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Abstract
When the number of wind farms increases, the number of wind turbines placed in forested areas

will also increase, this is because of the large forest areas in Sweden. When the wind turbines are

placed in forested areas the fatigue loads increase drastically, so their maintenance costs increase

making them less profitable. In this work clearings in forest are studied to be able to increase

the electrical power generated by the wind turbines and decrease the fatigue loads to make them

more profitable.

The approach in this work is to use Computational Fluid Dynamics (CFD) with the Large

Eddy Simulation (LES) turbulence model coupled to an aero elastic solver that solves the dynamic

response of the wind turbine.

Here Ryningsnäs in Sweden is investigated with a homogeneous forest, the current clearing

and an extended clearing. The electrical generator power was highest for the current clearing. But

the fatigue loads were both higher and lower than the homogeneous forest depending on which

part of the wind turbine that was investigated. The extended clearing nearly always had the lowest

fatigue loads but unfortunately also the lowest electrical generator power. Further optimization

of the clearings and the wind turbine locations in relation to them is needed to find the sweet spot

where the fatigue loads are lower and the electrical generator power is higher.

Keywords: ALM, CFD, FAST, forest clearing, LES, OpenFOAM, SOWFA, Wind turbine.
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”Normal people... believe that if it ain’t broke, don’t fix it. Engineers believe that if it ain’t broke,

it doesn’t have enough features yet.” - Scott Adams
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Nomenclature

Greek symbols

α Wind turning angle

γ Extinction coefficient of light

Ω Rotation rate vector at a location on the planetary surface

ω Planetary rotation rate

φ Latitude

ρ Air density

ρ0 Reference air density

τD
i j Sub grid stress tensor

θ Potential temperature

θ0 Reference potential temperature

ε Permutation tensor

ε1D 1D Gaussian distribution width

ε2D 2D Gaussian distribution width

ε3D 3D Gaussian distribution width

εi Parameter to control the Gaussian distribution width

Symbols

ūi Velocity component in the xi-direction

∆θ Tangential local cell length

∆r Tangential radial cell length

∆x Axial local cell length

Ac Downward cumulative leaf area index (LAI)

a f Vertical leaf area density

B Number of blades on the wind turbine

c Local chord length

CD Local drag coefficient

CL Local lift coefficient

CD f Forest drag coefficient

DADM
i Actuator Disk drag force

DALM
i Actuator Line drag force

eD Unit vector in the direction of the drag

eL Unit vector in the direction of the lift

f T
i Forces from the actuator turbine model

FADM
i Actuator Disk element force

FALM
i Actuator Line element force
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FA
i Force field projected to the CFD cells

FT
i Actuator element force

Ff ,i Forest drag

h Forest height

LADM
i Actuator Disk lift force

LALM
i Actuator Line lift force

Lm Maximum value of the leaf area density

n Parameter that controls the shape of the vertical leaf area density

p1D Axial distance between the actuator point and the cell

p2D Distance between the actuator point and the cell with the same radii

Qh Canopy top heat flux

q j Sub grid heat flux

R Rotor radius

r Distance between the actuator point and the cell

r Local radius to the center location on the area section

Sh Canopy heat source term

U Local wind speed

Urel Local relative velocity

zm z location where the maximum value of the leaf area density occur

Abbreviations

ADM Actuator Disk Model

ALM Actuator Line Model

BEM Blade Element Momentum Method

CFD Computational Fluid Dynamics

FAST Fatigue, Aerodynamics, Structures, and Turbulence code

LAI Leaf area index

LES Large Eddy Simulation

NREL National Renewable Energy Laboratory

RMS Root mean square

SOWFA Simulator fOr Wind Farm Applications

SWPTC Swedish Wind Power Technology Centre
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Chapter 1

Theory

1.1 Forest and wind turbines

In Sweden the large resource of forest compared to non-forested areas will cause that many wind

turbines will be placed in a forested region. Previous research has shown that the turbulence

and wind shear are increased drastically by the influence of the forest. It has been shown that

a wind turbine located in a homogeneous forest will experience a more extreme situation than

covered by the IEC design criteria [1]. When maintenance logs of wind turbines in forest and

non-forested areas where compared, the wind turbines located in the forest showed 2.2 times

more fault duration in a year and the frequency of maintenance increased by 20% [2].

1.2 Clearings in forest regions

When a forest edge is present the flow field is changed dramatically compared to a fully homo-

geneous forest. Large Eddy Simulation (LES) of a forest edge flow has been made in [3] and

compared to results using static inlet boundary condition and dynamic inlet boundary condition

from a precursor simulation. The dynamic inflow condition outperformed the static and the rec-

ommendation was that the static inflow condition should be avoided [3]. Measurements with

wind from an open landscape meeting a forest edge has been performed in [4]. The data where

taken at 1.5 forest heights inside the forest at leaf-off and leaf-on with leaf area index of (LAI)

of 1 and 6 respective. The total kinetic energy was generally higher during the leaf-on period

than at the leaf-off period. The reason was assumed to be the higher roughness of the upstream

landscape during this period. In both cases the total kinetic energy was unchanged when the flow

moved over the forest edge and to the measurement location. The momentum flux was largest at

the open landscape location which is somewhat surprising. When comparing these measurements

with simulation performed, where a flow is meeting a forest edge and developing over the forest

for two forest cases with LAI of 2 and 5 [5]. The simulation results agree with the trends in the

measurements at 1.5 forest heights inside the forest. But in the simulation more information can

be provided when the flow is developing further along the forest. In both forest types the total

kinetic energy and the momentum flux are increased as the flow is moving along the forest, with

the highest LAI forest showing the highest values of the two. The distance from the forest edge
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that the flow is affected was studied and results showed that edge effects were significant about 22

forest heights after the edge [6]. The affected distance could be even larger for scalar quantities

such as temperature because they need a larger distance than the velocity to adjust [7]. The large

effecting distance after the forest edge show that forests with clearings streamwise larger than five

forest heights will always show edge effects. This is due to the formation of a sub-canopy wind

jet at the leading edge in forests with clearings [8]. When the clearing is in the form of a lake, it

has been shown that the turbulent mixing was mostly due to the wind shear at the three height of

the canopy rather than the thermal stratification due to the lake [9].

1.3 Forest in complex terrain

When comparing computations assuming horizontal homogeneous forest to measurements the

wind profiles seemed to agree but the third order moment showed that there may be some terrain

dependence [10]. This showed that further studies are needed to find the dependency of the

turbulence in the forest on the complex terrain it is located in. When LES where compared to

wind tunnel experiments of the flow over a forested 2D hill [8], the validation showed that the

model could accurately reproduce the flow characteristics. In [11] the k-ε turbulence model was

used to perform 2D and 3D simulation of a forested park damaged by a windstorm. From the

2D simulations it was observed that a region of turbulence always develops at a distance from the

leading edge of the forest but the distance depends on the heterogeneity of the forest. If the forest

is heterogeneous both vertically and horizontally the strong wind shear at the top of the canopy is

weakened and thereby also the turbulence region caused by it compared to a homogeneous forest.

The simulations also showed that the intensity of the turbulence increased when the forest was

denser during the summer i.e. high LAI values. From the 3D simulations of this specific forest

the level of the turbulence was more dependent to the forest leading edge since the forest was

larger allowing the wind shear and thereby also the turbulence to grow along a larger distance.

The simulations could point out the regions of the strongest turbulence levels and these seemed

to agree with the damaged areas. This also showed that the damage in the forest was due to the

wind characteristics. This assumption was also strengthened by a study that the damage could

not be consistent with any other environmental factor. The authors pointed out that the physics

of the model could not provide information about any instantaneous turbulent quantities. They

also showed a strong interest in simulating turbulent flow in complex terrain over a strongly

heterogeneity forest.

1.4 Forest modelling

The forest can be modelled on many ways. One example is to represent it by the roughness of

the wall model [12]. A more complex way is to simulate it by using a drag and heat source as has

been done here [13].

Ff ,i =−CD f a fUūi (1.1)

Eq. 1.1 shows the addition to the momentum equation i.e. the drag force of the forest. CD f is

the drag force coefficient of the forest and it is set to 0.15 [13]. The vertical leaf area density a f

2



CHAPTER 1. THEORY

is supposed to simulate the shape of the drag force of the simulated forest. An illustration can be

seen in fig. 1.1.

Figure 1.1: Example of the vertical leaf area density profile

The heat source in the potential temperature equation is computed in eq. 1.2. To represent the

heat source in the forest γ is the extinction coefficinet of light set to 0.6 [13]. The canopy heat

source Qh is dependent on which kind of atmospheric stability is simulated.

Sh =
∂

∂z
(Qhexp(−γAc)) (1.2)

The area leaf density seen in eq. 1.2 is evaluated using eq. 1.3. It is the total vertical leaf

density of the forest. The vertical leaf area density a f can be obtained in numerous ways. One

way is to measure it in the forest. Another way that has been used here is to obtain it from an

empirical formula [14].

Ac =
∫ h

z
a f dz (1.3)

In eq. 1.4 the shape of the forest is determined by the n, Lm and zm parameters. The n param-

eter has been evaluted in different ways by the developers and eq. 1.5 has been shown to properly

evaluate n [14]. The Lm and zm parameters on the other hand are dependent on which kind of

forest that is evaluated [13, 14].

a f (z) = Lm

(

h− zm

h− z

)n

exp

(

n

(

1−
(

h− zm

h− z

)))

(1.4)

n =

{

6 0 ≤ z < zm,
1
2 zm ≤ z ≤ h

(1.5)

1.5 Actuator turbine models

When simulating wind turbines in CFD actuator turbine models are often used in favour of solving

the flow field over each blade. The main advantage of this is that the boundary layer on each blade

does not need to be resolved so the mesh resolution can be reduced significantly [15]. In actuator
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turbine models the wind turbine is simulated by lift and drag forces. They are calculated using CL

and CD from 2D airfoil tables and assuming constant cord length of each section of the blades.

But the way the blades are modelled could vary in numerous ways e.g. as disk in Actuator Disk

Model (ADM) and as lines in an Actuator Line Model (ALM) illustration seen in fig. 1.2.

Figure 1.2: Simulation of wind turbine blades in ADM and ALM

1.5.1 Actuator disk model

The ADM is based on the Blade Element Momentum Method (BEM) which calculates the forces

on the blades modelled as 2D airfoil profiles. The blades are here simulated as a disk.

FADM
i =

(

LADM
i ,DADM

i

)

=
B

2πr

1

2
ρU2

relc(CLeL,CDeD) (1.6)

In ADM the lift and drag forces are per unit area as can be seen in eq. 1.6 as LADM
i and DADM

i .

An example of an area section where the force from an ADM routine could be applied on can be

seen in fig. 1.3. Eq. 1.6 is a modified lift and drag force formula of an airfoil. Further information

on the steps from BEM to ADM can be found in [16]. Since the ADM simulates the wind turbine

blades as a disk the flow will be axisymmetric.

4



CHAPTER 1. THEORY

Figure 1.3: Area sections of ADM

1.5.2 Actuator line model

In ALM the blades are simulated as lines. This representation makes it not possible to run the

simulation axisymmetric as in ADM. With ALM a 3D simulation is needed.

FALM
i =

(

LALM
i ,DALM

i

)

=
1

2
ρU2

relc(CLeL,CDeD) (1.7)

The ALM formula for lift and drag can be seen in eq. 1.7, as LALM
i and DALM

i . Compared to

the ADM the ALM formula has unit force per meter instead of force per area. ALM can capture

the tip and root vortices which ADM cannot [17]. To have a representation of these vortices are

important when studying the near wake and is a clear advantage of the ALM over the ADM. The

advantage of ADM compared to ALM is the speed of convergence. This is because the actuator

lines of ALM should not travel through too many cells each time step, preferably only on cell.

Hence the time step must be much smaller than what can be used in ADM.

1.6 Coupling actuator turbine models and CFD

Actuator turbine models can be used in CFD in two ways. The first one is called one way coupling

where the flow field of the CFD is fed in to the actuator turbine model and evaluated. The second

way is to feed the forces obtained by the actuator turbine model back to the CFD, this is called two

way coupling. To do this a Gaussian distribution is used to smear the force in the neighborhood

of the actuator point. This is necessary in order to avoid numerical oscillations in the simulation

that otherwise will occur [12]. The way the forces in the Gaussian is smeared in the neighborhood

of the actuator point can be done in numerous ways. In ADM a 1D Gaussian with distribution

smearing in the axial direction is recommended [16]. The physical representation of this can be

seen fig. 1.4
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Figure 1.4: Physical representation of a 1D Gaussian distribution in the streamwise direction used

together with ADM

In eq. 1.8 an example of a 1D Gaussian distribution can be seen.

FT
i (p1D) =

FA
i

ε3
1D

√
π

exp

[

−
(

p1D

ε1D

)2]

(1.8)

In this 1D smearing ε1D is described by eq. 1.9. εi is recommended a value from 1 to 4 [16].

ε1D = εi∆x (1.9)

A 2D or 3D Gaussian distribution is usually used together with ALM. A 2D Gaussian dis-

tribution will not only smear the force in the axial direction but also in the azimuthal direction

following a constant radius. So the force will not only be applied to the flow axially as in fig. 1.4

but also in azimuthal direction in the rotor plane as shown in fig. 1.5.

Figure 1.5: 2D Gaussian distribution in addition to 1D Gaussian also apply forces in the rotor

plane.

A 2D Gaussian distribution can be seen in eq. 1.10. The variable p2D is the distance from the

actuator point to the node on the line with the same radius.

FT
i (p2D) =

FA
i

ε3
2Dπ

exp

[

−
(

p2D

ε2D

)2]

(1.10)

6
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The ε1D in ADM is now not only a variable depending on the axial mesh resolution but

the whole 3D mesh resolution and therefor renamed to ε2D. Eq. 1.11 shows the recommended

formula for ε2D [16].

ε2D = εi

√

(R∆θ2)∆r2∆x2 (1.11)

A 3D Gaussian distribution can also be used. The force is then also applied along the radial

direction of the actuator lines. This can physically be seen as spheres that increase in intensity

the closer to the actuator point the cell is. The 3D Gaussian smears the force over the acual

tip of the wind turbine blade. So when the tip flow behavior has been investigated a 2D gaussian

distribution has been preferred instead [16]. A 3D Gaussian distribution in shown in eq. 1.12 [18].

FT
i (r) =

FA
i

ε3
3Dπ3/2

exp

[

−
(

r

ε3D

)2]

(1.12)

The ε3D has been recommended to be twice the cell axial length near the actuator line [15].

Independent of which Gaussian distribution that is choosen, the choice of ε and cell size has been

shown to have an impact on the results and have to be choicen with care [12, 16, 17, 19, 20].

1.7 SOWFA by NREL

The Simulator fOr Wind Farm Applications (SOWFA) developed by National Renewable Energy

Laboratory (NREL) has been used throughout this work [12]. SOWFA is a CFD solver that link

the FAST version 7 code which is an aero elastic solver developed by NREL to OpenFOAM that

models the wind. This is done by replacing the momentum part of the BEM theory in FAST by

CFD. FAST evaluates the structural and system response of the wind turbine and sends the aero-

dynamic forces back to the CFD. So SOWFA is based on two way coupling between OpenFOAM

and FAST.

The transport equation for momentum used in SOWFA can be seen in eq. 1.13. The reference

potential temperature θ0 is set to 300K. The two last terms are the actuator turbine model and the

forest model contributions.

∂ūi

∂t
+

∂

∂x j

(

ū jūi

)

=−2εi3kΩ3ūk−
∂p̃

∂xi
− 1

ρ0

∂

∂xi
p̄0 (x,y)−

∂

∂x j

(

τD
i j

)

−g

(

θ̄−θ0

θ0

)

δi3+
1

ρ0
f T
i +Ff ,i

(1.13)

SOWFA includes the Coriolis force seen in eq. 1.13. The rotational rate vector at a location

on the planetary surface is evaluated by eq. 1.14.

Ω j = ω





0

cosφ
sinφ



 (1.14)
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The transport equation of the potential temperature can be seen in eq. 1.15. The last term is

the heat source in the forest model.

∂θ̄

∂t
+

∂

∂x j

(

ū jθ̄
)

=− ∂

∂x j

(

q j

)

+Sh (1.15)

SOWFA can only use LES as turbulence model. The sub grid filter model is the Smagorinsky

model [21]. The wall model was developed by Schumann [22]. The ALM model is used as

actuator turbine model with a 3D Gaussian distribution function.

The work flow with SOWFA is to first run an atmospheric boundary layer simulation without

any wind turbines and using only cyclic boundary condition. This is called a precursor simulation.

When the flow is considered to be fully developed, planes in the computation domain are saved.

These are later used as inlet boundary condition in the simulation that includes wind turbines.

The main advantage with this procedure is that the flow is fully developed at the inlet in the wind

turbine simulation. In the following simulations the wind turbine are introduced and OpenFOAM

is coupled to FAST. In this work the data obatined from FAST are processed using the rain flow

counting algorithm to obtain the fatigue loads [23].
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Chapter 2

Results

To be able to validate and investigate the implementations in SOWFA the test site of Ryningsnäs

is used.

2.1 Ryningsnäs

The Ryningsnäs test site is simulated with wind blowing from the south. The wind turbine after

the clearing is located within 22 forest heights after the clearing which is the forest effecting

distance [6]. The computational domain seen from above can be seen to the left in fig. 2.1. Here

the forest is in white and the clearing in grey, also seen is the locations of the two wind turbines

at the site. In all the simulations the 5MW wind turbines from NREL is used [24]. To be able

to draw any general conclusions of the shape of the clearing and its effects on the wind turbines

one more clearing is investigated. This clearing has the maximum width of the current clearing

along it and reaches until the second turbine. This clearing is called the extended clearing and can

be seen to the right in fig. 2.1. Both the clearings are streamwise larger than five forest heights,

which has been shown that leads to that the flow always show edge effects [8]. To be able to

distinguish the effects of the clearings a setup with homogeneous forest is also investigated and

its domain can be seen in the middle of fig. 2.1. All the computational domains has a width (y

direction) of 1000m, a length (x) of 1600m and a height (z) of 800m.

The forest has a height of 20m and is modelled using the model by Shaw and Shumann see

eq. 1.1, 1.2. The forest at the Ryningsnäs site is made up of scots pine tree and it is used to model

the vertical area density [14]. The setup uses zm of 0.6h and Lm of 0.37 to simulated scots pine

three [13, 14]. The wall model was set to model grass plains below the forest.

The simulations was set to simulate neutral stratification. All the computational domains was

first simulated without any wind turbines. In order to investigate the flow field when it is disrupted

only by the clearings. These results are validate against data from an extensive measurement

campaign performed at Ryningsnäs [25]. Some difference to the measurements are expected

since the simulations only take into account wind blowing from the south. Then the second wind

turbine after the clearing was added, to find the effects the clearings had on this turbine. Finally

both the turbines were in the simulations, where the wake of the first wind turbine could affect

the second wind turbine.

9
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Figure 2.1: Current, Homogeneous and Extended computational domains, white is forest and

clearing in grey, the locations of the two wind turbines are shown with black bullets.

2.1.1 Precursor simulation

As inlet boundary condition, y-z planes from a precursor simulation is used. The precursor sim-

ulation is set to have 10m/s at hub height of the wind turbines at 90m. All the simulations are

using the width of 1000m and height of 800m of the computational domains. The length is inves-

tigated to avoid streaks. The time averaged ū velocity planes at hub heigth for the computational

domain length of 1600m, 3000m, 5000m and 10000m can be seen in fig. 2.2. For the two short-

est computational domains streaks are clearly seen, which means that the flow is affected by the

short computational domain. The 3000m setup is the shortest length recommended for SOWFA at

neutral to lightly unstable stratifications [12]. For this setup with neutral stratification the 3000m

computational domain is not enough. In the simulations using the two longest computational do-

mains no streaks are seen so both are accepted to be used for creating inlet boundary condition.

But the 5000m precursor simulation is chosen as inlet boundary condition because of its lower

computational cost.

10



CHAPTER 2. RESULTS

Figure 2.2: Planes of the time averaged ū velocity for the precursor simulations at hub height.

Despite the need to be careful with the length chosen for the precursor simulation in order to

avoid streaks. This kind of dynamic inflow boundary condition was found to be much better than

a static inlet boundary condition in LES simulations of an edge flow [3].

2.1.2 Atmospheric boundary layer simulations

No wind turbines are included in the simulations in this section. To investigate the flow field

x-z planes at y = 400m of each computational domain is chosen for the analysis. The ū velocity

is shown in fig. 2.3, v̄ velocity in fig. 2.4 and w̄ velocity in fig. 2.6. The homogeneous forest

is located in the middle of each figure and as expected the wind is blowing along the forest

with a constant boundary layer height. The ū velocity is increasing close to the ground in the

downstream part of the extended clearing. In the current clearing the flow is not affected as much

by the clearing as in the extended clearing. After the clearings the flow on top of the forest is

accelerating seen by that the white contour line is moving closer to the ground. The flow is then

starting to build a new boundary layer above the forest.

11
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Figure 2.3: Time averaged ū velocity in atmospheric boundary layer simulations on plane at y of

400m. Contour line in white shows time averaged ū velocity of 10m/s. From the top current clear-

ing, homogeneous forest and extended clearing. Below each plane the location of the clearing is

marked in black.

The v̄ velocity is mainly affected in the case of the current clearing when looking at x-z planes

at y = 400m. The reason is that this plane is cutting just at the edge of the clearing. In the end of

the current clearing the flow is also moving more to the east (negative v̄) than what is seen in the

case of the extended clearing.

Figure 2.4: Time averaged v̄ velocity in atmospheric boundary layer simulations on x-z plane at y

of 400m. From the top current clearing, homogeneous forest and extended clearing. Below each

plane the location of the clearing is marked in black.

The locations of the wind turbines are studied in more detail by looking at the horizontal

velocity (Ul =
√

ū2 + v̄2) normalized by the friction velocity (u∗ = 〈u′v′2 + v′w′2〉1/4) evaluated

at two forest heights seen in fig. 2.5. The velocity at the first wind turbine is more or less the

same in all the simulations. This is not that surprising since the flow has mainly travelled along
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homogeneous forest before reaching this wind turbine. For the location of wind turbine 2 the

homogeneous forest and the current clearing show the same velocity at the bottom and top of the

rotor plane. But the homogeneous forest has a more flat velocity profile in between. The wind

turbine after the clearing in the extended clearing has the highest velocity at the bottom of the

rotor plane and the lowest velocity at the top of the rotor plane. Hence this wind turbine location

has the flattest velocity profile of them all i.e. the lowest wind shear.

Figure 2.5: 〈Ul/u∗〉 from atmospheric boundary layer simulations at location of the wind turbine

to the left and a zoom in rotor plane to the right. : Wind turbine 1 in homogeneous forest,

: Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind

turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in

extended clearing, : Measurements

When looking at the w̄ velocity in fig. 2.6 the flow is moving downwards into the clearing

after the forest edge and upwards after the clearings. This velocity is the strongest in the case

of the extended clearing because the clearest disrupting of the forest boundary layer before the

clearing is seen here. This is consistent with what is observed for the ū velocity.
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Figure 2.6: Time averaged w̄ velocity from the atmospheric boundary layer simulations on a x-z

plane at y of 400m. From the top current clearing, homogeneous forest and extended clearing.

Below each plane the location of the clearing is marked in black.

The vertical momentum flux along the streamwise direction can be seen in fig. 2.7. In the

rotor plane all the forest types for wind turbine 1 are very similar. Inside the forest the extended

forest shows a bit higher vertical momentum flux than the other cases. This is probably due to

the larger clearing surrounding this wind turbine in the extended clearing. For the location of

wind turbine 2, the homogeneous forest has the highest vertical momentum flux and the current

clearing the lowest. The vertical momentum flux for the extended clearing has a different shape

and decreases a lot at four forest heights. This is because the flow has adapted to the clearing.

Wind turbine 2 in the current clearing is the one that should be closest to the measurements and

it is within acceptable margin.

Figure 2.7: −〈u′w′/u2
∗〉 from atmospheric boundary layer simulations at location of the wind

turbine to the left and a zoom in rotor plane to the right. : Wind turbine 1 in homogeneous

forest, : Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing,

: Wind turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind

turbine 2 in extended clearing, : Measurements
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The variance of the ū velocity can be seen in fig. 2.8, for the v̄ velocity in fig. 2.9 and for the

w̄ velocity in fig. 2.10. 〈u′u′/u2
∗〉 is the largest of them all. For wind turbine 1 the current and

extended clearing are similar, the homogeneous forest is a bit higher along the rotor location and

a bit lower below. For wind turbine 2 the trends are the same as for −〈u′w′/u2
∗〉.

Figure 2.8: 〈u′u′/u2
∗〉 from atmospheric boundary layer simulations at location of the wind turbine

to the left and a zoom in rotor plane to the right. : Wind turbine 1 in homogeneous forest,

: Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind

turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in

extended clearing, : Measurements

For 〈v′v′/u2
∗〉 at the location of wind turbine 1 the trends are the same as for −〈u′w′/u2

∗〉 but

with lower magnitudes. In the upper part of the rotor location all the cases are very similar. But in

the lower part and close to the ground the results differ a lot. Wind turbine 2 in the homogeneous

forest shows values close to wind turbine 1 in the homogeneous forest and wind turbine 2 in the

current clearing has a bit lower magnitude but the same shape. But the shape at wind turbine 2

for the extended clearing is the lowest of them all in the lower region of the rotor location but

it is then not decreasing as much as the other cases in the forest region. The reason is probably

because the wind has here adapted to the longer clearing and thereby the effect of the forest can

no longer be seen.
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Figure 2.9: 〈v′v′/u2
∗〉 from atmospheric boundary layer simulations at location of the wind turbine

to the left and a zoom in rotor plane to the right. : Wind turbine 1 in homogeneous forest,

: Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind

turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in

extended clearing, : Measurements

Within the forest all the simulations predict the same 〈w′w′/u2
∗〉 profile seen in fig. 2.10. For

wind turbine 1 in the rotorplane the homogeneous forest has the highest values followed by the

current clearing and the extended clearing. The second wind turbine in the homogeneous forest

is the only one that has similar shape as the measurements. For wind turbine 2 the highest values

are seen for the extended clearing, but the magnitude is lower than both 〈u′u′/u2
∗〉 and 〈v′v′/u2

∗〉.

Figure 2.10: 〈w′w′/u2
∗〉 from atmospheric boundary layer simulations at location of the wind

turbine to the left and a zoom in rotor plane to the right. : Wind turbine 1 in homogeneous

forest, : Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing,

: Wind turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind

turbine 2 in extended clearing, : Measurements

The turning angle can be seen in fig. 2.11. It is defined as positive when the flow is moving

west. Ryningsnäs is located on the northern hemisphere and due to this, the Coriolis force will

deflect the wind to the west which agrees to what is predicted by all the simulations. Wind

turbine 1 is located at the edge of the forest edge in the current and extended clearing. Along the
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rotor location it can be seen that this will cause the wind to deflect more to the west i.e. more

towards wind turbine 2 than in the homogeneous forest. For the location of wind turbine 2 the

homogeneous forest and the extended clearing have a more flat profile than the current clearing.

This reason is probably because of the more complex shape of the current clearing.

Figure 2.11: α from atmospheric boundary layer simulations at location of the wind turbine to the

left and a zoom in rotor plane to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing, : Measurements

2.1.3 FAST simulations

The electrical generator power from FAST from the different wind turbines is seen in table 2.1.

The first row in table 2.1 〈U〉3 shows OpenFOAM simulations without any turbines i.e. atmo-

spheric boundary layer simulations. Where 〈U〉3 is evaluated at the rotor plane. The second row

presents OpenFOAM coupled to FAST simulations with only wind turbine 2 and the last row is

from OpenFOAM coupled to FAST simulations in which both wind turbines are included. In

order to facilitate comparison between homogeneous forest, current clearing and extended clear-

ing the numbers at each line are related to wind turbine 2 in the homogeneous forest. For the

atmospheric boundary layer simulation the power is estimated from the one dimensional momen-

tum theory. For the first wind turbine FAST estimates an higher power than the atmospheric

boundary layer simulations. No measurements were available for validation but due to the higher

complexity of FAST, these results are assumed to be more correct than the atmospheric boundary

layer estimate of power. The estimated power for the second wind turbine is the highest in all the

atmospheric simulations followed by the simulations with only the second wind turbine and the

simulations with both the wind turbines always give the lowest power estimate. This decrease in

power of the second wind turbine in the simulations with both wind turbines compared to only

one wind turbine shows that the first wind turbine has some effect on the second wind turbine

when the wind is blowing from the south. For the first wind turbine all the simulations show the

same trend. This is also the case for the second wind turbine of the current clearing. But for the

second wind turbine in the extended clearing both the FAST simulations show that the power is

lower than the second wind turbine in the homogeneous forest whereas the atmospheric boundary
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layer simulation show the opposite. This show the complexity of the problem and the importance

of the FAST coupling.

Electrical Homogeneous forest Current clearing Extended clearing

Generator Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

Power (%) (%) (%) (%) (%) (%)

〈U〉3 +6.9 0.0 +7.0 +4.3 +7.2 +1.2

FAST, Only Turbine 2 0.0 +3.8 -2.6

FAST, Both Turbines +8.6 0.0a +8.5 +3.0 +8.5 -3.5

Table 2.1: 〈U〉3 from the one dimensional momentum theory from atmospheric boundary layer

simulations. Time averaged electrical generator power from simulations with wind turbines.
aWind turbine 2 in the homogeneous forest when both wind turbines are in the simulation is

3.3% higher than when only wind turbine 2 is in the simulation.

The bending moment of the rotor has also been investigated using FAST. The time averaged

rotor bending around the x-axis i.e. rotor torque can be seen in table 2.2. Because of the close

relation between power and torque the trends are the same as for the electrical generator power

seen in table 2.1.

Rotor Homogeneous forest Current clearing Extended clearing

torque Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

(%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 +2.6 -1.8

FAST, Both Turbines +5.6 0.0a +5.5 +2.0 +5.5 -2.4

Table 2.2: Time averaged rotor torque i.e. rotor bending moment around the x-axis. aWind

turbine 2 in the homogeneous forest when both wind turbines are in the simulation is 2.3% higher

than when only wind turbine 2 is in the simulation.

To evaluate the fatigue loads the rain flow counting algorithm is used [23]. For the rotor torque

it can be seen in fig. 2.12. The fatigue loading is more or less the same for all the wind turbines

both when the first wind turbines are and are not included in the simulations. But the load range

of the rotor torque is much lower than for the rotor bending around the y-axis as can be seen in

fig. 2.13 and around the z-axis as can be seen in fig. 2.14. Hence the rotor torque is not a limiting

factor.
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Figure 2.12: Rain flow of rotor torque i.e. rotor bending moment around the x-axis. Both wind

turbines to the left and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous

forest, : Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing,

: Wind turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind

turbine 2 in extended clearing

For the rotor bending moment around the y-axis the RMS values are evaluated and presented

in table 2.3. The reason for the difference in result for the first wind turbine in the homogeneous

forest compared to the current and extended clearings is because the wind turbine is located on

the edge of the forest in the clearing cases. This flattens the velocity profile in the region over the

clearing and thus decreases the rotor bending moment around the y-axis. Comparing the second

wind turbine for the different cases show that the current clearing has somewhat lower rotor

bending moment around the y-axis than the wind turbine in the homogeneous forest. Looking at

the horizontal velocity in fig. 2.5 it can be seen that the current clearing has a somewhat flatter

velocity profile except in the lowest part of the rotor location compared to the homogeneous

forest. The extended clearing in the location of wind turbine 2 has the lowest bending moment

around the y-axis of them all. It can also be seen that the second wind turbine has the flattest

velocity profile i.e. the lowest wind shear seen in fig. 2.5.

Rotor bending Homogeneous forest Current clearing Extended clearing

moment around Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

y-axis (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 -0.5 -5.0

FAST, Both Turbines +2.4 0.0a +1.0 -0.9 +1.0 -5.0

Table 2.3: RMS of rotor bending moment around the y-axis. aWind turbine 2 in the homogeneous

forest when both wind turbines are in the simulation is 0.2% higher than when only wind turbine

2 is in the simulation.

Consider the fatigue loads in fig. 2.13 when only the second wind turbine is included. The

general trend is that the homogeneous forest has the highest loadings followed by the current

clearing and the extended clearing has the lowest. When both wind turbines are included the
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simulations it gets more difficult to distinguish the results. But the second wind turbine in the

extended clearing is generally the one with the lowest loading range.

Figure 2.13: Rain flow of rotor bending moment around the y-axis. Both wind turbines to the

left and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

The RMS of the rotor bending around the z-axis is presented in table 2.4. The trends are

the same as for the rotor bending moment around the y-axis. For the first wind turbines also

the moment around the z-axis decreases when it is located in the forest edge compared to in a

homogeneous forest. The second wind turbine in the current clearings has slightly lower moment

around the z-axis than the second wind turbine in the homogeneous forest. It appears that the

non-uniform in the v̄ velocity seen in fig. 2.4 caused by the forest edge has favourable effects.

Again the second wind turbines in the extended clearing clearly has the lowest moment around

the z-axis.

Rotor bending Homogeneous forest Current clearing Extended clearing

moment around Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

z-axis (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 -1.0 -5.2

FAST, Both Turbines +2.8 0.0a +1.4 -0.8 +1.1 -5.0

Table 2.4: RMS of rotor bending moment around the z-axis. aWind turbine 2 in the homogeneous

forest when both wind turbines are in the simulation is 0.3% lower than when only wind turbine

2 is in the simulation.

The fatigue loads of the rotor bending moment around the z-axis presented in fig. 2.14 show

that the trends are the same as for the rotor bending moment around the y-axis.
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Figure 2.14: Rain flow of rotor bending moment around the z-axis. Both wind turbines to the

left and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

The yaw bearing is fixed in the simulations and the bending moment is here investigated. The

bending moment around the x-axis is given in table 2.5 and also here the close relation to the

electrical power and the rotor torque is seen because the trends are the same.

Yaw bearing Homogeneous forest Current clearing Extended clearing

moment around Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

x-axis (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 +2.5 -1.9

FAST, Both Turbines +5.5 0.0a +5.4 +2.0 +5.4 -2.5

Table 2.5: Time averaged yaw bearing moment around x-axis. aWind turbine 2 in the homoge-

neous forest when both wind turbines are in the simulation is 2.2% higher than when only wind

turbine 2 is in the simulation.

The fatigue loads is seen in fig. 2.15 for the yaw bearing moment around the x-axis. As seen

for the rotor bending moment, the yaw bearing moment around the x-axis is the lowest of the

three and thereby not the limiting factor when comparing to the y-axis seen in fig. 2.16 and the

z-axis seen in fig. 2.17.
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Figure 2.15: Rain flow of yaw bearing moment around the x-axis. Both wind turbines to the left

and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

For the yaw bearing bending around the y-axis the time averaged values can be seen in ta-

ble 2.3. Here the two wind turbines in the homogeneous forest show rather similar values. The

difference between wind turbine 1 and 2 increases as the clearing between them increases. When

analysing wind turbine 2 with and without wind turbine 1 in the simulations with a clearing, the

yaw bearing moment around the y-axis always increases by approximately 2% for all cases when

wind turbine 1 is included i.e. wind turbine 1 has a negative effect on wind turbine 2.

Yaw bearing Homogeneous forest Current clearing Extended clearing

moment around Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

y-axis (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 -5.1 -20.2

FAST, Both Turbines -0.6 0.0a -5.1 -3.6 -5.8 -18.7

Table 2.6: Time averaged yaw bearing moment around y-axis. aWind turbine 2 in the homoge-

neous forest when both wind turbines are in the simulation is 1.3% higher than when only wind

turbine 2 is in the simulation.

The fatigue loads seen in fig. 2.16 follows the same trends as seen before, with wind turbine

2 in the extended forest having the lowest fatigue load.
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Figure 2.16: Rain flow of yaw bearing moment around the y-axis. Both wind turbines to the left

and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

The time averaged moment around the z-axis for the yaw bearing can be seen in table 2.7.

Here wind turbine 2 in the current clearing has the lowest value. When looking at fig. 2.4 this is

the wind turbine which experiences the largest variations in the v̄ velocity. This shows that the

shape of the clearing can have a positive influence on the wind turbines located close to a clearing.

Yaw bearing Homogeneous forest Current clearing Extended clearing

moment around Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

z-axis (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 -14.1 -1.0

FAST, Both Turbines -6.2 0.0a -5.9 -23.7 -4.6 -7.1

Table 2.7: Time averaged yaw bearing moment around z-axis. aWind turbine 2 in the homoge-

neous forest when both wind turbines are in the simulation is 9.8% lower than when only wind

turbine 2 is in the simulation.

Also for the fatigue loads of the yaw bearing around the z-axis seen in fig. 2.17, it is found

that wind turbine 2 in the extended clearing is displaying the smallest load. This is somewhat

surprising because of the large decrease in time averaged value of wind turbine 2 in the current

clearing seen in table 2.7. This shows the importance of including not only the time averaged

values but also the fatigue loads in the analysis.
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Figure 2.17: Rain flow of yaw bearing moment around the z-axis. Both wind turbines to the left

and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

The in-plane and out-of-plane bending moment at the blade root is also investigated. The time

averaged values of the in-plane bending moment can be seen in fig. 2.8 and for the out-of-plane

in fig. 2.9. Both show the same trends as for the electrical generator power and the rotor torque.

This is logical because if the loads on the blades increase so does also the rotor torque.

In-plane bending Homogeneous forest Current clearing Extended clearing

moment at Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

blade root (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 +2.6 -1.8

FAST, Both Turbines +5.5 0.0a +5.5 +2.0 +5.5 -2.3

Table 2.8: Time averaged in-plane bending moment at blade root. aWind turbine 2 in the homo-

geneous forest when both wind turbines are in the simulation is 2.3% higher than when only wind

turbine 2 is in the simulation.

For the lower fatigue load range, wind turbine 2 in the extended clearing shows the lowest

values seen in fig. 2.18. But for the higher loads they all give approximately the same results.
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Figure 2.18: Rain flow of Blades in-plane moment around the x-axis. Both wind turbines to the

left and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

Out-of-plane bending Homogeneous forest Current clearing Extended clearing

moment at Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

blade root (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 +3.0 -0.7

FAST, Both Turbines +5.2 0.0a +5.2 +2.3 +5.2 -1.3

Table 2.9: Time averaged out-of-plane bending moment at blade root. aWind turbine 2 in the

homogeneous forest when both wind turbines are in the simulation is 2.3% higher than when

only wind turbine 2 is in the simulation.

The fatigue loads for the out-of-plane moment at the blade root can be seen in fig. 2.19. Here

wind turbine 2 in the extended clearing shows the lowest fatigue loads.
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Figure 2.19: Rain flow of Blades out-plane moment around the y-axis. Both wind turbines to the

left and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest, : Wind

turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind turbine 2

in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in extended

clearing

The tower base moment around the y-axis is also investigated and the time averaged values

can be seen in table 2.10. These results also have the same trend as the electrical generator power.

Tower base Homogeneous forest Current clearing Extended clearing

moment around Turbine 1 Turbine 2 Turbine 1 Turbine 2 Turbine 1 Turbine 2

y-axis (%) (%) (%) (%) (%) (%)

FAST, Only Turbine 2 0.0 +2.8 -2.2

FAST, Both Turbines +5.1 0.0a +4.9 +2.2 +4.9 -2.7

Table 2.10: Time averaged tower base moment around y-axis. aWind turbine 2 in the homoge-

neous forest when both wind turbines are in the simulation is 2.4% higher than when only wind

turbine 2 is in the simulation.

Consider the fatigue loads for the tower base moment in fig. 2.20 wind turbine 2 in the ex-

tended forest is found to be only slightly favourable compared to the other cases at low load

ranges.

26



CHAPTER 2. RESULTS

Figure 2.20: Rain flow of tower base pitching moment around the y-axis. Both wind turbines

to the left and only wind turbine 2 to the right. : Wind turbine 1 in homogeneous forest,

: Wind turbine 2 in homogeneous forest, : Wind turbine 1 in current clearing, : Wind

turbine 2 in current clearing, : Wind turbine 1 in extended clearing, : Wind turbine 2 in

extended clearing
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Chapter 3

Future outlook

Interesting focus points to study in the future related to this work is to optimize the clearing

and wind turbine location in relation to it in order to obtain higher electrical power and lower

fatigue loads. This study covers only the Ryningsnäs site but in the future other sites will also

be studied in order to see if the trends remain the same as what has been shown in this work.

The terrain of the site might have an effect on the wind turbines together with the clearing, which

is a phenomena that also would be interesting to unveil. The present work covers only neutral

stratification but unstable and stable stratification will also be studied. SOWFA used in this work

is two way coupled to FAST but the difference to a one way coupled simulation setup is still

unknown.

Further along in the future other interesting focus points might be studied. The new standard

for the tower height of wind turbines installed in forests are 130m tower height compared the

90m of the 5MW NREL wind turbine used in this work. By studying the new standard of tower

height one can advice wind farms developer of new wind farms how to optimize the output from

the wind turbines and minimize the fatigue loads. The 5MW wind turbine with its 90m tower is

however still relevant to help current wind farms perform better. NREL has recently released a

new SOWFA version using FAST version 8. This will allow for the use of the new modularized

framework in FAST. If this new version will be shown to have sufficient benefits over the older

version, this version will be used instead.
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