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2.4.2 The Equation for 1/2(ŪiŪi) . . . . . . . . . . . . . . . 18

2.5 The Modelled k Equation . . . . . . . . . . . . . . . . . . . . 20
2.6 One Equation Models . . . . . . . . . . . . . . . . . . . . . . . 21

3 Two-Equation Turbulence Models 22

3.1 The Modelled ε Equation . . . . . . . . . . . . . . . . . . . . . 22
3.2 Wall Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 The k − ε Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 The k − ω Model . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The k − τ Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Low-Re Number Turbulence Models 29

4.1 Low-Re k − ε Models . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 The Launder-Sharma Low-Re k − ε Models . . . . . . . . . . 33
4.3 Boundary Condition for ε and ε̃ . . . . . . . . . . . . . . . . . 34
4.4 The Two-Layer k − ε Model . . . . . . . . . . . . . . . . . . . 35
4.5 The low-Re k − ω Model . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 The low-Re k − ω Model of Peng et al. . . . . . . . . . 37
4.5.2 The low-Re k − ω Model of Bredberg et al. . . . . . . . 37

5 Reynolds Stress Models 39

5.1 Reynolds Stress Models . . . . . . . . . . . . . . . . . . . . . 40
5.2 Reynolds Stress Models vs. Eddy Viscosity Models . . . . . . 41
5.3 Curvature Effects . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Acceleration and Retardation . . . . . . . . . . . . . . . . . . 45

2



Nomenclature 3

Nomenclature

Latin Symbols

c1, c2, cs constants in the Reynolds stress model
c′1, c

′
2 constants in the Reynolds stress model

cε1, cε2 constants in the modelled ε equation
cω1, cω2 constants in the modelled ω equation
cµ constant in turbulence model
E energy (see Eq. 1.8); constant in wall functions (see Eq. 3.4)
f damping function in pressure strain tensor
k turbulent kinetic energy (≡ 1

2
uiui)

K̄ mean kinetic energy, 1/2(ŪiŪi)
U instantaneous (or laminar) velocity in x-direction
Ui instantaneous (or laminar) velocity in xi-direction
Ū time-averaged velocity in x-direction
Ūi time-averaged velocity in xi-direction
uv, uw shear stresses
u fluctuating velocity in x-direction

u2 normal stress in the x-direction
ui fluctuating velocity in xi-direction
uiuj Reynolds stress tensor
V instantaneous (or laminar) velocity in y-direction
V̄ time-averaged velocity in y-direction
v fluctuating (or laminar) velocity in y-direction

v2 normal stress in the y-direction
vw shear stress
W instantaneous (or laminar) velocity in z-direction
W̄ time-averaged velocity in z-direction
w fluctuating velocity in z-direction

w2 normal stress in the z-direction

Greek Symbols

δ boundary layer thickness; half channel height
ε dissipation
κ wave number; von Karman constant (= 0.41)
µ dynamic viscosity
µt dynamic turbulent viscosity
ν kinematic viscosity
νt kinematic turbulent viscosity
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Ωi instantaneous (or laminar) vorticity component in xi-direction
Ω̄i time-averaged vorticity component in xi-direction
ω specific dissipation (∝ ε/k)
ωi fluctuating vorticity component in xi-direction
σΦ turbulent Prandtl number for variable Φ
τlam laminar shear stress
τtot total shear stress
τturb turbulent shear stress

Subscript

C centerline
w wall
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1 Turbulence

1.1 Introduction

Almost all fluid flow which we encounter in daily life is turbulent. Typical
examples are flow around (as well as in) cars, aeroplanes and buildings.
The boundary layers and the wakes around and after bluff bodies such as
cars, aeroplanes and buildings are turbulent. Also the flow and combustion
in engines, both in piston engines and gas turbines and combustors, are
highly turbulent. Air movements in rooms are also turbulent, at least along
the walls where wall-jets are formed. Hence, when we compute fluid flow
it will most likely be turbulent.

In turbulent flow we usually divide the variables in one time-averaged
part Ū , which is independent of time (when the mean flow is steady), and
one fluctuating part u so that U = Ū + u.

There is no definition on turbulent flow, but it has a number of charac-
teristic features (see Tennekes & Lumley [44]) such as:

I. Irregularity. Turbulent flow is irregular, random and chaotic. The
flow consists of a spectrum of different scales (eddy sizes) where largest
eddies are of the order of the flow geometry (i.e. boundary layer thickness,
jet width, etc). At the other end of the spectra we have the smallest ed-
dies which are by viscous forces (stresses) dissipated into internal energy.
Even though turbulence is chaotic it is deterministic and is described by
the Navier-Stokes equations.

II. Diffusivity. In turbulent flow the diffusivity increases. This means
that the spreading rate of boundary layers, jets, etc. increases as the flow
becomes turbulent. The turbulence increases the exchange of momentum
in e.g. boundary layers and reduces or delays thereby separation at bluff
bodies such as cylinders, airfoils and cars. The increased diffusivity also
increases the resistance (wall friction) in internal flows such as in channels
and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds
number. For example, the transition to turbulent flow in pipes occurs that
ReD ≃ 2300, and in boundary layers at Rex ≃ 100000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional.
However, when the equations are time averaged we can treat the flow as
two-dimensional.

V. Dissipation. Turbulent flow is dissipative, which means that kinetic
energy in the small (dissipative) eddies are transformed into internal en-
ergy. The small eddies receive the kinetic energy from slightly larger ed-
dies. The slightly larger eddies receive their energy from even larger eddies
and so on. The largest eddies extract their energy from the mean flow. This
process of transferred energy from the largest turbulent scales (eddies) to
the smallest is called cascade process.
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1.2 Turbulent Scales 6

VI. Continuum. Even though we have small turbulent scales in the flow
they are much larger than the molecular scale and we can treat the flow as
a continuum.

1.2 Turbulent Scales

As mentioned above there are a wide range of scales in turbulent flow (you
can read more about turbulence in [14]). The larger scales are of the order of
the flow geometry, for example the boundary layer thickness, with length
scale ℓ and velocity scale U . These scales extract kinetic energy from the
mean flow which has a time scale comparable to the large scales, i.e.

∂Ū

∂y
= O(T −1) = O(U/ℓ)

The kinetic energy of the large scales is lost to slightly smaller scales with
which the large scales interact. Through the cascade process the kinetic en-
ergy is in this way transferred from the largest scale to smaller scales. At
the smallest scales the frictional forces (viscous stresses) become too large
and the kinetic energy is transformed (dissipated) into internal energy. The
dissipation is denoted by ε which is energy per unit time and unit mass
(ε = [m2/s3]). The dissipation is proportional to the kinematic viscosity ν
times the fluctuating velocity gradient up to the power of two (see Sec-
tion 2.4.1). The friction forces exist of course at all scales, but they are
larger the smaller the eddies. Thus it is not quite true that eddies which
receive their kinetic energy from slightly larger scales give away all of that
the slightly smaller scales but a small fraction is dissipated. However it is
assumed that most of the energy (say 90 %) that goes into the large scales
is finally dissipated at the smallest (dissipative) scales.

The smallest scales where dissipation occurs are called the Kolmogo-
rov scales: the velocity scale υ, the length scale η and the time scale τ . We
assume that these scales are determined by viscosity ν and dissipation ε.
Since the kinetic energy is destroyed by viscous forces it is natural to as-
sume that viscosity plays a part in determining these scales; the larger vis-
cosity, the larger scales. The amount of energy that is to be dissipated is
ε. The more energy that is to be transformed from kinetic energy to inter-
nal energy, the larger the velocity gradients must be. Having assumed that
the dissipative scales are determined by viscosity and dissipation, we can
express υ, η and τ in ν and ε using dimensional analysis. We write

υ = νa εb

[m/s] = [m2/s] [m2/s3]
(1.1)

where below each variable its dimensions are given. The dimensions of the
left-hand and the right-hand side must be the same. We get two equations,
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1.3 Vorticity/Velocity Gradient Interaction 7

one for meters [m]

1 = 2a+ 2b, (1.2)

and one for seconds [s]

−1 = −a− 3b, (1.3)

which gives a = b = 1/4. In the same way we obtain the expressions for η
and τ so that

υ = (νε)1/4 , η =

(
ν3

ε

)1/4

, τ =
(ν

ε

)1/2
(1.4)

1.3 Vorticity/Velocity Gradient Interaction

The interaction between vorticity and velocity gradients is an essential in-
gredient to create and maintain turbulence. Disturbances are amplified
– the actual process depending on type of flow – and these disturbances,
which still are laminar and organized and well defined in terms of phys-
ical orientation and frequency are turned into chaotic, three-dimensional,
random fluctuations, i.e. turbulent flow by interaction between the vor-
ticity vector and the velocity gradients. Two idealized phenomena in this
interaction process can be identified: vortex stretching and vortex tilting.

In order to gain some insight in vortex shedding we will study an ide-
alized, inviscid (viscosity equals to zero) case. The equation for instanta-
neous vorticity (Ωi = Ω̄i + ωi) reads [44, 34, 47]

UjΩi,j = ΩjUi,j + νΩi,jj

Ωi = ǫijkUk,j

(1.5)

where ǫijk is the Levi-Civita tensor (it is +1 if i, j k are in cyclic order, −1 if
i, j k are in anti-cyclic order, and 0 if any two of i, j k are equal), and where
(.),j denotes derivation with respect to xj . We see that this equation is not
an ordinary convection-diffusion equation but is has an additional term on
the right-hand side which represents amplification and rotation/tilting of
the vorticity lines. If we write it term-by-term it reads

Ω1U1,1 +Ω2U1,2 +Ω3U1,3 (1.6)

Ω1U2,1 +Ω2U2,2 +Ω3U2,3

Ω1U3,1 +Ω2U3,2 +Ω3U3,3

The diagonal terms in this matrix represent vortex stretching. Imagine a Vortex
stretchingslender, cylindrical fluid element which vorticity Ω. We introduce a cylin-

drical coordinate system with the x1-axis as the cylinder axis and x2 as the
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1.3 Vorticity/Velocity Gradient Interaction 8

Ω1 Ω1

Figure 1.1: Vortex stretching.

radial coordinate (see Fig. 1.1) so that Ω = (Ω1, 0, 0). A positive U1,1 will
stretch the cylinder. From the continuity equation

U1,1 +
1

r
(rU2),2 = 0

we find that the radial derivative of the radial velocity U2 must be negative,
i.e. the radius of the cylinder will decrease. We have neglected the viscosity
since viscous diffusion at high Reynolds number is much smaller than the
turbulent one and since viscous dissipation occurs at small scales (see p. 6).
Thus there are no viscous stresses acting on the cylindrical fluid element
surface which means that the rotation momentum

r2Ω (1.7)

remains constant as the radius of the fluid element decreases (note that also
the circulation Γ ∝ Ωr2 is constant). Equation 1.7 shows that the vortic-
ity increases as the radius decreases. We see that a stretching/compressing
will decrease/increase the radius of a slender fluid element and increase/decrease
its vorticity component aligned with the element. This process will affect
the vorticity components in the other two coordinate directions.

The off-diagonal terms in Eq. 1.6 represent vortex tilting. Again, take a Vortex
tiltingslender fluid element with its axis aligned with the x2 axis, Fig. 1.2. The ve-

locity gradient U1,2 will tilt the fluid element so that it rotates in clock-wise
direction. The second term Ω2U1,2 in line one in Eq. 1.6 gives a contribution
to Ω1.

Vortex stretching and vortex tilting thus qualitatively explains how in-
teraction between vorticity and velocity gradient create vorticity in all three
coordinate directions from a disturbance which initially was well defined
in one coordinate direction. Once this process has started it continues, be-
cause vorticity generated by vortex stretching and vortex tilting interacts
with the velocity field and creates further vorticity and so on. The vortic-
ity and velocity field becomes chaotic and random: turbulence has been
created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence al-
ways must be three-dimensional (Item IV on p. 5). If the instantaneous
flow is two-dimensional we find that all interaction terms between vortic-
ity and velocity gradients in Eq. 1.6 vanish. For example if U3 ≡ 0 and all
derivatives with respect to x3 are zero. If U3 ≡ 0 the third line in Eq. 1.6
vanishes, and if Ui,3 ≡ 0 the third column in Eq. 1.6 disappears. Finally, the
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Ω2

Ω2

U1(x2)

Figure 1.2: Vortex tilting.

remaining terms in Eq. 1.6 will also be zero since

Ω1 = U3,2 − U2,3 ≡ 0

Ω2 = U1,3 − U3,1 ≡ 0.

The interaction between vorticity and velocity gradients will, on av-
erage, create smaller and smaller scales. Whereas the large scales which
interact with the mean flow have an orientation imposed by the mean flow
the small scales will not remember the structure and orientation of the large
scales. Thus the small scales will be isotropic, i.e independent of direction.

1.4 Energy spectrum

The turbulent scales are distributed over a range of scales which extends
from the largest scales which interact with the mean flow to the smallest
scales where dissipation occurs. In wave number space the energy of ed-
dies from κ to κ+ dκ can be expressed as

E(κ)dκ (1.8)

where Eq. 1.8 expresses the contribution from the scales with wave number
between κ and κ + dκ to the turbulent kinetic energy k. The dimension
of wave number is one over length; thus we can think of wave number
as proportional to the inverse of an eddy’s radius, i.e κ ∝ 1/r. The total
turbulent kinetic energy is obtained by integrating over the whole wave
number space i.e.

k =

∫ ∞

0

E(κ)dκ (1.9)
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I

II

III

κ

E(κ)

Figure 1.3: Spectrum for k. I: Range for the large, energy containing eddies.
II: the inertial subrange. III: Range for small, isotropic scales.

The kinetic energy is the sum of the kinetic energy of the three fluctuat-
ing velocity components, i.e.

k =
1

2

(

u2 + v2 + w2

)

=
1

2
uiui (1.10)

The spectrum of E is shown in Fig. 1.3. We find region I, II and III which
correspond to:

I. In the region we have the large eddies which carry most of the energy.
These eddies interact with the mean flow and extract energy from the
mean flow. Their energy is past on to slightly smaller scales. The
eddies’ velocity and length scales are U and ℓ, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here
that the dissipation occurs. The scales of the eddies are described by
the Kolmogorov scales (see Eq. 1.4)

II. Inertial subrange. The existence of this region requires that the Reynolds
number is high (fully turbulent flow). The eddies in this region repre-
sent the mid-region. This region is a “transport” region in the cascade
process. Energy per time unit (ε) is coming from the large eddies at
the lower part of this range and is given off to the dissipation range
at the higher part. The eddies in this region are independent of both
the large, energy containing eddies and the eddies in the dissipation
range. One can argue that the eddies in this region should be char-
acterized by the flow of energy (ε) and the size of the eddies 1/κ.
Dimensional reasoning gives

E(κ) = const. ε
2

3κ−
5

3 (1.11)

This is a very important law (Kolmogorov spectrum law or the −5/3
law) which states that, if the flow is fully turbulent (high Reynolds
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1.4 Energy spectrum 11

number), the energy spectra should exhibit a −5/3-decay. This of-
ten used in experiment and Large Eddy Simulations (LES) and Direct
Numerical Simulations (DNS) to verify that the flow is fully turbu-
lent.

As explained on p. 6 (cascade process) the energy dissipated at the small
scales can be estimated using the large scales U and ℓ. The energy at the
large scales lose their energy during a time proportional to ℓ/U , which gives

ε = O
( U2

ℓ/U

)

= O
(U3

ℓ

)

(1.12)
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2 Turbulence Models

2.1 Introduction

You can read more about turbulence models in[14].
When the flow is turbulent it is preferable to decompose the instan-

taneous variables (for example velocity components and pressure) into a
mean value and a fluctuating value, i.e.

Ui = Ūi + ui

P = P̄ + p.
(2.1)

One reason why we decompose the variables is that when we measure flow
quantities we are usually interested in the mean values rather that the time
histories. Another reason is that when we want to solve the Navier-Stokes
equation numerically it would require a very fine grid to resolve all tur-
bulent scales and it would also require a fine resolution in time (turbulent
flow is always unsteady).

The continuity equation and the Navier-Stokes equation read

∂ρ

∂t
+ (ρUi),i = 0 (2.2)

∂ρUi

∂t
+ (ρUiUj),j = −P,i +

[

µ

(

Ui,j + Uj,i −
2

3
δijUk,k

)]

,j

(2.3)

where (.),j denotes derivation with respect to xj . Since we are dealing with
incompressible flow (i.e low Mach number) the dilatation term on the right-
hand side of Eq. 2.3 is neglected so that

∂ρUi

∂t
+ (ρUiUj),j = −P,i + [µ(Ui,j + Uj,i)],j . (2.4)

Note that we here use the term “incompressible” in the sense that density is
independent of pressure (∂P/∂ρ = 0) , but it does not mean that density is
constant; it can be dependent on for example temperature or concentration.

Inserting Eq. 2.1 into the continuity equation (2.2) and the Navier-Stokes
equation (2.4) and we obtain – after time averaging – the time averaged con-
tinuity equation and Navier-Stokes equation

∂ρ

∂t
+ (ρŪi),i = 0 (2.5)

∂ρŪi

∂t
+
(
ρŪiŪj

)

,j
= −P̄,i +

[
µ(Ūi,j + Ūj,i)− ρuiuj

]

,j
. (2.6)

A new term uiuj appears on the right-hand side of Eq. 2.6 which is
called the Reynolds stress tensor. The tensor is symmetric (for example u1u2 =
u2u1). It represents correlations between fluctuating velocities. It is an ad-
ditional stress term due to turbulence (fluctuating velocities) and it is un-
known. We need a model for uiuj to close the equation system in Eq. 2.6.

12



2.1 Introduction 13

y

τ

τlam

τturb
τtot

y+ ≃ 10
Figure 2.1: Shear stress near a wall.

This is called the closure problem: the number of unknowns (ten: three veloc- closure
problemity components, pressure, six stresses) is larger than the number of equa-

tions (four: the continuity equation and three components of the Navier-
Stokes equations).

For steady, two-dimensional boundary-layer type of flow (i.e. bound-
ary layers along a flat plate, channel flow, pipe flow, jet and wake flow, etc.)
where

V̄ ≪ Ū ,
∂

∂x
≪ ∂

∂y
(2.7)

Eq. 2.6 reads

∂ρŪŪ

∂x
+

∂ρV̄ Ū

∂y
= −∂P̄

∂x
+

∂

∂y

[

µ
∂Ū

∂y
− ρuv

]

︸ ︷︷ ︸

τtot

. (2.8)

x = x1 denotes streamwise coordinate, and y = x2 coordinate normal to
the flow. Often the pressure gradient ∂P̄ /∂x is zero.

To the viscous shear stress µ∂Ū/∂y on the right-hand side of Eq. 2.8 shear
stressappears an additional turbulent one, a turbulent shear stress. The total shear

stress is thus

τtot = µ
∂Ū

∂y
− ρuv

In the wall region (the viscous sublayer, the buffert layer and the logarith-
mic layer) the total shear stress is approximately constant and equal to the
wall shear stress τw, see Fig. 2.1. Note that the total shear stress is constant
only close to the wall; further away from the wall it decreases (in fully de-
veloped channel flow it decreases linearly by the distance form the wall).
At the wall the turbulent shear stress vanishes as u = v = 0, and the viscous
shear stress attains its wall-stress value τw = ρu2∗. As we go away from the
wall the viscous stress decreases and turbulent one increases and at y+ ≃ 10
they are approximately equal. In the logarithmic layer the viscous stress is
negligible compared to the turbulent stress.

In boundary-layer type of flow the turbulent shear stress and the ve-
locity gradient ∂Ū/∂y have nearly always opposite sign (for a wall jet this

13
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x

y

v < 0 v > 0

y1

y2

U(y)

Figure 2.2: Sign of the turbulent shear stress −ρuv in a boundary layer.

is not the case close to the wall). To get a physical picture of this let us
study the flow in a boundary layer, see Fig. 2.2. A fluid particle is moving
downwards (particle drawn with solid line) from y2 to y1 with (the turbu-
lent fluctuating) velocity v. At its new location the U velocity is in average
smaller than at its old, i.e. Ū(y1) < Ū(y2). This means that when the par-
ticle at y2 (which has streamwise velocity U(y2)) comes down to y1 (where
the streamwise velocity is U(y1)) is has an excess of streamwise velocity
compared to its new environment at y1. Thus the streamwise fluctuation is
positive, i.e. u > 0 and the correlation between u and v is negative (uv < 0).

If we look at the other particle (dashed line in Fig. 2.2) we reach the
same conclusion. The particle is moving upwards (v > 0), and it is bringing
a deficit in U so that u < 0. Thus, again, uv < 0. If we study this flow for
a long time and average over time we get uv < 0. If we change the sign
of the velocity gradient so that ∂Ū/∂y < 0 we will find that the sign of uv
also changes.

Above we have used physical reasoning to show the the signs of uv
and ∂Ū/∂y are opposite. This can also be found by looking at the produc-
tion term in the transport equation of the Reynolds stresses (see Section 5).
In cases where the shear stress and the velocity gradient have the same
sign (for example, in a wall jet) this means that there are other terms in the
transport equation which are more important than the production term.

There are different levels of approximations involved when closing the
equation system in Eq. 2.6.

I. Algebraic models. An algebraic equation is used to compute a turbu-
lent viscosity, often called eddy viscosity. The Reynolds stress tensor
is then computed using an assumption which relates the Reynolds
stress tensor to the velocity gradients and the turbulent viscosity. This
assumption is called the Boussinesq assumption. Models which are
based on a turbulent (eddy) viscosity are called eddy viscosity mod-

14



2.2 Boussinesq Assumption 15

els.

II. One-equation models. In these models a transport equation is solved
for a turbulent quantity (usually the turbulent kinetic energy) and
a second turbulent quantity (usually a turbulent length scale) is ob-
tained from an algebraic expression. The turbulent viscosity is calcu-
lated from Boussinesq assumption.

III. Two-equation models. These models fall into the class of eddy vis-
cosity models. Two transport equations are derived which describe
transport of two scalars, for example the turbulent kinetic energy k
and its dissipation ε. The Reynolds stress tensor is then computed
using an assumption which relates the Reynolds stress tensor to the
velocity gradients and an eddy viscosity. The latter is obtained from
the two transported scalars.

IV. Reynolds stress models. Here a transport equation is derived for the
Reynolds tensor uiuj . One transport equation has to be added for
determining the length scale of the turbulence. Usually an equation
for the dissipation ε is used.

Above the different types of turbulence models have been listed in in-
creasing order of complexity, ability to model the turbulence, and cost in
terms of computational work (CPU time).

2.2 Boussinesq Assumption

In eddy viscosity turbulence models the Reynolds stresses are linked to
the velocity gradients via the turbulent viscosity: this relation is called the
Boussinesq assumption, where the Reynolds stress tensor in the time aver-
aged Navier-Stokes equation is replaced by the turbulent viscosity multi-
plied by the velocity gradients. To show this we introduce this assumption
for the diffusion term at the right-hand side of Eq. 2.6 and make an identi-
fication

[
µ(Ūi,j + Ūj,i)− ρuiuj

]

,j
=
[
(µ+ µt)(Ūi,j + Ūj,i)

]

,j

which gives

ρuiuj = −µt(Ūi,j + Ūj,i). (2.9)

If we in Eq. 2.9 do a contraction (i.e. setting indices i = j) the right-hand
side gives

uiui ≡ 2k

where k is the turbulent kinetic energy (see Eq. 1.10). On the other hand
the continuity equation (Eq. 2.5) gives that the right-hand side of Eq. 2.9

15



2.3 Algebraic Models 16

is equal to zero. In order to make Eq. 2.9 valid upon contraction we add
2/3ρδijk to the left-hand side of Eq. 2.9 so that

ρuiuj = −µt(Ūi,j + Ūj,i) +
2

3
δijρk. (2.10)

Note that contraction of δij gives

δii = δ11 + δ22 + δ33 = 1 + 1 + 1 = 3

2.3 Algebraic Models

In eddy viscosity models we want an expression for the turbulent viscosity
µt = ρνt. The dimension of νt is [m2/s] (same as ν). A turbulent velocity Eddy vis-

cosity
model

scale multiplied with a turbulent length scale gives the correct dimension,
i.e.

νt ∝ Uℓ (2.11)

Above we have used U and ℓ which are characteristic for the large turbulent
scales. This is reasonable, because it is these scales which are responsible
for most of the transport by turbulent diffusion.

In an algebraic turbulence model the velocity gradient is used as a ve-
locity scale and some physical length is used as the length scale. In bound-
ary layer-type of flow (see Eq. 2.7) we obtain

νt = ℓ2mix

∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣

(2.12)

where y is the coordinate normal to the wall, and where ℓmix is the mixing
length, and the model is called the mixing length model. It is an old model
and is hardly used any more. One problem with the model is that ℓmix is
unknown and must be determined.

More modern algebraic models are the Baldwin-Lomax model [2] and
the Cebeci-Smith [6] model which are frequently used in aerodynamics
when computing the flow around airfoils, aeroplanes, etc. For a presen-
tation and discussion of algebraic turbulence models the interested reader
is referred to Wilcox [49].

2.4 Equations for Kinetic Energy

2.4.1 The Exact k Equation

The equation for turbulent kinetic energy k = 1

2
uiui is derived from the

Navier-Stokes equation which reads assuming steady, incompressible, con-
stant viscosity (cf. Eq. 2.4)

(ρUiUj),j = −P,i + µUi,jj. (2.13)

16



2.4 Equations for Kinetic Energy 17

The time averaged Navier-Stokes equation reads (cf. Eq. 2.6)

(ρŪiŪj),j = −P̄,i + µŪi,jj − ρ(uiuj),j (2.14)

Subtract Eq. 2.14 from Eq. 2.13, multiply by ui and time average and we
obtain

[
ρUiUj − ρŪiŪj

]

,j
ui =

−
[
P − P̄

]

,i
ui + µ

[
Ui − Ūi

]

,jj
ui + ρ(uiuj),jui

(2.15)

The left-hand side can be rewritten as

ρ
[
(Ūi + ui)(Ūj + uj)− ŪiŪj

]

,j
ui = ρ

[
Ūiuj + uiŪj + uiuj

]

,j
ui. (2.16)

Using the continuity equation (ρuj),j = 0, the first term is rewritten as
(
ρŪiuj

)

,j
ui = ρuiujŪi,j. (2.17)

We obtain the second term (using (ρŪj),j = 0) from

(
ρŪjk

)

,j
= Ūjρ

[
1

2
uiui

]

,j

=

1

2
ρŪj {uiui,j + uiui,j} = ui

(
ρŪjui

)

,j

(2.18)

The third term in Eq. 2.16 can be written as (using the same technique as in
Eq. 2.18)

1

2
(ρujuiui),j. (2.19)

The first term on the right-hand side of Eq. 2.15 has the form

−p,iui = −(pui),i (2.20)

The second term on the right-hand side of Eq. 2.15 reads

µui,jjui = µ
{

(ui,jui),j − ui,jui,j

}

(2.21)

For the first term we use the same trick as in Eq. 2.18 so that

µ(ui,jui),j = µ
1

2
(uiui),jj = µk,jj (2.22)

The last term on the right-hand side of Eq. 2.15 is zero. Now we can
assemble the transport equation for the turbulent kinetic energy. Equa-
tions 2.17, 2.18, 2.20, 2.21,2.22 give

(ρŪjk),j
︸ ︷︷ ︸

I

= −ρuiujŪi,j
︸ ︷︷ ︸

II

−
[

ujp+
1

2
ρujuiui − µk,j

]

,j
︸ ︷︷ ︸

III

−µui,jui,j
︸ ︷︷ ︸

IV

(2.23)

The terms in Eq. 2.23 have the following meaning.

17
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Figure 2.3: Channel flow at Reτ = 2000. Comparison of mean and fluc-
tuating dissipation terms. Both terms are normalized by u4τ/ν. DNS
data [22, 21]. Solid line: ν(∂V̄1/∂x2)

2; dashed line: ε.

I. Convection.

II. Production. The large turbulent scales extract energy from the mean
flow. This term (including the minus sign) is almost always positive.

III. The two first terms represent turbulent diffusion by pressure-velocity
fluctuations, and velocity fluctuations, respectively. The last term is
viscous diffusion.

IV. Dissipation. This term is responsible for transformation of kinetic en-
ergy at small scales to internal energy. The term (including the minus
sign) is always negative.

In boundary-layer flow the exact k equation read

∂ρŪk

∂x
+

∂ρV̄ k

∂y
= −ρuv

∂Ū

∂y
− ∂

∂y

[

pv +
1

2
ρvuiui − µ

∂k

∂y

]

− µui,jui,j(2.24)

Note that the dissipation includes all derivatives. This is because the dis-
sipation term is at its largest for small, isotropic scales where the usual
boundary-layer approximation that ∂ui/∂x ≪ ∂ui/∂y is not valid.

2.4.2 The Equation for 1/2(ŪiŪi)

The equation for K̄ = 1/2(ŪiŪi) is derived in the same way as that for
1/2u′iu

′
i. Assume steady, incompressible flow with constant viscosity and

multiply the time-averaged Navier-Stokes equations (Eq. 2.14) so that

Ūi(ρŪiŪj),j = −ŪiP̄,i + µŪiŪi,jj − Ūiρ(uiuj),j. (2.25)

The term on the left-hand side can be rewritten as

(ρŪiŪiŪj),j − ρŪiŪjŪi,j = ρŪj(ŪiŪi),j −
1

2
ρŪj(ŪiŪi),j

=
1

2
ρŪj(ŪiŪi),j = (ρŪjK̄),j

(2.26)

18



2.5 The Modelled k Equation 19

The first term on the right-hand side of Eq. 2.25 can be written as

−UiP,i = −(UiP ),i. (2.27)

The viscous term in Eq. 2.25 is rewritten in the same way as the viscous
term in Section 2.4.1, see Eqs. 2.21 and 2.22, i.e.

µŪiŪi,jj = µK̄,jj − µŪi,jŪi,j. (2.28)

Now we can assemble the transport equation for K̄ by inserting Eqs. 2.26,
2.27 and 2.28 into Eq. 2.25

(ρŪjK̄),j = µK̄,jj − (ŪiP̄ ),i − µŪi,jŪi,j − Ūiρ(uiuj),j, (2.29)

The last term is rewritten as

−Ūiρ(uiuj),j = −(Ūiρuiuj),j + ρ(uiuj)Ūi,j. (2.30)

Inserted in Eq. 2.29 gives

(ρŪjK̄),j = µK̄,jj − (ŪiP̄ ),i − µŪi,jŪi,j

− (Ūiρuiuj),j + ρuiujŪi,j.
(2.31)

On the left-hand side we have the usual convective term. On the right-hand
side we find: transport by viscous diffusion, transport by pressure-velocity
interaction, viscous dissipation, transport by velocity-stress interaction and
loss of energy to the fluctuating velocity field, i.e. to k. Note that the first
term in Eq. 2.31 is the same as the last term in Eq. 2.23 but with opposite
sign: here we clearly can see that the main source term in the k equation
(the production term) appears as a sink term in the K̄ equation.

In the K̄ equation the dissipation term and the negative production
term (representing loss of kinetic energy to the k field) read

−µŪi,jŪi,j + ρuiujŪi,j, (2.32)

and in the k equation the production and the dissipation terms read

−ρuiujŪi,j − µui,jui,j. (2.33)

The gradient of the time-averaged velocity field, Ūi, is much smoother
than that of the fluctuating velocity field, u′i. Hence the dissipation by the
fluctuations, ε, is much larger than the dissipation by the mean flow (left
side of Eq. 2.32). This is clearly seen in Fig. 2.3. The mean dissipation,
ν(∂Ū1/∂x2)

2, is largest at the wall where it takes the value ν = 1/2000
(normalized by u4τ/ν).

19



2.5 The Modelled k Equation 20

2.5 The Modelled k Equation

In Eq. 2.23 a number of terms are unknown, namely the production term,
the turbulent diffusion term and the dissipation term.

In the production term it is the stress tensor which is unknown. Since production
termwe have an expression for this which is used in the Navier-Stokes equation

we use the same expression in the production term. Equation 2.10 inserted
in the production term (term II) in Eq. 2.23 gives

Pk = −ρuiujŪi,j = µt

(
Ūi,j + Ūj,i

)
Ūi,j −

2

3
ρkŪi,i (2.34)

Note that the last term in Eq. 2.34 is zero for incompressible flow due to
continuity.

The triple correlations in term III in Eq. 2.23 is modeled using a gradient turbulent
diffusion
term

law where we assume that k is diffused down the gradient, i.e from region of
high k to regions of small k (cf. Fourier’s law for heat flux: heat is diffused
from hot to cold regions). We get

1

2
ρujuiui = −µt

σk
k,j. (2.35)

where σk is the turbulent Prandtl number for k. There is no model for the
pressure diffusion term in Eq. 2.23. It is small (see Figs. 4.1 and 4.3) and
thus it is simply neglected.

The dissipation term in Eq. 2.23 is basically estimated as in Eq. 1.12. The dissipation
termvelocity scale is now

U =
√
k (2.36)

so that

ε ≡ νui,jui,j =
k

3

2

ℓ
(2.37)

The modelled k equation can now be assembled and we get

(ρŪjk),j =

[(

µ+
µt

σk

)

k,j

]

,j

+ Pk − ρ
k

3

2

ℓ
(2.38)

We have one constant in the turbulent diffusion term and it will be de-
termined later. The dissipation term contains another unknown quantity,
the turbulent length scale. An additional transport will be derived from
which we can compute ℓ. In the k − ε model, where ε is obtained from its

own transport, the dissipation term ρk
3

2/ℓ in Eq. 2.38 is simply ρε.
For boundary-layer flow Eq. 2.38 has the form

∂ρŪk

∂x
+

∂ρV̄ k

∂y
=

∂

∂y

[(

µ+
µt

σk

)
∂k

∂y

]

+ µt

(
∂Ū

∂y

)2

− ρ
k

3

2

ℓ
. (2.39)
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2.6 One Equation Models 21

2.6 One Equation Models

In one equation models a transport equation is often solved for the turbu-
lent kinetic energy. The unknown turbulent length scale must be given,
and often an algebraic expression is used [4, 51]. This length scale is, for
example, taken as proportional to the thickness of the boundary layer, the
width of a jet or a wake. The main disadvantage of this type of model is
that it is not applicable to general flows since it is not possible to find a
general expression for an algebraic length scale.

However, some proposals have been made where the turbulent length
scale is computed in a more general way [15, 33]. In [33] a transport equa-
tion for turbulent viscosity is used.

21
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3 Two-Equation Turbulence Models

3.1 The Modelled ε Equation

An exact equation for the dissipation can be derived from the Navier-Stokes
equation (see, for instance, Wilcox [49]). However, the number of unknown
terms is very large and they involve double correlations of fluctuating ve-
locities, and gradients of fluctuating velocities and pressure. It is better to
derive an ε equation based on physical reasoning. In the exact equation for
ε the production term includes, as in the k equation, turbulent quantities
and and velocity gradients. If we choose to include uiuj and Ūi,j in the
production term and only turbulent quantities in the dissipation term, we
take, glancing at the k equation (Eq. 2.38)

Pε = −cε1
ε

k

(
Ūi,j + Ūj,i

)
Ūi,j (3.1)

diss.term = −cε2ρ
ε2

k
.

Note that for the production term we have Pε = cε1(ε/k)Pk . Now we can
write the transport equation for the dissipation as

(ρŪjε),j =

[(

µ+
µt

σε

)

ε,j

]

,j

+
ε

k
(cε1Pk − cε2ρε) (3.2)

For boundary-layer flow Eq. 3.2 reads

∂ρŪε

∂x
+

∂ρV̄ ε

∂y
=

∂

∂y

[(

µ+
µt

σε

)
∂ε

∂y

]

+ cε1
ε

k
µt

(
∂Ū

∂y

)2

− ρcε2
ε2

k
(3.3)

3.2 Wall Functions

The natural way to treat wall boundaries is to make the grid sufficiently fine
so that the sharp gradients prevailing there are resolved. Often, when com-
puting complex three-dimensional flow, that requires too much computer
resources. An alternative is to assume that the flow near the wall behaves
like a fully developed turbulent boundary layer and prescribe boundary
conditions employing wall functions. The assumption that the flow near
the wall has the characteristics of a that in a boundary layer if often not
true at all. However, given a maximum number of nodes that we can af-
ford to use in a computation, it is often preferable to use wall functions
which allows us to use fine grid in other regions where the gradients of the
flow variables are large.

In a fully turbulent boundary layer the production term and the dissi-
pation term in the log-law region (30 < y+ < 100) are much larger than the
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Figure 3.1: Boundary along a flat plate. Energy balance in k equation [46].
Reδ ≃ 4400, u∗/U0 ≃ 0.043.

other terms, see Fig. 3.1. The log-law we use can be written as

U

u∗
=

1

κ
ln

(
Eu∗y

ν

)

(3.4)

E = 9.0 (3.5)

Comparing this with the standard form of the log-law

U

u∗
= A ln

(u∗y

ν

)

+B (3.6)

we see that

A =
1

κ
(3.7)

B =
1

κ
lnE.

In the log-layer we can write the modelled k equation (see Eq. 2.39) as

0 = µt

(
∂Ū

∂y

)2

− ρε. (3.8)

where we have replaced the dissipation term ρk
3

2 /ℓ by ρε. In the log-law
region the shear stress −ρuv is equal to the wall shear stress τw, see Fig. 2.1.
The Boussinesq assumption for the shear stress reads (see Eq. 2.10)

τw = −ρuv = µt
∂Ū

∂y
(3.9)

Using the definition of the wall shear stress τw = ρu2∗, and inserting Eq. 3.9
into Eq. 3.8 we get

0 =
uv2

νt
− ε =

u2τ
νt

− ε (3.10)
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3.2 Wall Functions 24

which with νt = cµρk
2/ε gives

cµ =

(
u2∗
k

)2

(3.11)

From experiments we have that in the log-law region of a boundary layer
u2∗/k ≃ 0.3 so that cµ = 0.09. cµ con-

stantWhen we are using wall functions k and ε are not solved at the nodes
adjacent to the walls. Instead they are fixed according to the theory pre-
sented above. The turbulent kinetic energy is set from Eq. 3.11, i.e. b.c. for k

kP = c−1/2
µ u2∗ (3.12)

where the friction velocity u∗ is obtained, iteratively, from the log-law (Eq. 3.4).
Index P denotes the first interior node (adjacent to the wall).

The dissipation ε is obtained from observing that production and dis-
sipation are in balance (see Eq. 3.8). The dissipation can thus be written
as b.c. for ε

εP = Pk =
u3∗
κy

(3.13)

where the velocity gradient in the production term −uv∂U/∂y has been
computed from the log-law in Eq. 3.4, i.e.

∂U

∂y
=

u∗
κy

. (3.14)

For the velocity component parallel to the wall the wall shear stress is b.c. for
velocityused as a flux boundary condition (cf. prescribing heat flux in the temper-

ature equation).
When the wall is not parallel to any velocity component, it is more con-

venient to prescribe the turbulent viscosity. The wall shear stress τw is ob-
tained by calculating the viscosity at the node adjacent to the wall from the
log-law. The viscosity used in momentum equations is prescribed at the
nodes adjacent to the wall (index P) as follows. The shear stress at the wall
can be expressed as

τw = µt,P
∂Ū

∂η
≈ µt,P

Ū‖,P

η

where Ū‖,P denotes the velocity parallel to the wall and η is the normal
distance to the wall. Using the definition of the friction velocity u∗

τw = ρu2∗

we obtain

µt,P

U‖,P

η
= ρu2∗ → µt,P =

u∗
U‖,P

ρu∗η

24



3.3 The k − ε Model 25

Substituting u∗/Ū‖,P with the log-law (Eq. 3.4) we finally can write

µt,P =
ρu∗ηκ

ln(Eη+)

where η+ = u∗η/ν.

3.3 The k − ε Model

In the k − ε model the modelled transport equations for k and ε (Eqs. 2.38,
3.2) are solved. The turbulent length scale is obtained from (see Eq. 1.12,2.37)

ℓ =
k3/2

ε
. (3.15)

The turbulent viscosity is computed from (see Eqs. 2.11, 2.36, 1.12)

νt = cµk
1/2ℓ = cµ

k2

ε
. (3.16)

We have five unknown constants cµ, cε1, cε2, σk and σε, which we hope
should be universal i.e same for all types of flows. Simple flows are chosen
where the equation can be simplified and where experimental data are used
to determine the constants. The cµ constant was determined above (Sub-
section 3.2). The k equation in the logarithmic part of a turbulent boundary
layer was studied where the convection and the diffusion term could be
neglected.

In a similar way we can find a value for the cε1 constant . We look at the cε1 con-
stantε equation for the logarithmic part of a turbulent boundary layer, where the

convection term is negligible, and utilizing that production and dissipation
are in balance Pk = ρε, we can write Eq. 3.3 as

0 =
∂

∂y

[
µt

σε

∂ε

∂y

]

︸ ︷︷ ︸

Dε

+(cε1 − cε2) ρ
ε2

k
(3.17)

The dissipation and production term can be estimated as (see Sub-section 3.2)

ε =
k3/2

ℓ
(3.18)

Pk = ρ
u3∗
κy

,

which together with Pk = ρε gives

ℓ = κc−3/4
µ y. (3.19)
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3.4 The k − ω Model 26

In the logarithmic layer we have that ∂k/∂y = 0, but from Eqs. 3.18, 3.19 we
find that ∂ε/∂y 6= 0. Instead the diffusion term in Eq. 3.17 can be rewritten
using Eqs. 3.18, 3.19, 3.16 as

Dε =
∂

∂y

[

µt

σε

∂

∂y

(

k3/2

κc
−3/4
µ y

)]

=
k2κ2

σεℓ2c
1/2
µ

(3.20)

Inserting Eq. 3.20 and Eq. 3.18 into Eq. 3.17 gives

cε1 = cε2 −
κ2

c
1/2
µ σε

(3.21)

The flow behind a turbulence generating grid is a simple flow which
allows us to determine the cε2 constant. Far behind the grid the velocity cε2 con-

stantgradients are very small which means that Pk = 0. Furthermore V = 0 and
the diffusion terms are negligible so that the modelled k and ε equations
(Eqs. 2.38, 3.2) read

ρŪ
dk

dx
= −ρε (3.22)

ρŪ
dε

dx
= −cε2ρ

ε2

k
(3.23)

Assuming that the decay of k is exponential k ∝ x−m, Eq. 3.22 gives ε ∝
−mx−m−1. Insert this in Eq. 3.22, derivate to find dε/dx and insert it into
Eq. 3.23 yields

cε2 =
m+ 1

m
(3.24)

Experimental data give m = 1.25 ± 0.06 [46], and cε2 = 1.92 is chosen.
We have found three relations (Eqs. 3.11, 3.21, 3.24) to determine three

of the five unknown constants. The last two constants, σk and σε, are opti-
mized by applying the model to various fundamental flows such as flow in
channel, pipes, jets, wakes, etc. The five constants are given the following
values: cµ = 0.09, cε1 = 1.44, cε2 = 1.92, σk = 1.0, σε = 1.31.

3.4 The k − ω Model

The k − ω model is gaining in popularity. The model was proposed by
Wilcox [48, 49, 39]. In this model the standard k equation is solved, but as a
length determining equation ω is used. This quantity is often called specific
dissipation from its definition ω ∝ ε/k. The modelled k and ω equation read

(ρŪjk),j =

[(

µ+
µt

σω
k

)

k,j

]

,j

+ Pk − β∗ωk (3.25)
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(ρŪjω),j =

[(

µ+
µt

σω

)

ω,j

]

,j

+
ω

k
(cω1Pk − cω2ρkω) (3.26)

µt = ρ
k

ω
, ε = β∗ωk.

The constants are determined as in Sub-section 3.3: β∗ = 0.09, cω1 = 5/9,
cω2 = 3/40, σω

k = 2 and σω = 2.
When wall functions are used k and ω are prescribed as (cf. Sub-section 3.2):

kwall = (β∗)−1/2u2∗, ωwall = (β∗)−1/2 u∗
κy

. (3.27)

In regions of low turbulence when both k and ε go to zero, large numer-
ical problems for the k − ε model appear in the ε equation as k becomes
zero. The destruction term in the ε equation includes ε2/k, and this causes
problems as k → 0 even if ε also goes to zero; they must both go to zero
at a correct rate to avoid problems, and this is often not the case. On the
contrary, no such problems appear in the ω equation. If k → 0 in the ω
equation in Eq. 3.25, the turbulent diffusion term simply goes to zero. Note
that the production term in the ω equation does not include k since

ω

k
cω1Pk =

ω

k
cω1µt

(
∂Ūi

∂xj
+

∂Ūj

∂xi

)
∂Ūi

∂xj
= cω1β

∗

(
∂Ūi

∂xj
+

∂Ūj

∂xi

)
∂Ūi

∂xj
.

The standard k − ω model can – contrary to the standard k − ε model –
be used as a low-Re number model all the way to the wall (including the
viscous sublayer). In that case, the wall boundary condition for k is simply
k = 0 and ω is fixed at the wall-adjacent cells according to Eq. 4.26.

In Ref. [38] the k − ω model was used to predict transitional, recirculat-
ing flow.

3.5 The k − τ Model

One of the most recent proposals is the k − τ model of Speziale et al. [42]
where the transport equation for the turbulent time scale τ is derived. The
exact equation for τ = k/ε is derived from the exact k and ε equations. The
modelled k and τ equations read

(ρŪjk),j =

[(

µ+
µt

στ
k

)

k,j

]

,j

+ Pk − ρ
k

τ
(3.28)
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(ρŪjτ),j =

[(

µ+
µt

στ2

)

τ,j

]

,j

+
τ

k

[

(1− cε1)Pk + (cε2 − 1)
k

τ

]

(3.29)

+
2

k

(

µ+
µt

στ1

)

k,jτ,j −
2

τ

(

µ+
µt

στ2

)

τ,jτ,j

µt = cµρkτ, ε = k/τ

The constants are: cµ, cε1 and cε2 are taken from the k − ε model, and στ
k =

στ1 = στ2 = 1.36.
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4 Low-Re Number Turbulence Models

In the previous section we discussed wall functions which are used in order
to reduce the number of cells. However, we must be aware that this is
an approximation which, if the flow near the boundary is important, can
be rather crude. In many internal flows – where all boundaries are either
walls, symmetry planes, inlet or outlets – the boundary layer may not be
that important, as the flow field is often pressure-determined. For external
flows (for example flow around cars, ships, aeroplanes etc.), however, the
flow conditions in the boundaries are almost invariably important. When
we are predicting heat transfer it is in general no good idea to use wall
functions, because the heat transfer at the walls are very important for the
temperature field in the whole domain.

When we chose not to use wall functions we thus insert sufficiently
many grid lines near solid boundaries so that the boundary layer can be
adequately resolved. However, when the wall is approached the viscous
effects become more important and for y+ < 5 the flow is viscous dom-
inating, i.e. the viscous diffusion is much larger that the turbulent one
(see Fig. 4.1). Thus, the turbulence models presented so far may not be
correct since fully turbulent conditions have been assumed; this type of
models are often referred to as high-Re number models. In this section
we will discuss modifications of high-Re number models so that they can
be used all the way down to the wall. These modified models are termed
low Reynolds number models. Please note that “high Reynolds number”
and “low Reynolds number” do not refer to the global Reynolds number
(for example ReL, Rex, Rex etc.) but here we are talking about the local
turbulent Reynolds number Reℓ = Uℓ/ν formed by a turbulent fluctuation
and turbulent length scale. This Reynolds number varies throughout the
computational domain and is proportional to the ratio of the turbulent and
physical viscosity νt/ν, i.e. Reℓ ∝ νt/ν. This ratio is of the order of 100 or
larger in fully turbulent flow and it goes to zero when a wall is approached.

We start by studying how various quantities behave close to the wall
when y → 0. Taylor expansion of the fluctuating velocities ui (also valid
for the mean velocities Ūi) gives

u = a0 + a1y + a2y
2 . . .

v = b0 + b1y + b2y
2 . . .

w = c0 + c1y + c2y
2 . . .

(4.1)

where a0 . . . c2 are functions of space and time. At the wall we have no-
slip, i.e. u = v = w = 0 which gives a0 = b0 = c0. Furthermore, at the wall
∂u/∂x = ∂w/∂z = 0, and the continuity equation gives ∂v/∂y = 0 so that
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Figure 4.1: Flow between two parallel plates. Direct numerical simula-
tions [24]. Re = UCδ/ν = 7890. u∗/UC = 0.050. Energy balance in
k equation. Production Pk, dissipation ε, turbulent diffusion (by velocity
triple correlations and pressure) DT + Dp, and viscous diffusion Dν . All
terms have been scaled with u4∗/ν.

b1 = 0. Equation 4.1 can now be written

u = a1y + a2y
2 . . .

v = b2y
2 . . .

w = c1y + c2y
2 . . .

(4.2)

From Eq. 4.2 we immediately get

u2 = a21y
2 . . . = O(y2)

v2 = b22y
4 . . . = O(y4)

w2 = c21y
2 . . . = O(y2)

uv = a1b2y
3 . . . = O(y3)

k = (a2
1
+ c2

1
)y2 . . . = O(y2)

∂Ū/∂y = a1 . . . = O(y0)

(4.3)

In Fig. 4.2 DNS-data for the fully developed flow in a channel is pre-
sented.

4.1 Low-Re k − ε Models

There exist a number of Low-Re number k − ε models [35, 7, 10, 1, 30].
When deriving low-Re models it is common to study the behavior of the
terms when y → 0 in the exact equations and require that the correspond-
ing terms in the modelled equations behave in the same way. Let us study

30



4.1 Low-Re k − ε Models 31

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

y+

u′/u∗

v′/u∗

w′/u∗

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

y/δ

u′/ŪC
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Figure 4.2: Flow between two parallel plates. Direct numerical simula-
tions [24]. Re = UCδ/ν = 7890. u∗/UC = 0.050. Fluctuating velocity

components u′i =
√

u2i.

the exact k equation near the wall (see Eq. 2.24).

∂ρŪk

∂x
+

∂ρV̄ k

∂y
= −ρuv

∂Ū

∂y
︸ ︷︷ ︸

O(y3)

−∂pv

∂y
− ∂

∂y

(
1

2
ρvuiui

)

︸ ︷︷ ︸

O(y3)

+ µ
∂2k

∂y2
− µui,jui,j
︸ ︷︷ ︸

O(y0)

(4.4)

The pressure diffusion ∂pv/∂y term is usually neglected, partly because it
is not measurable, and partly because close to the wall it is not important,
see Fig. 4.3 (see also [31]). The modelled equation reads

∂ρŪk

∂x
+

∂ρV̄ k

∂y
= µt

(
∂Ū

∂y

)2

︸ ︷︷ ︸

O(y4)

+
∂

∂y

(
µt

σk

∂k

∂y

)

︸ ︷︷ ︸

O(y4)

+ µ
∂2k

∂y2
− ρε
︸︷︷︸

O(y0)

(4.5)

When arriving at that the production term is O(y4) we have used

νt = cµρ
k2

ε
=

O(y4)

O(y0)
= O(y4) (4.6)

Comparing Eqs. 4.4 and 4.5 we find that the dissipation term in the mod-
elled equation behaves in the same way as in the exact equation when
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Figure 4.3: Flow between two parallel plates. Direct numerical simula-
tions [24]. Re = UCδ/ν = 7890. u∗/UC = 0.050. Energy balance in k
equation. Turbulent diffusion by velocity triple correlations DT , Turbulent
diffusion by pressure Dp, and viscous diffusion Dν . All terms have been
scaled with u4∗/ν.

y → 0. However, both the modelled production and the diffusion term
are of O(y4) whereas the exact terms are of O(y3). This inconsistency of
the modelled terms can be removed by replacing the cµ constant by cµfµ
where fµ is a damping function fµ so that fµ = O(y−1) when y → 0 and
fµ → 1 when y+ ≥ 50. Please note that the term “damping term” in this
case is not correct since fµ actually is augmenting µt when y → 0 rather
than damping. However, it is common to call all low-Re number functions
for “damping functions”.

Instead of introducing a damping function fµ, we can choose to solve
for a modified dissipation which is denoted ε̃, see Ref. [28] and Section 4.2.

It is possible to proceed in the same way when deriving damping func-
tions for the ε equation [42]. An alternative way is to study the modelled ε
equation near the wall and keep only the terms which do not tend to zero.
From Eq. 3.3 we get

∂ρŪε

∂x
︸ ︷︷ ︸

O(y1)

+
∂ρV̄ ε

∂y
︸ ︷︷ ︸

O(y1)

= cε1
ε

k
Pk

︸ ︷︷ ︸

O(y1)

+
∂

∂y

(
µt

σε

∂ε

∂y

)

︸ ︷︷ ︸

O(y2)

+ µ
∂2ε

∂y2
︸ ︷︷ ︸

O(y0)

− cε2ρ
ε2

k
︸ ︷︷ ︸

O(y−2)

(4.7)

where it has been assumed that the production term Pk has been suitable
modified so that Pk = O(y3). We find that the only term which do not
vanish at the wall are the viscous diffusion term and the dissipation term
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so that close to the wall the dissipation equation reads

0 = µ
∂2ε

∂y2
− cε2ρ

ε2

k
. (4.8)

The equation needs to be modified since the diffusion term cannot balance
the destruction term when y → 0.

4.2 The Launder-Sharma Low-Re k − ε Models

There are at least a dozen different low Re k − ε models presented in the
literature. Most of them can be cast in the form [35] (in boundary-layer
form, for convenience)

∂ρŪk

∂x
+

∂ρV̄ k

∂y
=

∂

∂y

[(

µ+
µt

σk

)
∂k

∂y

]

+ µt

(
∂Ū

∂y

)2

− ρε (4.9)

∂ρŪ ε̃

∂x
+

∂ρV̄ ε̃

∂y
=

∂

∂y

[(

µ+
µt

σε

)
∂ε̃

∂y

]

+ c1εf1
ε̃

k
µt

(
∂Ū

∂y

)2

− cε2f2ρ
ε̃2

k
+ E

(4.10)

µt = cµfµρ
k2

ε̃
(4.11)

ε = ε̃+D (4.12)

Different models use different damping functions (fµ, f1 and f2) and
different extra terms (D and E). Many models solve for ε̃ rather than for
ε where D is equal to the wall value of ε which gives an easy boundary
condition ε̃ = 0 (see Sub-section 4.3). Other models which solve for ε use
no extra source in the k equation, i.e. D = 0.

Below we give some details for one of the most popular low-Re k − ε
models, the Launder-Sharma model [28] which is based on the model of Launder-

SharmaJones & Launder [23]. The model is given by Eqs. 4.9, 4.10, 4.11 and 4.12
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where

fµ = exp

( −3.4

(1 +RT /50)2

)

f1 = 1

f2 = 1− 0.3 exp
(
−R2

T

)

D = 2µ

(

∂
√
k

∂y

)2

E = 2µ
µt

ρ

(
∂2Ū

∂y2

)2

RT =
k2

νε̃

(4.13)

The term E was added to match the experimental peak in k around y+ ≃
20 [23]. The f2 term is introduced to mimic the final stage of decay of turbu-
lence behind a turbulence generating grid when the exponent in k ∝ x−m

changes from m = 1.25 to m = 2.5.

4.3 Boundary Condition for ε and ε̃

In many low-Re k − ε models ε̃ is the dependent variable rather than ε.
The main reason is that the boundary condition for ε is rather complicated.
The largest term in the k equation (see Eq. 4.4) close to the wall, are the
dissipation term and the viscous diffusion term which both are of O(y0) so
that

0 = µ
∂2k

∂y2
− ρε. (4.14)

From this equation we get immediately a boundary condition for ε as

εwall = ν
∂2k

∂y2
. (4.15)

From Eq. 4.14 we can derive alternative boundary conditions. The exact
form of the dissipation term close to the wall reads (see Eq. 2.24)

ε = ν

{(
∂u

∂y

)2

+

(
∂w

∂y

)2
}

(4.16)

where ∂/∂y ≫ ∂/∂x ≃ ∂/∂z and ∂u/∂y ≃ ∂w/∂y ≫ ∂v/∂y have been
assumed. Using Taylor expansion in Eq. 4.1 gives

ε = ν
(

a21 + c21

)

+ . . . (4.17)
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In the same way we get an expression for the turbulent kinetic energy

k =
1

2

(

a21 + c21

)

y2 . . . (4.18)

so that
(

∂
√
k

∂y

)2

=
1

2

(

a21 + c21

)

. . . (4.19)

Comparing Eqs. 4.17 and 4.19 we find

εwall = 2ν

(

∂
√
k

∂y

)2

. (4.20)

In the Sharma-Launder model this is exactly the expression for D in Eqs. 4.12
and 4.13, which means that the boundary condition for ε̃ is zero, i.e. ε̃ = 0.

In the model of Chien [8], the following boundary condition is used

εwall = 2ν
k

y2
(4.21)

This is obtained by assuming a1 = c1 in Eqs. 4.17 and 4.18 so that

ε = 2νa21

k = a21y
2

(4.22)

which gives Eq. 4.21.

4.4 The Two-Layer k − ε Model

Near the walls the one-equation model by Wolfshtein [51], modified by
Chen and Patel [7], is used. In this model the standard k equation is solved;
the diffusion term in the k-equation is modelled using the eddy viscosity
assumption. The turbulent length scales are prescribed as [16, 11]

ℓµ = cℓn [1− exp (−Rn/Aµ)] , ℓε = cℓn [1− exp (−Rn/Aε)]

(n is the normal distance from the wall) so that the dissipation term in the
k-equation and the turbulent viscosity are obtained as:

ε =
k3/2

ℓε
, µt = cµρ

√
kℓµ (4.23)

The Reynolds number Rn and the constants are defined as

Rn =

√
kn

ν
, cµ = 0.09, cℓ = κc−3/4

µ , Aµ = 70, Aε = 2cℓ
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The one-equation model is used near the walls (for Rn ≤ 250), and the
standard high-Re k − ε in the remaining part of the flow. The matching line
could either be chosen along a pre-selected grid line, or it could be defined
as the cell where the damping function

1− exp (−Rn/Aµ)

takes, e.g., the value 0.95. The matching of the one-equation model and the
k − ε model does not pose any problems but gives a smooth distribution of
µt and ε across the matching line.

4.5 The low-Re k − ω Model

A model which is being used more and more is the k−ω model of Wilcox [48].
The standard k−ω model can actually be used all the way to the wall with-
out any modifications [48, 32, 37]. One problem is the boundary condition
for ω at walls since (see Eq. 3.26)

ω =
ε

β∗k
= O(y−2) (4.24)

tends to infinity. In Sub-section 4.3 we derived boundary conditions for
ε by studying the k equation close to the wall. In the same way we can
here use the ω equation (Eq. 3.26) close to the wall to derive a boundary
condition for ω. The largest terms in Eq. 3.26 are the viscous diffusion term
and the destruction term, i.e.

0 = µ
∂2ω

∂y2
− cω2ρω

2. (4.25)

The solution to this equation is

ω =
6ν

cω2y2
(4.26)

The ω equation is normally not solved close to the wall but for y+ < 2.5,
ω is computed from Eq. 4.26, and thus no boundary condition is actually
needed. This works well in finite volume methods but when finite element
methods are used ω is needed at the wall. A slightly different approach
must then be used [17].

Wilcox has also proposed a k − ω model [50] which is modified for vis-
cous effects, i.e. a true low-Re model with damping function. He demon-
strates that this model can predict transition and claims that it can be used
for taking the effect of surface roughness into account which later has been
confirmed [36]. A modification of this model has been proposed in [39].
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4.5.1 The low-Re k − ω Model of Peng et al.

The k − ω model of Peng et al. reads [39]

∂k

∂t
+

∂

∂xj
(Ūjk) =

∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

]

+ Pk − ckfkωk

∂ω

∂t
+

∂

∂xj
(Ūjω) =

∂

∂xj

[(

ν +
νt
σω

)
∂ω

∂xj

]

+
ω

k
(cω1fωPk − cω2kω) + cω

νt
k

(
∂k

∂xj

∂ω

∂xj

)

νt = fµ
k

ω

fk = 1− 0.722 exp

[

−
(
Rt

10

)4
]

fµ = 0.025 +

{

1− exp

[

−
(
Rt

10

)3/4
]}

{

0.975 +
0.001

Rt
exp

[

−
(

Rt

200

)2
]}

fω = 1 + 4.3 exp

[

−
(
Rt

1.5

)1/2
]

, fω = 1 + 4.3 exp

[

−
(
Rt

1.5

)1/2
]

ck = 0.09, cω1 = 0.42, cω2 = 0.075

cω = 0.75, σk = 0.8, σω = 1.35

(4.27)

4.5.2 The low-Re k − ω Model of Bredberg et al.

A new k−ω model was recently proposed by Bredberg et al. [5] which reads

∂k

∂t
+

∂

∂xj
(Ūjk) = Pk − Ckkω +

∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

]

∂ω

∂t
+

∂

∂xj
(Ūjω) = Cω1

ω

k
Pk − Cω2ω

2+

Cω

(ν

k
+

νt
k

) ∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[(

ν +
νt
σω

)
∂ω

∂xj

]

(4.28)

The turbulent viscosity is given by

νt = Cµfµ
k

ω

fµ = 0.09 +

(

0.91 +
1

R3
t

)[

1− exp

{

−
(
Rt

25

)2.75
}] (4.29)
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with the turbulent Reynolds number defined as Rt = k/(ων). The constants
in the model are given as

Ck = 0.09, Cµ = 1, Cω = 1.1, Cω1 = 0.49,

Cω2 = 0.072, σk = 1, σω = 1.8
(4.30)
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5 Reynolds Stress Models

In Reynolds Stress Models the Boussinesq assumption (Eq. 2.10) is not used
but a partial differential equation (transport equation) for the stress tensor
is derived from the Navier-Stokes equation. This is done in the same way
as for the k equation (Eq. 2.23).

Take the Navier-Stokes equation for the instantaneous velocity Ui (Eq. 2.4).
Subtract the momentum equation for the time averaged velocity Ūi ((Eq. 2.6)
and multiply by uj . Derive the same equation with indices i and j inter-
changed. Add the two equations and time average. The resulting equation
reads

(Ūkuiuj),k
︸ ︷︷ ︸

Cij

= −uiukŪj,k − ujukŪi,k
︸ ︷︷ ︸

Pij

+
p

ρ
(ui,j + uj,i)

︸ ︷︷ ︸

Φij

−
[

uiujuk +
puj
ρ

δik +
pui
ρ

δjk − ν(uiuj),k

]

,k
︸ ︷︷ ︸

Dij

− 2νui,kuj,k
︸ ︷︷ ︸

εij

(5.1)

where

Pij is the production of uiuj [note that Pii =
1

2
Pk (Pii = P11 + P22 +

P33)];

Φij is the pressure-strain term, which promotes isotropy of the turbu-
lence;

εij is the dissipation (i.e. transformation of mechanical energy into
heat in the small-scale turbulence) of uiuj ;

Cij and Dij are the convection and diffusion, respectively, of uiuj .

Note that if we take the trace of Eq. 5.1 and divide by two we get the
equation for the turbulent kinetic energy (Eq. 2.23). When taking the trace
the pressure-strain term vanishes since

Φii = 2
p

ρ
ui,i = 0 (5.2)

due to continuity. Thus the pressure-strain term in the Reynolds stress
equation does not add or destruct any turbulent kinetic energy it merely
redistributes the energy between the normal components (u2, v2 and w2).
Furthermore, it can be shown using physical reasoning [20] that Φij acts to
reduce the large normal stress component(s) and distributes this energy to
the other normal component(s).
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5.1 Reynolds Stress Models

We find that there are terms which are unknown in Eq. 5.1, such as the
triple correlations uiujuk, the pressure diffusion (pujδik + +puiδjk)/ρ and
the pressure strain Φij , and the dissipation tensor εij . From Navier-Stokes
equation we could derive transport equations for this unknown quantities
but this would add further unknowns to the equation system (the closure
problem, see p. 12). Instead we supply models for the unknown terms.

The pressure strain term, which is an important term since its contribu- Φij

tion is significant, is modelled as [27, 18]

Φij = Φij,1 +Φij,2 +Φ′
ij,1 +Φ′

ij,2

Φij,1 = −c1
ε

k

(

uiuj −
2

3
δijk

)

Φij,2 = −c2

(

Pij −
2

3
δijPk

)

Φ′
nn,1 = −2c′1

ε

k
u2nf

Φ′
ss,1 = c′1

ε

k
u2nf

f =
k

3

2

2.55xnε

(5.3)

The object of the wall correction terms Φ′
nn,1 and Φ′

ss,1 is to take the effect of
the wall into account. Here we have introduced a s− n coordinate system,
with s along the wall and n normal to the wall. Near a wall (the term
“near” may well extend to y+ = 200) the normal stress normal to the wall is
damped (for a wall located at, for example, x = 0 this mean that the normal
stress v2 is damped), and the other two are augmented (see Fig. 4.2).

In the literature there are many proposals for better (and more compli-
cated) pressure strain models [43, 26].

The triple correlation in the diffusion term is often modelled as [9] triple cor-
relation

Dij =

(

csρukum
k

ε
(uiuj),k

)

,m

(5.4)

The pressure diffusion term is for two reasons commonly neglected. First, it
is not possible to measure this term and before DNS-data (Direct Numerical
Simulations) were available it was thus not possible to model this term.
Second, from DNS-data is has indeed been found to be small (see Fig. 4.3).

The dissipation tensor εij is assumed to be isotropic, i.e.

εij =
2

3
δijε. (5.5)

From the definition of εij (see 5.1) we find that the assumption in Eq. 5.5 is
equivalent to assuming that for small scales (where dissipation occurs) the
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two derivative ui,k and uj,k are not correlated for i 6= j. This is the same as
assuming that for small scales ui and uj are not correlated for i 6= j which is
a good approximation since the turbulence at these small scale is isotropic,
see Section 1.4.

We have given models for all unknown term in Eq. 5.1 and the modelled
Reynolds equation reads [27, 18]

(Ūkuiuj),k = −uiukŪj,k − ujukŪi,k

+

(

µ(uiuj),k + csρukum
k

ε
(uiuj),m

)

,k

+Φij −
2

3
δijρε

(5.6)

where Φij should be taken from Eq. 5.3. For a review on RSMs (Reynolds
Stress Models), see [19, 25, 29, 41].

5.2 Reynolds Stress Models vs. Eddy Viscosity Models

Whenever non-isotropic effects are important we should consider using RSMs.
Note that in a turbulent boundary layer the turbulence is always non-isotropic,
but isotropic eddy viscosity models handle this type of flow excellent as far
as mean flow quantities are concerned. Of course a k − ε model give very
poor representation of the normal stresses. Examples where non-isotropic
effects often are important are flows with strong curvature, swirling flows,
flows with strong acceleration/retardation. Below we present list some ad-
vantages and disadvantages with RSMs and eddy viscosity models.

Advantages with eddy viscosity models:

i) simple due to the use of an isotropic eddy (turbulent) viscosity;
ii) stable via stability-promoting second-order gradients in the mean-

flow equations;
iii) work reasonably well for a large number of engineering flows.

Disadvantages with eddy viscosity models:

i) isotropic, and thus not good in predicting normal stresses (u2, v2, w2);
ii) as a consequence of i) it is unable to account for curvature effects;

iii) as a consequence of i) it is unable to account for irrotational strains.

Advantages with RSMs:

i) the production terms need not to be modelled;
ii) thanks to i) it can selectively augment or damp the stresses due to

curvature effects, acceleration/retardation, swirling flow, buoyancy
etc.

Disadvantages with RSMs:

i) complex and difficult to implement;
ii) numerically unstable because small stabilizing second-order deriva-

tives in the momentum equations (only laminar diffusion);
iii) CPU consuming.
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Figure 5.1: Curved boundary layer flow along r = constant. Uθ =
Uθ(r), Ur = 0.

5.3 Curvature Effects

Curvature effects, related either to curvature of the wall or streamline cur-
vature, are known to have significant effects on the turbulence [3]. Both
types of curvature are present in attached flows on curved surfaces, and
in separation regions. The entire Reynolds stress tensor is active in the
interaction process between shear stresses, normal stresses and mean ve-
locity strains. When predicting flows where curvature effects are impor-
tant, it is thus necessary to use turbulence models that accurately predict
all Reynolds stresses, not only the shear stresses. For a discussion of curva-
ture effects, see Refs. [12, 13].

When the streamlines in boundary layer type of flow have a convex
(concave) curvature, the turbulence is stabilized (destabilized), which damp-
ens (augments) the turbulence [3, 40], especially the shear stress and the
Reynolds stress normal to the wall. Thus convex streamline curvature de-
creases the stress levels. It can be shown that it is the exact modelling of the
production terms in the RSM which allows the RSM to respond correctly to
this effect. The k − ε model, in contrast, is not able to respond to streamline
curvature.

The ratio of boundary layer thickness δ to curvature radius R is a com-
mon parameter for quantifying the curvature effects on the turbulence. The
work reviewed by Bradshaw demonstrates that even such small amounts
of convex curvature as δ/R = 0.01 can have a significant effect on the tur-
bulence. Thompson and Whitelaw [45] carried out an experimental inves-
tigation on a configuration simulating the flow near a trailing edge of an
airfoil, where they measured δ/R ≃ 0.03. They reported a 50 percent de-
crease of ρv2 (Reynolds stress in the normal direction to the wall) owing to
curvature. The reduction of ρu2 and −ρuv was also substantial. In addition
they reported significant damping of the turbulence in the shear layer in
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Figure 5.2: The streamlines which in flat-plate boundary layers are along
the x-axis are suddenly deflected upwards (concave curvature) owing to e.g.
an approaching separation region.

the outer part of the separation region.
An illustrative model case is curved boundary layer flow. A polar coor-

dinate system r− θ (see Fig. 5.1)) with θ̂ locally aligned with the streamline
is introduced. As Uθ = Uθ(r) (with ∂Uθ/∂r > 0 and Ur = 0), the radial
inviscid momentum equation degenerates to

ρU2
θ

r
− ∂p

∂r
= 0 (5.7)

Here the variables are instantaneous or laminar. The centrifugal force ex-
erts a force in the normal direction (outward) on a fluid following the stream-
line, which is balanced by the pressure gradient. If the fluid is displaced by
some disturbance (e.g. turbulent fluctuation) outwards to level A, it en-
counters a pressure gradient larger than that to which it was accustomed
at r = r0, as (Uθ)A > (Uθ)0, which from Eq. 5.7 gives (∂p/∂r)A > (∂p/∂r)

0
.

Hence the fluid is forced back to r = r0. Similarly, if the fluid is displaced
inwards to level B, the pressure gradient is smaller here than at r = r0 and
cannot keep the fluid at level B. Instead the centrifugal force drives it back
to its original level.

It is clear from the model problem above that convex curvature, when
∂Uθ/∂r > 0, has a stabilizing effect on (turbulent) fluctuations, at least in
the radial direction. It is discussed below how the Reynolds stress model
responds to streamline curvature.

Assume that there is a flat-plate boundary layer flow. The ratio of the
normal stresses ρu2 and ρv2 is typically 5. At one x station, the flow is
deflected upwards, see Fig. 5.2. How will this affect the turbulence? Let us
study the effect of concave streamline curvature. The production terms Pij

owing to rotational strains can be written as
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∂Ūθ/∂r > 0 ∂Ūθ/∂r < 0

convex curvature stabilizing destabilizing

concave curvature destabilizing stabilizing

Table 5.1: Effect of streamline curvature on turbulence.

RSM, u2 − eq. : P11 = −2ρuv
∂Ū

∂y
(5.8)

RSM, uv − eq. : P12 = −ρu2
∂V̄

∂x
− ρv2

∂Ū

∂y
(5.9)

RSM, v2 − eq. : P22 = −2ρuv
∂V̄

∂x
(5.10)

k − ε : Pk = µt

(
∂Ū

∂y
+

∂V̄

∂x

)2

(5.11)

As long as the streamlines in Fig. 5.2 are parallel to the wall, all pro-
duction is a result of ∂Ū/∂y. However as soon as the streamlines are de-
flected, there are more terms resulting from ∂V̄ /∂x. Even if ∂V̄ /∂x is much
smaller that ∂Ū/∂y it will still contribute non-negligibly to P12 as ρu2 is
much larger than ρv2. Thus the magnitude of P12 will increase (P12 is nega-
tive) as ∂V̄ /∂x > 0. An increase in the magnitude of P12 will increase −uv,
which in turn will increase P11 and P22. This means that ρu2 and ρv2 will
be larger and the magnitude of P12 will be further increased, and so on. It
is seen that there is a positive feedback, which continuously increases the
Reynolds stresses. It can be said that the turbulence is destabilized owing
to concave curvature of the streamlines.

However, the k − ε model is not very sensitive to streamline curvature
(neither convex nor concave), as the two rotational strains are multiplied
by the same coefficient (the turbulent viscosity).

If the flow (concave curvature) in Fig. 5.2 is a wall jet flow where ∂Ū/∂y <
0, the situation will be reversed: the turbulence will be stabilized. If the
streamline (and the wall) in Fig. 5.2 is deflected downwards, the situation
will be as follows: the turbulence is stabilizing when ∂Ū/∂y > 0, and desta-
bilizing for ∂Ū/∂y < 0.

The stabilizing or destabilizing effect of streamline curvature is thus
dependent on the type of curvature (convex or concave), and whether there
is an increase or decrease in momentum in the tangential direction with
radial distance from its origin (i.e. the sign of ∂Ūθ/∂r). For convenience,
these cases are summarized in Table 5.1.
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Figure 5.3: Stagnation flow.

5.4 Acceleration and Retardation

When the flow accelerates and/or decelerate the irrotational strains (∂Ū/∂x,
∂V̄ /∂y and ∂W̄/∂z) become important.

In boundary layer flow, the only term which contributes to the pro-
duction term in the k equation is −ρuv∂U/∂y (x denotes streamwise direc-
tion). Thompson and Whitelaw [45] found that, near the separation point
as well as in the separation zone, the production term −ρ(u2 − v2)∂U/∂x
is of equal importance. This was confirmed in prediction of separated flow
using RSM [12, 13].

In pure boundary layer flow the only term which contributes to the
production term in the k and ε-equations is −ρuv∂Ū/∂y. Thompson and
Whitelaw [45] found that near the separation point, as well as in the sepa-
ration zone, the production term −ρ(u2−v2)∂Ū/∂x is of equal importance.
As the exact form of the production terms are used in second-moment clo-
sures, the production due to irrotational strains is correctly accounted for.

In the case of stagnation-like flow (see Fig. 5.3), where u2 ≃ v2 the pro-
duction due to normal stresses is zero, which is also the results given by
second-moment closure, whereas k − ε models give a large production. In
order to illustrate this, let us write the production due to the irrotational
strains ∂Ū/∂x and ∂V̄ /∂y for RSM and k − ε:

RSM : 0.5 (P11 + P22) = −ρu2
∂Ū

∂x
− ρv2

∂V̄

∂y

k − ε : Pk = 2µt

{(
∂Ū

∂x

)2

+

(
∂V̄

∂y

)2
}

If u2 ≃ v2 we get P11 + P22 ≃ 0 since ∂Ū/∂x = −∂V̄ /∂y due to continuity.
The production term Pk in k − ε model, however, will be large, since it will
be sum of the two strains.
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