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Abstract — Based on the reconstruction series for subgrid-scale JSG&ss tensor, SGS modelling
is revisited. It is shown that, along with the first Leonardhten the series, the second term is also
exploitable in relation to the viscous dissipation ratesten:;;, being further subjected to a Leonard
expansion. The approximation ef; is discussed in analogy to RANS modelling. With the assuonpti
of anisotropy dissipation, it is shown that the second team loe approximated in terms of an eddy-
viscosity formulation, which, together with the first Leodderm, forms a two-term mixed model. The
resulting mixed model has been analyzed in LES of turbuleahoel flow. The emphasis in the present
work has been placed on the effect of model coefficients. Td@nard term may induce negative diffu-
sion associated to energy backscatter, while the second@imsky term reinforces energy dissipation.
Moreover, the modelled Leonard stresses have also beelighitgia in the computation.

1. Introduction

Subgrid scale (SGS) modeling remains one of the major issusge eddy simulation of
turbulent flows. By applying a spatial filtering to the govieghequations, the large-scale tur-
bulent structure islistinguishedrom unresolved subgrid scales and, consequently, ledding
the closure problem to represent the interaction betwelgrgliscale turbulence and resolved
large-scale turbulent motion. The separation of resolaeglel and unresolved subgrid scales
is a conceptual definitionbut can plausibly be manifested on the basis of turbuleneegy
transfer, namely, the exchange between the resolved angrglturbulent kinetic energy.

We consider incompressible flows, the filtered Navier-S¢a@uations read
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(1)

wherer;; = (wu; — w;u;) is the SGS stress tensor. Conventionally, the modelling;fanas
been to introduce a representation of forward energy draim flarge-scale to subgrid-scale
eddies. In this pallet, a typical example is the well-knownagorinsky model [1] based on
the SGS eddy viscosity concept. It has long been recognizatdthe Smagorinsky model
displays little correlation with the real SGS stresses, emmahstrated ira priori testing by,
e.g., Clark [2] using DNS data and by Liu et al. [3] with expeental data. Moreover, it
has also been shown that, while the produet;S;; renders global energy dissipation, it may
become negative locally for reverse energy transfer fromllsim large eddies, namely, energy
backscatter, see, e.g., [4]. A well-known model that is ableeflect energy backscatter is the
scale-similarity model by Bardina et al. [5]. In spite ofgtwapability and its high correlation
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with the true SGS stresses [3], it is known that the scalelaiity model alone may fail to
provide sufficient energy dissipation in actual LES. By a boration of the scale-similarity
model and the Smagorinsky eddy-viscosity model, this hdsdeghe mixed model [6] and a
number of variants in different forms [7, 8, 9].

Since local reverse energy transfer, along with energyipdiien, is an inherent physical
phenomenon in turbulent flows, a realistic SGS model shoeldldte to describe both the for-
ward and backward energy scatter. Instead of directly imgpthe Bardina-type scale-similarity
model, Leonard [10, 11] expanded the SGS stress into a reaotisn series, resulting in the
tensor-diffusivity model by taking the first (leading) tefrom this series. Using experimental
data, Liu et al. has shown that the correlation between tisotediffusivity model and the real
SGS stress is comparable to (or even larger than) the Basofmkarity model [3]. The Leonard
tensor-diffusivity model is equivalent to using a tensbtiilme scaling or a tensorial SGS vis-
cosity in terms of the resolved large-scale velocity grati@nd the filter width. To make up for
the the truncated higher-order terms in the reconstruc@ies, the Leonard one-term model
(i.e. the tensor-diffusivity model) has been supplememgthe Smagorinsky model as done
by Clark [2] and, for further improvement, by the dynamic $)imansky model as proposed in
Vreman et al. [12] and in Winckelmans et al. [13, 14].

In the present work, the SGS modelling stemmed from the Lebegpansion [10] of filtered
residuals is revisited. We will show that the viscous diaBgm of 7;; is actually incurred in
the second (forth-order) term in the reconstruction serigggon the modelling of the viscous
dissipation rate tensor, an eddy viscosity model may rgdubl brought in the formulation,
but not added in aarbitrary manner. This leads consequently to a Clark-type two-terredi
model. The resulting model is then examined and analyzetdge leddy simulation of turbulent
channel flow to highlight its properties.

2. Modelling Approximation

In previous studies [10, 11, 13, 14], it has been shown thi#tt,am isotropic Gaussian filter, the
filtered product of variableg andg can be written in an infinite reconstruction series, which
reads
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A reconstruction series as such is hereafter referred teed®dbnard expansiarsince this series
was explored first by Leonard [10]. For convenience in thie¥aihg modelling approximation,

moreover, it is noted here that a uniform filter widtk, has been assumed in the reconstruction
series. Applying the Leonard expansion to the SGS stressitgt), one has

fg=fg+A?
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The first term on the right-hand side in Eq. (3) is the Leonarssor-diffusivity model. This
term has a similar form (but not the coefficient) to that in thedel by Clark et al. [2] and by
Vreman et al. [12] derived for the top-hat filter. Carati et[&b] has further shown that, for all
symmetric filters that aré€> in Fourier space and have non-zero second moment, the Leeonar
term is preserved as the first term in the reconstructiorsei®bviously, this holds true for
most of the filters that are currently used in LES, for exanple top-hat, the Gaussian and the
spectral cut-off filter.
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We have previously discussed the modelling formulatioredasn the Leonard expansion
stemmed from the Gaussian filter [16]. The top-hat filter isthar commonly used filter in
LES using finite difference or finite volume method. Follogitihe generalized expansion by
Carati et al. [15], when the kernel of the top-hat filter isdishe reconstruction series foy;
can be written as

Ty = (Wuy — wty) (4)
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It is observed that, for both the Gaussian and the top-hat,fthe first two terms in Eqgs (3)
and (4) take, respectively, similar forms except the cadefiicin the second term. Peng and
Davidson [16] have shown that the second term in the aboansdaiction series is actually
related to the viscous dissipation rate tensor in the tr@msgguation of-;;, which can be further
exploited in the reconstruction-based modelling. By tatmg the rest of higher-order terms,
7,5 1S approximated in a two-term formulation, namely,
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where a coefficient(., has been used in the second term in order to cast this termanifiad
form for different filters. Obviously, the terms truncatedspectively, from Eqg. (3) and Eq.
(4) are different due to different filters, of which the effetiould be appropriately accounted
for by the modelling of the first two leading terms in Eq. (5)s Ais, Eg. (5) represents
araw approximation of the SGS stress tensor in terms of the firel-seecond-order velocity
derivatives. Nonetheless, the truncation of Eq. (3) or Ejjh&s made Eq. (5) deviate from the
accurate representation of the real SGS stress. Theréfareuld be awkward to directly use
Eq. (5) in actual LES, unless additional modelling appraadion is introduced.

In the present work, instead of computing the higher-orddoacity derivatives, the second
term in Eq. (5) is further approximated. Note that the viscdissipation rate tensor is defined
by €ij = QI/TZ‘J', and

. aul- 8uj 0112 aﬂj

Applying the Leonard expansion ,; and taking the first term from the resulting recon-
struction series foll’;;, we have
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Using Eq. (7) in Eq. (5) gives rise of a two-term model fgr, which reads
0 Ot A2
Tij =~ TL.,ij + C€A2Tij = AZ 8Uz au] + CeA (8)
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The Leonard tensor-diffusivity modet; ;;, is kept in Eq. (8), which has shown a favorable
function in energy backscatter similar to a scale-sintyjanodel of the Bardina type. In actual
LES, itis found that this term may introduce excessivelgdional negative diffusion causing
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numerical instability problem. A model constant, is thus multiplied to this term witld; €
(0, 1.0]. This yields, for the Leonard term,

> 0, 01,

8xk 8$k

TLij = (ClA) )

The presence af;; in the second term of Eq. (8) suggests that this term may acatate a
major part of energy dissipation. Upon the modelling forttseous dissipation rate tensey;,
Peng and Davidson [16] have shown that the resulting apmation in Eq.(8) may lead to a
formulation of a mixed SGS model, when an anisotropic maltdken for;; and the incurred
energy dissipation is modelled with an eddy viscosity mddeaj. the Smagorinsky model).
Obviously, more complicated nonlinear model could also éeved from Eq. (8), provided
thate;; would be modelled in a sophisticated nonlinear form.

We take first the simplest form of the classitzadal-isotropymodel fore;;, a concept that has
been well exploited in RANS modelling. This gives = %eéij, wheres is the SGS dissipation
rate of SGS turbulence energy. Consequently, the two-teoaehtakes the form of

N2 0u; Ou;  C.A?
Tij = (CZA) a{)j'k axi + 3 65@' (10)

The contribution by, ;; to the local energy fluxs;, = —TLJJ-S*ij, may become negative (and
thus energy backscatter). With the local-isotropy assionphowever, the second term does
not make any contribution to energy dissipation or backscdte to continuity, but altering the
diagonal SGS stresses. In view of the energy dissipatickdzatter, the model as expressed in
EqQ. (10) is thus similar to the one-term Leonard model.

Alternatively, Rotta’s anisotropic dissipation modelpposed originally for RANS mod-
elling [17], can be used analogously fgf. It is assumed that

gij = E7']\4 (11)
Wherer% is used for convenience of further discussion. Using Eq) ifLEq. (8), one gets
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In Eq. (12), if we are willing to (recursively) modej]‘-” in the same form as far;;, namely,
ri]y = 7;;, the model will return to a form proportional tg ;;, but with a different coefficient.
This is, however, not the purpose with the present work.ebudt we have estimatet;yf here
using an eddy viscosity model, nameh}/ = —2uv,,,S;;. Incorporating the relations df ~

v? JA?ande ~ 3 /A%, Eq. (12) is further approximated in the following form.

sgs 5gs

—\ 2 871@ ou; &
Tij = (C[A) axk 8—.752 - CdngsngsSij (13)

where(C); is a model coefficient an®,,, = v,,s/v is the SGS turbulence Reynolds number,
indicating the intensity of modelled SGS turbulence. Ohbslyg, the second term in the model,
Eqg. (13), contributes a positive part to the total local ggdtux, e = —7;;5;;. Consequently,
this term plays a role in energy forwardscatter from largsrwll eddies, which makes the
model, as a whole, similar to a mixed model. When SGS turlvgldanetic energyk, is
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concerned, moreover, one should be able to deéldam the trace of;; by takingk = 7 /2.
In this case, Egs (10) and (13) should thus be written witmatusion of a tracer;;, on the
right-hand side in the form of

tr 1 2

T = —ngk%’ + 3]€5ij (14)

Note that the previous mixed models by, e.g., Clark [2], Vaerat al. [12] and Winckelmans
et al.[14], have been constructed by keeping only the firsh & the reconstruction series
(or a Taylor expansion) of the SGS stress tensor, whereaSrttagorinsky model is added
as a supplement, or as a compensation of the truncated fogiher terms. By a Leonard
expansion for the viscous dissipation rate tensgrjt is shown here that the second term in the
reconstruction series of; is actually exploitable in terms af;. The present approximation
provides thus a more plausible modelling argumentationwhich the SGS eddy-viscosity
formulation may declare its root in the viscous dissipatiate tensor incurred in the second
term of the reconstruction series.

The presence of an eddy viscosity term in the resulting ®vortmodel depends on the
modelling ofe;;. Different from previous Clark-type mixed models, it sheble noted that the
the SGS turbulence Reynolds numbey,,, has been brought in the present formulation, being
multiplied to the eddy-viscosity term, as shown in Eq.(13).

The SGS eddy viscosity,,, in the model, Eq.(13), can be estimated from the Smagorinsk
model or from any other existing eddy-viscosity models. Témaaining issue for the model to
be used in actual LES is the model coefficiedtsandC';, as expressed in EqQ.(13). In the Clark
modelC; = 1/4/12, andC; = 1.0 in the model by Winckelmans et al. using explicit filtering.
The dynamic procedure can be well exploited to determinetiedficient of the second term
in a similar manner as by Vreman et al. [12] and Winckelmanal.eff14]. Another issue
is the filter width, A, which has been assumed being isotropic in the present staction
series. It is noted here that anisotropic filter width is applicable, as shown by Carati et
al. [15]. For simplicity, in the present computation we héaken the isotropic filter width of
A = (A,A,A,)Y? with the top-hat filter kernel implicitly incorporated in &S solver using
finite volume method.

3. Analysisin LESfor Channel Flow

In a priori test and/or actual LES with explicit filtering for decayirgpiropic turbulence and
turbulent channel flow, Winckelmans et al. [13, 14] have madeoroughout investigation on
the Leonard tensor-diffusivity term supplemented by a dyise&Smagorinsky model. Some of
the major findings in their studies include [14]:

e The Leonard term is able to provide significant local ener@gkiscatter, while remaining
globally dissipative.

¢ In spite of high correlation between the Leonard term andriee SGS stress ia priori
tests with DNS data, this term alone is not able to producel gd&s prediction, due to
insufficient global dissipation.

e The mixed model, using the Leonard term supplemented by amdynSmagorinsky
model, provides (slightly) better or similar LES predicts as compared to the dynamic
Smagorinsky model used alone.
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e The Leonard term may well suffice for practical reconstarciof the SGS stress. How-
ever, the truncating modelling needs to be further adddesmeart from being supple-
mented with the Smagorinsky model.

In the present work, the second term is exploited in termshefuiscous dissipation rate
tensor,e;;. It is thus expected that its modelling should be mguedablewith a model for
ei;. Instead of using a sophisticated formulation, we have tibpere a simple anisotropy
assumption foe;; in analogy to the Rotta assumption for RANS modelling. Theose term
has thus been approximated in an eddy-viscosity formulatie given in Eq. (13).

It should be further noted that, on the basis of the exprasderived in Section 2, one may
reach a hierarchy of different reconstruction-based nsfelr;; upon the approximation used,
respectively, for;; in Eq. (8), forﬁy in Eq. (12) and fow,, in Eq. (13). In this work, only
is the modelling approximation in Eq. (13) explored, usihng Smagorinsky model far,,,
namely,v,,s = (CsA)?|S].

The dynamic procedure is not used in this work to determieentibdel coefficient for the
second Smagorinsky term of Eq. (13). Instead, we have tatestant model coefficients to
calibrate their effects in LES for turbulent channel flow.iSTeerves well the primary purpose
with the present work: to analyze the two-term modellingragpnation and to highlight its
potential development in engineering LES.

We consider the channel flow Bt = 550 with available DNS data [18]. The computational
domain is(L,, L,, L.) = (6.4,2,3.2) meshed with64 x 80 x 64 cells. This resolution is
comparable to the simulation by Winckelmans et al.[14] far ¢thannel flow ofze, = 395, but
the streamwise resolution is relatively coarse in the priesemputation Az™ = 55 compared
to Azt = 39.5). All the results presented below have been normalizedguie friction
velocity, u,, and the half-channel heigtit,= L, /2, denoted with a superscript "+".

The computation starts with an exploration of the effectefrinodel coefficients); andCy,
by keeping the Smagorinsky constant = 0.1 in v, In the second term of Eq.(13). It was
found that the solution blow up by settiig = 1.0, whether the Leonard term is used alone
or combined with the second term. This term has induced langenegative local diffusion,
triggering numerical instability, which is consistent withe observation by Winckelmans et
al. [14]. Such a numerical instability problem may be remaddpartly by using anisotropic
filter width in each direction for the first term, as demongdsby Vreman [19]. In the present
work, however, an isotropic filter width has been invoked lboth the first and the second
terms. Moreover, an empirical damping function has beenkesd for the two terms, using
fa = 1 —exp(—y™/10). This helps also to reduce large directional diffusion ia ticinity
of the wall, particularly, by the Leonard term. Consequertie reconstruction-based mixed
model adopted in the present study takes the following form.

8$k 8:@

Tt = Toa + 7555 = (CA)” fu — CyRygs [20595Si; With vyys = (C,A)2[S]  (15)
The Leonard term plays, locally and instantaneously, airoé@ergy backscatter, but glob-
ally and statistically, this term renders energy dissguati In the LES calibration with the
Leonard term alone, it was found that a large value€’pprovided insufficient energy dissi-
pation, particularly, in the log-layer. AS; > 0.3, in the computation with only the Leonard
tensor-diffusivity model, the model introduces negativiéudion, which has to be limited so
that it does not exceed the magnitude of the viscous diffutdoavoid numerical instability
problem. Such a limit is however inappropriate, which tetalsancel the viscous diffusion,
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leading to a "locally inviscid” flow simulation for large va¢s ofC;. Figure 1 shows the LES
predictions using only the Leonard term with different \edwfC;. With C; < 0.2, the Leonard
model alone has induced only marginal difference in the lerédir the predicted mean velocity,
as compared to the simulation with no model, but having binbtige prediction closer to the
DNS data for the resolved stresses, particularly, in thedggr region.
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Figure 1: LES using only the Leonard term with different values@f For C; = 0.3, the Leonard

term has been limited by viscous diffusion for negative galuLeft: Mean streamwise velocity; Mid:
Resolved shear stress; Right: Streamwise velocity fluictuat

With the two-term mixed model, Eq. (15), the presenc&gf in the second term enhances
the modelled SGS turbulent diffusion fét,,; > 1. In the computation witlC; > 0.75 and
Cy < 1.0, it was found that the solution became numerically unstatle to large negative
diffusion caused by the Leonard term. The effectiyf in the Smagorinsky term can be
removed by setting the model coefficierif = 2/ R, s, which makes consequently the second
term astandardSmagorinsky model. In this case, it was found thashould have a value of
C; < 0.5 to maintain a stable numerical procedure.
— Mixed model (CI=0.29)
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Figure 2: LES using the two-term mixed model with different valuesthf Cy = 2/R,4, andCys =
0.1 have been used in Eq. (15). F6f = 1.0, the Leonard term is limited by turbulent diffusion

for negative values. Left: Mean streamwise velocity; MidesRlved shear stress; Right: Streamwise
velocity fluctuations.

In Figure 2, the effect of”; is illustrated with the two-term mixed model, whefé =
0.1 andCy; = 2/R,,s have been used. Far, = 1.0, local negative values of the Leonard
term have been "cut-off” when their magnitudes are largantBGS turbulent diffusion. It
is shown that a relative large contribution of the Leonamintéwith a largeC; value) may
enhance the velocity fluctuations (only the streamwisedlitodn is shown here, but the same
is observed for the velocity fluctuations in the other tweoediions). This implies that, by



8 Turbulence, Heat and Mass Transfer 6

means of energy backscatter, the Leonard term has indeédbcoed to the suppression of
global energy dissipation in the mixed model.

Obviously, there is an inherent connection between thelfeshard term and the second
Smagorinsky term. Together, they should compensate wih ether in terms of energy back
and forward scatter. To render good predictions, the mamdficient should be set as a function
of local flow properties. Investigation on this has beenyag out in a separate work. In the
present work, we focus on an analysis of the behavior of earch in the mixed model with
constant model coefficients.

After a number of testing, we have g6t = 1/+/12, which is the constant for the Leonard
term employed in the mixed model by Clark et al. [2]. The dffd#a’; has then been explored.
In Figure 3, the LES predictions obtained, respectivelyhwi;, = 1.0, C; = 4.0 andCy =
2/R, in Eq. (15), are compared. Note that, {05 = 2/R,,,, the mixed model has actually
been composed of the Leonard term andstendardSmagorinsky term. Witld’; = 1.0, the
two-term model gives appreciably improved predictionstfa mean streamwise velocity and
for its fluctuations, as compared with the Smagorinsky m@del = 0.1, and the damping
function is incorporated im, ). Increasing the values @f,; does not provide any significant
improvement in the prediction. When a too large value€'pfis used, e.g.(y; = 4.0, the
Smagorinsky term in the mixed model becomes overall dontinad gives excessive SGS
turbulent diffusion. This has consequently dampened toesertent the near-wall velocity
fluctuations in all directions. Moreover, the resolved atngvise velocity presents sensible
discrepancies from the DNS data in the viscous sublayenatieibuffer layer, in spite of slight
improvement in the log-layer. With'; = 2/R,,,, the predicted profiles for the streamwise
velocity and for its fluctuations are similar to those with = 1.0, but the wall-normal and
spanwise velocity fluctuations have been more dampenee ingér-wall layer (foy™ < 100).
This is partly due to the presence Bf, in the second term fof’; = 1.0, which has quickly
dropped down to smaller value&{,; < 1) away from the buffer layer. Consequently, the
energy dissipation caused by the Smagorinsky term is reludeereas by setting; = 2/ R,
the effect ofR,, is removed from the Smagorinsky term. It should be admitted, with the
current model coefficients (eithé€f; = 1.0 or C; = 2/R,,), the function of energy transfer
inherent in the Leonard and the Smagorinsky term needs tortieef addressed.

25
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Figure 3: LES using the two-term mixed model (Eq. (15)) with differerf values by setting”; =
1/v/12 andC, = 0.1. (@) Mean streamwise velocity. (b) Velocity fluctuationsilfoevery other DNS
data have been plotted).
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In what follows, the mixed model using; = 1/v/12 andC,; = 1.0 in Eq. (15) is further
explored to highlight the property of the Leonard term. Igute 4 (a), the modelled diagonal
Leonard stresses;, ., are plotted. As shown, the Leonard term gives rise of a ldraggonal
stress in the streamwise direction,;;, due to large wall-normal gradient of the streamwise
velocity in the near-wall layer. The wall-damping effectshalso been reflected i, 2. By
contrast, the Smagorinsky diagonal SGS stresggs, are much smaller, as illustrated in Figure
4 (b). Note that, due to continuity, the sum of the Smagosirdikgonal SGS stresses should
be zero, as shown in Figure 4 (b).

T
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<7—L,11>+7 <TL,22>+7 <7—L,33>+

T T,
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S,22 'S,33(
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Figure 4:Two-term mixed model, witl; = 1.0, C; = 1/y/12 andC, = 0.1 in Eq. (15). (a) Modelled
diagonal stresses by the Leonard term. (b) Modelled didguresses by the Smagorinsky term.
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Figure 5:Two-term mixed model wittC; = 1.0, C; = 1/v/12 andC, = 0.1 in Eq. (15). (a) Modelled
shear stress by the Leonartd, (2) and the Smagorinskyr§ 12) term, respectively. (b) Modelled SGS
dissipation by the two terms.

In Figure 5 (a), a comparison is made for the modelled SGS shess given by the Leonard
term (7., 12) and by the Smagorinsky termg(;,), respectively. As seen, the Smagorinsky term
is dominant over the Leonard term in the near-wall layer)&ihis becoming smaller in the log
layer. It should be noted that the Leonard shear stress neayrieenegative close to the wall, a
behavior similar to the counter-gradient diffusion. Indig 5 (b), the time-averaged modelled
SGS dissipation is compared, due to the Leonard term andtiag&insky term, respectively.



10 Turbulence, Heat and Mass Transfer 6

As expected, the energy dissipation induced by the Leorard,t; = —7,;5,;, is much
smaller close the wall than by the Smagorinsky term= —7s,;5;;, generally less than5%
of the total energy dissipation for* < 15. In the log-layer aftey™ = 50 — 60 away from
the wall, howeverg, becomes comparable to (and even slightly larger than)his is partly
due to the fact that an appreciable amount of energy backsdatluced by the Leonard term
occurs usually near the wall. In the future work, this willfoether explored by distinguishing
energy backscatter af, from the global energy dissipation.
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Figure 6: Two-term mixed model wittC; = 1.0, C; = 1/4/12 andC, = 0.1 in Eq. (15). (a) Sum
of resolved and modelled turbulent shear stress. (b) Steésarvelocity fluctuations, (c) Wall-normal
velocity fluctuations. (d) Spanwise velocity fluctuations.

The summation of resolved and modelled turbulent sheasssisallustrated in Figure 6 (a).
As shown, the resolved turbulent shear strés%,;’), is compensated by the modelled SGS
shear stress contributed, respectively, by the Leonardogiritie Smagorinsky term, resulting
in an improved comparison with DNS data. In the vicinity oé tivall the major contribution
to the total turbulent shear stress is due to the Smagoritesky, and in the outer part the
contribution from the Leonard term becomes more sensibls.illdstrated in Figure 4, the
modelled Leonard diagonal stresses possess fairly lafgesidt is thus interesting to observe
their contribution to the velocity fluctuations. Assumirtat the resolved fluctuation is,
and its unresolved SGS counterparipis the R.M.S. of the total fluctuation should then be
Grms = \/<(¢r + ¢s5)?) = \/<¢Z) + (p2) 4+ 2(¢,¢s), In which the first term is obtainable from
the resolved part and the second term can be approximatadlieoSGS modelled part, whereas
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the third term is not extracted herewith. We consider hehgtbe effect of the Leonard term and
the unresolved fluctuations is estimated simply by a cotimaof 7, ;. In Figure 6, therefore,
only an estimated sum of the first two terms has been plottedhto velocity fluctuations,

namely,u; yms = \/<u;2) + (71.::) (no summation foi here). As shown, the modelled diagonal
stresses may make sensible contributions to the velocitiuiétions.

4. Conclusions

An approximation of the SGS stress tensor has been discasgbé basis of its reconstruction
series. Unlike previous modelling approximation, stemrfrech the Leonard expansion and
truncating all the higher-order terms but the first Leonardh it is shown that the second term
in the reconstruction series can actually be further exgdiin relation to the viscous dissipa-
tion rate tensor present in the transport equatiom; gfbeing further subjected to a Leonard
expansion. This has consequently led to a two-term modeh®EGS stresses.

The approximation of the second term is accomplished by ditatimg the viscous dissi-
pation rate tensog,;, in analogy to RANS modelling. The local-isotropy assummptof <;;
renders the second term lack of the desirable function ferggndissipation, but altering only
the diagonal SGS stresses, and the resulting two-term metlehs to a scale-similarity type
model. With an anisotropy assumption fof, nonetheless, the second term can be cast in
an eddy-viscosity formulation. Consequently, the resgltwo-term model attains to a mixed
model. The present approximation indicates that the use etldy-viscosity (dissipative) term
in the reconstruction-based mixed model is rooted in ano&mwgy assumption of the viscous
dissipation rate tensor in the transport equatiorrfor

The two-term mixed model has been investigated in LES fdsuient channel flow. The
emphasis is placed on the exploration of the effect of modefficients. It was found that,
when the Leonard term is used alone in LES, the model coeffitoethis term has to be kept
belowC; ~ 0.3 to maintain a stable numerical procedure for locally negatiiffusion. This
is due partly to the truncation of higher-order terms from taconstruction series, and partly
to the use of an isotopic filter width in present LES. Noneths] this has also reflected the
important function of the Leonard term to account for endrggkscatter. The inclusion of the
second Smagorinsky term helps to reinforce the energypdigsn, and enabling a relatively
large value forC;. The two terms in the mixed model interact with each othereimmt of
energy back and forward scatter. Usually, when the secondisancreased (with an increased
value ofC,), the first term can use a large value@f The value ofC,; should be restricted,
however, in order to appropriately represent SGS turbuliuision and energy dissipation. On
the other hand, increasing the value(gf(namely, increasing the Leonard term) may usually
enhance the streamwise velocity fluctuations but dampewdloeity fluctuations in the other
two directions. WithC; = 1/4/12 andC,; = 1.0 in present LES for turbulent channel flow, the
two-term mixed model is able to provide reasonable preahsti

Furthermore, the Leonard shear stress displays a tendébegoming negative, indicating
a potential behavior similar to the counter-gradient diifun in the near-wall layer. The global
energy dissipation introduced by the Smagorinsky term ishtarger than by the Leonard term.
In the vicinity of the wall ™ < (10—15)), in general, the Leonard term accounts for only about
10 — 15% of the total energy dissipation. In the log-layer, this temray contribute an amount
of energy dissipation that is comparable to the Smagoritestkyg. Further investigation of the
reconstruction-based mixed model has been being undartakéhe function of the Leonard
term in terms of energy backscatter.
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