\partial}{\partial x_j} \left(\langle \tau_{ij}^a \rangle + \langle \bar{u}_i'\bar{u}_j' \rangle \right) - U_i g_i \beta T \hspace{1cm} (15)$$

The left-hand side of Eq. 15 can be rewritten as

$$\frac{\partial}{\partial x_j} (U_iU_j) - U_i \frac{\partial U_i}{\partial x_j} \frac{\partial U_i}{\partial x_j} = U_i \frac{\partial}{\partial x_j} (U_iU_i) - \frac{1}{2} U_i \frac{\partial}{\partial x_j} (U_iU_i)$$

$$= \frac{1}{2} U_i \frac{\partial}{\partial x_j} (U_iU_i) = \frac{\partial}{\partial x_j} (U_i \langle \bar{K} \rangle) \hspace{1cm} (16)$$

The viscous diffusion term in Eq. 15 is rewritten in the same way as the viscous term in Eq. 7, i.e.

$$\nu U_i \frac{\partial^2 U_i}{\partial x_j \partial x_j} = \nu \frac{\partial^2 \langle \bar{K} \rangle}{\partial x_j \partial x_j} - \nu \frac{\partial U_i}{\partial x_j} \frac{\partial U_i}{\partial x_j} \hspace{1cm} (17)$$

The turbulent diffusion term is rewritten as

$$U_i \frac{\partial}{\partial x_j} \left(\langle \tau_{ij}^a \rangle + \langle \bar{u}_i'\bar{u}_j' \rangle \right) = \frac{\partial}{\partial x_j} \left[U_i \left(\langle \tau_{ij}^a \rangle + \langle \bar{u}_i'\bar{u}_j' \rangle \right) - \left(\langle \tau_{ij}^a \rangle + \langle \bar{u}_i'\bar{u}_j' \rangle \right) \right] \frac{\partial U_i}{\partial x_j} \hspace{1cm} (18)$$
Now we can assemble the transport equation for $\langle K \rangle$ by inserting Eqs. 16, 17 and Eq. 18 into Eq. 15

$$\frac{\partial}{\partial x_j}(U_j \langle K \rangle) = \nu \frac{\partial^2}{\partial x_j \partial x_j} \langle K \rangle - \frac{\partial}{\partial x_j}(U_j P) - \frac{\partial}{\partial x_j} \left[U_i \left(\langle \tau_{ij}^a \rangle + \langle \bar{u}_i' \bar{u}_j' \rangle \right) \right]$$

$$- U_i \frac{\partial P}{\partial x_i} + \left(\langle \tau_{ij}^a \rangle + \langle \bar{u}_i' \bar{u}_j' \rangle \right) \frac{\partial U_i}{\partial x_j} - \nu \frac{\partial U_i}{\partial x_j} \frac{\partial U_i}{\partial x_j} - g_i \beta U_i T$$

We recognize the usual transport term on the left-hand side due to advection. On the right-hand side we have the main source term (velocity times the pressure gradient) viscous diffusion and transport of $\langle K \rangle$. The term in square brackets represents transport by interaction between the time-averaged (ensemble-averaged) velocity field and turbulence. The term $\langle \bar{u}_i' \bar{u}_j' \rangle \partial U_i / \partial x_j$ is the usual production term of the resolved kinetic energy $0.5\langle \bar{u}_i' \bar{u}_i \rangle$ which usually is negative. This term appears in Eq. 11 but with opposite sign. The term $\langle \tau_{ij}^a \rangle \partial U_i / \partial x_j$ is the production term in the turbulent kinetic energy equation $k_i = 0.5\tau_{ii}$. This term is usually referred to as the SGS/URANS dissipation term, and for an eddy-viscosity model we find (cf. Eqs. 13 and 14)

$$\langle \tau_{ij}^a \rangle \frac{\partial U_i}{\partial x_j} = -2\langle \nu_T \bar{s}_{ij} \rangle (S_{ij} + \Omega_{ij})$$

$$\simeq -2\langle \nu_T \rangle (\bar{s}_{ij}) S_{ij} = -2\langle \nu_T \rangle S_{ij} S_{ij} < 0$$

It is interesting to compare this SGS dissipation term with the viscous dissipation term in Eq. 18. If $\nu_{sgs} \gg \nu$, the SGS dissipation is much larger than the viscous one. If this is not the case, then we’re doing a DNS!

1.3 Resolved kinetic energy K_{res}

The equation for the time-averaged kinetic energy $K_{res} = \frac{1}{2} \bar{u}_i \bar{u}_i$ is derived by multiplying the filtered momentum equation, Eq. 1, by \bar{u}_i, so that

$$\bar{u}_i \left(\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_k} (\bar{u}_i \bar{u}_k) \right) = \bar{u}_i \left(-\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_i \partial x_i} - \frac{\partial \tau_{ij}^a}{\partial x_j} - g_i \beta \bar{t} \right)$$

Looking at the derivation in Section 1.1 and the final equation (Eq. 19) we get

$$\frac{\partial K_{res}}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_j K_{res}) = \nu \frac{\partial^2 K_{res}}{\partial x_j \partial x_j} - \bar{u}_j \frac{\partial \bar{p}}{\partial x_j} - \frac{\partial \bar{u}_i \tau_{ij}^a}{\partial x_j}$$

$$+ \tau_{ij}^a \frac{\partial \bar{u}_i}{\partial x_j} - \nu \frac{\partial \bar{u}_i}{\partial x_j} \frac{\partial \bar{u}_i}{\partial x_j} - g_i \beta \bar{u}_i \bar{t}$$

1.4 Equation for $K = u_i u_i / 2$

The equation for K is derived by multiplying Navier-Stokes (i.e. Eq. 1 without SGS stresses and non-filtered variables) by u_i, i.e.

$$u_i \left(\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_k} (u_i u_k) \right) = u_i \left(-\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_i \partial x_i} - g_i \beta \bar{t} \right)$$
Looking at the derivation in Section 1.1 and the final equation (Eq. 19) we get

\[
\frac{\partial K}{\partial t} + \frac{\partial}{\partial x_j} (u_j K) = \nu \frac{\partial^2 K}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} (u_j p) - \nu \frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} - g_i \beta u_i t \tag{24}
\]

This is the same equation as in Section 2.3 in [1] but there it is expressed in the stress tensor, \(\sigma_{ij} \).

1.5 SGS turbulent kinetic energy, \(k_T = 0.5(u_i u_i - \bar{u}_i \bar{u}_i) \)

The SGS turbulent kinetic energy is defined as

\[
k_T = 0.5(u_i u_i - \bar{u}_i \bar{u}_i) = \bar{K} - \bar{K}_{res} \tag{25}
\]

It is obtained by subtracting Eq. 22 from the filtered Eq. 24

\[
\frac{\partial(\bar{K} - \bar{K}_{res})}{\partial t} + \frac{\partial}{\partial x_j} (u_j \bar{K} - \bar{u}_j \bar{K}_{res}) = \nu \frac{\partial^2 (\bar{K} - \bar{K}_{res})}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} (u_j \bar{p} - \bar{u}_j \bar{p} - \bar{u}_i \tau_{ij}^a) - \tau_{ij} \frac{\partial \bar{u}_i}{\partial x_j} - \nu \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} - \frac{\partial \bar{u}_i}{\partial x_j} \frac{\partial \bar{u}_i}{\partial x_j} \right) - g_i \beta (\bar{u}_i t - \bar{u}_i \bar{t})
\]

Adding the term \(\partial/\partial x_j (\bar{u}_j \bar{K} - u_j \bar{K}) \) on both sides and using Eq. 25 gives

\[
\frac{\partial k_T}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_j k_T) = \nu \frac{\partial^2 k_T}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} (u_j \bar{p} - \bar{u}_j \bar{p} - \bar{u}_i \tau_{ij}^a + u_j \bar{K} - \bar{u}_j \bar{K}) - \tau_{ij} \frac{\partial \bar{u}_i}{\partial x_j} - \nu \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} - \frac{\partial \bar{u}_i}{\partial x_j} \frac{\partial \bar{u}_i}{\partial x_j} \right) - g_i \beta (\bar{u}_i t - \bar{u}_i \bar{t})
\]

Line 1: convection and viscous diffusion.

Line 2: turbulent diffusion.

Line 3: production; it appears with opposite sign in Eq. 22.

Line 4: viscous dissipation.

Line 5: buoyancy.
1.6 Equation for modeled k_T

The equation for the modelled turbulent SGS/RANS kinetic energy reads

$$\frac{\partial k_T}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_j k_T) = \frac{\partial}{\partial x_j} \left[(\nu + \nu_T) \frac{\partial k_T}{\partial x_j} \right] + 2\nu_T \bar{s}_{ij} \bar{s}_{ij} - \varepsilon$$

(26)

The terms on the right-hand side represent viscous and turbulent diffusion, production and viscous dissipation.

1.7 Equation for resolved heat flux, $\langle \bar{u}_i \bar{T} \rangle$

The filtered temperature equation for \bar{t} reads

$$\frac{\partial \bar{t}}{\partial t} + \frac{\partial}{\partial x_k} (\bar{u}_k \bar{t}) = \nu \frac{\partial^2 \bar{t}}{\partial x_k \partial x_k} - \frac{\partial h_k}{\partial x_k}$$

(27)

Use Eq. 2 in Eq. 27 so that

$$\frac{\partial}{\partial t} (T + \bar{t}) + \frac{\partial}{\partial x_k} ((U_k + \bar{u}_k')(T + \bar{t}')) = \nu \frac{\partial^2 (T + \bar{t})}{\partial x_k \partial x_k} - \frac{\partial h_k}{\partial x_k}$$

(28)

Time (ensemble) averaging of Eq. 28 yields

$$\frac{\partial}{\partial x_k} (U_k T) = \nu \frac{\partial^2 T}{\partial x_k \partial x_k} - \frac{\partial}{\partial x_k} (\langle \bar{u}_k' \bar{T} \rangle + \langle h_k \rangle)$$

(29)

Now subtract Eq. 29 from Eq. 28

$$\frac{\partial \bar{t}'}{\partial t} + \frac{\partial}{\partial x_k} (\bar{u}_k' + \bar{u}_k T + \bar{u}_k' \bar{T}) =$$

$$\nu \frac{\partial^2 \bar{t}'}{\partial x_k \partial x_k} + \frac{\partial}{\partial x_k} \left(\langle \bar{u}_k' \bar{T} \rangle + \langle h_k \rangle - h_k \right)$$

(30)

Multiply Eq. 30 with \bar{u}_i' and multiply Eq. 5 with t', add them together and time (ensemble) average

$$\langle \bar{u}_i' \frac{\partial}{\partial x_k} (\bar{u}_k' T + U_k \bar{T} + \bar{u}_k' \bar{T}) + \bar{t}' \frac{\partial}{\partial x_k} (U_i \bar{u}_k' + U_k \bar{u}_i' + \bar{u}_i' \bar{u}_k') \rangle$$

$$= - \frac{\bar{t}'}{\rho} \frac{\partial \bar{p}'}{\partial x_i} + \frac{\nu}{\Pr} \left(\bar{u}_i' \frac{\partial^2 \bar{t}'}{\partial x_k \partial x_k} + \nu \left\langle \bar{t}' \frac{\partial^2 \bar{u}_i'}{\partial x_k \partial x_k} \right\rangle - g_i \beta \left\langle \bar{t}' \bar{t}' \right\rangle \right)$$

$$- \left\langle \bar{u}_i' \frac{\partial h_k'}{\partial x_k} \right\rangle - \left\langle \bar{t}' \frac{\partial g_i}{\partial x_k} \right\rangle$$

(31)

The two first lines correspond to the conventional heat flux equation. The two terms in the middle on line 2 can be re-written as

$$\frac{\nu}{\Pr} \frac{\partial}{\partial x_k} \left\langle \bar{u}_i' \frac{\partial \bar{t}'}{\partial x_k} \right\rangle - \frac{\nu}{\Pr} \left\langle \bar{u}_i' \frac{\partial \bar{t}'}{\partial x_k} \right\rangle + \nu \frac{\partial}{\partial x_k} \left\langle \bar{t}' \frac{\partial \bar{u}_i'}{\partial x_k} \right\rangle - \nu \left\langle \bar{u}_i' \frac{\partial \bar{t}'}{\partial x_k} \right\rangle$$

$$= \frac{\nu}{\Pr} \frac{\partial}{\partial x_k} \left\langle \bar{u}_i' \frac{\partial \bar{t}'}{\partial x_k} \right\rangle + \nu \frac{\partial}{\partial x_k} \left\langle \bar{t}' \frac{\partial \bar{u}_i'}{\partial x_k} \right\rangle - \left(\nu + \frac{\nu}{\Pr} \right) \left\langle \bar{u}_i' \frac{\partial \bar{t}'}{\partial x_k} \right\rangle$$

(32)
Using Eq. 32 in Eq. 31 and at the same time re-writing the SGS/URANS terms we get

\[
\frac{\partial}{\partial x_k} U_k \langle \bar{u}_i' T \rangle = - \langle \bar{u}_i' \rangle \frac{\partial T}{\partial x_k} - \langle \bar{u}_i' T \rangle \frac{\partial U_i}{\partial x_k} - \frac{\bar{p} \partial \bar{p}'}{\partial x_i} - \frac{\partial}{\partial x_k} \langle \bar{u}_i' \bar{u}_i' \rangle \\
+ \frac{\nu}{P_r} \frac{\partial}{\partial x_k} \left(\langle \bar{u}_i' \bar{p} \rangle \right) + \nu \frac{\partial}{\partial x_k} \left(\frac{\partial T}{\partial x_k} \right) - \left(\nu + \frac{\nu}{P_r} \right) \left(\frac{\partial \bar{u}_i'}{\partial x_k} \frac{\partial \bar{p}'}{\partial x_k} \right) - g_i \beta \left(\bar{r}_i'^2 \right) \\
- \frac{\partial}{\partial x_k} \langle \bar{u}_i' h_i' \rangle + \left(h_k \frac{\partial \bar{u}_i'}{\partial x_k} \right) - \frac{\partial}{\partial x_k} \langle \bar{t}_i'^a \rangle + \frac{\partial \bar{t}_i'^a}{\partial x_k} \right) \\
\] (33)

The SGS/URANS heat fluxes are commonly obtain from an eddy-viscosity model

\[h_i = - \frac{\nu_T}{P_r} \frac{\partial \bar{T}}{\partial x_i} \] (34)

1.8 Equation for resolved temperature variance, \(\langle \bar{t}^2 \rangle \)

Multiply Eq. 30 with \(\bar{t}' \) and time (ensemble) average

\[
\left(\langle \bar{t}' \frac{\partial}{\partial x_k} (\bar{u}_k' T + U_k \bar{t}' + \bar{u}_k' \bar{t}') \rangle \right) = \frac{\nu}{P_r} \left(\langle \bar{t}' \frac{\partial^2 \bar{t}'}{\partial x_k \partial x_k} \rangle \right) - \langle \bar{t}' \frac{\partial h_i'}{\partial x_k} \rangle \\
\] (35)

The first term on the right-hand side can be re-written as

\[
\frac{\nu}{P_r} \left(\frac{\partial}{\partial x_k} \left(\langle \bar{t} \frac{\partial \bar{t}}{\partial x_k} \rangle \right) \right) - \frac{\nu}{P_r} \left(\frac{\partial \bar{t}}{\partial x_k} \frac{\partial \bar{t}}{\partial x_k} \right) = \frac{1}{2} \frac{\nu}{P_r} \frac{\partial^2}{\partial x_k \partial x_k} \langle \bar{t}^2 \rangle - \frac{\nu}{P_r} \left(\frac{\partial \bar{t}}{\partial x_k} \frac{\partial \bar{t}}{\partial x_k} \right) \\
\] (36)

Using Eq. 36 and re-writing the SGS/URANS term, Eq. 35 can now be written as

\[
\frac{1}{2} \frac{\partial}{\partial x_k} \langle U_k \langle \bar{t}^2 \rangle \rangle = - \langle \bar{u}_k' \rangle \frac{\partial T}{\partial x_k} - \frac{1}{2} \frac{\partial}{\partial x_k} \langle \bar{u}_k' \bar{t}^2 \rangle \\
+ \frac{1}{2} \frac{\nu}{P_r} \frac{\partial^2}{\partial x_k \partial x_k} \langle \bar{t}^2 \rangle - \frac{\nu}{P_r} \left(\frac{\partial \bar{t}'}{\partial x_k} \frac{\partial \bar{t}'}{\partial x_k} \right) - \frac{\partial}{\partial x_k} \langle \bar{h}_i' \bar{t}' \rangle + \frac{\partial \bar{h}_i'}{\partial x_k} \right) \\
\] (37)

Multiply Eq. 35 by 2 and we get

\[
\frac{\partial}{\partial x_k} \langle U_k \langle \bar{t}^2 \rangle \rangle = -2 \langle \bar{u}_k' \rangle \frac{\partial T}{\partial x_k} - \frac{\partial}{\partial x_k} \langle \bar{u}_k' \bar{t}^2 \rangle \\
+ \frac{\nu}{P_r} \frac{\partial^2}{\partial x_k \partial x_k} \langle \bar{t}^2 \rangle - 2 \frac{\nu}{P_r} \left(\frac{\partial \bar{t}'}{\partial x_k} \frac{\partial \bar{t}'}{\partial x_k} \right) - 2 \frac{\partial}{\partial x_k} \langle \bar{h}_i' \bar{t}' \rangle + 2 \frac{\partial \bar{h}_i'}{\partial x_k} \right) \\
\] (38)

References