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Abstract — Based on the reconstruction series for subgrid-scale (SGS) stress tensor, SGS modelling
is revisited. It is shown that, along with the first Leonard term in the series, the second term is also
exploitable in relation to the viscous dissipation rate tensor, εij , being further subjected to a Leonard
expansion. The approximation ofεij is discussed in analogy to RANS modelling. With the assumption
of anisotropy dissipation, it is shown that the second term can be approximated in terms of an eddy-
viscosity formulation, which, together with the first Leonard term, forms a two-term mixed model. The
resulting mixed model has been analyzed in LES of turbulent channel flow. The emphasis in the present
work has been placed on the effect of model coefficients. The Leonard term may induce negative diffu-
sion associated to energy backscatter, while the second Smagorinsky term reinforces energy dissipation.
Moreover, the modelled Leonard stresses have also been highlighted in the computation.

1. Introduction
Subgrid scale (SGS) modeling remains one of the major issuesin large eddy simulation of
turbulent flows. By applying a spatial filtering to the governing equations, the large-scale tur-
bulent structure isdistinguishedfrom unresolved subgrid scales and, consequently, leadingto
the closure problem to represent the interaction between subgrid-scale turbulence and resolved
large-scale turbulent motion. The separation of resolved large and unresolved subgrid scales
is a conceptual definition, but can plausibly be manifested on the basis of turbulence energy
transfer, namely, the exchange between the resolved and sub-grid turbulent kinetic energy.

We consider incompressible flows, the filtered Navier-Stokes equations read
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whereτij = (uiuj − ūiūj) is the SGS stress tensor. Conventionally, the modelling forτij has
been to introduce a representation of forward energy drain from large-scale to subgrid-scale
eddies. In this pallet, a typical example is the well-known Smagorinsky model [1] based on
the SGS eddy viscosity concept. It has long been recognized that the Smagorinsky model
displays little correlation with the real SGS stresses, as demonstrated ina priori testing by,
e.g., Clark [2] using DNS data and by Liu et al. [3] with experimental data. Moreover, it
has also been shown that, while the product−τijS̄ij renders global energy dissipation, it may
become negative locally for reverse energy transfer from small to large eddies, namely, energy
backscatter, see, e.g., [4]. A well-known model that is ableto reflect energy backscatter is the
scale-similarity model by Bardina et al. [5]. In spite of this capability and its high correlation
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with the true SGS stresses [3], it is known that the scale-similarity model alone may fail to
provide sufficient energy dissipation in actual LES. By a combination of the scale-similarity
model and the Smagorinsky eddy-viscosity model, this has led to the mixed model [6] and a
number of variants in different forms [7, 8, 9].

Since local reverse energy transfer, along with energy dissipation, is an inherent physical
phenomenon in turbulent flows, a realistic SGS model should be able to describe both the for-
ward and backward energy scatter. Instead of directly invoking the Bardina-type scale-similarity
model, Leonard [10, 11] expanded the SGS stress into a reconstruction series, resulting in the
tensor-diffusivity model by taking the first (leading) termfrom this series. Using experimental
data, Liu et al. has shown that the correlation between the tensor-diffusivity model and the real
SGS stress is comparable to (or even larger than) the Bardinasimilarity model [3]. The Leonard
tensor-diffusivity model is equivalent to using a tensorial time scaling or a tensorial SGS vis-
cosity in terms of the resolved large-scale velocity gradients and the filter width. To make up for
the the truncated higher-order terms in the reconstructionseries, the Leonard one-term model
(i.e. the tensor-diffusivity model) has been supplementedby the Smagorinsky model as done
by Clark [2] and, for further improvement, by the dynamic Smagorinsky model as proposed in
Vreman et al. [12] and in Winckelmans et al. [13, 14].

In the present work, the SGS modelling stemmed from the Leonard expansion [10] of filtered
residuals is revisited. We will show that the viscous dissipation of τij is actually incurred in
the second (forth-order) term in the reconstruction series. Upon the modelling of the viscous
dissipation rate tensor, an eddy viscosity model may readily be brought in the formulation,
but not added in anarbitrary manner. This leads consequently to a Clark-type two-term mixed
model. The resulting model is then examined and analyzed in large eddy simulation of turbulent
channel flow to highlight its properties.

2. Modelling Approximation
In previous studies [10, 11, 13, 14], it has been shown that, with an isotropic Gaussian filter, the
filtered product of variablesf andg can be written in an infinite reconstruction series, which
reads

fg = f̄ ḡ + ∆̄2
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A reconstruction series as such is hereafter referred to as theLeonard expansion, since this series
was explored first by Leonard [10]. For convenience in the following modelling approximation,
moreover, it is noted here that a uniform filter width,∆̄, has been assumed in the reconstruction
series. Applying the Leonard expansion to the SGS stress tensor,τij , one has

τij = (uiuj − ūiūj) (3)
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∂ūi

∂xk

∂ūj
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The first term on the right-hand side in Eq. (3) is the Leonard tensor-diffusivity model. This
term has a similar form (but not the coefficient) to that in themodel by Clark et al. [2] and by
Vreman et al. [12] derived for the top-hat filter. Carati et al. [15] has further shown that, for all
symmetric filters that areC∞ in Fourier space and have non-zero second moment, the Leonard
term is preserved as the first term in the reconstruction series. Obviously, this holds true for
most of the filters that are currently used in LES, for example, the top-hat, the Gaussian and the
spectral cut-off filter.
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We have previously discussed the modelling formulation based on the Leonard expansion
stemmed from the Gaussian filter [16]. The top-hat filter is another commonly used filter in
LES using finite difference or finite volume method. Following the generalized expansion by
Carati et al. [15], when the kernel of the top-hat filter is used, the reconstruction series forτij

can be written as

τij = (uiuj − ūiūj) (4)
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It is observed that, for both the Gaussian and the top-hat filter, the first two terms in Eqs (3)
and (4) take, respectively, similar forms except the coefficient in the second term. Peng and
Davidson [16] have shown that the second term in the above reconstruction series is actually
related to the viscous dissipation rate tensor in the transport equation ofτij , which can be further
exploited in the reconstruction-based modelling. By truncating the rest of higher-order terms,
τij is approximated in a two-term formulation, namely,

τij ≈ ∆̄2
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where a coefficient,Cε, has been used in the second term in order to cast this term in aunified
form for different filters. Obviously, the terms truncated,respectively, from Eq. (3) and Eq.
(4) are different due to different filters, of which the effect should be appropriately accounted
for by the modelling of the first two leading terms in Eq. (5). As it is, Eq. (5) represents
a raw approximation of the SGS stress tensor in terms of the first- and second-order velocity
derivatives. Nonetheless, the truncation of Eq. (3) or Eq. (4) has made Eq. (5) deviate from the
accurate representation of the real SGS stress. Therefore,it would be awkward to directly use
Eq. (5) in actual LES, unless additional modelling approximation is introduced.

In the present work, instead of computing the higher-order velocity derivatives, the second
term in Eq. (5) is further approximated. Note that the viscous dissipation rate tensor is defined
by εij = 2νΥij , and
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Applying the Leonard expansion toΥij and taking the first term from the resulting recon-
struction series forΥij, we have
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Using Eq. (7) in Eq. (5) gives rise of a two-term model forτij , which reads

τij ≈ τL,ij + Cε∆̄
2Υij = ∆̄2

∂ūi

∂xk

∂ūj
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The Leonard tensor-diffusivity model,τL,ij, is kept in Eq. (8), which has shown a favorable
function in energy backscatter similar to a scale-similarity model of the Bardina type. In actual
LES, it is found that this term may introduce excessively directional negative diffusion causing
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numerical instability problem. A model constant,Cl, is thus multiplied to this term withCl ∈
(0, 1.0]. This yields, for the Leonard term,

τL,ij =
(

Cl∆̄
)2 ∂ūi

∂xk

∂ūj

∂xk

(9)

The presence ofεij in the second term of Eq. (8) suggests that this term may accommodate a
major part of energy dissipation. Upon the modelling for theviscous dissipation rate tensor,εij,
Peng and Davidson [16] have shown that the resulting approximation in Eq.(8) may lead to a
formulation of a mixed SGS model, when an anisotropic model is taken forεij and the incurred
energy dissipation is modelled with an eddy viscosity model(e.g. the Smagorinsky model).
Obviously, more complicated nonlinear model could also be derived from Eq. (8), provided
thatεij would be modelled in a sophisticated nonlinear form.

We take first the simplest form of the classicallocal-isotropymodel forεij, a concept that has
been well exploited in RANS modelling. This givesεij = 2

3
εδij, whereε is the SGS dissipation

rate of SGS turbulence energy. Consequently, the two-term model takes the form of
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The contribution byτL,ij to the local energy flux,εL = −τL,ijS̄ij, may become negative (and
thus energy backscatter). With the local-isotropy assumption, however, the second term does
not make any contribution to energy dissipation or backscatter due to continuity, but altering the
diagonal SGS stresses. In view of the energy dissipation/backscatter, the model as expressed in
Eq. (10) is thus similar to the one-term Leonard model.

Alternatively, Rotta’s anisotropic dissipation model, proposed originally for RANS mod-
elling [17], can be used analogously forεij . It is assumed that

εij =
ε

k
τM
ij (11)

whereτM
ij is used for convenience of further discussion. Using Eq. (11) in Eq. (8), one gets
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In Eq. (12), if we are willing to (recursively) modelτM
ij in the same form as forτij, namely,

τM
ij = τij , the model will return to a form proportional toτL,ij , but with a different coefficient.

This is, however, not the purpose with the present work. Instead, we have estimatedτM
ij here

using an eddy viscosity model, namely,τM
ij = −2νsgsS̄ij . Incorporating the relations ofk ∼

ν2
sgs/∆̄2 andε ∼ ν3

sgs/∆̄4, Eq. (12) is further approximated in the following form.

τij =
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)2 ∂ūi
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∂xk

− CdRsgsνsgsS̄ij (13)

whereCd is a model coefficient andRsgs = νsgs/ν is the SGS turbulence Reynolds number,
indicating the intensity of modelled SGS turbulence. Obviously, the second term in the model,
Eq. (13), contributes a positive part to the total local energy flux, ε = −τijS̄ij . Consequently,
this term plays a role in energy forwardscatter from large tosmall eddies, which makes the
model, as a whole, similar to a mixed model. When SGS turbulence kinetic energy,k, is
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concerned, moreover, one should be able to deducek from the trace ofτij by takingk = τkk/2.
In this case, Eqs (10) and (13) should thus be written with an inclusion of a trace,τ tr

ij , on the
right-hand side in the form of

τ tr
ij = −1

3
τkkδij +

2

3
kδij (14)

Note that the previous mixed models by, e.g., Clark [2], Vreman et al. [12] and Winckelmans
et al.[14], have been constructed by keeping only the first term in the reconstruction series
(or a Taylor expansion) of the SGS stress tensor, whereas theSmagorinsky model is added
as a supplement, or as a compensation of the truncated higher-order terms. By a Leonard
expansion for the viscous dissipation rate tensor,εij, it is shown here that the second term in the
reconstruction series ofτij is actually exploitable in terms ofεij. The present approximation
provides thus a more plausible modelling argumentation, bywhich the SGS eddy-viscosity
formulation may declare its root in the viscous dissipationrate tensor incurred in the second
term of the reconstruction series.

The presence of an eddy viscosity term in the resulting two-term model depends on the
modelling ofεij . Different from previous Clark-type mixed models, it should be noted that the
the SGS turbulence Reynolds number,Rsgs, has been brought in the present formulation, being
multiplied to the eddy-viscosity term, as shown in Eq.(13).

The SGS eddy viscosity,νsgs, in the model, Eq.(13), can be estimated from the Smagorinsky
model or from any other existing eddy-viscosity models. Theremaining issue for the model to
be used in actual LES is the model coefficients,Cl andCd, as expressed in Eq.(13). In the Clark
modelCl = 1/

√
12, andCl = 1.0 in the model by Winckelmans et al. using explicit filtering.

The dynamic procedure can be well exploited to determine thecoefficient of the second term
in a similar manner as by Vreman et al. [12] and Winckelmans etal. [14]. Another issue
is the filter width,∆̄, which has been assumed being isotropic in the present reconstruction
series. It is noted here that anisotropic filter width is alsoapplicable, as shown by Carati et
al. [15]. For simplicity, in the present computation we havetaken the isotropic filter width of
∆̄ = (∆̄x∆̄y∆̄z)

1/3 with the top-hat filter kernel implicitly incorporated in a LES solver using
finite volume method.

3. Analysis in LES for Channel Flow
In a priori test and/or actual LES with explicit filtering for decaying isotropic turbulence and
turbulent channel flow, Winckelmans et al. [13, 14] have madea thoroughout investigation on
the Leonard tensor-diffusivity term supplemented by a dynamic Smagorinsky model. Some of
the major findings in their studies include [14]:

• The Leonard term is able to provide significant local energy backscatter, while remaining
globally dissipative.

• In spite of high correlation between the Leonard term and thetrue SGS stress ina priori
tests with DNS data, this term alone is not able to produce good LES prediction, due to
insufficient global dissipation.

• The mixed model, using the Leonard term supplemented by a dynamic Smagorinsky
model, provides (slightly) better or similar LES predictions, as compared to the dynamic
Smagorinsky model used alone.
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• The Leonard term may well suffice for practical reconstruction of the SGS stress. How-
ever, the truncating modelling needs to be further addressed, apart from being supple-
mented with the Smagorinsky model.

In the present work, the second term is exploited in terms of the viscous dissipation rate
tensor,εij. It is thus expected that its modelling should be moreguidablewith a model for
εij. Instead of using a sophisticated formulation, we have adopted here a simple anisotropy
assumption forεij in analogy to the Rotta assumption for RANS modelling. The second term
has thus been approximated in an eddy-viscosity formulation, as given in Eq. (13).

It should be further noted that, on the basis of the expressions derived in Section 2, one may
reach a hierarchy of different reconstruction-based models forτij upon the approximation used,
respectively, forεij in Eq. (8), forτM

ij in Eq. (12) and forνsgs in Eq. (13). In this work, only
is the modelling approximation in Eq. (13) explored, using the Smagorinsky model forνsgs,
namely,νsgs = (Cs∆̄)2|S̄|.

The dynamic procedure is not used in this work to determine the model coefficient for the
second Smagorinsky term of Eq. (13). Instead, we have taken constant model coefficients to
calibrate their effects in LES for turbulent channel flow. This serves well the primary purpose
with the present work: to analyze the two-term modelling approximation and to highlight its
potential development in engineering LES.

We consider the channel flow atReτ = 550 with available DNS data [18]. The computational
domain is(Lx, Ly, Lz) = (6.4, 2, 3.2) meshed with64 × 80 × 64 cells. This resolution is
comparable to the simulation by Winckelmans et al.[14] for the channel flow ofReτ = 395, but
the streamwise resolution is relatively coarse in the present computation (∆x+ = 55 compared
to ∆x+ = 39.5). All the results presented below have been normalized using the friction
velocity,uτ , and the half-channel height,h = Ly/2, denoted with a superscript ”+”.

The computation starts with an exploration of the effect of the model coefficients,Cl andCd,
by keeping the Smagorinsky constantCs = 0.1 in νsgs in the second term of Eq.(13). It was
found that the solution blow up by settingCl = 1.0, whether the Leonard term is used alone
or combined with the second term. This term has induced largeand negative local diffusion,
triggering numerical instability, which is consistent with the observation by Winckelmans et
al. [14]. Such a numerical instability problem may be remedied partly by using anisotropic
filter width in each direction for the first term, as demonstrated by Vreman [19]. In the present
work, however, an isotropic filter width has been invoked forboth the first and the second
terms. Moreover, an empirical damping function has been invoked for the two terms, using
fd = 1 − exp(−y+/10). This helps also to reduce large directional diffusion in the vicinity
of the wall, particularly, by the Leonard term. Consequently, the reconstruction-based mixed
model adopted in the present study takes the following form.

τij = τL,ij + τS,ij =
(

Cl∆̄
)2

fd
∂ūi

∂xk

∂ūj

∂xk

− CdRsgsf
2

dνsgsS̄ij with νsgs = (Cs∆̄)2|S̄| (15)

The Leonard term plays, locally and instantaneously, a rolein energy backscatter, but glob-
ally and statistically, this term renders energy dissipation. In the LES calibration with the
Leonard term alone, it was found that a large value ofCl provided insufficient energy dissi-
pation, particularly, in the log-layer. AsCl ≥ 0.3, in the computation with only the Leonard
tensor-diffusivity model, the model introduces negative diffusion, which has to be limited so
that it does not exceed the magnitude of the viscous diffusion to avoid numerical instability
problem. Such a limit is however inappropriate, which tendsto cancel the viscous diffusion,
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leading to a ”locally inviscid” flow simulation for large values ofCl. Figure 1 shows the LES
predictions using only the Leonard term with different values ofCl. With Cl ≤ 0.2, the Leonard
model alone has induced only marginal difference in the profile for the predicted mean velocity,
as compared to the simulation with no model, but having brought the prediction closer to the
DNS data for the resolved stresses, particularly, in the log-layer region.
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Figure 1: LES using only the Leonard term with different values ofCl. For Cl = 0.3, the Leonard
term has been limited by viscous diffusion for negative values. Left: Mean streamwise velocity; Mid:
Resolved shear stress; Right: Streamwise velocity fluctuation.

With the two-term mixed model, Eq. (15), the presence ofRsgs in the second term enhances
the modelled SGS turbulent diffusion forRsgs > 1. In the computation withCl > 0.75 and
Cd ≤ 1.0, it was found that the solution became numerically unstable, due to large negative
diffusion caused by the Leonard term. The effect ofRsgs in the Smagorinsky term can be
removed by setting the model coefficientCd = 2/Rsgs, which makes consequently the second
term astandardSmagorinsky model. In this case, it was found thatCl should have a value of
Cl ≤ 0.5 to maintain a stable numerical procedure.

10
0

10
1

10
2

0

5

10

15

20

25

 

 

DNS
Mixed model (Cl=0.29)
Mixed model (Cl=0.40)
Mixed model (Cl=1.00)

〈ū
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Figure 2: LES using the two-term mixed model with different values ofCl. Cd = 2/Rsgs andCs =

0.1 have been used in Eq. (15). ForCl = 1.0, the Leonard term is limited by turbulent diffusion
for negative values. Left: Mean streamwise velocity; Mid: Resolved shear stress; Right: Streamwise
velocity fluctuations.

In Figure 2, the effect ofCl is illustrated with the two-term mixed model, whereCs =
0.1 andCd = 2/Rsgs have been used. ForCl = 1.0, local negative values of the Leonard
term have been ”cut-off” when their magnitudes are larger than SGS turbulent diffusion. It
is shown that a relative large contribution of the Leonard term (with a largeCl value) may
enhance the velocity fluctuations (only the streamwise fluctuation is shown here, but the same
is observed for the velocity fluctuations in the other two directions). This implies that, by
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means of energy backscatter, the Leonard term has indeed contributed to the suppression of
global energy dissipation in the mixed model.

Obviously, there is an inherent connection between the firstLeonard term and the second
Smagorinsky term. Together, they should compensate with each other in terms of energy back
and forward scatter. To render good predictions, the model coefficient should be set as a function
of local flow properties. Investigation on this has been carrying out in a separate work. In the
present work, we focus on an analysis of the behavior of each term in the mixed model with
constant model coefficients.

After a number of testing, we have setCl = 1/
√

12, which is the constant for the Leonard
term employed in the mixed model by Clark et al. [2]. The effect of Cd has then been explored.
In Figure 3, the LES predictions obtained, respectively, with Cd = 1.0, Cd = 4.0 andCd =
2/Rsgs in Eq. (15), are compared. Note that, forCd = 2/Rsgs, the mixed model has actually
been composed of the Leonard term and thestandardSmagorinsky term. WithCd = 1.0, the
two-term model gives appreciably improved predictions forthe mean streamwise velocity and
for its fluctuations, as compared with the Smagorinsky model(Cs = 0.1, and the damping
function is incorporated inνsgs). Increasing the values ofCd does not provide any significant
improvement in the prediction. When a too large values ofCd is used, e.g.,Cd = 4.0, the
Smagorinsky term in the mixed model becomes overall dominant and gives excessive SGS
turbulent diffusion. This has consequently dampened to some extent the near-wall velocity
fluctuations in all directions. Moreover, the resolved streamwise velocity presents sensible
discrepancies from the DNS data in the viscous sublayer and in the buffer layer, in spite of slight
improvement in the log-layer. WithCd = 2/Rsgs, the predicted profiles for the streamwise
velocity and for its fluctuations are similar to those withCd = 1.0, but the wall-normal and
spanwise velocity fluctuations have been more dampened in the near-wall layer (fory+ < 100).
This is partly due to the presence ofRsgs in the second term forCd = 1.0, which has quickly
dropped down to smaller values (Rsgs < 1) away from the buffer layer. Consequently, the
energy dissipation caused by the Smagorinsky term is reduced, whereas by settingCd = 2/Rsgs

the effect ofRsgs is removed from the Smagorinsky term. It should be admitted that, with the
current model coefficients (eitherCd = 1.0 or Cd = 2/Rsgs), the function of energy transfer
inherent in the Leonard and the Smagorinsky term needs to be further addressed.
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Figure 3: LES using the two-term mixed model (Eq. (15)) with differentCd values by settingCl =

1/
√

12 andCs = 0.1. (a) Mean streamwise velocity. (b) Velocity fluctuations (only every other DNS
data have been plotted).
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In what follows, the mixed model usingCl = 1/
√

12 andCd = 1.0 in Eq. (15) is further
explored to highlight the property of the Leonard term. In Figure 4 (a), the modelled diagonal
Leonard stresses,τL,kk, are plotted. As shown, the Leonard term gives rise of a largediagonal
stress in the streamwise direction,τL,11, due to large wall-normal gradient of the streamwise
velocity in the near-wall layer. The wall-damping effect has also been reflected inτL,22. By
contrast, the Smagorinsky diagonal SGS stresses,τS,kk, are much smaller, as illustrated in Figure
4 (b). Note that, due to continuity, the sum of the Smagorinsky diagonal SGS stresses should
be zero, as shown in Figure 4 (b).
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Figure 4:Two-term mixed model, withCd = 1.0, Cl = 1/
√

12 andCs = 0.1 in Eq. (15). (a) Modelled
diagonal stresses by the Leonard term. (b) Modelled diagonal stresses by the Smagorinsky term.
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Figure 5:Two-term mixed model withCd = 1.0, Cl = 1/
√

12 andCs = 0.1 in Eq. (15). (a) Modelled
shear stress by the Leonard (τL,12) and the Smagorinsky (τS,12) term, respectively. (b) Modelled SGS
dissipation by the two terms.

In Figure 5 (a), a comparison is made for the modelled SGS shear stress given by the Leonard
term (τL,12) and by the Smagorinsky term (τS,12), respectively. As seen, the Smagorinsky term
is dominant over the Leonard term in the near-wall layer, while it is becoming smaller in the log
layer. It should be noted that the Leonard shear stress may become negative close to the wall, a
behavior similar to the counter-gradient diffusion. In Figure 5 (b), the time-averaged modelled
SGS dissipation is compared, due to the Leonard term and the Smagorinsky term, respectively.
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As expected, the energy dissipation induced by the Leonard term, εL = −τL,ijS̄ij, is much
smaller close the wall than by the Smagorinsky term,εS = −τS,ijS̄ij , generally less than15%
of the total energy dissipation fory+ ≤ 15. In the log-layer aftery+ = 50 − 60 away from
the wall, however,εL becomes comparable to (and even slightly larger than)εS. This is partly
due to the fact that an appreciable amount of energy backscatter induced by the Leonard term
occurs usually near the wall. In the future work, this will befurther explored by distinguishing
energy backscatter ofεL from the global energy dissipation.
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Figure 6: Two-term mixed model withCd = 1.0, Cl = 1/
√

12 andCs = 0.1 in Eq. (15). (a) Sum
of resolved and modelled turbulent shear stress. (b) Streamwise velocity fluctuations, (c) Wall-normal
velocity fluctuations. (d) Spanwise velocity fluctuations.

The summation of resolved and modelled turbulent shear stress is illustrated in Figure 6 (a).
As shown, the resolved turbulent shear stress,〈u′v′〉, is compensated by the modelled SGS
shear stress contributed, respectively, by the Leonard andby the Smagorinsky term, resulting
in an improved comparison with DNS data. In the vicinity of the wall the major contribution
to the total turbulent shear stress is due to the Smagorinskyterm, and in the outer part the
contribution from the Leonard term becomes more sensible. As illustrated in Figure 4, the
modelled Leonard diagonal stresses possess fairly large values. It is thus interesting to observe
their contribution to the velocity fluctuations. Assuming that the resolved fluctuation isφr

and its unresolved SGS counterpart isφs, the R.M.S. of the total fluctuation should then be
φrms =

√

〈(φr + φs)2〉 =
√

〈φ2
r〉 + 〈φ2

s〉 + 2〈φrφs〉, in which the first term is obtainable from
the resolved part and the second term can be approximated from the SGS modelled part, whereas
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the third term is not extracted herewith. We consider here only the effect of the Leonard term and
the unresolved fluctuations is estimated simply by a contraction of τL,ij. In Figure 6, therefore,
only an estimated sum of the first two terms has been plotted for the velocity fluctuations,

namely,ui,rms =
√

〈u′

i
2〉 + 〈τL,ii〉 (no summation fori here). As shown, the modelled diagonal

stresses may make sensible contributions to the velocity fluctuations.

4. Conclusions
An approximation of the SGS stress tensor has been discussedon the basis of its reconstruction
series. Unlike previous modelling approximation, stemmedfrom the Leonard expansion and
truncating all the higher-order terms but the first Leonard term, it is shown that the second term
in the reconstruction series can actually be further exploited in relation to the viscous dissipa-
tion rate tensor present in the transport equation ofτij , being further subjected to a Leonard
expansion. This has consequently led to a two-term model forthe SGS stresses.

The approximation of the second term is accomplished by formulating the viscous dissi-
pation rate tensor,εij, in analogy to RANS modelling. The local-isotropy assumption of εij

renders the second term lack of the desirable function for energy dissipation, but altering only
the diagonal SGS stresses, and the resulting two-term modelreturns to a scale-similarity type
model. With an anisotropy assumption forεij , nonetheless, the second term can be cast in
an eddy-viscosity formulation. Consequently, the resulting two-term model attains to a mixed
model. The present approximation indicates that the use of an eddy-viscosity (dissipative) term
in the reconstruction-based mixed model is rooted in an anisotropy assumption of the viscous
dissipation rate tensor in the transport equation forτij .

The two-term mixed model has been investigated in LES for turbulent channel flow. The
emphasis is placed on the exploration of the effect of model coefficients. It was found that,
when the Leonard term is used alone in LES, the model coefficient to this term has to be kept
belowCl ≈ 0.3 to maintain a stable numerical procedure for locally negative diffusion. This
is due partly to the truncation of higher-order terms from the reconstruction series, and partly
to the use of an isotopic filter width in present LES. Nonetheless, this has also reflected the
important function of the Leonard term to account for energybackscatter. The inclusion of the
second Smagorinsky term helps to reinforce the energy dissipation, and enabling a relatively
large value forCl. The two terms in the mixed model interact with each other in terms of
energy back and forward scatter. Usually, when the second term is increased (with an increased
value ofCd), the first term can use a large value ofCl. The value ofCd should be restricted,
however, in order to appropriately represent SGS turbulentdiffusion and energy dissipation. On
the other hand, increasing the value ofCl (namely, increasing the Leonard term) may usually
enhance the streamwise velocity fluctuations but dampen thevelocity fluctuations in the other
two directions. WithCl = 1/

√
12 andCd = 1.0 in present LES for turbulent channel flow, the

two-term mixed model is able to provide reasonable predictions.
Furthermore, the Leonard shear stress displays a tendency of becoming negative, indicating

a potential behavior similar to the counter-gradient diffusion in the near-wall layer. The global
energy dissipation introduced by the Smagorinsky term is much larger than by the Leonard term.
In the vicinity of the wall (y+ ≤ (10−15)), in general, the Leonard term accounts for only about
10 − 15% of the total energy dissipation. In the log-layer, this termmay contribute an amount
of energy dissipation that is comparable to the Smagorinskyterm. Further investigation of the
reconstruction-based mixed model has been being undertaken on the function of the Leonard
term in terms of energy backscatter.
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