2020-06-02, Exam in

Turbulence modeling, MTF270

- Time: 14.00-18.00 Location: Zoom
- Teacher: Lars Davidson, phone 772 1404, 0730-791 161
- The teacher is available on telephone
- Checking the evaluation and results of your written exam: at $12-13$ on 28 and 29 October in my office
- Grading: 20-29p: 3, 30-39: 4, 40-50: 5.

T1. a) Show that the term below in the non-linear model is symmetric and trace-less.

$$
c_{5} \tau^{3}\left(\bar{\Omega}_{i \ell} \bar{\Omega}_{\ell m} \bar{s}_{m j}+\bar{s}_{i \ell} \bar{\Omega}_{\ell m} \bar{\Omega}_{m j}-\frac{2}{3} \bar{\Omega}_{m n} \bar{\Omega}_{n \ell} \bar{s}_{\ell m} \delta_{i j}\right)
$$

b) Consider the flow in the upper half of a fully-developed channel flow (see Fig. 1). Make a sketch how the three terms in the streamwise momentum equation vary vs. x_{2}. Which terns are non-zero at the wall?

Figure 1. Resolved (blue solid line) and viscus (dashed red line) shear stress

T2. a) Consider the transport equation for the Reynolds stresses in the upper half of a fullydeveloped channel flow (see Fig. 1). Make a sketch how the largest source terms in the $\overline{v_{1}^{\prime} v_{2}^{\prime}}$ equation vary vs. x_{2} in the log-region. Which terns are non-zero at the wall?
b) Streamline curvature: consider a boundary layer, $\delta\left(x_{1}\right)$, on the upper surface of an airfoil (see figure below) where the streamlines are curved along the wall. Show that the Reynolds stress model gives an increased or decreased (which is it?) turbulence production, i.e. the turbulence is decreased or increased.

Figure 2. Airfoil. The boundary layers, $\delta\left(x_{1}\right)$, and the wake illustrated in red. $x_{1}=0$ and $x_{1}=c$ at leading and trailing edge, respectively.

T3. a) Consider the V2F model. Explain the difference between v^{2} and $\overline{v_{2}^{\prime 2}}$.
b) Consider a 1D finite volume grid. In SGS models based on the dynamic procedure we use test filtering. Compute the test filtered velocity using a test filter which is four times larger than the grid filter, i.e. $\overparen{\Delta}=4 \Delta$

T4. a) Explain the energy transfer in the figure below.

Figure 1: Transfer of kinetic turbulent energy.
b) Consider a $k-\nu_{t}$ turbulence model. In this model, the k equation reads

$$
\frac{D k}{D t}=\tau_{i j} \frac{\partial U_{i}}{\partial x_{j}}-C_{k} \frac{k^{2}}{\tilde{\nu}_{t}}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{j}}\right]
$$

How do you modify this model into a $k-\nu_{t}$ DES model?
T5. Consider the flow in a boundary later along a plane located at $x_{2}=0$. You can download files either from the course home page
http://www.tfd.chalmers.se//lada/comp_turb_model/exam
or at Canvas. Use the Python script read.py or the Matlab/Octave script read.m to read the data exam_data.txt. The data file has five columns with $y, U, k, \omega, \overline{v_{1}^{\prime} v_{2}^{\prime}}$ at one x station far downstream.

- Plot \bar{v}_{1}^{+}vs. x_{2}^{+}.
- There are requirements on LES that $\delta / \Delta x$ and $\delta / \Delta z$ should stay within certain limits. Are those requirements satisfied?
- Compute the location of the RANS-LES interface defined by the $k-\omega$ DES model.
- Compute and plot the ratio of the modelled to the resolved shear stress. Does this ratio show that the flow is well-resolved or not?

Note: your Python/Matlab/Octave code must be uploaded to Canvas.

MTF270 Turbulence modeling: Formula sheet

The continuity and Navier-Stokes equations for compressible flow read

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho v_{i}}{\partial x_{i}} & =0 \\
\frac{\partial \rho v_{i}}{\partial t}+\frac{\partial \rho v_{i} v_{j}}{\partial x_{j}} & =-\frac{\partial P}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left\{\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)-\frac{2}{3} \mu \frac{\partial v_{k}}{\partial x_{k}} \delta_{i j}\right\}+\rho g_{i}
\end{aligned}
$$

The continuity, Navier-Stokes and temperature equations for incompressible flow with constant viscosity read (conservative form)

$$
\begin{aligned}
\frac{\partial v_{i}}{\partial x_{i}} & =0 \\
\rho_{0} \frac{\partial v_{i}}{\partial t}+\rho_{0} \frac{\partial v_{i} v_{j}}{\partial x_{j}} & =-\frac{\partial P}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}-\rho_{0} \beta\left(\theta-\theta_{0}\right) g_{i} \\
\frac{\partial \theta}{\partial t}+\frac{\partial v_{i} \theta}{\partial x_{i}} & =\alpha \frac{\partial^{2} \theta}{\partial x_{i} \partial x_{i}}
\end{aligned}
$$

- The Navier-Stokes equation for incompressible flow with constant viscosity read (non-conservative form, p denotes the hydrostatic pressure, i.e. $p=0$ if $v_{i}=0$)

$$
\rho_{0} \frac{\partial v_{i}}{\partial t}+\rho_{0} v_{j} \frac{\partial v_{i}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}
$$

The time averaged continuity equation, Navier-Stokes equation temperature equations read

$$
\begin{aligned}
\frac{\partial \bar{v}_{i}}{\partial x_{i}} & =0 \\
\rho_{0} \frac{\partial \bar{v}_{i} \bar{v}_{j}}{\partial x_{j}} & =-\frac{\partial \bar{P}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu \frac{\partial \bar{v}_{i}}{\partial x_{j}}-\rho_{0} \overline{v_{i}^{\prime} v_{j}^{\prime}}\right)-\rho_{0} \beta\left(\bar{\theta}-\theta_{0}\right) g_{i} \\
\frac{\partial \bar{v}_{i} \bar{\theta}}{\partial x_{i}} & =\alpha \frac{\partial^{2} \bar{\theta}}{\partial x_{i} \partial x_{i}}-\frac{\partial \overline{v_{i}^{\prime} \theta^{\prime}}}{\partial x_{i}}
\end{aligned}
$$

The Boussinesq assumption reads

$$
\overline{v_{i}^{\prime} v_{j}^{\prime}}=-\nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)+\frac{2}{3} \delta_{i j} k=-2 \nu_{t} \bar{s}_{i j}+\frac{2}{3} \delta_{i j} k
$$

The modeled $\overline{v_{i}^{\prime} v_{j}^{\prime}}$ equation with IP model reads

$$
\begin{aligned}
& \bar{v}_{k} \frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k}}=\text { (convection) } \\
& -\overline{v_{i}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{j}}{\partial x_{k}}-\overline{v_{j}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{k}} \quad \text { (production) } \\
& -c_{1} \frac{\varepsilon}{k}\left(\overline{v_{i}^{\prime} v_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k\right) \quad \text { (slow part) } \\
& -c_{2}\left(P_{i j}-\frac{2}{3} \delta_{i j} P^{k}\right) \quad \text { (rapid part) } \\
& +c_{1 w} \rho_{0} \frac{\varepsilon}{k}\left[\overline{v_{k}^{\prime} v_{m}^{\prime}} n_{k} n_{m} \delta_{i j}-\frac{3}{2} \overline{v_{i}^{\prime} v_{k}^{\prime}} n_{k} n_{j}\right. \\
& \left.-\frac{3}{2} \overline{v_{j}^{\prime} v_{k}^{\prime}} n_{k} n_{i}\right] f\left[\frac{\ell_{t}}{x_{n}}\right] \quad \text { (wall, slow part) } \\
& +c_{2 w}\left[\Phi_{k m, 2} n_{k} n_{m} \delta_{i j}-\frac{3}{2} \Phi_{i k, 2} n_{k} n_{j}\right. \\
& \left.-\frac{3}{2} \Phi_{j k, 2} n_{k} n_{i}\right] f\left[\frac{\ell_{t}}{x_{n}}\right] \quad \text { (wall, rapid part) } \\
& +\nu \frac{\partial^{2} \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k} \partial x_{k}} \quad \text { (viscous diffusion) } \\
& +\frac{\partial}{\partial x_{k}}\left[c_{k} \overline{v_{k}^{\prime} v_{m}^{\prime}} \frac{k}{\varepsilon} \frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{m}}\right] \quad \text { (turbulent diffusion) } \\
& -g_{i} \beta \overline{v_{j}^{\prime} \theta^{\prime}}-g_{j} \overline{\beta v_{i}^{\prime} \theta^{\prime}} \quad \text { (buoyancy production) } \\
& -\frac{2}{3} \varepsilon \delta_{i j} \quad \text { (dissipation) }
\end{aligned}
$$

Trick 1:

$$
A_{i} \frac{\partial B_{j}}{\partial x_{k}}=\frac{\partial A_{i} B_{j}}{\partial x_{k}}-B_{j} \frac{\partial A_{i}}{\partial x_{k}}
$$

Trick 2:

$$
A_{i} \frac{\partial A_{i}}{\partial x_{j}}=\frac{1}{2} \frac{\partial A_{i} A_{i}}{\partial x_{j}}
$$

-The exact transport equation for turbulent heat heat flux vector $\overline{v_{i}^{\prime} \theta^{\prime}}$ reads

$$
\begin{aligned}
& +\underbrace{\alpha \overline{\frac{\partial}{\partial x_{k}}\left(v_{i}^{\prime} \frac{\partial \theta^{\prime}}{\partial x_{k}}\right)}+\nu \bar{\partial} \overline{\partial x_{k}}\left(\theta^{\prime} \frac{\partial v_{i}^{\prime}}{\partial x_{k}}\right)}_{D_{i \theta, \nu}}-\underbrace{(\nu+\alpha) \overline{\frac{\partial v_{i}^{\prime}}{\partial x_{k}} \frac{\partial \theta^{\prime}}{\partial x_{k}}}-g_{G_{i \theta}} \overline{\beta_{i \theta}}}_{\varepsilon_{i \theta}}
\end{aligned}
$$

-The exact k equation reads

$$
\frac{\partial k}{\partial t}+\frac{\partial \bar{v}_{j} k}{\partial x_{j}}=-\overline{v_{i}^{\prime} v_{j}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\frac{1}{\rho} \overline{v_{j}^{\prime} p^{\prime}}+\frac{1}{2} \overline{v_{j}^{\prime} v_{i}^{\prime} v_{i}^{\prime}}-\nu \frac{\partial k}{\partial x_{j}}\right]-\nu \overline{\frac{\partial v_{i}^{\prime}}{\partial x_{j}} \frac{\partial v_{i}^{\prime}}{\partial x_{j}}}-g_{i} \beta \overline{v_{i}^{\prime} \theta^{\prime}}
$$

- The exact $\overline{v_{i}^{\prime} v_{j}^{\prime}}$ equation reads

$$
\begin{array}{r}
\frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial t}+\frac{\partial}{\partial x_{k}}\left(\bar{v}_{k} \overline{v_{i}^{\prime} v_{j}^{\prime}}\right)=-\overline{v_{j}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{k}}-\overline{v_{i}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{j}}{\partial x_{k}} \\
-\frac{\partial}{\partial x_{k}}\left(\overline{v_{i}^{\prime} v_{j}^{\prime} v_{k}^{\prime}}+\frac{1}{\rho} \delta_{j k} \overline{v_{i}^{\prime} p^{\prime}}+\frac{1}{\rho} \delta_{i k} \overline{v_{j}^{\prime} p^{\prime}}-\nu \frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k}}\right) \\
+\frac{1}{\rho} p^{\prime}\left(\frac{\partial v_{i}^{\prime}}{\partial x_{j}}+\frac{\partial v_{j}^{\prime}}{\partial x_{i}}\right)
\end{array} g_{i} \beta \overline{v_{j}^{\prime} \theta^{\prime}}-g_{j} \overline{v_{i}^{\prime} \theta^{\prime}}-2 \nu \overline{\frac{\partial v_{i}^{\prime}}{\partial x_{k}} \frac{\partial v_{j}^{\prime}}{\partial x_{k}}}
$$

-The modelled k and ε equations

$$
\begin{aligned}
\frac{\partial k}{\partial t}+\bar{v}_{j} \frac{\partial k}{\partial x_{j}} & =\nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right) \frac{\partial \bar{v}_{i}}{\partial x_{j}}+g_{i} \beta \frac{\nu_{t}}{\sigma_{\theta}} \frac{\partial \bar{\theta}}{\partial x_{i}} \\
-\varepsilon & +\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{j}}\right] \\
\frac{\partial \varepsilon}{\partial t}+\bar{v}_{j} \frac{\partial \varepsilon}{\partial x_{j}} & =\frac{\varepsilon}{k} c_{\varepsilon 1} \nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right) \frac{\partial \bar{v}_{i}}{\partial x_{j}} \\
& +c_{\varepsilon 1} g_{i} \frac{\varepsilon}{k} \frac{\nu_{t}}{\sigma_{\theta}} \frac{\partial \bar{\theta}}{\partial x_{i}}-c_{\varepsilon 2} \frac{\varepsilon^{2}}{k}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{\varepsilon}}\right) \frac{\partial \varepsilon}{\partial x_{j}}\right]
\end{aligned}
$$

-DES

$$
L_{t}=\frac{k^{3 / 2}}{\varepsilon}=\frac{k^{1 / 2}}{\beta^{*} \omega}: \text { RANS lengthscale }
$$

$C_{D E S} \Delta, \quad \Delta=\max (\Delta x, \Delta y, \Delta z):$ LES lengthscale

