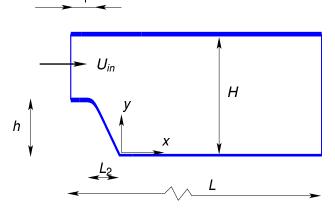
HYBRID LES-RANS: ESTIMATION OF RESOLUTION USING TWO-POINT CORRELATIONS, ENERGY SPECTRA AND DISSIPATION SPECTRA IN RE-CIRCULATING FLOW

Lars Davidson, www.tfd.chalmers.se/~lada

ECCOMAS 2008, Venice, 1-5 July

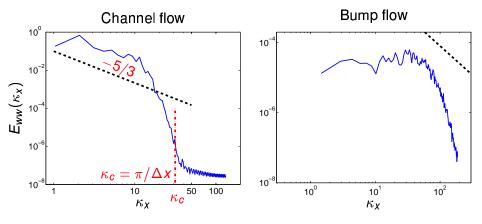
ONERA BUMP, $Re_H = 2.0 \cdot 10^6$



- $\delta_{in}/H = 0.043$, h/H = 0.46, Mesh: $221 \times 122 \times 32/64/128$
- ▶ W/H = 1.67 in expts. Here: $W_{slice}/H = 0.61$ (no side walls)
- ▶ $\Delta x/\delta_{in} = 0.33$, $\Delta z/\delta_{in} = 0.44/0.22/0.11$. $\Delta x^+ = 1300$ and $\Delta z^+ = 1800/900/450$.

ENERGY SPECTRA FROM TIME SERIES

• From frequency to wavenumber $\kappa_{\chi} = 2\pi f/U$



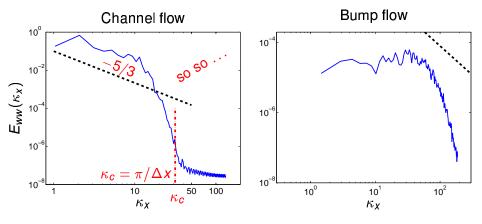
$$Re_{\tau} = 4000, Re_{H} = 2 \cdot 10^{5}$$

 $\Delta x/\delta = 0.1, \Delta x^{+} = 400$

$$Re_H = 2 \cdot 10^6$$
, $x/H = -1$
 $\Delta x/\delta_{in} = 0.33$, $\Delta x^+ = 900$.

ENERGY SPECTRA FROM TIME SERIES

• From frequency to wavenumber $\kappa_{\chi} = 2\pi f/U$



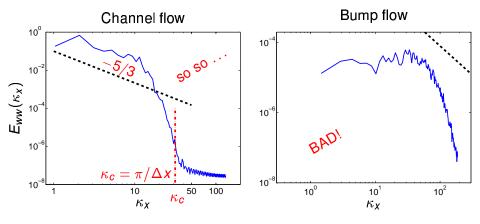
$$Re_{\tau} = 4000, Re_{H} = 2 \cdot 10^{5}$$

 $\Delta x/\delta = 0.1, \Delta x^{+} = 400$

$$Re_H = 2 \cdot 10^6$$
, $x/H = -1$
 $\Delta x/\delta_{in} = 0.33$, $\Delta x^+ = 900$.

ENERGY SPECTRA FROM TIME SERIES

• From frequency to wavenumber $\kappa_{\chi} = 2\pi f/U$



$$Re_{\tau} = 4000, Re_{H} = 2 \cdot 10^{5}$$

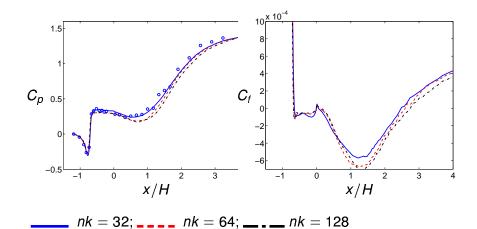
 $\Delta x/\delta = 0.1, \Delta x^{+} = 400$

$$Re_H = 2 \cdot 10^6$$
, $x/H = -1$
 $\Delta x/\delta_{in} = 0.33$, $\Delta x^+ = 900$.

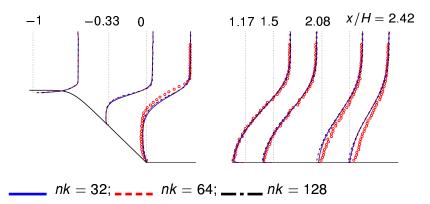
COMPUTATIONAL METHOD

- Finite volume with central differencing in space and time (Crank-Nicolson)
- Fractional step
- ► Hybrid LES-RANS: a one-equation *k*_{sgs} model in both regions with machting along a fixed grid line
- ▶ Mesh: $221 \times 122 \times 32/64/128$, *CFL_{max}* $\simeq 2$.

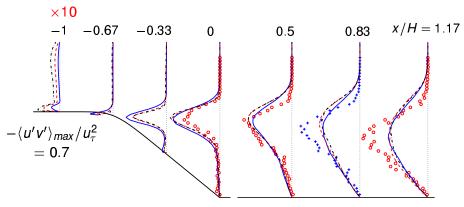
RESULTS: PRESSURE AND SKIN FRICTION



RESULTS: VELOCITIES



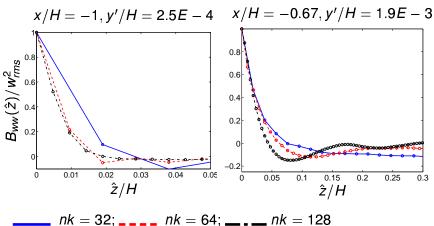
RESULTS: RESOLVED SHEAR STRESSES



$$nk = 32;$$
 _ _ _ $nk = 64;$ _ _ _ $nk = 128$

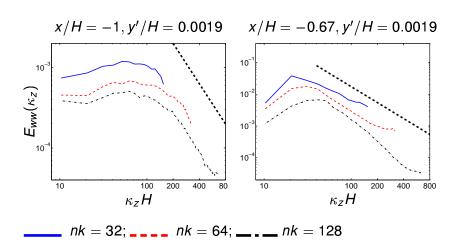
• At -0.5 < x/H < 3, $u_{rms,peak} > 0.3 U_{out}$.

NORMALIZED TWO-POINT CORRELATION, $B_{ww}(\hat{z})/w_{rms}^2$



$$nk = 32;$$
 _ _ _ $nk = 64;$ _ _ _ $nk = 128$

ENERGY SPECTRA $E_{ww}(\kappa_z)$.



ESTIMATED DISSIPATION VS. κ_Z From $E(\kappa_Z)$

The dissipation ε_{wz} can – in theory – be obtained from

$$\varepsilon_{WZ}^{E} = 2\nu \left\langle \left(\frac{\partial W'}{\partial z}\right)^{2} \right\rangle = 2\nu \frac{\partial^{2}B_{WW}(\hat{z})}{\partial \hat{z}^{2}} \Big|_{\hat{z}=0} = 2\nu \sum_{k=1}^{N} \kappa_{z}^{2} E_{WW}(k)$$

$$x/H = -1 \qquad x/H = -0.67$$

$$\kappa_{Z}^{N} = \frac{1200}{1000}$$

$$\kappa_{Z}^{N} = \frac{128}{1000}$$

$$\kappa_{Z}^{N} = \frac{128}{1000}$$

$$\kappa_{Z}^{N} = \frac{128}{1000}$$

EXACT DISSIPATION VS. κ_Z

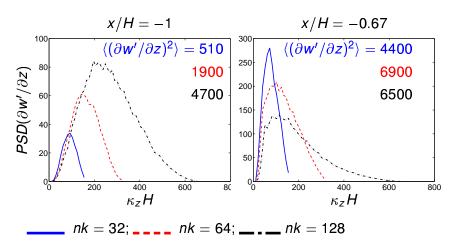
Instead, form a DFT of $\partial w'/\partial z$ as

$$\hat{W}_{z}(k) = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial w'(n)}{\partial z} \exp\left(\frac{-i2\pi(n-1)(k-1)}{N}\right)$$

where \hat{W} are the Fourier coefficients of $\partial w'/\partial z$ and then create the Power Spectral Density, i.e. $\hat{W}_z * \hat{W}_z^*$. Then indeed

$$\varepsilon_{wz}^{FV} = 2\nu \sum_{k=1}^{N} \hat{W}_{z} * \hat{W}_{z}^{*} = 2\nu \sum_{k=1}^{N} PSD(\partial w'/\partial z)$$

RESULTS: EXACT DISSIPATION VS. κ_Z



 Note that dissipation takes place at rather small wave numbers

RESULTS: SGS DISSIPATIONS. nk = 128

$$\varepsilon = 2\langle \nu_T \bar{s}_{ij} \bar{s}_{ij} \rangle$$

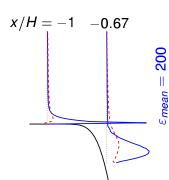
SGS dissipation in $\langle \bar{u}_i \bar{u}_i \rangle / 2$ -eq.

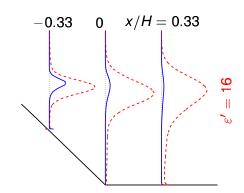
 $arepsilon_{ extit{mean}} = 2 \langle
u_{ extit{T}}
angle \langle ar{ extit{s}}_{ extit{ij}}
angle \langle ar{ extit{s}}_{ extit{ij}}
angle$

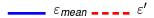
SGS dissipation in $\langle \bar{u}_i \rangle \langle \bar{u}_i \rangle / 2$ -eq.

 $\varepsilon' = \varepsilon - \varepsilon_{mean}$

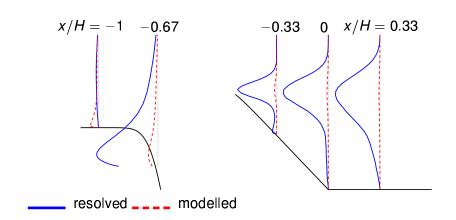
SGS dissipation in $\langle u_i'u_i'\rangle/2$ -eq.







Resolved and Modelled Shear Stresses. nk = 32



CONCLUSIONS: ESTIMATING RESOLUTION

- Useful quantities
 - Two-point correlations
 - ▶ Ratio $\varepsilon'_{SGS}/\varepsilon_{SGS,mean}$
 - Ratio of resolved and modelled stresses?

CONCLUSIONS: ESTIMATING RESOLUTION

- Useful quantities
 - Two-point correlations
 - ▶ Ratio $\varepsilon'_{SGS}/\varepsilon_{SGS,mean}$
 - Ratio of resolved and modelled stresses?
- Not Useful quantities
 - Energy spectra (resolution is often over-estimated)
 - The power spectral density of the resolved velocity gradients
 - ▶ The dissipation component $\varepsilon_{wz} = \kappa_z^2 E_{ww}$