2020-08-18, Exam in

Turbulence modeling, MTF270: Answers

1
a) Show that the term below is symmetric, dimension-less and trace-less.

$$
\begin{equation*}
T_{i j}^{5}=\frac{k^{3}}{\varepsilon^{3}}\left(\bar{\Omega}_{i k} \bar{s}_{k m} \bar{s}_{m j}-\bar{s}_{i m} \bar{s}_{m k} \bar{\Omega}_{k j}\right) \tag{1}
\end{equation*}
$$

Symmetric
Switch index i and j

$$
\bar{\Omega}_{j k} \bar{s}_{k m} \bar{s}_{m i}-\bar{s}_{j m} \bar{s}_{m k} \bar{\Omega}_{k i}
$$

We know that $s_{i j}$ is symmetric and $\bar{\Omega}_{i j}$ anti-symmetric. Hence, we can write

$$
\begin{equation*}
-\bar{\Omega}_{k j} \bar{s}_{m k} \bar{s}_{i m}+\bar{s}_{m j} \bar{s}_{k m} \bar{\Omega}_{i k} \tag{2}
\end{equation*}
$$

Term 1 in Eq. 2 and Term 21 are the same. Term 2 in Eq. 2 and Term 11 are the same. Hence, $T_{i j}^{5}$ is symmetric.
Traceless
Set $i=j$ gives

$$
\begin{equation*}
\bar{\Omega}_{i k} \bar{s}_{k m} \bar{s}_{m i}-\bar{s}_{i m} \bar{s}_{m k} \bar{\Omega}_{k i}=2 \bar{\Omega}_{i k} \bar{s}_{k m} \bar{s}_{m i}=2 \bar{\Omega}_{i k} A_{k i} \tag{3}
\end{equation*}
$$

where $A_{k i}=\bar{s}_{k m} \bar{s}_{m i}$ is a symmetric tensor. Hence, Eq. 3 is zero because it is an inner product of a symmetric tensor and an anti-symmetric tensor.
b) The $k-\omega$ SST model includes two transport equations, the k and ω equations. ...

The reason is that in the outer region the coefficient are blended into coefficient of the $k-\varepsilon$ model.

Consider the transport equation for the Reynolds stresses ...

Look at Section 9.1 and repeat the derivation. Here, the only velocity gradient is $\partial \bar{v}_{3} / \partial x_{1}$. Note that the shear stress is now positive (since $\partial \bar{v}_{3} / \partial x_{1}<0$.

3
a) Consider the Reynolds stress model. The slow pressure strain model for the wall effect reads...

$$
\Phi_{i j, 1 w}=c_{1 w} \frac{\varepsilon}{k}\left(\overline{v_{k}^{\prime} v_{m}^{\prime}} n_{k, w} n_{m, w} \delta_{i j}-\frac{3}{2} \overline{v_{k}^{\prime} v_{i}^{\prime}} n_{k, w} n_{j, w}-\frac{3}{2} \overline{v_{k}^{\prime} v_{j}^{\prime}} n_{i, w} n_{k, w}\right) f
$$

Since the wall is in the $x_{2}-x_{3}$ plane, we set $n_{i}=(0,0,1)$. For example, the first term will then read

$$
\overline{v_{3}^{\prime} v_{3}^{\prime}} n_{3, w} n_{3, w} \delta_{i j}=\overline{v_{3}^{\prime} v_{3}^{\prime}} \delta_{i j}
$$

b) Consider a 2D finite volume grid. In scale-similarity we filter twice ...

Look at Section 18.12 .1 in the eBook. Divide the square into four sub-squares with centers at $(I-1 / 4, J-1 / 4),(I+1 / 4, J-1 / 4),(I-1 / 4, J+1 / 4)$, $(I+1 / 4, J+1 / 4)$. Then compute the twice-filtering velocity as

$$
\overline{\bar{v}}=\frac{1}{4}\left(\bar{v}_{I-1 / 4, J-1 / 4}+\bar{v}_{I+1 / 4, J-1 / 4}+\bar{v}_{I-1 / 4, J+1 / 4}+\bar{v}_{I+1 / 4, J+1 / 4}\right)
$$

$\bar{v}_{I-1 / 4, J-1 / 4}$, for example, is computed as

$$
\bar{v}_{I-1 / 4, J-1 / 4}=\frac{1}{4}\left(\bar{v}_{I-1 / 2, J-1 / 2}+\bar{v}_{I, J-1 / 2}+\bar{v}_{I, J}+\bar{v}_{I-1 / 2, J}\right)
$$

3
a) Explain the difference between $\varepsilon_{\kappa}, \varepsilon(\kappa)$ and ...

See Fig. 8.2 and the text related to the figure.
b) Consider a $k-\tau$ turbulence model...

Look at Eq. 16.1. in the eBook. Here we have $\tau=k / \varepsilon$. Hence

$$
\frac{d \tau}{d t}=\frac{d}{d t}\left(\frac{k}{\varepsilon}\right)=\frac{1}{\varepsilon} \frac{d k}{d t}+k \frac{d(1 / \varepsilon}{d t}=\frac{1}{\varepsilon} \frac{d k}{d t}-\frac{k}{\varepsilon^{2}} \frac{d \varepsilon)}{d t}
$$

Then the production of the τ equation, for example, is

$$
P^{\tau}=\frac{1}{\varepsilon} P^{k}-\frac{k}{\varepsilon^{2}} P^{\varepsilon}
$$

5
Consider the flow in a boundary layer along a plane located at $x_{2}=0 \ldots$
See Assignment 2a and 2b.

