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1 Introduction

When analysing DNS or LES data, we are interested to look at the energy
spectra. From these we can find out in which turbulence scales (i.e. at which
wave numbers) the fluctuating kinetic turbulent energy reside. By taking
the Fourier transform of the time signal (a fluctuating turbulent velocity)
and then taking the square of the Fourier coefficients we obtain the energy
spectrum versus frequency.

If we want to have the energy spectrum versus wavenumber, we Fourier
transform N instantaneous signals in space and then time average the N
Fourier transforms. An alternative way is to Fourier transform of a (time-
averaged) two-point correlation, b(z), which is defined as

b(z,¢) = w'(¢ = 2)w'(¢) (1)

where z is the separation between the two points. Here we assume that z
is an homogeneous direction so that b is independent of (, i.e. b = b(z).
The two-point correlation for an infinite channel flow is shown in Fig. 1. On
discrete form the expression for b reads

M
b(kAZ) = 2 3 ul(C — kA2 (0 2)
m=1
where m denotes summation in homogenous directions (i.e. time plus spatial
homogenoues directions).

In the following section we give a simple example how to use Matlab
to Fourier transform a signal where we know the answer. Then we show
how to derive the energy spectrum from a spatial two-point correlation.
Finally, some comments are given on how to create an energy spectrum
versus frequency from an autocorrelation (i.e. from a two-point correlation
in time).



Figure 1: Two-point correlation, By, (() = (w'(2)w’(z + ¢)), of DNS data
in channel flow taken from [1].

2 An example of using FFT

Here we will present a simple example. Consider the function
u =1+ cos(2rz/L) =1+ cos(2m(n — 1)/N) (3)

where L is the length of the domain and N = 16 is the number of discrete
points, see Fig. 2. Let’s use this function as input vector for the discrete
Fourier transform (DFT) using Matlab. The function u is symmetric, so we
expect the Fourier coefficients to be real. In Matlab the DFT of u is defined
as (type help fft at the Matlab prompt)

U(k) = i:lu" exp { —27(k —Nl)(n —1) }

1<k <N

(4)

where x is the wavenumber and + = +/—1. In Matlab, we generate the
function » in Eq. 3 using the commands

N=16;
n=1:1:N;
u=1+cos(2*pi*(n-1)/N);

The w function is shown in Fig. 2. 16 nodes are used and node 1 is
located at z = L/16 and node 16 is located at 15L/16.
Now we take the discrete Fourier transform of u. Type

U=fft(u);

Instead of using the built-in £ft command in Matlab we can program it
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Figure 2: The u function.

directly in Matlab as

U=zeros (1,N);
for k=1:N
for n=1:N
a=u(n) ;
argl=2*pi* (k-1)*(n-1)/N;
U(k)=U(k)+a*cos(argl) ;
end
end

Note that since u is symmetric, we have only used cos(z) (the symmetric
part of exp(—:x)).

The resulting Fourier coefficients get the value (cf. Eq. 4) U(1)/N =1,
U(2)/N = 0.5, U(16)/N = 0.5, and the remaining coefficients are zero.
In Fig. 4 the U is plotted versus wavenumber. With x = 27 - (n — 1)/L
the Fourier coefficients are plotted versus wavenumber in Fig. 4. The first
Fourier coefficients corresponds to the mean of u, i.e. U(1l) = (u). The
second and 16th Fourier coefficients correspond to cos{2w(n — 1/N} =
cos(2mz/L).

The kinetic energy, k, of the signal in Fig. 2 can be computed as

1 (k1 1
= — — 2 = — 2 =
k= L/o 5t (z)dz 5 ng_lun/N 1.5 (5)

We can find £ also from Fig. 3. In wavenumber space the kinetic energy is
equal to the integral of the square of the Fourier coefficients, i.e.

1 [>1 141
k== “U(k)dk = — ) ~U?/N =1.
L), gUwan =5 30U <15 Q



0.8r

0.6r
U/N ° o

Figure 3: The U coeflicients.
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Figure 4: The U coeflicients versus wavenumber, &.
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Figure 5: Periodic two-point correlation, by (¢) = (w'(2)w' (2 +()), of DNS
data in channel flow taken from [1].

3 Energy spectrum from the two-point correlation

Now that we have learnt how to use the FFT command in Matlab, let’s use
it on our two-point correlation in Eq. 1 and Fig. 1. Equation 4 reads

B Téb" exp { —2r(k - 1)(n— 1) } ™

N

First we make it symmetric, see Fig. 5, i.e. we assume the signal to be
periodic and we pick one period. Hence, Eq. 7 will be cosin-transform, i.e.

Bn:ibncos{Qﬁ(H_]l\;(n_l)} (8)

n=1

In this special case (DNS of fully developed channel flow), the flow is periodic
in z direction, which means that we could have obtained the symmetric two-
point correlation directly. However, in general this is not the case. In general
we have to start with a two-point as that in Fig. 1. Then we mirror it to
get a symmetric two-point correlation as in Fig. 5. Since FFT works best
when the number of nodes can be expressed as 2", where r is an integer,
the two-point correlation is created using 48 nodes so that the symmetric
two-point correlation has 96. Node 1 and 96 are indicated in Fig. 5. Note
that by _o7 = by =y is omitted, because node number 97 is the first
node in the next period.

In Fig. 6 the Fourier coefficients B, are presented versus wavenumber
Ky =27 - (n — 1) /maz, where (pnap ~ 1.55, see Fig. 5.

As usual, the Fourier coefficient for the first wavenumber, i.e. By, is
equal to the mean of b, (b), i.e.

) = b

1
NBI (9)
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Figure 6: The energy spectrum of w2, versus wavenumber, ..

compare with Eq. 8. Note that this is almost the same expression as that
for the integral length scale [2] which is defined as

1 [ R
L= ﬁ/o bz)dz = 1 — > ba (10)

TMS p—1

Hence the integral length scale is related to the first Fourier mode B; as

1
L= B (11)

rms

The two-point correlation for no separation is equal to square of Wy,

ie. b(0) = w?,, = 1.51. Another way to obtain w?2,,, is to integrate the

energy spectrum in Fig. 6, i.e.

Cma:c

N
1 [ 1
Wrms = /0 B(r)dr = 3 By =151 (12)
n=1

4 Energy spectra from the autocorrelation

When computing the energy spectra of the w' velocity, say, versus frequency,
the time series of w'(t) is commonly Fourier transformed and the energy
spectrum is obtained by plotting the square of the Fourier coefficients versus
frequency, f. In the previous section we computed the energy spectrum
versus wavenumber by Fourier transforming the two-point correlation. We
can use the same approach in time. First we create the autocorrelation
b(1) = (w'(t)w'(t + 7) (this can be seen as a two-point correlation in time).
Then w'(t) is Fourier transformed to get W(f), and W(f) is now twice the
energy spectrum of w'.
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