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Abstract:  
The present paper investigates use of the surrogate models for the multi-objective shape optimization of 
vehicles. The objectives of interest are related to the aerodynamic performance of vehicles such as air 
resistance (drag), lift force, moments, aeroacoustic properties or soiling and accumulation of water. The 
suggested technique is tested here on a two-dimensional vehicle geometry with four design variables and two 
objective functions. Faced centered composite design is used to define the data points in the design space 
that will be used for the computer experiments (CFD) with a steady solver and standard k – ε turbulence 
model. The second order polynomial response surface model is then constructed from the computer 
calculated responses from CFD. Search for the optimal design is done using the ε-constraint method. In 
order to investigate the correlation between the two objectives (the drag and the lift) the Pareto-optimal 
solutions were computed. Hierarchical cluster algorithm is finally used to analyze the Pareto optimal 
solutions and to draw conclusions about the design. Finally some improvements of the technique that are 
required in order to make the suggested technique to become an engineering tool are discussed. 
 
Keywords: Surrogate model, response surface, optimization, Pareto-optimal solution 
 
INTRODUCTION 
The optimization of the aerodynamics of road and rail vehicles has traditionally been handled through trial-
and-error design procedures, which count on the skills and experience of the designer to suggest changes in 
the design that are likely to yield improvements. Although such a procedure usually yield an acceptable 
design and use of more rigorous optimization methodology would allow the best design to be identified. The 
majority of numerical design optimization in fluid machinery uses gradient-based search algorithms. These 
methods work iteratively through the design space until the optimal design is reached. Such an approach is 
impractical in optimization of vehicle aerodynamics due to computational effort required for such a large 
number of CFD simulations. 
One way of making the shape optimization of the vehicle feasible is to use the surrogate model based 
optimization to estimate the response of CFD simulation. These models have been used successfully in 
various fields such as design of airfoils, propulsion and turbo machinery. The surrogate models give a global 
approximation of the response and therefore can be used in providing better understanding of the relationship 
between the design variables and the response. There are several different surrogate models such as response 
surfaces (polynomial regressions), neural network, Kriging and Radial Basis Functions. Here we shall only 
discuss the response surface model that was used in the present study. The design problem of vehicle 
aerodynamics has multiple objectives, i.e. drag, lift force, cross-wind stability, aeroacoustics etc. Such a 
multi-objective optimization problem has several optimal solutions called the Pareto optimal front which can 
help the designers to visualize the trade-offs between different objectives and select an compromise design. 
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The present work presents the use of response surface approximation (RSA) for multi-objective opti-
mization of vehicle aerodynamics. We use an example of optimization of aerodynamic properties of a
two-dimensional vehicle to demonstrate an efficient multi-objective optimization procedure. The chosen
object functions are drag and lift and the response surfaces are produced as a result of Reynolds-Averaged
Navier-Stokes simulations (RANS) using simple two equation turbulence model.

Surrogate modeling
The surrogate modeling aims to determine a continuous function f(x) of a set of design variables x =
(x1, x2, ..., xN ) from relatively small amount of available data g(x) in form of computer calculated
response.
Having a true response given as:

y = f(x) (1)

a surrogate model of the true response is given by:

ŷ = g(x) (2)

with y = ŷ + ε. The error ε consist of the modeling error and the measurement error which is random.
In the numerical experiments (simulations) the modeling error is a result of the choice of the lack of
surrogate model approximation while the measurement error is the numerical error.

The optimization process using surrogate models
There are five steps in optimization using surrogate models:
1. Geometric parameterization. First step of every shape design process is to choose design variables.
Keeping the number of design variables as low as possible is important for the computational cost of
the design procedure. Vehicle shapes are today quantified using modern computer aided design (CAD)
models and their description can be presented using complex mathematical description (using B-splines).
It is better for an optimization purpose if the shape can be described with traditional design variables such
as height, length, radius etc., which can then be translated by the computer into a CAD model. However
there is today no optimal way to quantify shapes of ground vehicles today and different choices of design
variables have to be compared against each other in order to find the best parameterization.
2. Design of experiments (DOE). A design of experiment is a sequence of experiments (numerical
experiments in our case) that will be performed. This is a critical step as the quality of the response
surface approximation is dependent on the choice of the points in the design variable space from which
the model will be constructed. There are several different design strategies (for the review see e.g.[1] and
here the Faced Centered Composite Design (FCCD) is chosen to pick the design data points.
3. Numerical simulation at design points. Here the CFD simulations of the designs chosen in DOE are
performed. This is the most costly step (in terms of both computational resources and the men power)
in the optimization process and consist of preprocessing (making computational meshes), numerical
calculations and post-processing (analysis of the results). The choice of the numerical method (numerical
scheme, turbulence model, steady or unsteady solver) is essential for the success of the optimization
process as the computer calculated response is used for the construction of the surrogate model.
4. Construction of the surrogate model. In this step a surrogate model is constructed from the relationship
between the design variables and the computer calculated response. There are several different surrogate
models and here we shall only discuss the polynomial response surfaces.
5.Search for the optimal design. When the surrogate model is constructed a search for the optimal design
can be initiated. In the case of only one objective the optimization process is a simple minimization
problem. This can also be done in a case of multi-objective optimization where one minimizes one
objective and uses other objectives as a inequality constrains. However more convenient in the case of
multi-objective optimization is to determine so called Pareto-optimal solutions. In the present work we
shall do both.
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1. Geometric parameterization of the train
In the present paper we chose to describe the shape of the front of the train using four length variables.
This is by no means the optimal description but is sufficient for the purpose of our investigation of
surrogate models in optimization process.
The geometry of the train is presented in Fig. 1. The length and the height of the car are chosen as
B = 20m and H = 3m, respectively. The ground clearance is c = 0.4m. The objective of the present
work is the aerodynamic optimization of the nose of the train shown in Fig. 2.

B

H
c

Figure 1: Geometry of the train
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Figure 2: Geometry of the nose of the train.

There are four design variables for the nose of the train shown in this figure, L1, L2, c1 and c2. These
are chosen to vary between 2.5m ≤ L1 ≤ 5m, 0.5m ≤ L2 ≤ 2m, 0.5m ≤ c1 ≤ 0.8m and 0.9m ≤

c2 ≤ 1.5m. These four design parameters are used for the description of the front of the train defined
with two parabolic curves:

y = (c2 − 3.4)/L2
1x

2 + 20(3.4 − c2)L
2
1x + 3.4 − (340 − 100c2)/L

2
1 (3)

y = (0.4 − c1)/L
2
2[x

2
− 2(10 + L1 − L2)x + L2

2/(0.4 − c1)c1 − (100 + 20L1 + L1
1)

+ 2(10 + L1)(10 + L1 − L2)]

2. Design of experiments
In the present study we are using center composite design (CCD). This DOE was originally constructed
for physical experiments but is often used for the design of computer experiments. CCD is a two level
factorial design containing two ’star’ points at ±α for each factor and n center points. In the case of three
design variables we have that the ’star’ points are located in the center of the faces of the cube resulting
in a so called Faced Centered Composite Design (FCCD). This technique generates 2N +2N +1 design
points, where N is the number of design variables. This is the main drawback of this DOE as the number
of design points increases fast with the number of the design variables. In our case of four design
variables a total of 25 design points were obtained which is a manageable number of designs. These
designs are presented in Table 1 using both the natural and the coded variables.
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Case L1 L2 c1 c2 x1 x2 x3 x4 yd yl

1 2.5 0.5 0.5 0.9 -1 -1 -1 -1 0.2987 0.1894
2 2.5 0.5 0.5 1.5 -1 -1 -1 1 0.2673 0.2588
3 2.5 0.5 0.8 0.9 -1 -1 1 -1 0.3051 0.2602
4 2.5 0.5 0.8 1.5 -1 -1 1 1 0.2674 0.3690
5 2.5 2.0 0.5 0.9 -1 1 -1 -1 0.3105 0.2217
6 2.5 2.0 0.5 1.5 -1 1 -1 1 0.2766 0.2872
7 2.5 2.0 0.8 0.9 -1 1 1 -1 0.3527 0.0088
8 2.5 2.0 0.8 1.5 -1 1 1 1 0.3175 0.0847
9 5.0 0.5 0.5 0.9 1 -1 -1 -1 0.1455 0.4234
10 5.0 0.5 0.5 1.5 1 -1 -1 1 0.1693 0.4531
11 5.0 0.5 0.8 0.9 1 -1 1 -1 0.1488 0.5103
12 5.0 0.5 0.8 1.5 1 -1 1 1 0.1746 0.5564
13 5.0 2.0 0.5 0.9 1 1 -1 -1 0.1477 0.4483
14 5.0 2.0 0.5 1.5 1 1 -1 1 0.1724 0.4752
15 5.0 2.0 0.8 0.9 1 1 1 -1 0.1723 0.2836
16 5.0 2.0 0.8 1.5 1 1 1 1 0.1973 0.3131
17 2.5 1.25 0.65 1.2 -1 0 0 0 0.3028 0.0971
18 5.0 1.25 0.65 1.2 1 0 0 0 0.1622 0.3407
19 3.75 0.5 0.65 1.2 0 -1 0 0 0.1866 0.4220
20 3.75 2.0 0.65 1.2 0 1 0 0 0.2091 0.2316
21 3.75 1.25 0.5 1.2 0 0 -1 0 0.1878 0.3844
22 3.75 1.25 0.8 1.2 0 0 1 0 0.2042 0.2998
23 3.75 1.25 0.65 0.9 0 0 0 -1 0.2052 0.2264
24 3.75 1.25 0.65 1.5 0 0 0 1 0.2026 0.2999
25 3.75 1.25 0.65 1.2 0 0 0 0 0.2024 0.2593

Table 1: Faced Central Composite Design for design of the nose of the train.
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3. Numerical computations at the design points
Prediction of the drag and lift coefficients is very much dependent on the numerical method used for
the simulation. These two aerodynamic forces for road and the rail vehicles are mainly the result of the
wake flow behind vehicles. However the wake flow being unsteady and containing wide spectrum of
turbulent scales is difficult to predict with steady numerical methods such as RANS. Unsteady numerical
methods such as large eddy simulations (LES) [2, 3, 4, 5, 6, 7], detached eddy simulations (DES) or
hybrid LES-RANS techniques are better equipped to predict this complex flow. Unfortunately these
time-dependent techniques are computationally intensive and are still at the testing stage in industry. As
the RANS methods are widely used in industry we shall adapt this approach here keeping in mind that
the prediction of aerodynamic forces is only qualitative. Although the RANS technique can use large
number of turbulent models developed during last four decades which often produce large differences in
the quality of predictions, we shall here use simple k − ε model with wall functions. It is possible that
use of some other turbulence model would result in different optimal solution but the topic of the present
work is the optimization using surrogate models and we leave the choice of the appropriate turbulence
model or even the simulation approach (steady or unsteady) for a future investigation.
All the CFD simulations in the present work are performed using commercial software FLUENT. The
convective fluxes are discretized using second order upwind scheme and the simulations were stopped
first when all the residuals have settled down below approximately 10−6. At the inlet and on the ground a
velocity equal to 200 km/h was used as a boundary condition. The roof of the computational domain was
treated as a symmetry boundary condition while the homogeneous Neumann boundary condition was
used at the outlet. The first node from the surface of the train was located between 50 ≤ y+ ≤ 100 (i.e.
in the logarithmic law region) in all computational grids. y+ is here the wall-normal distance expressed
in wall units, i.e. y+ = u∗y/ν with u∗ being the friction velocity.

4. Response surface surrogate models
A second-order polynomial model of the response surface is used as a surrogate model for both objective
functions, the lift and the drag. This model has the following form:

ŷ = β0 +
n∑

i=1

βixi +
n∑

i=1

n∑

j<i

βijxixj +
n∑

i=1

βiixi
2 (4)

where n is the number of design variables.
In our case of four design variables the model has the form:

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2 + β13x1x3 + β14x1x4 (5)
+ β23x2x3 + β24x2x4 + β34x3x4 + β11x

2
1 + β22x

2
2 + β33x

2
3 + β44x

2
4

5. Variable selection
The response surface ŷ is fit to the data yl and yd in Table 1 using the least square fit. In order to measure
the goodness of the fit we use both the coefficient of multiple determination R2 and R-square adjusted
(R2

a).
The coefficient of multiple determination R2 measures the fraction of variation in data captured by
response surface.

R2 = SSR/SST = 1 − SSE/SST (6)

where SSE is the sum of squared approximation errors at the np sampling points, SST is the true re-
sponse’s sum of squared variations from the mean ȳ, and SSR is the approximation’s sum of squared
variations from the mean, i.e.

SSE =

np∑

i=1

(yi − ŷi)
2, SST =

np∑

i=1

(yi − ȳi)
2, SSR = SST − SSE =

np∑

i=1

(ŷi − ȳi)
2 (7)
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Coefficient t (full) t (−b24) t (−b34) t (−b22) t (−b33)
b0 130.8399 137.2257 142.3318 147.4471 138.7281
b1 -80.5528 -84.4843 -87.6279 -89.2458 -81.5026
b2 12.8511 13.4783 13.9799 14.2380 13.0026
b3 10.9381 11.4720 11.8988 12.1185 11.0671
b4 -2.7662 -2.9012 -3.0092 -3.0647 -2.7988
b12 -4.7580 -4.9902 -5.1759 -5.2715 -4.8141
b13 -2.2270 -2.3357 -2.4226 -2.4673 -2.2533
b14 16.7909 17.6104 18.2657 18.6029 16.9889
b23 8.3071 8.7125 9.0367 9.2035 8.4050
b24 0.0071 —— —— ——- ——
b34 -0.3747 -0.3930 —— ——- ——
b11 14.9664 15.6969 16.2810 17.0269 16.0611
b22 -0.6711 -0.7038 -0.7300 ——– ——-
b33 -1.5060 -1.5795 -1.6383 -1.9459 ——
b44 2.0593 2.1598 2.2401 2.1605 1.4079

Table 2: t statistics from linear regression analysis for the response surface approximation of the drag
function.

A better suited measure for assessing predictive accuracy is the R-square adjusted (R2
a) defined as

R2
a = 1 −

SSE/(np − nβ)

SST /(np − 1)
(8)

where nβ is the number of regression coefficients. Both R2 and R2
a range between zero and one, and the

higher value indicate better predicting accuracy of the response surface.
Although we first fit the full quadratic model, it is possible that this is not an appropriate model, i.e. it is
possible that a model based on a subset of the regressors in the full model may be superior. In the present
work, a backward elimination procedure based on the t statistic is used to discard terms and improve the
prediction accuracy. The t statistics of the fitting coefficient is defined as its value divided by an estimate
of the standard error of the coefficient.
In the backward elimination we begin with a model that includes all candidate regressors (i.e. full
quadratic model in our case) and than the partial t statistic is computed for each regressors as if it were
last variables to enter the model. The smallest of these partial t-statistics is compared with preselected
value, tout and if it is less than tout, that regressor is removed from the model. Here, we chose tout = 2
which is a common value for tout. Tables 2 and 4 list t statistics of the regression coefficients bi for the
drag and the lift response surfaces, respectively.
The full quadratic response surface model ŷd for the drag coefficient, has a R2

a of 0.9968. The t statistics
presented in Table 2 suggests that the determination of the quadratic-term regressor b24 involves a large
standard error. Discarding this term, the new regression analysis with a model of fourteen terms increased
R2

a to 0.9971. In the same time, the R2 value was unchanged between the full and the reduced model
and was 0.9987. The backward elimination procedure for response surface approximation (RSA) was
continued by removing of regressors b34, b22 and b33. Data on the elimination is presented in Table 2.
According to Table 2, removal of quadratic regressor b22 and mixed regressor b34 improved the standard
errors of the remaining terms. Although the t statistics of the regressor b33 is less than 2, removal of this
term decreased R2

a in Table 3. Thus further elimination of terms does not improve the fit and the best
quadratic RSA of the drag is:
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Removed regressors R2 R2
a

—- 0.9987 0.9968
b24 0.9987 0.9971
b34 0.9987 0.9973
b22 0.9986 0.9974
b33 0.9982 0.9969

Table 3: Backward elimination procedure for response surface approximation of the drag function.

Coefficient t (full) t (−b12) t (−b24) t (−b34) t (−b44) t (−b13)
b0 29.7575 30.6429 31.3528 31.6886 32.0802 31.5594
b1 22.4646 23.1330 23.6689 23.9224 23.9280 23.5395
b2 -12.0612 -12.4200 -12.7078 -12.8439 -12.8469 -12.6383
b3 -5.0488 -5.1990 -5.3194 -5.3764 -5.3777 -5.2903
b4 5.8212 5.9944 6.1332 6.1989 6.2004 6.0997
b12 0.6112 —— —– —— ——- ——-
b13 1.1495 1.1837 1.2111 1.2241 1.2244 ——
b14 -2.2027 -2.2682 -2.3207 -2.3456 -2.3461 -2.3081
b23 -13.0867 -13.4760 -13.7883 -13.9359 -13.9392 -13.7129
b24 -0.6606 -0.6802 —— ——- —— ——
b34 0.8087 0.8327 0.8520 ——- —— ——
b11 -4.2561 -4.3827 -4.4843 -4.5323 -4.9962 -4.9151
b22 3.8396 3.9538 4.0454 4.0888 3.9683 3.9039
b33 4.9876 5.1359 5.2549 5.3112 5.2395 5.1544
b44 -0.9360 -0.9639 -0.9862 -0.9968 —— ——

Table 4: t statistics from linear regression analysis for the response surface approximation of the lift
function.

ŷd = 0.1996 − 0.0671x1 + 0.0107x2 + 0.0091x3 − 0.0023x4 − 0.0042x1x2 (9)
− 0.002x1x3 + 0.0148x1x4 + 0.0073x2x3 + 0.0328x2

1 − 0.0037x2
3 + 0.0042x2

4

Similar procedure of backward elimination is made for the response surface of lift. The t statistics and
the results of the backward elimination are presented in Tables 4 and 5.
The RSA of the lift force coefficient has the following form

ŷl = 0.2717 + 0.1126x1 − 0.0605x2 − 0.0253x3 + 0.0292x4 + 0.0061x1x3 (10)
− 0.0117x1x4 − 0.0696x2x3 − 0.0601x2

1 + 0.0478x2
2 + 0.0631x2

3

Multiple response optimization
In the present work, there are two responses, the lift and the drag, that we want to optimize. Here the
ε-constraint method is used to solve the optimization problem as a constrained optimization problem.
The CD coefficient is chosen to be a primary response to be optimized and the lift coefficient response
is expressed in the form of an inequality constraint
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Removed regressors R2 R2
a

—- 0.9896 0.9750
b12 0.9892 0.9764
b24 0.9887 0.9775
b34 0.9881 0.9780
b44 0.9871 0.9780
b13 0.9858 0.9772

Table 5: Backward elimination procedure for response surface approximation of the lift function.

Population size 200
Generations 1000
Crossover probability 0.9
Distribution parameter (for crossover) 20
Mutation probability 0.25
Distribution parameter (for mutation) 20

Table 6: Parameters used for the NSGA−II simulation.

minimize CD (11)
subject to

CL ≤ ε

There are several different numerical techniques that can be used to solve this problem and here the se-
quential quadratic programming in MATLAB is used to solve the optimization problem. For the purpose
of validation of the optimization technique we have chosen the ε = 0.3. The minimization of CD subject
to CL ≤ 0.3 resulted in CDmin

= 0.1575 and CL = 0.3 for the train with the coded variables x1 = 1.0,
x2 = 0.2398, x3 = −0.1169 and x1 = −1.0 or expressed in natural variables L1 = 5.0, L2 = 1.4299,
c1 = 0.6325 and c2 = 0.9.
Next step in validation of the suggested optimization procedure is to construct a new design described
with these variables and perform a CFD simulation to evaluated the CD and CL values. The resulting
values from the CFD simulation for the resulting design were CD = 0.1571 and CL = 0.3041. which
are only 0.25% and 1.35% lower and higher, respectively, from the values found using response surface
approximations.

Pareto optimal solutions

As a second step Pareto-optimal solutions were computed. A solution is called Pareto-optimal solution, if
there is no other simulation for which at least one objective has better value while values of the remaining
objectives are the same or better.

Multi-objective evolutionary algorithm

The two objective optimization problem was solved using a multi-objective evolutionary algorithm
(MOEA) to find the Pareto optimal solution. The MOEA used here is so called real-coded NSGA−II
algorithm by Deb et al. [8]. The parameters chosen for the NSGA −II simulation are presented in Table
6.
Further details on the NSGA−II algorithm can be found in [8]. The MOEA resulted in a Pareto optimal
solutions shown in Fig. 3.
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Figure 3: Pareto optimal solution front and six representative solutions from the same set. The * are the
representatives of cluster Ki, i = 1, 2, ..., 6.

Case L1 L2 c1 c2 x1 x2 x3 x4 ŷd ŷl

K1 2.5323 1.8338 0.7598 1.0525 -0.9742 0.7784 0.7320 -0.4915 0.3271 0.0382
K2 4.6894 1.6059 0.5410 0.9070 0.7515 0.4746 -0.7270 -0.9765 0.1567 0.3569
K3 3.9835 1.8154 0.7204 1.2000 0.1868 0.7538 0.4693 0 0.2015 0.2501
K4 4.1849 1.9992 0.7885 0.9353 0.3479 0.9989 0.9233 -0.8823 0.2015 0.2369
K5 4.5736 1.9342 0.6787 0.9172 0.6589 0.9122 0.1911 -0.9425 0.1762 0.2702
K6 3.2683 1.8901 0.7036 0.9446 -0.3854 0.8534 0.3574 -0.8514 0.2560 0.1508

Table 7: Objective functions and design variables of six representative designs from the Pareto optimal
front.

Analysis of the Pareto optimal front

The Pareto optimal front contains large number of solutions and a classification is needed in order to
study alternative designs. Here we have used hierarchical clustering algorithm (K-mean algorithm) in
MATLAB to identify a representative set of six solutions. The objective functions and the design vari-
ables of these six designs are presented in Table 7. Besides, the objective functions of these designs are
represented in the Pareto optimal front in Fig. 3.
The main conclusion that can be drown from the Table 7 is that the two objectives, the drag and the lift
require different length of the front of the train L1 in order to be low. For the minimal drag a long train
is to prefer (see the cluster K2) while the short train is advantageous for the minimal lift (see the cluster
K1). Another conclusion is that the optimal value of height c2 seems to be fixed to values between
approximately 0.9 − 1.0. The only cluster having the c2 value outside this range is cluster K3. Thus
fronts that are higher than c2 = 1.2 are disadvantageous from the point of air resistance and stability (lift
force). Comparing clusters K2 and K5 we see that the short length L2 in combination with small ground
clearance of the front of the train is particularly disadvantageous for the lift force.
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Discussion and conclusions

The aim of this study was to investigate the use of surrogate shape optimization for vehicle aerodynam-
ics. Although the technique was illustrated using simple two- dimensional vehicle it has been performed
in such a way that can easily be applied for a general three-dimensional vehicles. It is obvious that the ap-
proach presented here is valuable and that if all the steps from geometric parameterization to validation of
optimal design are carefully performed, its accuracy is high. Of course we have here only demonstrated
that the optimal solution was found based on the CFD simulations performed with relatively inaccurate
RANS turbulence model. This requires another test where the optimal design is simulated using an accu-
rate time-dependent technique such as large eddy simulation (LES) or detached eddy simulation (DES).
Such a test was not performed here mainly due to the character of the geometry, namely two-dimensional
and the LES and DES can only be performed for three-dimensional computational domains.
There are still several issues that have to be addressed before this techniques can become an engineering
tool. First unknown in this optimization work is of course the parameterization which should be done
in (Computer Aided Design) CAD language using B-splines. However such a description of a three-
dimensional geometry would result in a large number of design variables making the choice of important
design variables even more difficult in order to decrease the number of expensive CFD calculations.
From the point of aerodynamic engineer it is advantageous if the shape of the vehicle can be described
in simple terms such as length, height or radius that later can be translated by the computer into a CAD
model.
The choice of the DOE needs also to be investigated further. Although we have here used centered com-
posite design (CCD) which was originally designed for physical experiments our numerical experiments
are deterministic and there are number of designs that may be better suited for computer experiments.
Examples of such designs are Latin hypercube sampling (LHS) and orthogonal arrays (OA) (see [9] for
the review). There is a clear difference between the two design approaches (those for physical and com-
puter experiments). As the DOE designed for physical experiments are taking into account the random
variation in the sampled data, such a variation is irrelevant for the computer experiments as these are de-
terministic. This means for example that there is no need for duplicate designs in computer experiments.
Another issue that has to be addressed is the cost (in terms of men hours) of for the generation of the
geometries and the computational grids for large number of designs. In the present work the author
has use the ICEM-CFD package to generate all twenty five designs and the corresponding structured
computational grids. Keeping in mind that generation of the computational grid around a realistic vehicle
requires today several days (sometimes one to two weeks) this process has to be automated in order to
make the optimization procedure feasible. There are already tools available for shape deformation of the
computational grid which can help the tedious job of re-meshing the set of the designs.
The example demonstrated in the present work used a second order polynomial as a surrogate model.
Although we have shown here that such a model is sufficient for the optimization of the two-dimensional
geometry for drag and lift it is possible that higher order polynomial has to be used for three-dimensional
geometries or other objective functions. Another types of surrogate models such as radial basis neu-
ral networks should be tested before an appropriate surrogate model is chosen for the general vehicle
aerodynamics optimization.
Although there is a number of questions that have to be answered before the surrogate based optimiza-
tion can become a general engineering tool for the aerodynamic optimization of vehicles, there is no
doubt that it represents a valuable design strategy. With increase in computer power the steady CFD
simulations will be replaced with more accurate unsteady simulations and thereby increase the accuracy
of the response surface model substantially. Despite the promising computer development the use of the
gradient-based search algorithms will be prohibited for many years to come (especially if time-dependent
simulations are used). Using the surrogate based optimization together with time-dependent CFD sim-
ulations for the construction of the surrogate model will certainly become an optimization tool that is
capable to compete with physical optimization in wind tunnels both in terms of cost and accuracy.
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