
Chalmers University of Technology

Implementing Heat Transfer in pyCALC-LES

Course Project for LES and DES using in-house Python code

Author:
Anand Joseph Michael

Supervisor:
Lars Davidson

January 18, 2024

Contents

1 Introduction 1

2 Modifications to pyCALC-LES 1
2.1 global . 2
2.2 pyCALC-LES-heat.py . 3
2.3 setup.py . 5
2.4 modify.py . 6

3 Channel Flow including Heat Transfer at Reτ = 150 7
3.1 RANS simulations . 10
3.2 DES simulations . 10
3.3 Simulation Results . 11
3.4 Discussions and Conclusions . 14

1 Introduction

The pyCALC-LES code is a versatile turbulence modelling code capable of carrying
out DNS, RANS, LES and DES simulations[1]. Multiple turbulence models have
been implemented taking into consideration the transport equations for k, ϵ and
ω. The code is capable of carrying out simulations with curvilinear grids in the
x-y plane. The grid configuration needs to be Cartesian in the z-direction but grid
number and spacing can be varied. The base code of the program consists of a base
file named pyCALC-LES.py. A file named setup.py chooses the turbulence model
and its corresponding initial settings. Another file named modify.py is used to
modify parameters as the program is running. The grids required for each simulation
is usually generated using a file named generate-channel-grid.py. The original
pyCALC-LES code provided as part of the course does not account for heat transfer.
As part of this project, I have modified the code base file pyCALC-LES.py to account
for heat transfer and resultant buoyancy effects. The first section of this report
details the modifications made to the code base and the setup and modify files. This
is followed by an example case consisting of vertical channel flow where buoyancy
effects have been both included and excluded.

2 Modifications to pyCALC-LES

The main challenge in the project was to include the heat transfer equations as part
of the CFD code. The heat transfer equations read as follows [2]:

∂T

∂t
+

∂viT

∂xi

= α
∂2T

∂xi∂xi

(1)

Here α refers to the thermal diffusivity and is a property of the fluid under con-
sideration. The Prandtl number(Pr) can be used to calculate the thermal diffusivity
from the viscosity of the fluid using the relation α = ν/Pr.

While modelling turbulence often time-averaged equations are used in the turbu-
lence model. When the temperature equation is time- averaged, it reads as follows[2].

∂T

∂t
+

∂viT

∂xi

= α
∂2T

∂xi∂xi

− ∂v′iT
′

∂xi

(2)

Here, the unknown time-average of the fluctuating component can be approxi-
mated using the Boussinesq assumption to get

1

v′iT
′ = −αt

∂T

∂xi

(3)

The turbulent thermal diffusivity αt can be determined from the turbulent prandtl
number using the relation αt = νt/Prt where νt is the turbulent viscosity.

The temperature gradients in the fluid flow cause changes in density which can
lead to buoyancy effects in the flow depending on the direction of the gravity and
other body forces acting on the body. The buoyancy effect when added to the
averaged momentum equations read as follows[2]:

∂vi
∂t

+
∂vivj
∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2vi

∂xj∂xj

−
∂v′iv

′
j

∂xi

− βgi(T − Tref) (4)

To include the heat transfer equation 2, a set of changes were made to the
pyCALC-LES.py file and it was renamed to pyCALC-LES-heat.py. The script file usu-
ally used to run the combine these files and execute the program was also changed
to reflect this change in the name of the base code file. The setup.py and the
modify.py files were also changed to account for the modified code while also in-
cluding the buoyancy term into the momentum equation 4. The suggestions provided
in the workshop section 24.5 in the pyCALC-LES manual were used as a starting
point for this purpose[1]. The major changes made in each section have been high-
lighted below. The changes made in the code have also been commented as #temp
for easy identification.

2.1 global

The global file contains the declaration of all the global variables used in the program.
The file was modified to include few new variables that will be used for the temper-
ature part of the code. The variables storing the type of temperature boundary
conditions as well as their values was declared as follows:

t_bc_east, t_bc_east_type, t_bc_north, t_bc_north_type, t_bc_south,

t_bc_south_type, t_bc_west, t_bc_west_type, t_bc_low,t_bc_high,

t_bc_low_type, t_bc_high_type

The scheme_t variable was declared to specify the scheme used for the discretisation
of the temperature equation while the solver_t variable was declared to specify the
solver to be used. Finally, two variables prand_visc and prand_temp_turb were
declared to record the fluids Pr number as well as the turbulent Prandtl number Prt
that is used to determine αt.

2

2.2 pyCALC-LES-heat.py

When it comes to the main code file, the easiest way to follow the code would be to
start with the section commented as #the execution of the code starts here#.
The code starts with loading the grid and then initializing all the variables. Here,
the code has been modified to include the default boundary conditions for the tem-
perature.

t_bc_west=np.zeros((nj,nk))

t_bc_east=np.zeros((nj,nk))

t_bc_south=np.zeros((ni,nk))

t_bc_north=np.zeros((ni,nk))

t_bc_low=np.zeros((ni,nj))

t_bc_high=np.zeros((ni,nj))

t_bc_west_type=’d’

t_bc_east_type=’d’

t_bc_south_type=’d’

t_bc_north_type=’d’

t_bc_low_type=’d’

t_bc_high_type=’d’

This is followed by the initialization of the field variables for the first time where
a line is added to initialize the temperature field as well.

t3d=np.ones((ni,nj,nk))*1e-20 #temp

Following this, the variables storing the turbulent mean values are initialized. Here,
variables to store T ,u′

iT
′ and T ′2 are initialized

t3d_mean=np.ones((ni,nj,nk))*1e-20 #temp

ut3d_mean=np.ones((ni,nj,nk))*1e-20 #temp

vt3d_mean=np.ones((ni,nj,nk))*1e-20 #temp

wt3d_mean=np.ones((ni,nj,nk))*1e-20 #temp

tt3d_mean=np.ones((ni,nj,nk))*1e-20 #temp

The setup_case() function that specifies the particular simulation case condi-
tions is run after this and changes the boundary conditions and initialises most of
the global variables.

3

The next modification to the code is made in the call to the modify_init()

function which is used to modify the initial flow field variables. The function now
has an extra argument named t3d and also returns an extra variable also called t3d.

Similarly, the functions read_restart_data(), modify_inlet(), time_stats(),
save_vtk(), save_time_aver_data(), save_data(), update() as wells as the parts
of the code calling them were modified to include the corresponding temperature
terms in addition to the existing velocity terms.

The residual for the temperature calculations namely residual_t is added as
part of the other set of residuals being initialised and it is set to zero.

The next modification is the addition of the code snippet to calculate the temper-
ature field from the heat transfer equations. The major changes are in the coeff()
and the bc() functions that are used to calculate the coefficients and source terms
used in the calculation of the temperature field.

The coeff() function was changed to include an extra argument in the form of
prand_temp which was used to divide the viscosity to obtain the thermal diffusivity
α to be used to calculate the coefficients in the temperature equations. Any place
where viscosity(ν) was previously used was modified to use this newly calculated α
which in the code has been called visc.

visc=viscos/prand_temp #temp

visw[0:-1,:,:]=fx*vis_turb+(1-fx)*np.roll(vis_turb,1,axis=0)+visc

viss[:,0:-1,:]=fy*vis_turb+(1-fy)*np.roll(vis_turb,1,axis=1)+visc

visl[:,:,0:-1]=fz*vis_turb+(1-fz)*np.roll(vis_turb,1,axis=2)+visc

if cyclic_x:

visw[0,:,:]=0.5*(vis_turb[0,:,:]+vis_turb[-1,:,:])+visc

diffw[0,:,:]=visw[0,:,:]*areaw[0,:,:]**2/(0.5*(vol[0,:,:]+vol[-1,:,:]))

if cyclic_z:

visl[:,:,0]=0.5*(vis_turb[:,:,0]+vis_turb[:,:,-1])+visc

diffl[:,:,0]=visl[:,:,0]*areal[:,:,0]**2/(0.5*(vol[:,:,0]+vol[:,:,-1]))

Also passing prand_temp_turb as the argument for the prand_1 and prand_2

in the coeff() function automatically takes care of the calculation of the turbulent
thermal diffusivity αt. Thus the final call to the coeff() function while calculating
the temperature field becomes

aw3d,ae3d,as3d,an3d,al3d,ah3d,apo3d,su3d,sp3d=coeff(convw,convs,convl,\

vis3d,prand_temp_turb,prand_temp_turb,prand_visc,f1_sst,scheme_t) #temp

4

When coeff() is called to calculate the coefficients for the other flow fields the
argument for prand_temp is passed as 1 so that the viscosity is used unmodified.

Similarly, the function bc() was also modified to include an extra argument
prand_temp which is used to modify the viscosity to get the thermal diffusivity.
Passing 1 to this argument retains the viscosity as an unmodified quantity. All calls
to the functions coeff() and bc() are modified to reflect this modification in its ar-
gument structure. Appropriate values for prand_temp(prand_visc for temperature
equation and 1 for all others) are used.

A new function called calct() was added which was then used to add or modify
the source terms to the temperature equations. This function was written like the
calcu() function including an inbuilt call to the modify_t() function which was
defined in the modify.py file.

The remaining part of the code segment used to calculate the temperature field is
the same as that used to calculate all other field variables with the only changes being
that the field variable is t3d, the scheme part of the function calls uses scheme_t

and the convergence limit is set to convergence_limit_t which is defined in the
setup.py file. The solver used for the temperature field is mentioned as solver_t
while the max iterations for the solver is passed as nsweep_t

The residual value calculated at the end of the iteration is normalised using the
variable resnorm_t which is defined in the setup.py file.

The last part of the pyCALC-LES_heat.py file consists of calls to functions to
save the flow fields and the corresponding averaged quantities based on conditions
specified in the setup.py file. These functions and their calls, as mentioned previ-
ously, have been modified to include the temperature field and its relevant fluctuating
components.

2.3 setup.py

The following variables have been added to the setup.py file as new quantities to
be specified for each simulation case.

1. scheme_t and solver_t is used to specify the scheme used to discretise the heat
transfer equations and the solver used to solve the equations respectively. The
same set of schemes and solvers as used for the velocity equations are available
in this case as well. The nsweep_t term specifies the maximum iterations in
the solver.

2. prand_temp_turb and prand_visc which is used to define the turbulent and
viscous prandtl number to be used for the temperature equations.

5

3. beta,g and t_ref which are used to calculate the bouyant term in the momen-
tum equations.

4. The convergence_limit_t specifies the convergence criteria for the tempera-
ture field calculations.

5. resnorm_t which is the quantity used to normalise the residual of the tem-
perature field. It is calculated as the temperature flux entering in the flow
direction.

resnorm_t=tin*uin*zmax*y2d[1,-1]

The tin used in this equation is specified as the reference temperature field for
the simulation.

6. The final addition in setup.py is the inclusion of boundary conditions and
values for the temperature field that is different from the default case mentioned
in the base code.

2.4 modify.py

The functions used to modify the flow field variables as well as the coefficients used
to calculate them are specified in this file. Since these functions change depending
on the simulation case being run they are separately mentioned. The functions that
have been modified are listed below with brief description of the changes made.

1. modify_init() function was changed to include t3d as a return variable. In
case the simulation requires changes yo the initialised temperature field, it can
be added here.

2. modify_inlet() function is also changed to include t_bc_west since the flow
usually enters from the boundary where x = 0. Alternate inlet values can be
mentioned here in case the inlet is not from the x-direction. If a synthetic
temperature fluctuation needs to be added to the simulation then it can be
inserted here.

3. modify_u(),modify_v and modify_w() functions are changed to include buoy-
ancy terms in their source term depending on the direction of the body force
acting on the fluid based on equation 4. For example, in the vertical channel
flow case tested here, the body force acts in the negative x-direction resulting
in an addition to the u-velocity source term as follows

6

su3d=su3d+vol+g*beta*(t3d-t_ref)*vol

4. modify_t() function is added to the file to make any changes to the source
terms. The function can include the addition of inlet boundary conditions to
the source terms in the following manner.

visc=viscos/prand_visc

su3d[0,:,:]= su3d[0,:,:]+np.maximum(convw[0,:,:],0)*t_bc_west

sp3d[0,:,:]= sp3d[0,:,:]-np.maximum(convw[0,:,:],0)

vist=(vis3d[0,:,:]-viscos)/prand_temp_turb

su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*t_bc_west

sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound

It can also include heat sources inside the domain for example

ss=2 #volume source

su3d[5:10,10:20,:]= su3d[5:10,10:20,:]+ss*vol[5:10,10:20,:]

3 Channel Flow including Heat Transfer at Reτ = 150

The code described in the previous section was used to simulate a flow through a
channel at Reynolds number Reτ = 150. The simulation case was based on the
setup described in paper [3]. It consists of a vertical channel with a temperature
difference of one across the vertical walls as shown in figure 1. The gravitational
force acts in the downward direction along the negative x-direction. In the reference
paper, DNS simulations were carried out at two Grashof(Gr) numbers to study the
effects of buoyancy on the flow in a vertical channel. The initial case consisted of
a Gr = 0 which corresponds to purely forced convection with no buoyancy effects
while the second case in the paper corresponds to a Gr = 7.68 · 106 which is referred
to in some parts of this report as the mixed convection case as it includes buoyancy
effects. The averaged flow field quantities obtained from the DNS simulations have
been displayed in figure 2.

For this project, RANS simulations were initially carried out for both scenarios
followed by some DES simulations to see if the accuracy could be improved while
using less number of cells than used in the DNS simulations mentioned in the paper.

7

Figure 1: Setup for Vertical Channel Flow

For both sets of simulations, the vertical wall at y=0 was set to a temperature of 1
while at the other side at y=2 it was set to 0. Since Reτ = uτh

ν
, it was set to 150 by

setting viscosity ν = 1/150. The uτ and the half-width of the channel h were both
set to 1 to allow for this manner of controlling the Reynolds number. The Prandtl
number were set to Pr = 0.7 considering air as the fluid in the simulations. The
Prt value usually used varies between 0.7-0.9 and here a middle value was randomly
selected setting Prt = 0.85. The Grshaof number Gr = gβ∆TH3

ν2
was set to 0 for the

first case by setting g to 0. For the second case, g = 7.5 and β = 1 for aGr = 1.68·105.
In both cases, the ∆T = Thot − Tcold = 1. The reference temperature was taken as
the average of the hot surface and the cold surface and set to Tref = 0.5. Trying
to set the Gr number to higher values by modifying g resulted in flow fields with
negative velocities in parts of the flow channel. So for the current project, a lower
Gr number than that presented in paper [3] was used and a qualitative comparison
has been provided for the mixed convection scenario. Possible sources of error are
mentioned towards the end of the report.

The file modify.py was changed to include a constant pressure gradient that
would drive the flow in the form of a source term in the u velocity equations(x-
momentum equation). Apart from the buoyancy effect on the u-velocity has also

8

been added as a source term. The change made is as follows:

su3d=su3d+vol+g*beta*(t3d-t_ref)*vol

(a) Solid lines: U/Ub,
Dashed lines: T

(b) Solid lines: u2, dashed lines: v2, dash-
dotted lines: w2

(c) Solid lines: ut/|qw|, dashed lines:
−vt/|qw|, dash-dotted lines: 500t2

(d) Solid lines: turbulent heat flux
vt/qw, dashed lines: viscous heat flux
−1/(ReτPrqw)∂T/∂y, dash-dotted lines: w2

Figure 2: Lines represent results from DNS simulations carried out in paper [3]
while the circles show DNS results from paper[4]. Thin lines :Gr=0, Thick lines:
Gr = 7.68 · 106

9

The pressure gradient is set to 1 and multiplied with the volume represented by
vol. This will result in a Reτ of 1/ν in the absence of buoyancy, which in this case
is 150. The buoyancy term is similarly added as g*beta*(t3d-t_ref)*vol.

3.1 RANS simulations

The k − ω model was used to run RANS simulations for the vertical channel. The
absolute length of the simulation domain in the x, y and z directions were 1, 2 and
1.6 respectively. The grid sizing was set to 3x80x3 with periodic boundary conditions
in both the x and z directions.

The simulation was run for a total of 2000 timesteps with the last 100 timesteps
being used to obtain the averaged field values. The turbulent kinetic energy(k) and
temperature(T) field values at different heights of the channel were recorded at each
time interval to check for convergence of the solution to a steady value. In the
forced convection case(Gr = 0) the solution was observed to converge in around
250 timesteps but the simulation was allowed to run till 2000 timesteps. In the
case of mixed convection involving buoyancy effects it was observed that restarting
the simulation using the values obtained from the forced convection case resulted in
smoother velocity and temperature profiles in the converged case. If the simulation
was initialised with a zero velocity and temperature field while including buoyancy
effects(especially at higher g values) then the velocity and temperature profiles across
the channel showed sharper inflexions. Alternatively, if the Gr number was gradually
increased from zero the profiles were smoother. The RANS results shown in figure 3
are from such a gradual increase in Gr.

3.2 DES simulations

The k − ω DES model was used to run the same cases as previously. In this case
the simulation domain was extended in the x direction to π. The grid was remade
to have 32x80x32 cells. Similar to the previous case periodic boundary setting was
used in the x and z direction.

The simulation was run for a total of 20000 timesteps in the case of the purely
forced convection case. The results for time averaging were recorded from timestep
17000. In the case of mixed convection, similar to the RANS cases, the forced con-
vection end field variables were used to start a simulation and run for 5000 timesteps.
Each of the DES simulations took considerably longer time to complete both from
the increase in grid resolution and the number of timesteps. Previous, trials with the
code had shown that initialising the simulation with zero for the field variables for

10

the mixed convection case took much longer than for the purely forced convection
case. Apart from this, as mentioned in the RANS section, the simulation results
gave sharper inflexions in the averaged velocity and temperature fields. So for the
set of results shown here, the mixed convection simulations were initialised with the
results of the forced convection case.

3.3 Simulation Results

The averaged velocity and temperature profiles have been shown from the RANS as
well as DES simulations for both the forced convection case(Gr = 0) and the mixed
convection case(Gr = 1.68 · 105) in figure 3. An exact comparison cannot be done
with the DNS results for the mixed convection case since the Gr number is different.
However, a qualitative comparison has been done here to show that the results show
similar trends.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
/U

b

(a) U/Ub

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0.0

0.2

0.4

0.6

0.8

1.0
T

(b) T

Figure 3: Averaged velocity and temperature profile from RANS and DES sim-
ulations. :RANS(Gr = 0), : RANS(Gr = 1.68 · 105, :DES(Gr = 0), :
DES(Gr = 1.68 · 105)

The average velocity can be seen to be symmetric as expected in the forced
convection case. The values are also quite close to those obtained from the DNS
simulations with the peak of the curve between 1 and 1.2. But when it comes to the
mixed convection case, it can be seen that the velocity is higher near the hot wall and
lower near the cold wall as expected from the DNS results. The buoyancy term acts
to assist the flow near the hot wall while it hinders it near the cold one. The DES
simulation produced a more curved velocity profile than the RANS simulations but

11

the general trends are similar in both cases. The peak in the DES mixed convection
case has shifted further away from the wall compared to its RANS counterpart.

The temperature profile in the purely forced scenario can be seen to be quite
similar with the first curve in the graph close to 0.6 and the second close to 0.4.
The temperature profile can be seen to shift down in the middle section with the
introduction of the buoyancy effect into the simulations as expected from the DNS
simulations. However, the mixed convection temperature profile is not completely
below the forced convection case either in RANS or DES as predicted by the DNS
simulations. The point where the temperature goes below in the mixed convection
case seems to match the peak in the velocity profiles in these cases. This makes sense
as the high-speed fluid flow near the hot wall will have less time to transfer heat to
the flow’s inner regions, leaving them at lower temperatures.

The averaged values of the Reynolds Stress and fluctuating terms involving the
temperature (turbulent heat fluxes) can be seen in figure 4. When it comes to the
Reynolds stresses, there does not seem to be much agreement with the results shown
from the DNS simulations. The RANS simulations record only very small values for
the Reynolds Stresses in all directions. The DES simulations record a more significant
amount of Reynolds Stresses. The u′2 and v′2 terms from the DES simulations have
a similar shape to the DNS results but the magnitude of the terms are much smaller
than that in the DNS simulations. The shift in these two Reynolds stresses with the
higher peak towards the colder wall reflects the general trend predicted by DNS. The
w′2 term does not seem to match either in shape or magnitude to the DNS results.
This could possibly be due to the low number of cells as well as domain size in the
z-direction.

When it comes to the fluctuating terms involving the temperature (turbulent heat
fluxes), the terms again are much smaller in magnitude than that seen in the DNS
simulations. The RANS simulations again predict negligible turbulent heat fluxes
while the DES simulations predict more noticeable quantities. In the DES forced
and mixed convection case, the u′t′ term goes negative near the hot wall and positive
near the cold wall but the graph is not symmetrical as expected from DNS. The
v′t′ term does not show any similarity in the RANS or DES simulations. The only
similarity between the 500t′2 graph from DES and DNS is that it has a higher peak
near the hot wall than at the cold wall in the mixed convection case.

12

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0.000

0.001

0.002

0.003

0.004

0.005

u′
2 rm

s/U
b

(a) uurms/Ub

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0.0

0.5

1.0

1.5

2.0

2.5

v′
2 rm

s/U
b

1e−5

(b) vvrms/Ub

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0

1

2

3

4

5

w
′2 rm

s/U
b

1e−6

(c) wwrms/Ub

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

−0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

u′
t′ /
q w

(d) ut/qw

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

v′
t′ /
q w

1e−9

(e) vt/qw

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
y

0.000

0.002

0.004

0.006

0.008

0.010

0.012

50
0t

′2

(f) 500tt

Figure 4: Averaged product of fluctuating quantities from RANS and DES sim-
ulations. :RANS(Gr = 0), : RANS(Gr = 1.68 · 105, :DES(Gr = 0), :
DES(Gr = 1.68 · 105)

13

3.4 Discussions and Conclusions

The simulations seem to capture the overall trends when it comes to the average
fluid field quantities such as the x-velocity and the temperature. The results from
the forced convection case are quite close while the mixed convection case shows
the same general trends. The DES simulation seems to be slightly better since it
produces a more curved velocity profile.

When it comes to the fluctuating turbulent quantities, RANS does not produce
any good results. DES seems to give slightly better results, especially in the case of
u′2 and v′2. The shape of the graphs in this case is similar but the magnitudes are
still off. Perhaps the modelling method used to predict these fluctuating quantities
can be improved with other turbulence models such as wale. Due to a lack of time, it
was not possible to try out the wale model or do direct DNS for these cases. It is also
possible that a finer refinement of the grid and a longer domain might improve the
results since the original case in the paper [3] used a more longer and finely meshed
grid for both the cases.

The current system used for this project did not have GPU configured for pyCALC-
LES and hence the DES simulations each took a couple of hours. The RANS sim-
ulations on the other hand took only a couple of minutes at the most. If the user
is only interested in the trends of the averaged quantities then a RANS simulation
should suffice as it produces results that are quite close to a DES simulation with
fractional computational cost.

The Gr number used for the mixed convection case was lower than the one used
in the paper [3] used for reference in this project. Higher Gr numbers were tried
out by increasing the value of g but this resulted in parts of the average velocity
profile going negative. For the purpose of the project a Gr number was chosen that
produced similar average temperature and velocity profiles as that seen in paper [3].
An exact reason for this mismatch in Gr could not be identified but there could
possibly be an error in the manner in which the number was calculated for this
project. It is also possible that this could be an error in the implementation of the
buoyant force, since the forced convection trends seem to match quite well with the
DNS results. It is also possible that the Prandtl numbers used in the simulations
may have influenced the temperature profile. Any suggestions, regarding this part
of the code are welcome.

It was also interesting to note that the intial conditions especially, the field vari-
able values influenced the final converged solution so strongly in the mixed convection
case. To reduce large fluctuations in the simulation and allow for quick convergence
the mixed convection cases were started from the end point of the forced convection
cases. It was also noted that, instead of starting the DES simulations from zero, the

14

flow profile generated from the RANS simulation could have been used to start the
simulation thereby saving time for convergence to a solution.

References

[1] Lars Davidson. pyCALC-LES: A python code for DNS, LES and Hybrid LES-
RANS, 2023.

[2] Lars Davidson. Fluid mechanics, turbulent flow and turbulence modeling, 2023.

[3] L. Davidson, D. Cuturic, and S.-H. Peng. DNS in a plane vertical channel with
and without buoyancy, 2003.

[4] Nobuhide Kasagi and Oaki Iida. Progress in direct numerical simulation of tur-
bulent heat transfer. In Proceedings of the 5th ASME/JSME Joint Thermal
Engineering Conference, pages 15–19. American Society of Mechanical Engineers
San Diego, 1999.

15

	Introduction
	Modifications to pyCALC-LES
	global
	pyCALC-LES-heat.py
	setup.py
	modify.py

	Channel Flow including Heat Transfer at Re=150
	RANS simulations
	DES simulations
	Simulation Results
	Discussions and Conclusions

