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Analytical and Numerical Studies of Internal
Swirling Flows

WALTER GYLLENRAM

Division of Fluid Dynamics
Department of Applied Mechanics
Chalmers University of Technology

Abstract

Swirling flows are common in technical applications, e.g. turbines,
pumps, fans, compressors and combustors. The objectives of the present
work are to acquire an understanding of the physics of swirling flow in
general and unsteady swirling flow in draft tubes of hydro turbines in
particular, and to find a simulation method suitable for industrial pur-
poses.

An analysis was made of the quasi-cylindrical approximation of the
Navier-Stokes equations. The analysis shows that there are no quasi-
cylindrical solutions at certain critical levels of swirl. Furthermore, it
is shown that this property of the equations is connected to the vortex
breakdown phenomenon, i.e. the sudden change of flow structure often
observed in swirling flow. In draft tubes in hydraulic power plants, a
vortex breakdown gives rise to a precessing vortex core that induces a
temporally periodic load on the machine, which in turn causes bearing
wear and increases the risk of fatigue failure.

An industrially applicable hybrid LES/RANS method was general-
ized and employed. The hybrid method is based on a dynamic filter-
ing procedure of the turbulent length and time scales obtained from
an eddy-viscosity RANS turbulence model. The method has been used
for detailed investigations of the dynamic behaviour of swirling flows
through a sudden expansion and a hydro turbine draft tube. It is shown
that the filtering procedure yields solutions that contain accurate un-
steady information. In addition, the time-averaged results obtained
using the filtered model are significantly better than those obtained
using other hybrid methods and unsteady RANS simulations.

Keywords: Swirling flow, vortex, draft tube, hydro turbine, LES,
RANS, filter, turbulence.
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Nomenclature

All symbols whose identity is not obvious are identified the first time
they appear in the text, and at all subsequent times when confusion
might otherwise arise. The following nomenclature should merely be
regarded as a complement. The appended papers may have a slightly
different notation.

Roman
A Area
a Acceleration vector
Cwly Cu2 Model constants
D Diameter
e Energy
F Force vector
g Gravitational acceleration
H, h Head
k Turbulent kinetic energy
L Length scale
M Angular momentum or Mach number
m Mass
n; Normal vector
Pp Pressure
Q Volume flow rate
R Radius
Re Reynolds number
r Radial coordinate
S Swirl
Sij Strain rate tensor
T, Turbulent time scale

U, V, W  Characteristic velocity (U) or velocity components
u, u; Velocity vector

Vi, V, V,  Velocity components in cylindrical coordinates

z Axial coordinate in cylindrical coordinates
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Super- and Subscripts

abs
atm
cl
crit
1,7,k
loss
opt
p

0

r
sgs
t
x,Y, 2

Absolute

Atmospheric

Centerline

Critical

Principal directions or tensor indices
Loss

Optimal

Pressure

Tangential direction

Radial direction

Subgrid scale

Turbulent

Spatial directions or derivatives

Greek

eSO ®e

T3 o
po

< E

S 3

Ok, Ow

<.

s e 0D

Swirl correction factor

Model constant

Half opening angle,

Grid scale

Boundary layer thickness

Kroneckers delta tensor

Time step

Grid cell volume

Dissipation of turbulent kinetic energy
Efficiency

Tangential direction

von Karman’s constant

Characteristic length scales

Dynamic molecular viscosity

Dynamic eddy-viscosity (turbulent viscosity)
Kinematic molecular viscosity
Kinematic eddy-viscosity (turbulent viscosity)
Density

Model constants

Shear stress tensor

Angular velocity

Specific dissipation

Stream function



Abbreviations

S-A
CFD
DES
DNS
LES
LRN
RANS
RSM
SST
TWL

Spalart-Allmaras

Computational Fluid Dynamics
Detached Eddy Simulation

Direct Numerical Simulation
Large Eddy Simulation

Low Reynolds Number

Reynolds Averaged Navier-Stokes
Reynolds Stress Model

Shear Stress Transport

Tail Water Level

Mathematical operators and symbols

\Y
Dy
do

e e as
&

—~
~—

~—~
~—

Gradient operator

Total (material) derivative; dy(-) + u;0;(*)

Time derivative

Partial time derivative

Spatial derivatives in principal directions
Partial spatial derivatives in principal directions
Partial spatial derivative in the axial direction
Arbitrary quantity

Integrand variable or filtered quantity
Averaged quantity
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Chapter 1

Background

The electrical power produced by a hydraulic power plant originates
from the sun. The sun’s heat on the earth’s surface and atmosphere
drives ocean currents, winds and the vaporization of water. Atmo-
spheric water is transported to inland areas and mountains by wind,
where it condenses and accumulates in lakes and rivers.

In the shadow of the climate change and other disadvantages re-
lated to the use of fossil energy, hydropower appears to be one of the
most appealing alternatives for energy production. It is a 100% re-
newable energy source. In addition, hydro turbines in operation create
almost no pollution and leave behind no waste. The main drawback
is the environmental impact of the dam and the reservoir. Apart from
limiting the mobility of wild life and physically changing riverbanks,
the dam will affect the environment and the ecosystem in many other
respects. In filling up the reservoir, land-based plant material is some-
times covered by water. When this biomass breaks down it produces
greenhouse gases, see e.g. Fearnside [1]. The reservoir created by the
dam sometimes also has a social impact. From an energy production
point of view, however, the reservoir is one of the chief advantages of a
hydropower plant because of its unique ability to store energy and to
handle seasonal and daily peak loads. The reservoir accumulates wa-
ter during periods of low energy consumption, which can later be used
to provide power at periods of high energy consumption.

Hydropower is presently the second largest source of renewable en-
ergy on earth. It supplies approximately 16% of the world’s electric-
ity [2], and generates approximately 40% of the electrical power in Swe-
den [3]. An overview of a hydraulic power plant is shown in Fig. 1.1.
The potential energy of the dammed water is proportional to the static
head, and is converted to kinetic energy by the work of gravity. The
kinetic energy of the running water is in turn converted to mechan-
ical energy of the runner. The runner is mounted to the rotor axis

1
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FIGURE 1.1: An overview of a hydraulic power plant.

of a generator, which finally converts the energy to electricity. There
are various types of hydro turbines. The most common types are the
Kaplan, Francis and Pelton turbines, each of which is named after its
inventor.! Figure 1.2 (to the left) shows a Kaplan turbine. The ad-
justable blades of the Kaplan runner give the turbine a relatively wide
operational range. It is the most efficient turbine at low and varying
head, and is also the most common type of turbine in Sweden. A Fran-
cis turbine usually operates at higher head, in a range of ten meters to
several hundred meters. Contrary to the Kaplan turbine, the flow en-
ters the Francis runner radially instead of axially. At very high head,
the Pelton turbine is the most efficient type. The Pelton turbine resem-
bles a paddle wheel but is characterized by an advanced hydrodynamic
design, just like the other types.

Downstream of the runner in hydraulic power plants of the Francis
or Kaplan type, the flow exits the turbine through a draft tube. The
draft tube acts as a diffuser. Its purpose is to reduce the exit velocity
with a minimum loss of energy. The decelerating flow will induce a low
static pressure in the region just downstream of the runner (see Chap-
ter 2). The low pressure increases the flow rate and, consequently, the
output power of the turbine. The efficiency of the draft tube is very im-
portant for a hydro turbine working at low head and it is determined by
how well the flow responds to the geometry. The design of many draft
tubes in use today is far from optimal. There is thus a high demand for
hydrodynamical competence in this area.

Swedish hydro turbines sometimes operate at part load conditions,
for which they are not designed. The main reason for this is the dereg-
ulation of the Swedish energy market, i.e. that the operational flexibil-

1Viktor Kaplan (1876-1934), James Francis (1815-1892), and Lester Pelton (1829-
1908).



CHAPTER 1. BACKGROUND

ity of hydro turbines must be utilized to compensate for varying loads
on the transmission grid. For reasons explained in the following sec-
tion, the flow at part load condition sometimes creates hydrodynamical
problems. It is necessary to be able to find the operational limits of a
turbine, and the range for which the turbine operates safely and effi-
ciently. This calls for accurate simulation methods.

1.1 Swirling flow in hydro turbines

A swirling flow is created in the spiral casing and wicket gate, just up-
stream of the runner, see Fig. 1.2 (to the left). The runner rotates in the
same direction as the flow. Because of the angle of the runner blades,
in combination with the rotational speed of the runner, the swirl will
be more or less completely neutralized when the turbine operates at
full load, i.e. at its design point. However, at part load operation, a
strongly swirling flow exits the runner in the form of a large vortex.
The vortex often forms a helicoidal flow field that rotates around the
geometrical axis of the draft tube cone, see Fig 1.2 (to the right). The
precessing helicoidal vortex induces a periodic pressure load, which
causes, e.g., bearing wear and increases the risk of fatigue failure. In
order to improve the hydrodynamical design of the turbine it is neces-
sary to acquire an understanding of the vortex dynamics and to be able
to accurately simulate the dynamics of the unsteady swirling flow.

1.2 Objectives and delimitations

The objectives of the present work are to acquire an understanding of
the physics of swirling flow in general and unsteady swirling flow in
draft tubes of hydro turbines in particular, and to find a simulation
method that is applicable for industrial purposes.

Despite the simple geometry of a hydro turbine draft tube, the flow
shows a high degree of complexity at off-design conditions. It is a
swirling, unsteady, partly separated and recirculating flow that enters
the draft tube through a rotating runner. In addition, the flow moves
against an opposing pressure gradient and through a sharp bend. The
work in this thesis deals to a large extent with swirling flows in slightly
simplified geometries, i.e. geometries containing neither the runner
nor the sharp bend, in order to isolate and study the most important
physical aspects of the swirling flow itself. The flow through the runner
or upstream thereof has not been studied.

3
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FIGURE 1.2: Left: The geometry of the Kaplan turbine at Holleforsen in-
cluding the spiral casing, the wicket gate (guide vanes), the runner and the
draft tube. Right: A rotating vortex core in a draft tube, visualized by an iso-
surface of the second invariant of the velocity gradient tensor. The results are
obtained at part load conditions, Q/Q.,+ = 0.71, where Q,pt is the discharge
at the optimal operating point. It rotates around the geometrical symmetry
axis with a well-defined frequency. A structure resembling a double helix is
formed in the bend.

1.3 Outline of the thesis

This thesis is based on four appended papers, of which two have been
published or accepted for publication in well known scientific journals.
The two most recently written papers have yet only been submitted
to scientific journals. All research results are included in the papers,
which are briefly summarized in Chapter 4. In order to make the scope
of the thesis comprehensible for a wider audience, the following two
chapters are dedicated to non-experts of fluid dynamics.



Chapter 2
The Flow in a Draft Tube

The purpose of the draft tube is to improve the efficiency of the hydro
turbine. By converting as much as possible of the kinetic energy of the
water coming into the draft tube to static pressure, the draft tube can
make use of a large part of the energy that exits the runner. Practically,
the conversion is done by the streamwise increase in the cross-sectional
area of the draft tube. The flow decelerates quadratically with an in-
crease in cross-sectional area because of conservation of mass, and the
pressure must thereby increase until it reaches the pressure level of
the tail water. A highly simplified mathematical explanation of how
the energy is recovered follows in Section 2.1. The simplified analysis
implicitly assumes near-optimal flow conditions, i.e. where most of the
swirl has been removed by the runner (see Section 1.1). At part load
operation, however, the complexity of the flow drastically increases be-
cause of the swirl. The origins of the complex dynamics of the swirling
flow can — at least partly — be understood by the physical reasoning
and the analytical tools presented in Section2.2. The higher complexity
of the swirling flow calls for much more advanced (numerical) methods
in order to get a fair approximation of, for instance, the energy recovery.
These methods will be discussed in Chapter 3.

2.1 The flow at near-optimal conditons

The analysis in this section is based on the Bernoulli! equation, which
can be interpreted as the energy equation along a streamline for an in-
compressible flow. With few exceptions, the analysis follows the outline
of Krivchenko [4].

A sketch of a simplified draft tube is shown in Fig. 2.1. The flow
enters the draft tube with velocity V; at depth z, below the tail water

IDaniel Bernoulli, 1700-1782
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FIGURE 2.1: A sketch of a simplified hydro turbine draft tube; a vertical
diffuser. The flow enters the draft tube at the top, at velocity V. The inlet of
the draft tube is usually below the tail water level. At the outlet of the draft
tube, at depth 21, the velocity has decreased to V; because of the increasing
cross-sectional area of the draft tube. Dy and D; are the inlet and the outlet
diameters of the draft tube, respectively, and ~ is the half opening angle.

level?. The flow decelerates as it moves through the draft tube and exits
with velocity Vi, at depth z; below the tail water level. The Bernoulli
equation between the inlet and the outlet of the draft tube reads

Pabs,O — PYzo + p%2/2 = Pabs,l — P9z + pV12/2 + pghlossa (21)

where P, and P,s; denote the absolute pressures at the inlet and

2The risk of cavitation problems in the draft tube is smaller the deeper it is located,
because of the higher pressure level.



CHAPTER 2. THE FLOW IN A DRAFT TUBE

outlet of the draft tube, respectively, and ¢ is the gravitational acceler-
ation. The head loss in the draft tube is denoted by A;,,;,. The Bernoulli
equation can also be applied between a point outside the draft tube, at
the same depth as the outlet, and an arbitrary point at the tail water
surface,

Pabs,l = Pym + pPgz1- (22)

Naturally, the absolute pressure at the tail water surface equals the
atmospheric pressure, and the absolute pressure at any point located
at the same depth as the outlet of the draft tube equals P,,;. The
velocities can be considered negligible at any point outside the draft
tube because of the large surface area. By substituting the term P, ;
in Eq. (2.1) for the right hand side of Eq. (2.2), we get

Pabs,O = Patm — p (‘/02 - ‘/12) /2 + pg(ZO + hloss)- (2.3)

The larger the area ratio, A; /Ay, = D?/D3, between the outlet and inlet
cross-sections of the draft tube, the larger the difference between inlet
and outlet velocities and the lower the absolute pressure, P,;; o, induced
just downstream of the runner. A lower pressure induced at the inlet of
the draft tube will create a higher flow rate, (). Because the available
power is proportional to the flow rate, the draft tube will significantly
increase the output power of the turbine.

For a fixed draft tube length, the area ratio, A;/A,, is determined
by the (half) opening angle, -, see Fig. 2.1. However, the half opening
angle can usually not be much larger than 10° because of the risk of flow
separation at the draft tube walls, which would dramatically decrease
the efficiency.

2.1.1 The draft tube efficiency

The energy loss (per unit volume) out from the draft tube is
eo = PV /24 pghioss. (2.4)
The energy loss without the draft tube is
eh = pVy /2 + pgz. (2.5)
The energy saved is thus
€p— € =p (%2 — Vf) /2 + pg(z0 — hioss)- (2.6)

In other words, the energy savings are proportional to the difference
between the inlet and outlet kinetic energy of the flow. The ratio of the

7
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energy savings to the kinetic energy that enters the draft tube is the
energy recovery, or efficiency of the draft tube, 7. It reads

I —_—

n = €y — €0 — PYgZ2o
pVs /2
VE)Z - ‘/12 - 2ghloss
= ) 2.7
7 2.7)

A typical efficiency of a draft tube is n ~ 80%. However, the efficiency
is very sensitive to the flow rate and swirl level. If the hydro turbine
operates at part load, say )/Qq = 90%, the draft tube efficiency may
drop below 45% [5]. Furthermore, the relative importance of the draft
tube for the overall machine efficiency increases the lower the total
head. The hydrodynamical design of the draft tube is thus essential for
many Swedish hydropower plants.

The next section will discuss the hydrodynamical phenomena that
occur in the draft tube at part load conditions. Hopefully it will also
shed some light on why the draft tube efficiency is so sensitive to the
flow rate.

2.2 The flow at part load operating condi-
tions

As mentioned in Section 1.1, a swirling flow is created in the spiral
casing and wicket gate, just upstream of the runner. The runner blades
will more or less neutralize the swirling part of the flow if the turbine
is operating at its design point. A weak swirl is sometimes allowed to
enter the draft tube in order to stabilize the flow and to prevent flow
separation at the draft tube walls, but any swirl downstream of the
runner is generally considered an energy loss. At part load conditions,
the guide vanes are turned to decrease the flow rate, and thus a higher
level of swirl is created upstream of the runner. Because the runner
blades are not designed for this swirl level, the flow will exit the runner
in the form of a large vortex. This chapter briefly discusses how the
geometry of the draft tube influences the evolution of the part load
vortex.

2.2.1 Vortex breakdown in a draft tube

The relative swirl level of a vortex increases at it moves through the
draft tube. At high enough a swirl level, a vortex will break down. A
vortex breakdown can be defined as a sudden change of flow structure.

8



CHAPTER 2. THE FLOW IN A DRAFT TUBE

FIGURE 2.2: Snapshot of a precessing vortex core in a draft tube, visualized
by an iso-surface of static pressure. The flow enters the draft tube at the
top, with a clockwise swirl. Four streamlines are shown, which describe the
particle paths around the vortex core if the flow was frozen at this instant.
The runner hub, the iso-surface, and the streamlines are coloured by the static
pressure. Blue colour denotes the lowest pressure. The simulation was made
at part load conditions, QQ/Q.y: = 0.71, where Q. is the discharge at the
optimal operating point.

At a critical swirl level, a steady quasi-cylindrical flow can almost in-
stantly transform into a highly unsteady, asymmetric and recirculating
flow. There is no universal value for the critical swirl level, as there is
no single parameter that fully defines an arbitrary swirling flow. Ex-
perimental visualizations of vortex breakdown in pipes at low Reynolds
numbers, e.g. the work of Sarpkaya [6] and Mattner et al. [7], show that
the initial flow structure of a vortex breakdown often resembles a bub-
ble. The vortex breakdown bubble is formed when a quasi-cylindrical
flow suddenly develops large positive radial velocities near the sym-
metry axis. If the radial velocities are large enough, a free stagnaton
point may form. The outer part of the flow is accelerated because of
conservation of mass, while the inner part of the flow starts to recircu-
late in the region just downstream of the stagnation point. Because the
vortex breakdown bubble is very unstable, its life span is usually very
short. The bubble structure will eventually transform into a highly un-

9
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FIGURE 2.3: Row-wise from top: Six snapshots of a precessing vortex core in
a draft tube operating at part load, visualized by positive iso-surfaces of the
second invariant of the velocity gradient tensor. The inlet swirl is clockwise
if viewed from above, and the time lag between each snapshot corresponds to
one full runner rotation. In this particular case f,/f, =~ 0.2, where f, and f,
are the rotational frequency of the vortex core and the runner, respectively.
The colours represent the magnitude of the velocity vector, where red corre-
sponds to the highest velocity.

steady flow. Many times, as is the case in draft tube flow, the vortex
breakdown results in a helicoidal vortex structure that rotates around
the symmetry axis of the draft tube cone, as well as around its own
axis, see Figs. 2.2 - 2.5. The six snaphots in Fig. 2.3 show that the
rotational frequency of the vortex rope, f,, is much lower than the ro-
tational frequency of the runner, f,. In this particular case f,/f, ~ 0.2.
The rotating structure will induce vibrations and unsteady loads on
the runner hub and draft tube walls because of the low pressure region

10
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FIGURE 2.4: Snapshot of a precessing vortex core in a draft tube, visual-
ized by an iso-surface of static pressure and velocity vectors in a vertical (left)
and horizontal plane (right). The horizontal plane is located approximately
one inlet diameter downstream of the runner. The blue colour corresponds
to regions of low pressure. The simulation was made at part load conditions,
Q/Qopt = 0.71. The tilting of the symmetric inlet vortex induces a rotating
separated flow region at the runner hub and the reversed flow near the geo-
metrical symmetry axis of the draft tube.

in the vortex core. Figure 2.4 shows that the tilting of the vortex is
connected to the separated flow that rotates around the runner hub,
and the reversed flow along the geometrical symmetry axis of the draft
tube cone, visible in Fig. 2.5.

The conservation of angular momentum and the connection to
the increasing swirl level

There are several conservation laws that must be obeyed in an isolated
physical system like a draft tube, e.g. the conservation of mass and
angular momentum. The axial flux of angular momentum for a steady
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FIGURE 2.5: Row-wise from top: Six snapshots of a precessing vortex core
in a draft tube operating at part load, visualized by an iso-surface of the static
pressure. The colours represent the vertical velocity, where red corresponds
to reversed flow.

flow, in the absence of body forces and shaft work, reads [8]
M(z) = / prVpV, dA, (2.8)
A

where A denotes the cross-sectional area of the draft tube and V, and
V, are the tangential and axial velocity components, respectively. If
the influence of wall friction is negligible, the angular momentum flux
must be conserved at each cross-section of the draft tube. Consider, for
instance, the evolution of a ¢ vortex in a cylindrical (r, 6, z) coordinate
system. The ¢ vortex is defined by the velocity profiles

V, = Vip+Vige /%, (2.9)
Vo = QRY(1—e "B/, (2.10)

12



CHAPTER 2. THE FLOW IN A DRAFT TUBE

1 . | 20710
~—R=Ry
08 1 =l A R = Ry
N (0.6F :'I R_ 15R0 | céé': / R: 15R0
208 / o /
Sod Lo R=25Ry| ¢ A/ R=25Ry
: S v
il ~< o
02f"/ — T~ ¥ ____N\&- E v é
VLA e Q=== m s mm s i s o
0 n L L L L L n L L L
o 05 1,15 2 25 06 08 1 12 14 16
r/Ro S

FIGURE 2.6: Left: Three g vortices having identical mass flow and angu-
lar momentum, but different radiuses, R. [——]: Axial velocity. [-]: Tan-
gential velocity. Clearly, the relative swirl level increases with an increase
in radius. Right: The three smallest eigenvalues of matrix A, computed for
each of the three vortices shown to the left, as a function of the swirl level,
S = max{Vy}/V,(r = 0). The smallest eigenvalue (V) of each vortex will be-
come zero at a certain radius. At this point, the flow will undergo vortex
breakdown.

where () is the angular velocity of the vortex core. The coefficients R,,
V.0 and V,, are used to further define the shape of the vortex. Fig-
ure 2.6 (left) shows three different ¢ vortices that have identical an-
gular momentum and mass flow, but different radiuses, R. The vor-
tex marked by R = R, is defined by the coefficients V,, = 1, Q = 1,
R, = R/2 and V,; = —0.5/V,,. The ratio R./R is kept constant at
the larger radiuses, but v, o, {2 and, indirectly, v, 1, are adjusted to pre-
serve the angular momentum and mass flow. The three sets of velocity
profiles may be thought of as representing the flow at three different
axial positions in a draft tube, where the vortex having the largest
radius corresponds to the flow at the furthest downstream position.
Obviously, both the axial and tangential velocity will decrease as the
radius increases. However, the swirl level, which may be defined as
S = max{Vy}/V,(r = 0), increases with an increase in cross-sectional
area. The larger the half opening angle of the draft tube (see Fig. 2.1)
the faster the increase in swirl level — as long as the flow does not
separate from the draft tube walls. An increase in the swirl level of
any vortex will eventually force it towards vortex breakdown, see Ben-
jamin [9] or Wang and Rusak [10]. The critical swirl level of an arbi-
trary quasi-cylindrical vortex can be found using the method of Gyl-
lenram et al. [11] (Paper I). Without going into too much details about
the method, it is shown that an equation for the radial velocity compo-
nent, V,, of a quasi-cylindrical vortex flow can be written as AV, = b,
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and that the critical swirl level corresponds to the first singularity of
the matrix A. Matrix A is a function of the axial and tangential ve-
locity profiles, and the radius, only. Figure. 2.6 (right) shows the three
smallest eigenvalues of matrix A computed for each of the three sets
of ¢ vortex profiles shown in Fig. 2.6 (left). As the radius and the swirl
level of the vortex increase, the smallest eigenvalue decreases. At a
certain point the smallest eigenvalue is zero and thus the matrix is
singular, i.e. there exists no quasi-cylindrical flow. For this special ¢
vortex, the singularity is reached at R < 2.5R,, at a critical swirl level of
S = max{Vp}/V,(r = 0) = 1.4. However, as the draft tube vortex is also
destabilized by the non-uniform adverse pressure gradient, induced by
the decreasing tangential velocities (see the next section) and the draft
tube elbow, it can be expected to break down much earlier. Further-
more, following the theory of Benjamin [9] (see also Appendix C), the
effects of a vortex breakdown will always propagate upstream. Hence,
a vortex breakdown that occurs far downstream of the runner may re-
sult in a rotating vortex core that propagates upstream until it reaches
the inlet.

The decay of tangential velocity and the connection to the ad-
verse pressure gradient

The conservation of angular momentum causes the tangential velocity
to decrease as the water flows through the draft tube. This will in turn
have an effect on the adverse pressure gradient. The radial momentum
equation [12, 13] under the assumptions of axisymmetry and negligible
radial velocities (radial equilibrium), can be reduced to

oV} /r = 0,P. (2.11)

A radial integration of Eq. (2.11) yields
P(r,2) — Pa(2) = p / V2/# di, 2.12)
0

where P,; denotes the pressure at the centerline (r = 0). By taking the
axial gradient of Equation (2.12) we obtain the pressure gradient at the
axis of symmetry, i.e.

d,Py(z) = 0,P(r,z) — 8z/ pVi |7 dF . (2.13)
0

>

-~

<0

Because the tangential velocities decrease in the axial direction, the
adverse pressure gradient at the draft tube centerline must be larger
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than the adverse pressure gradient elsewhere, i.e. d,P,(z) > 0,P(r, z).
Following the analysis by Hall [14], an estimation can be made of the
difference between the adverse pressure gradients at » = 0 and r = R,
where R, is the radius of the vortex core. Assuming that the axial
gradients of the flow are inversely proportional to an axial length scale,
0, ~ L', and noting that the tangential velocity of the vortex core can
be approximated by a solid body rotation, V, = Q(z)r, we get

dchl(Z) - dZP(T, Z)"I‘:RC ~ pr2Rca (214)

where ¢ = R./L ~ V,/V, denotes the order of magnitude of the diver-
gence of the flow. Equation (2.14) indicates that the flow at the cen-
terline will decelerate faster than the surrounding flow, as also noted
by Hall [14]. The difference between the adverse pressure gradients
increases with the angular velocity, €2, and the divergence of the flow, &.
It is likely that this is the main physical mechanism behind the tilting
of the initially symmetric vortex. The tilting of the vortex includes both
flow reversal near the geometrical centerline and an onset of asymme-

try.

2.2.2 The need for accurate simulation methods

The swirling flow in a draft tube of a hydro turbine that operates at
part load conditions shows a high degree of complexity. The worst hy-
drodynamical problems occur when the vortex has reached its critical
swirl level, i.e. after the vortex breakdown. A vortex that exits the run-
ner at a swirl level lower than critical may reach its critical swirl level
further downstream in the draft tube, as shown in Section 2.2.1. As
mentioned in Chapter 2, the efficiency of the draft tube is proportional
to the difference between the squares of the inlet and outlet velocities,
see Eq. (2.7). The difference grows with the ratio of the inlet and out-
let areas. The larger an area ratio, however, the higher the increase
in swirl level at part load condition. Consequently, the risk of vortex
breakdown increases as well.

A draft tube optimized at the design flow rate may be sensitive to
vortex breakdown at part load. The vortex breakdown induces a pe-
riodic pressure load, which increases the risk of fatigue failure. In
addition, the rotational frequency of a precessing vortex core may be
in resonance with the hydraulic circuit of the power plant [15]. There
is thus a need for accurate simulation tools to predict the stable oper-
ating range of the draft tube, and the frequency and magnitude of the
unsteady loads on the machine that follow from a vortex breakdown.
The following chapter will discuss the equations governing fluid motion
and how the equations are solved, i.e. how the flow can be simulated.
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Chapter 3

CFD and Turbulence
Modelling

A fluid flow is governed by the Navier-Stokes equations, see Appendix A.
Analytical solutions to these equations can be found only for very sim-
ple flows. However, by replacing the continuous (unknown) vector func-
tion u,(x;, t) with its discrete counterpart, a finite set of algebraic equa-
tions can be solved numerically in a time stepping procedure. The dis-
tance between the points at which the equations are discretized must
be very small to be able to obtain a fair approximation of the unknown
continous function. The number of discrete points determines how
many algebraic equations need to be solved in each time step, and the
set of discrete points is usually referred to as the computational mesh,
or grid.

If the Reynolds number, Re = pUA/u, of the flow is known, it is
possible to make an a priori estimate of how close the discrete points
of the computational grid need to be. The characteristic flow data used
in the definition of the Reynolds number are the velocity scale, U, the
length scale of the largest flow structures, A, and the viscosity and
density of the fluid, iz and p. It can be shown that the ratio of the largest
to the smallest length scales of the flow grows as A/\ ~ Re**, where
A denotes the smallest length scale, see e.g. Barenblatt et al. [16]. In
a hydro turbine draft tube flow, the Reynolds number is usually very
large, often Re > 107. For this type of flow, the ratio A/\ > 180,000. The
largest length scale in a draft tube flow can be approximated by e.g.
the inlet diameter, D. Consequently, the ratio between the largest and
the smallest scales of the computational grid should be D/A ~ A/),
where A is the smallest distance between two grid points. It follows
that A < 1/180,000 ~ 10~ m for a draft tube flow, if the inlet diameter
of the draft tube is, say, D ~ 1 m. A direct numerical simulation (DNS)
of a draft tube flow using such a fine computational grid is not possible

17



Walter Gyllenram, Studies of Internal Swirling Flows

today. It would require extremely large computational resources.

An alternative approach is to average or filter the governing equa-
tions. By averaging or filtering the Navier-Stokes equations, the small-
est length scales of the flow need not be computed, and much larger
grid spacing can be used. Unfortunately, as shown in Sections 3.2.1
and 3.2.3, this approach gives rise to additional unknowns whose influ-
ence on the mean flow has to be approximated by a turbulence model.
The larger the fraction of modeled scales of the flow, the lesser is the
requirement on grid resolution. The required grid resolution therefore
depends on the choice of turbulence model. Most often it is the other
way around, i.e. that the resolution or computational time is the lim-
iting factor and determines which approach to turbulence modelling
is most suitable for a specific case. There is thus a wide spectrum of
complexity of turbulence models. It should be borne in mind, however,
that because a turbulence model is merely a model, it has a limited
range of applicablility and will always cause modelling errors of some
magnitude.

3.1 Approaches to flow simulation

Figure 3.1 relates the accuracy of different approaches to flow simula-
tion to the required computional time. The fastest and least accurate
methods are steady RANS (Reynolds Averaged Navier-Stokes) simu-
lations. Because they are based on solving the time-averaged Navier-
Stokes equations, the solution will not contain any information about
the unsteadiness of the flow. Instead, the turbulence model must pre-
dict the influence of all unsteady motion on the mean flow. Steady
RANS simulations thus require advanced turbulence models. In un-
steady RANS simulations, however, there is a potential in resolving the
most important unsteady motion. The requirements on grid resolution
are approximately the same as for steady RANS simulations, but the
simulation time is considerably longer because of the additional time
dimension. Skipping to the upper right corner of Fig. 3.1, we find the
most accurate method, DNS. Unfortunately, this approach is not yet
applicable for industrial purposes, as already concluded in the previ-
ous section. Large Eddy Simulation (LES) is the second most accurate
method in Fig. 3.1. It has been shown to be a very useful tool when
detailed information about the unsteady motions of the flow is neces-
sary. LES requires much finer grid resolution than unsteady RANS. In
addition, the time steps must correspond to the time scale of the small-
est resolved scales, which is very short. LES is becoming increasingly
popular for industrial applications. However, the method is not yet ap-
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FIGURE 3.1: Qualitative sketch of the accuracy of different approaches to
flow simulation as a function of the required computational time.

plicable for high Reynolds number hydro turbine flows unless the effect
of the small-scale near-wall turbulence can be accurately modeled by a
wall function approach, see Appendix B.3.3.

The only remaining approach is the class of Hybrid LES/RANS meth-
ods. The requirements on grid resolution are not much higher than for
unsteady RANS. However, because the modeled turbulent length scale
is — at least in some regions of the flow — determined by the grid
resolution, the time step must not be larger than the time scale that
corresponds to such a length scale. This constraint usually requires
much shorter time steps than can be used in unsteady RANS, and in
the same order of magnitude as LES. The author expects the hybrid
LES/RANS methods soon to replace the steady and unsteady RANS
simulations as the basic engineering tool. Hence, the numerical work
in this thesis is based on the hybrid LES/RANS approach.

3.2 The RANS and LES equations

Because it is time-consuming and expensive to numerically resolve all
scales of motion in high Reynolds number flows, the governing equa-
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tions are usually averaged or filtered, and the unknowns sought for
are the averaged/filtered velocity and pressure field. Unfortunately,
any averaging or filtering procedure of non-linear equations gives rise
to additional unknowns that must be modelled. In the case of the
Navier-Stokes equations, the additional unknowns turn out to be cor-
relations of fluctuating velocities. The unknowns originate from the
non-linear convection terms and must accordingly be regarded as tur-
bulent momentum flux. However, they are usually referred to as the
Reynolds stress components because they are parts of a second-order
tensor. This chapter discusses the differences and similarities between
the Reynolds Averaged Navier-Stokes (RANS) equations and the fil-
tered (LES) equations.

3.2.1 The RANS equations

The RANS equations are based on Reynolds decomposition, which reads
o, =, + P, (3.1)

where @, is an ensemble-averaged quantity and @/ is a fluctuation from
the ensemble average. The ensemble average can be expressed as

where ®; is an arbitrary realization and N is the (infinite) number of
realizations. The ensemble average is a tool that separates stochastic
turbulent fluctuations from the resolved flow. The ensemble average of
a stochastic fluctuation equals zero by definition, i.e. (b = 0. Hence,

<I>Z = @,. The basic equations for both applied CFD and theoretical re-
search have been the Reynolds Averaged Navier-Stokes (RANS) equa-
tions. The RANS equations can be derived by replacing the arbitrary
quantity ®; in the Reynolds decomposition, Eq. (3.1), by velocity and
pressure, and inserting the decomposed variables in Eq. (A.8), which
yields

(90(pﬂi) + @(pﬂﬂj) =—-0,p+ aj (u(aﬂi + 6,—@-) - Tij), (3.3)
where the unknown function, 7u;, is the resolved velocity field. The
Reynolds stress tensor, 7;; = pujuj, introduces six unknown quantities
which must be modeled in order to close the system of equations.

The ensemble average is a concept that implicitely assumes the fluc-
tuations from the mean to be stochastic. However, there is no mathe-
matical way to a priori distinguish between deterministic and stochas-
tic scales of an arbitrary flow field, i.e. to distinguish between large
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scale unsteadiness of the mean flow and turbulence. Indeed, anything
that is resolved in a numerical simulation must be deterministic, per
definition. Although it is not yet mathematically proven that there
actually exist deterministic and smooth solutions to the incompress-
ible Navier-Stokes equations! the author expects repeated DNS simu-
lations to give identical results. In the DNS limit there is consequently
no stochastic part of turbulence whatsoever. The stochastic part of the
flow must thus be derived from small perturbations of the initial or
boundary conditions, to each of the infinite number of flow realizations
used in the definition of the ensemble average. The perturbations may
be damped out or grow, depending on the flow.

3.2.2 The Boussinesq assumption

It was shown in Section 3.2.1 that the averaging procedure gives rise
to six unknown quantities that must be modelled. The simplest and
most frequently used turbulence models are based on the Boussinesq
assumption, which states that the effect of the small turbulent scales
on the resolved flow is dominated by a mixing (diffusion) process. In
addition, the small scale turbulent diffusion is assumed to be a linear
function of the resolved strain rate, much as the viscous stress of a
Newtonian flow is a linear function of the same quantity. The Boussi-
nesq assumption introduces the concept of eddy-viscosity, u;, and is
mathematically expressed as

0;(1(9yui + Oiuj) — 7i) = 0;((1 + pe) (95Us + 0i;))- (3.4)

The left hand side of this equation is identical to the last term of Eq. (3.3).
An identification of terms leads to

—7i5/ p = v (05; + 0iu;) — 2kd;5/3, (3.5)

where v; = y;/p is the kinematic eddy-viscosity and k = ulu!/2 is the
turbulent kinetic energy. The last term of Eq. (3.5) is added in order to
make the expression valid upon contraction of indices. It is clear that
the Boussinesq assumption brings about a drastic simplification. The
six unknowns of the Reynolds stress tensor are replaced by two, the
single scalar functions v, and k. The dimensions of these functions are
[£?/T] and [£?/T?], respectively, where £ denotes length and 7 denotes
time. It can be shown by dimensional analysis that the kinematic eddy-
viscosity can be expressed as a function of any two independent scalars
whose dimensions include £ and 7.

1If you prove this, do not forget to collect the 1,000, 000$ prize at the Clay Mathe-
matics Institute, Cambridge, Massachusetts, USA.
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3.2.3 The filtered LES equations

Another way of averaging is to filter the equations. A time filter (float-
ing average) can be defined as

R 1 t+0T R
®;(zi,t) = 5T /t ®; (w4, 1) di (3.6)

and a spatial (3D) box filter frequently used in LES can be expressed

as
A 1
(@01 SV (i) Jsv(as) (@01)

where §V (z;) is the local cell volume of the computational grid. By
applying a filter to each term of the momentum equations, Eq. (A.8),
and thereby solving for a smoother unknown than the exact, the LES
equations are obtained, i.e.

9o (pl;) + 0 (piity) = —0ip + 0;(u(95t; + O5tty) — 7;5°) (3.8)

where the subgrid stress tensor 7;7° is defined as

Tisjgs = p(au; — ;). (3.9
The reader may observe that the only difference between the LES equa-
tions, Eq. (3.8), and the RANS equations, Eq. (3.3), is the form of the
unknown stress tensor. The equations are identical in all other re-

spects.

3.24 Eddy-viscosity turbulence models

There are different approaches to getting an estimate of the turbulent
length and time scales that are needed in the Boussinesq assumption.
In LES subgrid models, the length scale is usually assumed to be pro-
portional to the local grid spacing, while the time scale is assumed pro-
portional to that of the resolved flow. These assumptions lead to an
eddy-viscosity of the form

vy ~ A?[S] (3.10)

where A is proportional to the local grid spacing and |S| = /25;,5;; is
the magnitude of the strain rate tensor, S;; = (0;u; + 0;u;)/2. Because
most unsteadiness is resolved in LES, the turbulent mixing and diffu-
sion are determined by the resolved flow and not by the eddy-visosity.
The main purpose of the eddy-viscosity is thus to dissipate the turbu-
lent kinetic energy at the subgrid scales. If the grid spacing and re-
solved time scale are not good measures of the length and time scales
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of the non-resolved unsteadiness, estimates of the non-resolved scales
must be obtained from a more complex turbulence model. In RANS
simulations, the eddy-viscosity is usually assumed to be a function of
two scalar quantities obtained from model transport equations, e.g.

v ~ kjw, (38.11)

where w is an inverse turbulent time scale, see Appendix B. A large
number of eddy-viscosity models have been proposed during the last
decades. Many of them originate from the ¥ — ¢ model proposed by
Jones and Launder [17] in 1972. However, the baseline model for the
studies in this thesis has been the Wilcox [18] £ — w model described in
Appendix B. It is a two-equation model, i.e. two transport equations
for turbulent scalar quantities are solved, from which the effect of the
motion of the unresolved scales on the resolved flow is approximated.
In its original form, however, the model is not suitable for unsteady
simulations. It has therefore been modified to suit the application of
interest, see Gyllenram and Nilsson [19] (Paper II).

3.3 Interpretations of the RANS and LES
equations and a note on hybrid meth-
ods

As already noted in Sec. 3.2.3, the filtered and ensemble-averaged equa-
tions, Egs. (3.3) and (3.8), are identical with the exception of the form
of the unknown stress tensor, 7;; or 7;7°. If an eddy viscosity model is
used to close any of the systems of equations, there is no mathematical
difference whatsoever between the two. Merely a conceptual difference
remains. However, from a numerical viewpoint, one needs only to dis-
tinguish between resolved and modelled parts of a simulated unsteady
flow field. Whether the modeled parts of turbulence originates from
small perturbations in the initial or boundary conditions (RANS), or
from subgrid scale fluctuations (LES), is of no practical importance —
at least not for flows characterized by large scale unsteadiness induced
by e.g. geometrical obstacles or vortex breakdown. In any case, as long
as an eddy-viscosity model is used, the eddy-viscosity model should
ideally predict the effects of the small scale (non-resolved) turbulent
momentum flux on the resolved flow field, and not interfere with flow
features that have the potential of being resolved in time and space.
For reasons explained in the beginning of this chapter, it is not pos-
sible to numerically resolve all unsteady scales of motion. If the com-
putational grid is not fine enough for an LES, the grid scale, A, is not
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representative of the mean length scale of the non-resolved flow. In
addition, the time scale of the resolved flow may not be expected to
represent the non-resolved time scale. Consequently, an eddy-viscosity
in the form of Eq. (3.10) will not be a proper model. This is often the
case in the vicinity of walls. Away from walls, however, the largest
fraction of unsteady motion can be numerically resolved on most com-
putational grids. In regions where the flow is dominated by large scale
unsteady structures, an LES is often very accurate.

Contrary to the LES, the weak spot in RANS simulations is that
the resolved large scale unsteady motions are often damped out by the
turbulence model. This happens when the length and time scales pre-
dicted by the turbulence model are too large. The near-wall modelling
is on the other hand often quite accurate.

Hybrid LES/RANS methods aim at combining the best of LES and
RANS turbulence modelling. Because the methods have the potential
of resolving the most important unsteadiness, relatively simple turbu-
lence models may be used. The computational grids may be consider-
ably coarser than those designed for LES. The computational cost will
thus be much lower.
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Chapter 4

Summary of Papers

Paper I

On the failure of the quasi-cylindrical approximation and the connec-
tion to vortex breakdown in turbulent swirling flow

Paper I reports an analytical study of turbulent swirling flow in a
straight (or slightly diverging) pipe. A quasi-cylindrical approximation
of the time-averaged or steady Navier-Stokes equations is analyzed.
Under the assumption that the axial and tangential velocity profiles
are known, a linear ordinary differential equation in the form of a two-
point boundary value problem for the radial velocity component is de-
rived. Besides that the equation renders possible the computation of
the radial velocity component, it can also be used to estimate whether
a given swirling flow is near its critical level of swirl (vortex break-
down).

It is found that the quasi-cylindrical approximation is singular for
certain swirl levels. The singularities give rise to unphysical solutions
that violate the assumptions used in the derivation of the approxima-
tion. At the point of singularity, i.e. at the critical swirl level, the
flow must develop large axial gradients and/or large scale unsteadi-
ness. The paper shows that the singularities of the quasi-cylindrical
approximation correspond exactly to the critical level of swirl of invis-
cid vortices as derived by Benjamin [9] and Rusak et al. [20] using
much more complex methods. In addition, it is argued that the method
of finding the critical swirl level presented in Paper I is applicable to
arbitrary internal vortices, whether they are inviscid, viscous or turbu-
lent. The applicability to viscous vortices is confirmed by Paper III.

It is shown that the singularities of the quasi-cylindrical approxi-
mation are independent of viscosity, i.e. that the onset of vortex break-

25



Walter Gyllenram, Studies of Internal Swirling Flows

down is indeed an inviscid phenomenon. However, the critical swirl
level is unique for each vortex and is determined by the distributions
of axial and tangential velocities. Because the velocity profiles depend
on the Reynolds number, viscous effects can generally not be ignored.

Paper 11

Design and validation of a scale-adaptive filtering technique for LRN
turbulence modelling of unsteady flow

Paper I gives an explanation of why a swirling flow has to develop large
axial gradients and undergo vortex breakdown. However, the analysis
does not give information about the non-linear dynamics or unsteadi-
ness of swirling flow as it is based on a linearized form of the time-
averaged or steady Navier-Stokes equations. The need of detailed in-
formation about the dynamics in swirling flow was the main motivation
for Paper 11, which examines the swirling flow through a sudden expan-
sion at a Reynolds number of 30,000 using a novel hybrid LES/RANS
method.

A fully resolved LES is not applicable for high Reynolds number
flows. Unsteady RANS simulations are better candidates for industrial
purposes. However, a disadvantage of RANS simulations in combina-
tion with the standard two-equation turbulence models is that they
do not provide enough information about the unsteadiness of the flow.
It is argued in Paper II that this shortcoming derives from the fact
that most RANS turbulence models are tuned for steady simulations,
in which the effect of all unsteadiness on the time-averaged flow must
be modelled. However, in unsteady simulations, most of the unsteady
effects can be resolved in time and space. Hence, the model should be
limited to only predict the effects of the non-resolved unsteadiness, i.e.
the modelled length and time scales must be filtered.

The dynamic filtering procedure of the turbulent length and time
scales originally developed by Willems [21] is generalized and employed
in the Wilcox [18] £ — w turbulence model. The filter sets a limit for
the influence of the modelled turbulent length and time scales on the
resolved flow in order to reduce the damping effect of the turbulence
model. By applying the filter to the eddy-viscosity, the diffusion terms
of the momentum and turbulent transport equations are directly in-
fluenced. In addition, the modelled production term, P, (see Eq. (B.7)
in Appendix B) of the k—equation is computed using the filtered eddy-
viscosity. In the Wilcox [18] £ — w model, P; is also used in the pro-
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duction of the specific dissipation, for which reason this term is also
directly influenced by the filtered eddy-viscosity. A slightly different
approach is evaluated in Paper IV.

The filtering procedure is found to be crucial to obtaining unsteady
solutions for the chosen test case. It is found that a non-filtered un-
steady RANS simulation converges to an erroneous and inaccurate
steady state solution. However, by activating the filter, solutions that
contain detailed information about the flow dynamics are obtained.
Furthermore, the time-averaged results of the filtered simulations are
in excellent agreement with experimental data.

Paper 111

The influence of boundary layers on the critical swirl level and stability
of viscous swirling flow

The theoretical results of Paper I were only validated to other theoreti-
cal results, which in turn were based on inviscid theory. It was argued,
however, that the method was applicable to any vortex, be it inviscid
or not. In Paper III, the theoretical results have been confirmed by a
numerical stability analysis of two parameterized viscous vortices, i.e.
viscous forms of the Burgers and ¢ vortices. Two-dimensional (axisym-
metric) numerical simulations of the evolutions of near critical vortices
in a slightly constricted pipe were carried out. The small geometrical
constriction acts as a perturbation to the flow. It is shown that the evo-
lution of each vortex indeed depends on whether the inlet swirl level
is slightly higher or lower than critical, and that small variations of
the magnitude of the geometrical perturbation have a significant im-
pact on a near critical flow. The results confirm that a singularity of
the quasi-cylindrical approximation indeed corresponds to the critical
swirl level. Also presented is a study of the influence of boundary layers
on the critical level of swirl. It is shown that the presence of boundary
layers influences the critical level of swirl. However, the critical swirl
level is only weakly dependent on the boundary layer thickness.
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Paper IV

Assessment of a hybrid LES | RANS turbulence model in unsteady swirling
flow

The main motivation in Paper IV was to validate the resolved unsteadi-
ness obtained from using the the filtering method described in Paper
II. To further demonstrate the applicability of the hybrid LES/RANS
method, the filter is implemented via a user defined function (udf) in
the commercial CFD code Fluent, version 6.3, and applied to the k£ — w
SST turbulence model. The udf source code is included in Appendix E.
In this paper, the filter function influences the turbulent transport
equations in a slightly different way than in Paper II. In the k¥ — w
SST model of Fluent, the production of w is defined as P, = Py /v,
where Py is defined as in Eq. (B.7), see Appendix B. This is also the
form proposed by Menter [22]. However, the main consequence of this
implementation is that the eddy-viscosity cancels out in the production
of w, P,. Hence, the production of w in its transport equation is not
directly influenced by the filter. Despite this difference, the results are
very similar to the results of Paper I. Whether there is an advantage of
one of the implementations over the other is yet to be determined.

Two test cases were considered, a swirling flow through a sudden
expansion at a Reynolds number of Re = 30,000, and a flow through
the draft tube of a model Francis hydro turbine operating at part load
(Re = 1,476,000). Measurements of the first mentioned test case serve
to validate the time-averaged velocity profiles and resolved normal
Reynolds stresses. The simulated frequencies of the flow are validated
by transient wall-pressure measurements in the draft tube flow. In ad-
dition to the validation by experimental data, the performance of the
filtered k£ — w SST model is compared to that of a few alternative tur-
bulence models. It is shown that the novel filtered version of the model
surpasses the standard SST model [22, 23], the SST-DES model [22]
and the Spalart-Allmaras DES model [24] in accuracy and applicabil-
ity. The results of another simulation of the draft tube flow, using a
Reynolds stress model on a coarser grid, are also used for validation.
This simulation was carried out by Stein [25].

In the low Reynolds number sudden expansion test case, the simu-
lation using the standard SST model converges to a steady state solu-
tion, as in the case when the Wilcox £ — w model [18] was used in an
earlier Paper II. Surprisingly, the simulation using the SST-DES model
also converges to steady state. The Spalart-Allmaras DES model al-
lows unsteady solutions but is found to be extremely sensitive to the
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grid resolution. The simulations using the novel filtered version of the
SST model, however, show only weak grid dependence, and the time-
averaged results agree very well with experimental data.

The high Reynolds number of the draft tube flow allows the use
of a wall function approach based on the log-law. The wall function
approach is thus used in all draft tube flow simulations. The SST-DES
model performs much better in this flow. The resolved frequencies of
the simulation agree very well with the measured data. However, the
unsteady solutions are similar to those obtained using the dynamic
Smagorinsky model, which does the same job in less computational
time. The results obtained using the filtered SST model agree equally
well with the experimental data and closely resemble the results of
Stein [25].

The novel filtered version of the SST model is shown to be a versa-
tile and accurate turbulence model for swirling and recirculating flow
against an opposing pressure gradient. It is more accurate and less
sensitive to the Reynolds number than the standard SST and the SST-
DES models. Furthermore, it is less grid sensitive than the Spalart-
Allmaras DES model and gives accurate time-averaged and unsteady
results.
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Appendix A
The Navier-Stokes Equations

The formulation of the equations governing fluid motion is ascribed to
the French engineer/mathematician C.-L. Navier (1785-1836) and the
English mathematician G.G. Stokes (1819-1903). This chapter intro-
duces the Navier-Stokes equations and gives a discussion of a few of
the assumptions underlying the equations.

A.1 The continuity equation

The continuity equation is derived from the law of mass conservation,
ie.
dom‘v == d()/ pdV = 0, (A].)
1%

where V = V(z;,t) is an arbitrary volume and p = p(z;,t) is the density
of the fluid. Using the Leibniz theorem, this can be expressed as

/ aopdV—i—/puini dS =0, (A.2)
v s

where n; is the surface normal of the arbitrary volume and u; = u;(x;, t)
the velocity vector. The equation states that the change of mass of an
arbitrary fluid particle (volume) equals the net flow through its bound-
aries. The surface integral in Eq. (A.2) can be transformed to a volume
integral using the Gauss theorem, which yields

/ Oop + 05 (pu;) dV = 0. (A.3)
v

Because the equation must be valid for an arbitrary region, the in-
tegrand must be identically zero. By applying the product rule, the
integrand of Eq. (A.3) can be written as
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Now, if the flow is considered incompressible, the sum dyp + u;0;p = 0.
Thus, a flow is incompressible if the density of any fluid particle we
follow is constant. In this case, the continuity equation simplifies to

Note that density variations (e.g. stratification because of salinity or
temperature gradients) can still exist in an incompressible flow. How-
ever, if the fluid is considered incompressible and homogeneous, then
dop = u;0;p = 0, and Eq. (A.5) follows once again. Hence, the flow of
an incompressible and homogeneous fluid will always be incompress-
ible, but an incompressible flow does not necessarily have to involve an
incompressible and homogeneous fluid.

Generally speaking, the density of a fluid is a function of pressure,
i.e. it is governed by thermodynamical laws. A discussion and deriva-
tion of the conditions under which a flow of a compressible fluid can
be considered incompressible are given in Panton [13]. In short, a
flow of any fluid can be considered incompressible if the density is only
very weakly dependent on pressure. This is usually true at low enough
Mach numbers, M = |u;|/u,, where u, and u, denote the local velocity
vector of the flow and the speed of sound (pressure) waves in the fluid,
respectively. A commonly used limit is M < 0.3. The speed of sound in
water is approximately 1500 m/s. The assumption of incompressibility
is thus valid at velocities up to 450 m/s.

A.2 The momentum equation

The momentum equation is merely Newton’s second law, ma = F, for-
mulated for a fluid particle. The time rate of change of momentum per
unit volume can be expanded to

Do(pui) = 0Oo(pui) + u;0(pus)
= poou; + pu;0ju; + u; (Oop + u;0;p) - (A.6)

The last term vanishes for incompressible flow. The time rate of change
of momentum must be balanced by the normal (pressure) and shear
forces, per unit volume, acting on the particles’ surface. For an incom-
pressible Newtonian flow in a stationary frame of reference, we thus
have

paoui + pujajui = —8ip + aj (,u(ajuz + 8zu])) + Pg;- (A7)

The most important property of a Newtonian fluid is that the shear
stress, 7;;, acting on a fluid element is a linear function of the strain
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rate, i.e. 7;; = u(dju; + O;u;) = 2uS;;, where S;; is the strain rate tensor.
The molecular viscosity, 1, is a function of temperature. The Newtonian
assumption is valid for water and air at normal temperatures. Three
examples of non-Newtonian fluids are paper pulp, liquid polymers and
blood, for which fluid-specific models have to be used for the stress-
strain relationship. The gravitational body force, pg;, in Eq. (A.7), is
only important at free surfaces or in stratified flows, and may be inte-
grated and included in the pressure term, 0;p. The pressure, p, is in
incompressible flow merely regarded as the net normal force acting on
a fluid element and should not be confused with the thermodynamic
pressure. Neither free surfaces nor stratification or varying molecular
viscosity is considered in the present work. Equation (A.7) can thus be
expressed as

ao(pui) + 8j(puiuj) =—0;p+ aj (,u(ajui + azu])) . (A.8)

Note that the left hand side is now expressed in a conservative form.
This is the form usually implemented in CFD software. The molecular
viscosity is kept within the brackets to show its relation to the Boussi-
nesq assumption, which is discussed in Section 3.2.2.

A.3 The solution to the equations

The Navier-Stokes equations belong to the class of non-linear partial
differential equations. The solution to the equations is the local ve-
locity vector, u;(z;,t) and pressure, p(z;,t). The magnitude of u; deter-
mines the speed of a fluid particle at an instant, and the direction of
the vector its current course. Anyone who has observed the apparently
chaotic fluid motions in, for instance, the wake behind a boat, realizes
that it is not straightforward to find a solution to the Navier-Stokes
equations. In the vast majority of applications, one has to settle for an
approximate solution.
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Appendix B
Wilcox’ (1988) k — w model

The Wilcox k& — w model [18] is a two-equation model, i.e. two transport
equations for turbulent scalar quantities are solved, from which the
effect of the motion of the unresolved scales on the resolved flow is
approximated. In this appendix the model and its derivation is briefly
discussed, starting from the exact equation for the turbulent kinetic
energy.

B.1 The turbulent kinetic energy equation

An exact equation for the turbulent kinetic energy of the non-resolved
velocity fluctuations, £ = ulu}/2, which can be derived from Egs. (A.8)
and (3.3) reads

80k + Ejajk = —Tija ﬂz
+0; (—p'uidji/p — uzuluj/Q + v0;k)

This equation is often written in a condensed form, i.e.

Ook + ﬁjajk =Dr+Pr—c¢ B.2)
in which
D, = 0; (—p'—uz-dji/p ululu]/2 + v0; k) (B.3)
Py = —7;05u; (B.4)
e = vojuj0jul. (B.5)

Terms D, and P,, are referred to as the turbulent diffusion and produc-
tion terms, respectively. The last term, ¢, is called the dissipation rate.
This is the amount of kinetic energy of the non-resolved flow that is
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transformed to the molecular energy of the fluid. A transport equation
for ¢ can also be derived from Eqs. (A.8) and (3.3), see e.g. Wilcox [26].
There is a large number of new unknowns in the exact equation for the
turbulent kinetic energy, Eq. (B.1), not to mention the number of new
unknowns in the exact ¢ equation. All of them must be related to the
resolved velocity field, or to the quantities £ and ¢ themselves.

B.2 The model equations

The £ — w model of Wilcox [18] solves the transport equations for the
turbulent kinetic energy, k, and the specific dissipation rate, w ~ ¢/k.
There are three terms in Eq. (B.2) that need to be modeled: the tur-
bulent diffusion term, D,, the production term, P;, and the dissipation
rate, €. The diffusion term, Eq. (B.3), is modeled by a gradient law,

—p’—u,(Sﬂ/p — U;U;u;/? = (I/t/O'k)ajk, (B6)
which states that & is diffused from regions of high & to regions of lower
k. The model constant o, is the turbulent Prandtl number, i.e. the ratio
between the viscous and turbulent diffusion. The production term, Py,
is modeled using the Boussinesq assumption described in Section 3.2.2,
which yields

—Tijajﬂi = 21/1531']'8]'@@‘ = Pk, (B7)

where S;; = (0;u; + 0,u;)/2. The only remaining term to be modelled is
now the dissipation rate, ¢, i.e. the amount of turbulent kinetic energy
that is transferred to the molecular energy of the fluid. By assuming
that the energy that is dissipated at the molecular scales can be repre-
sented by the energy contained at the modeled scales, the dissipation
rate can be estimated from the modelled turbulent length and time

scales,
e=L}/T}. (B.8)

Using the relations for the modelled turbulent length and time scales
of the £ — w model, i.e.

L = VE/(Bw), (B.9)
T, = (Bw) (B.10)

we get ¢ = SBwk. The specific dissipation rate, w, is modeled by means
of a separate transport equation. The Wilcox [18] £ — w model reads

ook + Ujajk = 6j ((l/ + l/t/O'k)ajk) + P, — Bwk, (B.11)
Opw + U,0,w 0; (v +1i/04,)0jw) + w(cy Py — cuwokw)/k, (B.12)
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where
v =kjw, (B.13)

and the coefficients of the model are
52009, Cul :5/9, Cw2:3/40, O'k;ZQ, Ow:2. (B14)

One of the chief advantages of the ¥ — w model over the £ — ¢ model
is that it can be integrated all the way to the wall without using any
damping functions in the inner part of the boundary layer. Hence, it be-
longs to the class of low Reynolds number (LRN) models. If the bound-
ary layer is not numerically resolved, the use of standard wall functions
is still possible, see Sec. B.3.3. Wilcox proposed the £ — w model accord-
ing to Egs. (B.11) and (B.12) in 1988. Since then, the model has been
continously developed and modified in order to make it applicable to a
wider range of flows. One of the most popular £ —w models in use today
is the £ — w SST model, derived by Menter [22, 23], which is actually
a mix between a £ — w and a k — ¢ model. Without going into detail, it
combines the good near-wall behavior of the £ — w model with the good
behavior of the k£ — ¢ model in the outer part of the flow. It is also de-
signed to be applicable in stagnation regions and in flows with strong
adverse pressure gradients.

B.3 Wall modelling

The time-averaged incompressible Navier-Stokes equations for fully
developed flow between two parallel plates read

0.p = 0,(ud,u— pu’) (B.15)
0p = 0,(—pu), (B.16)

where u and v denote the streamwise and wall normal velocity com-
ponents, respectively. It follows from integration of Eq. (B.16) that
p(z,y) = —pv'v' + p,(z), where p, is the wall pressure. By differen-

tiating p(z,y) with respect to the streamwise coordinate, z, and noting
that 0,pv'v' = 0, we can write Eq. (B.15)

OxDyy = Oy (udyu — pu'v’) (B.17)
which can be integrated to yield
OrDypY = WOU — Ty — pu'v’ (B.18)

where the definition of the wall shear stress, 7, = (;0,u|,—9, has been
used. At y = 0, where ¢ is the half width between the two plates (i.e.
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the boundary layer thickness), ud,u = pu'v’ = 0. Hence, 9,p = —7,/6,
which means that the pressure gradient is balanced by the wall shear
stress. It follows that

Tw(l — y/0) = pdyu — pu'v'. (B.19)

By multiplying this expression with (pu?)~!, where v? = 7,,/p, a non-
dimensional form is obtained, i.e.

(1 —y*/Re;) = Oprut —ulv' (B.20)

where the definitions v™ = u/u,, y© = pu,y/p and Re; = pu.d/u are
used. This equation is exact for fully developed flow between two par-
allel plates.

B.3.1 The law of the wall

It is clear that, if wv'" — 0 as y* — 0 in Eq. (B.20), then Oy+ut =1. In
integrated form, this yields the law of the wall,

ut =qyT, (B.21)

which states that the velocity profile is linear at small y*. The linear
relation is valid for y* < 5, a region usually referred to as the viscous
sublayer.

B.3.2 The logarithmic law

A fully developed flow between two parallel plates is completely spec-
ified by p, y, 0 and u,. Following the reasoning of Pope [27], only two
independent groups can be formed from these quantities and the wall
normal coordinate, y, for instance y/é and y* = pu,y/u. We can there-
fore express the velocity gradient by using a non-dimensional function,

O(y*,y/0) = P1(y™)Pa(y/0), as
Oyu = u, Jy 1 (y*)Po(y/9). (B.22)

This can be completely non-dimensionalized by multiplication with

w/ (puz),
Oy+ut =1/y" &1 (yh)P2(y/9). (B.23)

At small y*, ®(y*,y/d) ~ ®1(y*), and the law of the wall (see Sec B.3.1)
may be reconstructed. At larger y*, on the other hand, ®;(y") must
approach a constant, while the outer scaling ®,(y/J) determines the
profile. This constant is referred to as 1/, which leads to

Oprut =1/(ky™). (B.24)
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The logarithmic law (a.k.a. the log-law) is obtained from integration of
Eq. (B.25), which gives

vt =1/k In(Ey"), (B.25)

where £ ~ 9 and k ~ 0.4. The log-law has been shown to be a good
approximation of the axial velocity profile at 30 < y* < 100 in a fully
developed boundary layer.

B.3.3 Wall functions

Wall functions are used to model the effect of near-wall turbulence in
the case that the boundary layer is not fully resolved. They are gen-
erally based on the law of the wall or the log-law. In this thesis, wall
functions are only used in the simulations of the draft tube flow de-
scribed in Gyllenram et al. [28]. These simulations were carried out
using the Fluent commercial software. In an LES using Fluent, the
wall shear stress is obtained from the laminar stress-strain relation-
ship, Eq. (B.21), if the computational grid is considered fine enough to
resolve the viscous sublayer, i.e. if ;7 < 3. In the following, subscript 1
will denote a quantity that is evaluated in the wall-adjacent cell. If the
wall-adjacent cell is placed at y;” > 10, the law of the wall, Eq. (B.25),
using k = 0.42 and F = 9.79, is employed. If the grid is such that the
wall-adjacent cell falls within the buffer region (3 < y* < 10), then the
two above laws are blended. In any case, the friction velocity, u,, is
iteratively determined.

Fluent uses nearly the same wall function approach as above for
DES and RANS simulations based on the £ — w SST turbulence model.
However, the friction velocity, u,, and non-dimensional wall distance,
y*, in Eqgs. (B.21) and (B.25), are replaced by

= 1/41.1/2
ut = % (B.26)

and

y* — ,0/81/4]{/'11_—,/2:(]1
M

(B.27)

’

respectively. Using the default Fluent settings, the switch between the
law of the wall, Eq. (B.21), and the log law, Eq. (B.25), is at y* = 11.225.
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B.3.4 Boundary conditions for turbulent quantities

If the boundary layer is fully resolved, the boundary conditions for &
and w at hydraulically smooth walls read
E =0 (B.28)
w = 6v/(cny?), (B.29)
where the latter condition is defined at the wall-adjacent cell. If the

wall-adjacent cell is within the logarithmic region, Fluent uses the
boundary conditions

ok = 0 (B.30)
w = u*/(v/Bry), (B.31)

for the turbulent kinetic energy and specific dissipation, respectively.
In addition, the production of turbulent kinetic energy, Eq. (B.7), is in
the wall-adjacent cell evaluated as

P = u*t/(Vky). (B.32)

B.4 The realizability constraint

The realizability constraint derived by Durbin [29] was used in
Paper II. The constraint is needed in any eddy-viscosity formulation
in order to avoid negative turbulent normal stresses. If the inequality

u2 >0 (B.33)

is inserted in the Boussinesq assumption, Eq. (3.5), and the coordinate
system is rotated until the strain rate tensor, S;;, becomes strictly di-
agonal, Eq. (3.5) can be rewritten as

2
0 < —21/15)\7 + gk (B.34~)

Here, )\, is an eigenvalue of S;; and v = 1, 2 or 3. By solving the charac-
teristic equation for )\, it follows that

I\ < 1/28:;5:/3. (B.35)

After inserting this expression into Eq. (B.34) it can be shown that the
eddy-viscosity of the £ — w model must be limited, i.e.

v, = min{k/w, k/1/65;;5i;} (B.36)

The realizability constraint becomes especially important in regions
of large normal strains (e.g. stagnation points) where two-equation
models usually tend to overpredict the production of turbulence.
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Appendix C

Basic Principles of Inviscid
Vortex Breakdown

Two of the papers upon which this thesis is based discuss vortex break-
down from a theoretical point of view. The concept of super- and sub-
critical states of a vortex is frequently used in these papers, as well
as in many other papers that discuss vortex breakdown. A note and
discussion about the origin of this concept are therefore appropriate.

One of the landmark papers on vortex breakdown was written by
Benjamin [9] in 1962. Benjamin introduced the concept of sub- and su-
percritical states of the flow field by analogy with the hydraulic jump,
i.e. that the flow suddenly switches between two conjugate states at
some critical level. Benjamin’s theory is based on a perturbation anal-
ysis of the Squire-Long equation. The equation for a perturbation of a
given flow field is derived. By introducing analytical perturbations to
the flow, an eigenvalue problem is obtained. Benjamin showed that the
sign of the smallest eigenvalue determines whether or not a perturba-
tion to the flow can be sustained. First some fundamental inviscid flow
theory is in place, however.

C.1 Inviscid flow

The equations describing the motion of an incompressible, inviscid fluid
are the Euler equation and the continuity equation, i.e.

Dyu =g — Vp/p, (C.1)

and
V-u=0, (C.2)
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where u is the velocity vector. The definition of the vorticity vector,
w = V X u, together with a basic vector identity gives

V(u-u)/2=u-Vu+u X w. (C.3)
Inserting this in the steady version of equation (C.1) leads to
uxw=Vw?/2+p/p—g-x)=VH (C.4)

where H is the total head and v?> = u - u. The gravity term will from
now on be incorporated in the pressure term. Using another vector

property,
a-(axb)=0, (C.5)

shows that the total head, H, is constant along velocity or vorticity
vectors since, in general,
u-VH=0 (C.6)

w-VH=0. (C.7)

The orthogonality of VH and u is essentially the Bernoulli theorem, i.e.
the total head is constant along a streamline. An important aspect of
the above is that, in steady axisymmetric flow, the vorticity lines must
lie in a stream surface.

C.2 The Squire-Long equation

Consider a steady, incompressible inviscid and axisymmetric swirling
flow in a cylinder, in which (r,0, z) denote the radial, tangential and
axial directions, respectively, and u, v, w are the corresponding veloci-
ties. Subscripts denote spatial derivatives. The equation for the stream
function in this flow is the Squire-Long equation, which can be derived
from the Navier-Stokes equation. It reads

H'(1p) — 2y) 7' I'(¥) = Yy + (29) ™ '¢us (C.8)

where the variable y = r?/2 and the functionals H(v) = ¢*/2 + p/p and
I = K(¥)?/2 = (rv)?/2 describe the total head and the swirl, respec-
tively. The physical interpretation of the stream function is that lines
of constant ¢ describe fluid particle paths. Another interpretation is
that ¢ (a) — ¥(0) = @ is the volume flow rate through a cross-section
of radius a. Function ¢y may arbitrarily be set to zero at the cylinder
axis. The velocities can be reconstructed from the stream function by
the relations

u=—1"",, w=r""1,. (C.9)
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The stream function satisfies identically the continuity equation for
this flow. For a detailed derivation of the Squire-Long equation, see
Benjamin [9]. Assume we have a primary unperturbed swirling flow
in a cylinder of radius a. The tangential and axial velocities are v =
V(y) and w = W (y), respectively, and the radial velocity component is
zero. The superposition of a small steady perturbation and a stream
function, ¥, can thus be written

Py, z) = U(y) + ed(y, ), (C.10)

where the stream function, ¥, is a solution to equation (C.8). To a
first-order approximation in ¢, the Squire-Long equation for the per-
turbation can be written

Yy + (2y) 2 — (H"(T) = (29)7'I"(2))d = 0. (C.11)

Noting that the coefficients of ¥ are functions of the unperturbed stream
function ¥(y) only, they can after some rearranging be expressed as
functions of only y. Noting that W = ¥, and V2 = I /y,

R
H = p+ S W5+ 2I/y (C.12)
dH OH 0y Dy 1 9 1
= = = (T aoww, - = — 7 il
Dy 1 2
= —+4+W,+—= — ) 1
pW+ y—i-W(Iy/Qy 1/2y*) (C.13)

In order to obtain an approximation of the pressure field, p, the radial
equilibrium relation is used. The relation is exact for steady, axisym-
metric inviscid flow in which the radial velocities are zero, and reads

Equation (C.13) can then be reduced to

dH 1
5 = Wt 5h/yW. (C.15)
Since d/dV = W~1d/dy, we see that
1 1 1
H'(U) = Wy /W + Sl [yW* = S1,/y'W* (C.16)
") = Ly/W? (C.17)
and equation (C.11) simplifies to
~ 7 W, I ~
7ﬁyy + (2y) 1wzz - (ﬁ - W) @b =0. (018)
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This is a second-order differential equation for the development of per-
turbations in a steady, incompressible, inviscid and axisymmetric swirling
flow in a cylinder. The boundary conditions for the equation are ob-
tained by assuming that the perturbations do not change the volume
flow rate, ) = 27¢|y=,. Clearly

$(0,2) = 0 (C.19)
Y(a,z) = 0. (C.20)

The boundary conditions in the axial direction are not important at the
moment.

C.2.1 Super- and subcritical flow regimes

Introducing the axisymmetric perturbation

Y(y,2) = (y) exp(y2) (C.21)

into equation (C.18) gives a regular Sturm-Liouville eigenvalue prob-

lem
2

L(¢) + ;/—ygzﬁ = L(¢) + \md =0 (C.22)
where A = 7 and the operator L is defined as
0? I |44 0?
) 0y? + <2y2W2 w ) oy? + (C.23)

and the corresponding boundary conditions are

¢(0,z) = 0 (C.24)

#(a,z) = 0. (C.25)

For any realistic flow, coefficient P must be non-singular in
y = (0,a). According to the Sturm-Liouville theory [30], the solution
to equation (C.22) can be expressed as an infinite set of eigenfunctions,
orthogonal with respect to the weight, m. Each eigenfunction is scaled
by an eigenvalue, (72 < 72 < 42...), which is real. Further, if v in
equation (C.21) is a pure imaginary (v = 1) it will be inversely pro-
portional to the wavelength of a standing wave, i.e. | = 27 /a = 27 /7.
The possibilities of standing waves in the flow are therefore limited to
the set of eigenfunctions that have negative eigenvalues. If a standing
wave is mathematically possible, the flow is referred to as subcritical
and it will have at least one negative eigenvalue. If all eigenvalues are
positive, the flow will be termed supercritical. Physically, a negative
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eigenvalue, 7,5, means that the perturbation can propagate upstream.
Consider a supercritical flow with a vortex breakdown far downstream
at z = 0. Asymptotically, the upstream flow will experience the break-
down as a perturbation in the order of exp(—|vyz|), since all following
eigenfunctions will vanish more rapidly.

From Benjamin’s theory, it is clear that the effects of a vortex break-
down will propagate upstream.
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Appendix D

One Way to Visualize Vortices

There are various ways to visualize vortices. The most obvious method
is to look at iso-surfaces of static pressure, because vortex cores are in
general characterized by having a lower pressure than the surround-
ings. Hence, a bounded iso-surface of relatively low static pressure will
often correspond to a vortex. However, iso-surfaces of static pressure
will only visualize vortices having approximately the same core pres-
sure. Strong vortices in regions of higher pressure can thus not be
directly compared to equally strong vortices in low pressure regions.
An alternative method that has been proven successful is to use the
second invariant of the velocity gradient tensor, IIy,,,, see e.g. Jeong
and Hussain [31]. It is in place to offer a physical interpretation of the
scalar with such a long name.

D.1 The second invariant of the velocity gra-
dient tensor

By taking the divergence of the incompressible Navier-Stokes equa-
tions,

0; (ao(pu,) + aj (puin)) =0, (—aip + aj (u(aju,- + azu]))) , (D.1)
it follows that
ajajp = 2/)[[3],%, (D2)
where
I, = 0.5 (%5 — Si3Si5) - (D.3)

Here, Q;; = (0ju; — 0;u;)/2 is the rotation rate (vorticity) tensor and
Sij = (0ju; + 0;u;)/2 is the strain-rate tensor.
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The mathematical meaning of the second invariant of the strain rate
tensor, II5,,,, is thus that it constitutes the source term in the pressure
equation for incompressible flow [31]. An iso-surface of this quantity
can yield continuous structures that surround regions of the flow that
influence the pressure equation in an equivalent way. The pressure
equation, Eq. D.2, is an elliptic Poisson! equation. The local minimum
of a solution to a Poisson equation can only occur if Il5,, > 0. As the
pressure level of a vortex core is generally lower than the surrounding
pressure, the physical relation between a vortex and the positive values
of Il,,; is obvious.

1Simon Denis Poisson, 1781-1840.
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UDF

The source code of a commercial software is usually not available to
the user. However, many commercial software programs admit the use
of user defined functions (udf:s) to modify or complement the source
code. The udf presented here is developed for the Fluent commercial
software, version 6.3, and written in the C programming language.
It shows how the filter function described by Gyllenram et al. [28]
(Paper IV) is implemented and applied to the ¥ — w SST turbulence
model [23, 22], which is one of many turbulence models available in
Fluent. The subroutine DEFINE_ADJUST is called by the solver just
before each iteration. It limits the eddy-viscosity used in the momen-
tum equations not to be larger than 10° x u, where p is the molec-
ular viscosity. It also counts the number of cells in which the eddy-
viscosity is limited and displays a warning in the command window
of the software. The limiter is sometimes necessary to prevent diver-
gence of the equations during the first iterations of a simulation. The
filter itself could have been implemented in this subroutine and ap-
plied to the eddy-viscosity already implemented in the source code.
However, because of the structure of the source code, that approach
would end up in using different formulations of the eddy-viscosity for
the momentum and turbulent transport equations. The filter func-
tion is instead computed together with the £ — w SST eddy-viscosity in
the DEFINE_TURBULENT _VISCOSITY subroutine. This subroutine is in
each iteration called by the solver directly after the momentum equa-
tions are solved, but prior to solving the transport equations for £ and
w. The udf can be used in parallel as well as serial mode. The macros
(field variables) used by the udf are listed below.
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CK(c,t) Modelled turbulent kinetic ener-
gy, k

CMU.L(c,t) The field of molecular viscosity, u

CO(c,t) Modelled specific dissipation rate,
w

CR(c,t) The density field, p

CU(c,t),CV(c,t),CwW(c,t) Cartesian components of the re-
solved velocity vector, u;

C_UDMI(c,t,0) The user defined memory alloc-
ation storing the modified eddy-
viscosity, 1

C_UDMI(c,t,1) The user defined memory alloc-
ation storing the filter function, ¢?

C_WALL_DIST(c,t) The distance to the nearest wall

StrainrateMag(c,t) The magnitude of the resolved

strain rate, \/25;;5;;

E.1 The eddy-viscosity of the filtered t — w
SST turbulence model

#include "udf.h"
#include "math.h"

DEFINE_ADJUST (trb_.adj, domain)

{

int nbnd=0;
#if !RP_HOST /* ONLY SERIAL or NODE */

Thread *t;
cell_t c;

thread_loop.c(t, domain)
if (FLUID_THREAD P(t))

{

begin_c_loop(c,t)

{

/* Limit unphysical eddy-viscosity */
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if (C.UDMI(c,t,0)>=100000.0*CMU.L(c,t))

{
C_UDMI(c,t,0) = MIN(C.UDMI(c,t,0),
100000.0*CMU_L(c,t));
nbnd += 1;
}

}

end_c_loop(c,t)

# if RP_NODE
nbnd=PRF_GISUMI (nbnd) ;
# endif /* RP_NODE */

#endif /* !RP_HOST */

node_to_host_int_1 (nbnd) ;

#if !RP_NODE /* ONLY SERIAL OR HOST */
if (nbnd>0)

{

Message ("WARNING! Turbulent to laminar viscosity
ratio limited to 100,000 in %d cells \n",nbnd);

}

#endif /* !RP_NODE */

DEFINE_TURBULENT_VISCOSITY(fltmut,c,t)

/* Define filter width */
real alph=3.0;

/* Define model constants */
real bstarinf=0.09;
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real al=0.31;
real Lt,1t,VMAG,Dt,alphstar,dmp,F2,Phi2;
Dt = RP_Get_Real("physical-time-step");

/* Compute dynamic filter function */
Lt=sgrt(CXK(c,t))/(bstarinf*CO(c,t));

VMAG=sgrt (SQR(CU(c,t))+SQR(CV(c,t))+SQR(CW(c,t)));
lt=alph*MAX(pow(C_VOLUME(c,t),1.0/3.0),VMAG*Dt) ;

/* Store the filter function */
C_UDMI(c,t,1)=SQR(MIN(pow(lt/Lt,2.0/3.0),1.0));

/* Compute standard SST eddy-viscosity */

Phi2=MAX(2.0*sgrt(CXK(c,t))/(bstarinf*CO(c,t)*
CWALL DIST(c,t)),500.0*CMUL(c,t)/(CR(c,t)*
SOR(CWALL_DIST(c,t))*CO(c,t)));

F2=tanh(SQR(Phi2));

/* alphstar only active in transitional version */

alphstar=1.0;

dmp=1.0/(MAX(1.0/alphstar,StrainrateMag(c,t)*
F2/(al*CO(c,t))));

/* Store the filtered SST eddy-viscosity */
C.UDMI(c,t,0)=CR(c,t)*C.UDMI(c,t,1)*CK(c,t)*
dmp/CO(c,t);

/* Return the filtered SST eddy-viscosity */
return C_UDMI(c,t,0);
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