
Chalmers University of Technology

Implementing GPU acceleration into the
pyCALC-LES code using CuPy

LES and DES using an in-house Python code (FMMS002)

Author:
Johannes Hansson

Supervisor:
Prof. Lars Davidson

January 8, 2024

Abstract

A proof-of-concept implementation of full-code hardware acceleration us-
ing Graphics Processing Units (GPUs) is presented for the Large Eddy
Simulation software pyCALC-LES [1]. The original version of the code
is a CPU-only implementation in the Python programming language. A
recent study introduced GPU acceleration when solving systems of equa-
tions in the code, resulting in a factor two increase in whole-program
computational performance [1]. The current study shows that going from
partial GPU acceleration to the full-code equivalent can have yet another
significant impact on computational performance, with a factor 15 im-
provement over the CPU-only case and an almost factor 3 improvement
over the partial GPU case on a studied benchmark system.

Keywords: CFD, GPU, CuPy, NumPy, SciPy, Python

1

Acronyms
CFD Computational Fluid Dynamics.

CPU Central Processing Unit.

DNS Direct Numerical Simulation.

GPU Graphics Processing Unit.

LES Large Eddy Simulation.

RANS Reynolds-Averaged Navier Stokes.

VRAM Video Random Access Memory.

2

Contents
Acronyms 2

1 Introduction 4

2 Background 4
2.1 Graphics Processing Unit (GPU) acceleration 4
2.2 The CuPy library . 5
2.3 PyAMG and PyAMGX . 6

3 Method 6
3.1 Performance profiling . 6
3.2 Implementation of pyCALC-LES in CuPy 7
3.3 Benchmark case . 8

4 Results 8

5 Discussion 9

6 Conclusions 10

Appendix A Implementation details 12
A.1 High-level changes . 12
A.2 Low-level changes . 13
A.3 Switching the CuPy implementation back to NumPy 15
A.4 Note about the GPU implementation presented in this report 15

3

1 Introduction
There is large academic and industrial interest in understanding how fluids flow and
behave. The two main approaches for understanding flow phenomena are experimen-
tal and computational studies. Experimental studies are often very accurate in the
variables they measure, but suffer from high capital costs and provide limited infor-
mation about the system being studied. Computational studies, on the other hand,
are often cheaper to run and can provide much more information about the flow, but
at the cost of practical difficulties that might affect the accuracy of the results. In the
present study we focus on computational studies of fluid systems.

In order to get accurate results from computer simulations, it is desirable to re-
solve as much of the underlying physics as possible. This can in theory, but not in
practice, be achieved using Direct Numerical Simulation (DNS), a simulation method
that resolves all of the physics in the Navier-Stokes equations down to the smallest
relevant spatial scale, the Kolmogorov length scale. This high accuracy gives very good
results, but due to the often immensely high computational cost it is only feasible for
very small and simple systems. Using this method for industrial-scale systems is out
of the question with currently available computational power. To combat this issue,
several other methods have been developed that model, instead of resolve, some of
the underlying physics. Large Eddy Simulation (LES) resolves all but the smallest
length scales in the flow, and can in many cases be used as a more practical alter-
native to DNS. It has slightly lower accuracy, but significantly lower computational
requirements. This lower cost means that it is possible to use this modeling technique
for some industrial-scale systems, as long as they are not too complex. There are also
other computational methods that further decrease the computational cost, with a
corresponding decrease in accuracy. One such method is Reynolds-Averaged Navier
Stokes (RANS) simulations, which is one of the standard computational methods used
to study industrial-scale systems.

Since computational power is the main factor limiting the use of increasingly ac-
curate simulation methods, it is important that available computational resources are
used as efficiently as possible. In this report we focus on how we can increase the com-
putational performance of the research and education Computational Fluid Dynamics
(CFD) code pyCALC-LES [1]. Even though the results presented in this report are
specific to this particular code and the RANS case set-up described in section 3.3, the
general workflow and trends in the results should transfer well to other similar codes.

2 Background

2.1 GPU acceleration
The pyCALC-LES code is written in the Python programming language and uses a
small set of external libraries, with NumPy [2] and SciPy [3] being two of the more
heavily used libraries. NumPy is used for numerical calculations of a wide set of
mathematical operations, with a particular focus on array operations. SciPy is a col-
lection of algorithms, data structures and other tools often used in scientific computing.
These libraries run on the Central Processing Unit (CPU), which is able to deliver de-
cent computational performance for practically any type of operation. However, some
computations can be completed faster if performed on specialized hardware, such as
GPUs. GPUs are especially well-suited for handling simple mathematical operations
that operate on large sets of data. Since CFD simulations spend a large fraction of
the simulation run time solving systems of equations, for example the pressure Pois-
son equation, GPU acceleration is a compelling option for increasing computational
performance.

4

Partial GPU acceleration has already been implemented in previous work based
on pyCALC-LES [1]. In that work, most of the simulation logic is still handled by the
CPU, but the task of solving systems of equations is specifically offloaded to the GPU.
This means that the most computationally expensive operation is performed with
hardware acceleration, while most of the source code remains untouched, which is a
positive aspect in terms of code complexity. Benchmark cases indicate that offloading
the solution to the system of equations gives a performance increase of a factor more
than two [1].

An obvious follow-up question to the partial-GPU case is if we can further increase
performance by running everything on the GPU. The underlying idea here is that con-
tinuous copying of data back and forth between main memory and Video Random
Access Memory (VRAM) takes time, which decreases overall computational perfor-
mance. If all operations are performed on the GPU, then no copying needs to take
place. A downside with GPUs is that they are not ideal for handling mathematical
operations that act on small data sets, such as a single, or a small set of numbers. We
might then need to accept that some operations are a bit slower on GPUs in exchange
for getting faster solutions to systems of equations, and not having to move around
large amounts of data in each solver iteration.

There are several libraries that can be used when porting software for running on
a GPU, but many of them would require a complete, or almost complete, re-write of
pyCALC-LES, something we want to avoid. Fortunately, one of these libraries, CuPy
[4], is specialized in accelerating NumPy code so that it runs on GPUs with almost
no change in the application source code. We will therefore use the CuPy library
to develop a proof-of-concept implementation of the pyCALC-LES solver to evaluate
possible performance gains.

2.2 The CuPy library
The CuPy library is designed to accelerate NumPy and SciPy operations by running
them on GPUs. CuPy function calls are almost identical to the NumPy and SciPy
equivalents, with the exception that they use a different module. For example, consider
the NumPy code

>>> import numpy as np
>>> x_cpu = np . arange (5)
>>> x_cpu
array ([0 , 1 , 2 , 3 , 4])

Listing 1: NumPy code for creating a five-element array.

This code loads the NumPy module and then uses it to create a five-element array
x_cpu that is located in main memory, and is used by the CPU. If we compare this to
the corresponding CuPy implementation we get:

>>> import cupy as cp
>>> x_gpu = cp . arange (5)
>>> x_gpu
array ([0 , 1 , 2 , 3 , 4])

Listing 2: CuPy code for creating a five-element array.

Note that we are importing cupy with the module alias cp. This code generates the
same five-element array as in the NumPy case, but this time it is stored in GPU
memory. The CuPy library also includes convenience functions for easily translating
between CPU and GPU arrays, but doing this implies copying data between main and
GPU memory, something that takes time, especially for larger datasets.

5

As we can see from the two code listings above, the codes are almost identical,
except for the import statement and the module alias, np or cp. Since CuPy is designed
to be as similar to NumPy and SciPy as possible, it is relatively straightforward to
use CuPy as an almost drop-in replacement for these libraries, with GPU acceleration
built-in. Do note, however, that it is only an almost drop-in replacement. Some
library features are not implemented in CuPy at the time of writing. Fortunately,
this limitation generally only entails a small re-write of a single function call. Further
details on this are presented in section 3.2.

2.3 PyAMG and PyAMGX
The original code uses the PyAMG library [5] to solve the systems of equations as
efficiently as possible. This Python library is a collection of Algebraic Multigrid (AMG)
solvers that use, as the name implies, the multigrid method to solve the systems of
equations. In essence, the AMG method rewrites the original problem into a similar,
but coarser, problem that is easier to solve. The solution to the coarse problem is
then used to solve the original problem, a procedure that gives very computationally
efficient solutions.

In the partially GPU-accelerated implementation of pyCALC-LES, the code uses
the similar library PyAMGX [6], which is a set of Python bindings to Nvidia’s AMGX
[7] library for solving systems of equations using the multigrid method on GPUs. The
rest of the code in that version of pyCALC-LES is still based on the original CPU-
only NumPy code. In the fully GPU-accelerated version of the code presented in this
report, the PyAMGX solver is kept as the main solver for the systems of equations.
However, the CPU-only NumPy code has been replaced with GPU-accelerated CuPy
code for increased computational performance.

3 Method
The main part of this work is divided into two categories, performance profiling and
CuPy implementation. Performance profiling is needed for all three versions of the
code: CPU only, partial GPU and full GPU. This aspect is presented in section 3.1
below. The other main part is the actual CuPy implementation of the pyCALC-LES
software, presented in section 3.2.

3.1 Performance profiling
Performance profiling is carried out in several steps in order to assess the effect of
various optimizations and changes in the source code. The first step is to establish
a performance baseline using the original, CPU-only, version of the code. Next, the
recently developed partial-GPU implementation is benchmarked. Results from previ-
ous work indicate that the expected performance increase for the partial GPU version
over the CPU version should be in the order of about a factor two speedup for the
simulation as a whole [1]. Finally, identical measurements are made for the full GPU
implementation.

In this study we use a particular validation case from the pyCALC-LES manual
[1] as our basis for simulation run time measurements, see section 3.3 below. Simu-
lation run time is measured as a function of the number of grid cells. The physical
system remains the same in all cases, but the resolution of the computational grid,
and thereby the computational requirements, are increased step-by-step in order to
quantify how an increasing number of grid cells affects the performance for the three
solver implementations. In order to eliminate code start-up effects from affecting the
measured run times, a small dummy simulation is run before each timed simulation

6

case. The run time results from these dummy cases are not taken into account in the
final evaluation.

3.2 Implementation of pyCALC-LES in CuPy
Given the almost drop-in nature of replacing NumPy and SciPy with CuPy, the most
important changes in the code relate to module imports in Python. As is presented
in section 2.2, replacing NumPy and SciPy imports with their CuPy counterparts
automatically transfers all computations and memory allocations to the GPU.

In order to minimize the number of changes needed to the original source code, we
can replace the import statement in Listing 1 with

>>> import cupy as np
>>> x = np . arange (5)
>>> x
array ([0 , 1 , 2 , 3 , 4])

Listing 3: NumPy code for creating a five-element array, with GPU acceleration
using CuPy.

This way, only a single line needs to be changed to get full-GPU acceleration. Note
that in this case the x variable is stored in VRAM on the GPU. For improved read-
ability it is, however, suggested to replace the np alias with something that is not as
generally associated with NumPy. It could, for example, be cp to indicate its associa-
tion with CuPy or xp to indicate that both NumPy and CuPy are possible, depending
on which library the user decides to use. The alias xp is used in the final full-GPU
implementation of pyCALC-LES.

Even though the CuPy library is compatible with most parts of the NumPy and
SciPy interfaces, some aspects are still not entirely compatible. This means that some
extra source code modifications must be made. Luckily, most of these changes belong
to a small number of categories, so the same workaround can be applied in several
places. The most significant changes introduced to the pyCALC-LES source code are
summarized below.

• CuPy does not implement the np.matrix.flatten(A) function call, which col-
lapses a multidimensional array into a single dimension. Here, A is a given mul-
tidimensional array (for example a matrix in two dimensions). However, CuPy
does implement A.flatten(), so calls of the form
np.matrix.flatten(A) are in the pyCALC-LES source code replaced with calls
to A.flatten(). Both function calls perform the same operation, so it produces
no difference in the behavior of pyCALC-LES and NumPy compatibility is not
affected.

• CuPy does not implement the NumPy insert function. This particular function
call is in the code used when computing the pressure. It can be seen in, among
others, the call

p3d_w=np . i n s e r t (p3d_w, 0 , np . z e r o s ((nj , nk)) , ax i s =0)

The above line of code pads the array p3d_w with zeros on one of the edges. A
workaround for this category of operations is to use the concatenate function,
which is indeed implemented in CuPy. This way, we can achieve the same
functionality using a call such as

p3d_w=xp . concatenate ((xp . z e r o s (1 , nj , nk)) ,p3d_w, ax i s =0)

Note that we here use the alias xp to indicate compatibility with both NumPy
and CuPy.

7

• There are a few other trivial compatibility issues that can affect NumPy codes
running with CuPy, but most of them are of low impact, such as CuPy imple-
menting a slightly different behavior for the max, save and savetxt functions.
These inconsistencies are easily fixed with small changes to the source code.

A complete list of required source code changes is presented in Appendix A. Also, a full
set of case directories and pyCALC-LES implementations for the current benchmark
case is attached to this report as accompanying files.

3.3 Benchmark case
The validation case used in this study is based on the first workshop tutorial case
presented in [1]. It is a RANS channel flow simulation with the k−ω turbulence model
and a Reynolds number of Re = 1200. The only difference between the benchmark case
and the tutorial case is that the computational mesh is slightly different. In this report,
a much higher total number of grid cells is used to properly capture the performance
differences between CPUs and GPUs. A grid with 2048 cells in the spanwise direction
across the channel (the Nj direction, see [1]) is then used instead of the only 96 cells
used in the tutorial case. To compensate for the increased number of cells, the thickness
stretching per cell layer is decreased from 15% to 0.3%. The artificially increased
number of grid cells is needed because GPUs need a certain smallest problem size in
order to work at peak efficiency. Fine grids are also consistent with complex physical
systems, so the procedure of using a large number of grid cells is representative of many
real-world problems. The mesh is 2D rectangular, which means that the total number
of computational cells is Ni ×Nj . In this work we keep a constant Nj = 2048, and let
Ni assume values of the power of 2 between 2 and 9, i.e. Ni ∈ [22, 29] = [4, 512]. This
gives total cell counts between 8192 and almost 1.05×106. The upper limit was chosen
based on the maximum grid size that could be stored and processed by pyCALC-LES
in VRAM of an Nvidia GTX1660 SUPER (6GB).

4 Results
A comparison of simulation wall-clock run time as a function of the number of grid
cells for the benchmark case is presented in Figure 1. The blue circles represent the
original CPU-only version of the code, the orange triangles represent the previously
added partial GPU acceleration in the solving of the system of equations, and finally
the green squares represent the full-code GPU acceleration that is the main product
of the current work. Note that both the x- and the y-axes are logarithmic and that
horizontal, dashed, lines have been added as a guide for the eye to indicate 2min,
20min and 200min.

As can be seen from the picture, the original CPU-only version of the code requires
the most amount of simulation run time across all sampled grid sizes. The partially
GPU-accelerated version is noticeably faster, and the fully GPU accelerated version
is the fastest. For the second-to-largest mesh tested, the partially GPU-accelerated
version is more than a factor five times faster than the original CPU-only version, and
the fully GPU-accelerated version is almost a factor 15 times faster than the reference
CPU-only version (see Figure 2). The full-code GPU acceleration is almost three times
faster than the partial GPU implementation.

Unfortunately, the CPU-only version of the code had trouble running the largest
mesh. It is believed that this was caused by factors external to pyCALC-LES, but the
exact cause is unknown at the time of writing. It is suggested to rerun this particular
measurement to get an accurate estimation of the run time requirements for the CPU
implementation on the largest mesh as well.

8

Figure 1: Simulation run time as a function of number of grid cells. Three cases
are presented: CPU only, partial GPU and full GPU acceleration (this work).

A normalized plot of the achieved speedup is presented in Figure 2. The speedups
are normalized against the CPU-only simulation wall-clock time. As can be seen in
the figure, the existing partial-GPU implementation achieves a factor 3 to 5 speedup
relative to the CPU only case. Similarly, the full-GPU case achieves speedups of a
factor 4 to 15.

Figure 2: Speedup relative to the original CPU-only implementation.

5 Discussion
In Figure 1 we see a qualitative difference in the scaling behavior of especially the CPU-
only version and the full-GPU version. The run time requirements for the CPU version
start to increase almost immediately as the number of grid cells goes up. The GPU
version, on the other hand, exhibits a somewhat flat run time response for the cases

9

with a small number of grid cells (less than approximately 50 000 cells). This behavior
is expected for both computing devices, as CPU run time tends to scale directly with
increasing computational load, whereas a GPU, due to its inherent design, tends to
have a minimum amount of work that is needed before the device is fully utilized.
This is indicated by the relatively flat time response in the beginning, followed by an
increase in run time as the number of grid cells reaches a certain threshold, in this
case at around 50 000 cells.

From Figure 1 it is also clear that the CPU-only version exhibits a sharper increase
in simulation run time as the number of grid cells is increased beyond about 50 000
cells. A possible reason for this behavior could be related to exceeding the size of the
CPU caches, but this is speculation. It is unknown if the changes in scaling behavior
at 50 000 cells of the CPU and full-GPU cases are related. Worth noting is that the
partial GPU implementation does not exhibit a sudden change in scaling behavior.

In Figure 2 we can see that the speedups of the partial-GPU and full-GPU imple-
mentations continue to rise as the number of grid cells increase. It is expected that
the speedups will level off at constant factors for large enough meshes. Unfortunately,
the measurements found in the figure do not indicate what these large-size speedup
factors are. It is possible that the the largest mesh included in this study would give
us approximations to these numbers, but since the CPU-only results for this mesh are
unavailable we cannot do more than speculate.

One of the limitations in this study is that the number of RANS iterations is fixed
at exactly 1000 for all cases. This is, unfortunately, not enough to achieve flow field
convergence for the large-grid cases. However, all three solvers were subjected to the
same number of iterations, so it does not affect the measured performance results. It
would be beneficial to also compare the run times for fully converged cases, based on
some convergence criterion. This would increase simulation run time for the large-
grid cases, but it would be more indicative of computational performance in typical
simulation use-cases.

Another limitation is that this study focused on a single RANS validation case
found in the pyCALC-LES manual [1]. Further work is needed to extend the GPU
implementation to also work for arbitrarily chosen RANS cases or transient LES and
DNS simulations.

6 Conclusions
This study presents a proof-of-concept full-code GPU acceleration of the pyCALC-LES
CFD code. The implementation uses the CuPy library, which is a GPU-accelerated
implementation of the NumPy and SciPy libraries. The GPU accelerated code provides
significant simulation speedups for the benchmark system used in this study. On the
second-to-largest computational grid tested, the full-GPU implementation is almost
15 times faster than the original CPU-only version, and almost three times faster than
the recently developed partial-GPU implementation.

This study is to some degree specific to the pyCALC-LES software, but the general
principles applied can be used with any similar CFD code. The changes are particularly
simple if the code is written in Python, which means that the CuPy library can be
used as an almost drop-in replacement for many of the NumPy and SciPy features.

Acknowledgment
A special thanks to professor Lars Davidson for interesting discussions and ideas about
how to use pyCALC-LES, and also for access to computational resources needed for
generating the results in this study.

10

References
[1] Lars Davidson. pyCALC-LES: A Python Code for DNS, LES and Hybrid

LES-RANS. Chalmers University of Technology. Göteborg, Sweden, 2023-
07-18. url: https://www.tfd.chalmers.se/~lada/postscript_files/
py-calc-les.pdf (visited on 2023-07-18).

[2] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (2020-09), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url:
https://doi.org/10.1038/s41586-020-2649-2.

[3] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[4] Ryosuke Okuta et al. “CuPy: A NumPy-Compatible Library for NVIDIA
GPU Calculations”. In: Proceedings of Workshop on Machine Learning Sys-
tems (LearningSys) in The Thirty-first Annual Conference on Neural In-
formation Processing Systems (NIPS). 2017. url: http://learningsys.
org/nips17/assets/papers/paper_16.pdf.

[5] Nathan Bell et al. “PyAMG: Algebraic Multigrid Solvers in Python”. In:
Journal of Open Source Software 8.87 (2023), p. 5495. doi: 10.21105/
joss.05495. url: https://doi.org/10.21105/joss.05495.

[6] Ashwin Srinath. pyamgx. GitHub repository. 2023. url: https://github.
com/shwina/pyamgx (visited on 2023-12-20).

[7] Nvida corporation. AmgX. GitHub repository. 2023. url: https://github.
com/NVIDIA/AMGX (visited on 2023-12-20).

11

https://www.tfd.chalmers.se/~lada/postscript_files/py-calc-les.pdf
https://www.tfd.chalmers.se/~lada/postscript_files/py-calc-les.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495
https://doi.org/10.21105/joss.05495
https://github.com/shwina/pyamgx
https://github.com/shwina/pyamgx
https://github.com/NVIDIA/AMGX
https://github.com/NVIDIA/AMGX

Appendix A Implementation details
This section describes the needed changes for implementing full-code GPU acceleration
starting from the exec-pyCALC-LES.py file generated in the first tutorial case of the
solver manual [1].

A.1 High-level changes
The first and most impactful change is that we need to replace NumPy with CuPy.
We therefore replace all the NumPy library imports with their CuPy equivalents. We
therefore replace all occurrences of

import numpy as np

with

import cupy as xp

Note that we also replace the np alias with xp to indicate the double-library com-
patibility of the new code. Together with this we must also replace all function calls
of the type np.<...> with xp.<...>. For example, a call such as np.ones(ntstep)
should be replaced with xp.ones(ntstep). This can easily be achieved by performing
a search-and-replace operation on the entire code base, where we replace np. with xp.
while being careful to include the dot at the end.

We must also replace the scipy imports such that all occurrences of the two lines

from s c ipy import spar s e
from s c ipy . spar s e import spdiags , l i n a l g , eye

are replaced with the corresponding CuPy equivalent lines

from cupyx . s c ipy import spar s e
from cupyx . s c ipy . spar s e import spdiags , l i n a l g , eye

The tutorial case uses the lgmres sparse linear solver for velocity and turbulence
equations. To get full-GPU acceleration we instead use the pyamgx solver. Therefore,

so lve r_ve l=’ lgmres ’
so lver_turb=’ lgmres ’

becomes

so lve r_ve l=’pyamgx ’
so lver_turb=’pyamgx ’

Similarly, the tutorial case uses the pyamg solver when calculating the pressure.
This is a CPU-only solver, so we replace it with pyamgx. Therefore,

solver_p=’pyamg ’

becomes

solver_p=’pyamgx ’

Finally, we need to be able to branch code behavior depending on if the code is
running with the NumPy or CuPy libraries. As such, we still need to import NumPy,
even if we do not really use it for calculations. We therefore add

import numpy

at the very first line of exec-pyCALC-LES.py.

12

A.2 Low-level changes
The changes outlined above represent the major steps needed to run pyCALC-LES
with full-code GPU acceleration. However, there are some incompatibilities between
CuPy and NumPy that have not yet been addressed by the CuPy developers. A full-
GPU version of pyCALC-LES can nonetheless be achieved using the code rewrites and
workarounds presented in the current section.

In the modify_u function, the line

l 1 =[i t s t ep , k3d [1 , 5 , 0] , k3d [1 , 1 0 , 0] , k3d [1 , 2 0 , 0] , k3d [1 , 3 0 , 0] , k3d
[1 , 4 0 , 0] , \
k3d [1 , 5 0 , 0] , k3d [1 , 6 0 , 0]]

should be changed to

l 1=xp . array ([xp . array (i t s t e p) , k3d [1 , 5 , 0] , k3d [1 , 1 0 , 0] , k3d
[1 , 2 0 , 0] , k3d [1 , 3 0 , 0] , k3d [1 , 4 0 , 0] , \
k3d [1 , 5 0 , 0] , k3d [1 , 6 0 , 0]])

This change transforms the list into a NumPy/CuPy array instead of regular Python
list. This change is needed because the CuPy savetxt function expects a CuPy array
that it can convert to a NumPy array, and then call the NumPy version of savetxt.
Unfortunately the CuPy savetxt function cannot handle the case of a regular Python
list. This code change makes the data type conversion explicit instead of implicit.

A few small changes are needed in the pyamgx solver function solve_pyamgx. The
code blocks

su=np . matrix . f l a t t e n (su3d)
phi=np . matrix . f l a t t e n (phi3d)

and

aw=np . matrix . f l a t t e n (aw3d)∗ acrank_conv_local
ae=np . matrix . f l a t t e n (ae3d)∗ acrank_conv_local
as1=np . matrix . f l a t t e n (as3d)∗ acrank_conv_local
an=np . matrix . f l a t t e n (an3d)∗ acrank_conv_local
a l=np . matrix . f l a t t e n (a l3d)∗ acrank_conv_local
ah=np . matrix . f l a t t e n (ah3d)∗ acrank_conv_local
ap=np . matrix . f l a t t e n (ap3d)

must be replaced with

su=su3d . f l a t t e n ()
phi=phi3d . f l a t t e n ()

and

aw=aw3d . f l a t t e n ()∗ acrank_conv_local
ae=ae3d . f l a t t e n ()∗ acrank_conv_local
as1=as3d . f l a t t e n ()∗ acrank_conv_local
an=an3d . f l a t t e n ()∗ acrank_conv_local
a l=al3d . f l a t t e n ()∗ acrank_conv_local
ah=ah3d . f l a t t e n ()∗ acrank_conv_local
ap=ap3d . f l a t t e n ()

because CuPy does not implement the np.matrix class. We must also implement two
different versions of how to copy the solution vector back from the PyAMGX solver.
The original command is

x_x . download (phi)

In the CuPy implementation we must, on the other hand use

13

i f xp i s numpy :
x_x . download (phi)

else :
x_x . download_raw (phi . data)

The if statement checks if we are running with the NumPy or CuPy library. In the
first case we download the solution vector to the variable phi in main memory. In
the second case we instead copy the solution data directly from the PyAMGX GPU
memory to the CuPy array via a raw pointer. The structure with an if statement is
needed to maintain both NumPy and CuPy compatibility.

In the correct_conv function, the three lines containing calls to the NumPy insert
function should be replaced with equivalents using the concatenate CuPy function.
The reason for this is that CuPy does not implement the insert function. Therefore,
each of the lines

p3d_w=np . i n s e r t (p3d_w, 0 , np . z e r o s ((nj , nk)) , ax i s =0)
p3d_s=np . i n s e r t (p3d_s , 0 , np . z e r o s ((ni , nk)) , ax i s =1)
p3d_l=np . i n s e r t (p3d_l , 0 , np . z e r o s ((ni , n j)) , ax i s =2)

should be replaced with the corresponding concatenate alternative

p3d_w=xp . concatenate ((xp . z e r o s ((1 , nj , nk)) ,p3d_w) , ax i s =0)
p3d_s=xp . concatenate ((xp . z e r o s ((ni , 1 , nk)) , p3d_s) , ax i s =1)
p3d_l=xp . concatenate ((xp . z e r o s ((ni , nj , 1)) , p3d_l) , ax i s =2)

The above mentioned flatten() substitution is also needed directly after calling
the correct_conv function in the global iteration loop, where we replace the line

res_1d=np . matrix . f l a t t e n (su3d)

with

res_1d=su3d . f l a t t e n ()

Towards the end of the global iteration loop, the line

resmax=np .max([res idual_u , res idual_v , residual_w , res idual_p])

should be replaced with

resmax=xp .max(xp . array ([res idual_u , res idual_v , residual_w ,
res idual_p]))

This is due to a slight difference between NumPy and CuPy, where NumPy max func-
tion accepts regular Python lists whereas the CuPy equivalent does not.

In the save_time_aver_data function, the line

np . save (’ i t s t e p ’ , [i t s tep_stats_counter , nk , dz3d [0 , 0 , 0]])

must be replaced by

np . save (’ i t s t e p ’ , xp . array ([xp . array (i t s t ep_stat s_counter) , xp .
array (nk) , dz3d [0 , 0 , 0]]))

This change is needed because CuPy uses the NumPy save function internally, but
CuPy has trouble interpreting how to convert the Python list into a NumPy array.
This change does the conversion explicitly.

14

A.3 Switching the CuPy implementation back to NumPy
Once the low-level CuPy details have been implemented, switching between the two
implementations is as simple as replacing a few import statements. The three lines

import cupy as xp
from cupyx . s c ipy import spar s e
from cupyx . s c ipy . spar s e import spdiags , l i n a l g , eye

must then be replaced with

import numpy as xp
from s c ipy import spar s e
from s c ipy . spar s e import spdiags , l i n a l g , eye

This change can easily be achieved with two search-and-replace operations in any text
editor by replacing all occurrences of cupyx. with an empty string, and then replacing
all occurrences of cupy with numpy.

Note that changing the imports gives us the partially GPU-accelerated version
of pyCALC-LES since the solvers are still set to pyamgx. Changing these solvers to
something else gives us the CPU-only version of pyCALC-LES.

A possible future improvement of the code constitutes implementing a simple
switch that selects the correct NumPy or CuPy libraries based on a single boolean
variable set by the user. This would make it easier for the user to swap backend
libraries.

A.4 Note about the GPU implementation presented in
this report

This report presents a proof-of-concept GPU implementation using CuPy for a tutorial
case in the pyCALC-LES manual. Only the changes needed for running this particular
benchmark case are presented here. Additional changes are needed if other cases are
to be simulated as well. These changes are expected be quite similar to the the ones
presented here, so it should be straightforward to get other cases to run using full-GPU
acceleration.

15

	Acronyms
	Introduction
	Background
	gpu acceleration
	The CuPy library
	PyAMG and PyAMGX

	Method
	Performance profiling
	Implementation of pyCALC-LES in CuPy
	Benchmark case

	Results
	Discussion
	Conclusions
	Appendix Implementation details
	High-level changes
	Low-level changes
	Switching the CuPy implementation back to NumPy
	Note about the gpu implementation presented in this report

