MTF270: Turbulence modelling, Summary of lectures

Lecture 1

Boussinesq approximation: density variation only in gravitation (buoyancy) term

$$\frac{\partial \rho_0 \bar{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho_0 \bar{v}_i \bar{v}_j \right) = -\frac{\partial \bar{p}}{\partial x_i} + \mu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j} - \rho_0 \beta (\bar{\theta} - \theta_0) g_i$$

 \bar{p} is hydrodynamic pressure: $\rho_0 f_i \rightarrow (\rho - \rho_0) g_i$

If we let density depend on pressure and temperature, differentiation gives

$$d\rho = \left(\frac{\partial\rho}{\partial\theta}\right)_p d\theta + \left(\frac{\partial\rho}{\partial p}\right)_\theta dp$$

Incompressible $\Rightarrow \partial \rho / \partial p = 0$

$$\beta = -\frac{1}{\rho_0} \left(\frac{\partial \rho}{\partial \theta} \right)_p \Rightarrow$$
$$d\rho = -\rho_0 \beta d\theta \Rightarrow \rho - \rho_0 = -\beta \rho_0 (\theta - \theta_0)$$
$$\rho_0 f_i = (\rho - \rho_0) g_i = -\rho_0 \beta (\bar{\theta} - \theta_0) g_i$$

► Temperature equation

$$\frac{\partial \theta}{\partial t} + \frac{\partial v_i \theta}{\partial x_i} = \alpha \frac{\partial^2 \theta}{\partial x_i \partial x_i}$$

where $\alpha = k/(\rho c_p)$. Introducing $\theta = \bar{\theta} + \theta'$ we get the mean temperature equation

$$\frac{\partial \bar{v}_i \bar{\theta}}{\partial x_i} = \alpha \frac{\partial^2 \bar{\theta}}{\partial x_i \partial x_i} - \frac{\partial \overline{v'_i \theta'}}{\partial x_i}$$

► Total (viscous plus turbulent) flux: momentum and temperature equation

$$\frac{q_{2,tot}}{\rho c_p} = \frac{q_2}{\rho c_p} + \frac{q_{2,twrb}}{\rho c_p} = \alpha \frac{\partial \bar{\theta}}{\partial x_2} - \overline{v'_2 \theta'}, \quad \alpha = \frac{k}{\rho c_p}$$

$$\tau_{tot} = \tau_{visc} + \tau_{twrb} = \mu \frac{\partial \bar{v}_1}{\partial x_2} - \rho \overline{v'_1 v'_2}$$

$$\overset{200}{\underset{0}{}_{2}} = \frac{q_2}{\rho c_p} + \frac{q_{2,twrb}}{\rho c_p} = \mu \frac{\partial \bar{v}_1}{\partial x_2} - \rho \overline{v'_1 v'_2}$$

$$\overset{200}{\underset{0}{}_{2}} = \frac{\tau_{visc}}{\rho c_p} + \tau_{twrb} = \mu \frac{\partial \bar{v}_1}{\partial x_2} - \rho \overline{v'_1 v'_2}$$

$$\overset{200}{\underset{0}{}_{2}} = \frac{\tau_{visc}}{\rho c_p} + \frac{\eta c_p}{\rho c_p} + \frac{\eta$$

$$\underbrace{\frac{-g_i \beta \overline{v'_j \theta'} - g_j \beta \overline{v'_i \theta'}}_{G_{ij}} - \underbrace{2\nu \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_j}{\partial x_k}}_{\varepsilon_{ij}} }_{\varepsilon_{ij}}$$

• Unkown terms

- Π_{ij} Pressure-strain
- $D_{ij,t}$ Turbulent diffusion
 - ε_{ij} Dissipation

$$\mathbf{r}_{i}\overline{v_{i}^{\prime}\theta^{\prime}}$$
 equation

$$\frac{\partial \theta'}{\partial t} + \frac{\partial}{\partial x_k} (v'_k \bar{\theta} + \bar{v}_k \theta' + v'_k \theta') = \alpha \frac{\partial^2 \theta'}{\partial x_k \partial x_k} + \frac{\partial \overline{v'_k \theta'}}{\partial x_k}$$
(1)

$$\frac{\partial v'_i}{\partial t} + \frac{\partial}{\partial x_k} (v'_k \bar{v}_i + \bar{v}_k v'_i + v'_k v'_i) = -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} + \nu \frac{\partial^2 v'_i}{\partial x_k \partial x_k} + \frac{\partial \overline{v'_i v'_j}}{\partial x_k} - g_i \beta \theta'$$
(2)

Multiply Eq. 1 with v'_i and multiply Eq. 2 with θ' , add them together and time average

$$\overline{v_i'\frac{\partial}{\partial x_k}(v_k'\bar{\theta}+\bar{v}_k\theta'+v_k'\theta')+\theta'\frac{\partial}{\partial x_k}(\bar{v}_iv_k'+\bar{v}_kv_i'+v_i'v_k')} = -\frac{\overline{\theta'}}{\rho}\frac{\partial p'}{\partial x_i}+\alpha\overline{v_i'\frac{\partial^2\theta'}{\partial x_k\partial x_k}}+\nu\overline{\theta'}\frac{\partial^2v_i'}{\partial x_k\partial x_k}-g_i\beta\overline{\theta'\theta'}$$

$$\frac{\partial}{\partial x_{k}} \bar{v}_{k} \overline{v'_{i} \theta'} = -\overline{v'_{i} v'_{k}} \frac{\partial \bar{\theta}}{\partial x_{k}} - \overline{v'_{k} \theta'} \frac{\partial \bar{v}_{i}}{\partial x_{k}} - \frac{\overline{\theta'}}{\rho} \frac{\partial p'}{\partial x_{i}} - \frac{\partial}{\partial x_{k}} \overline{v'_{k} v'_{i} \theta'}}{\prod_{i\theta, i} \frac{P_{i\theta}}{D_{i\theta, i}}} + \frac{(\nu + \alpha)}{\frac{\partial^{2} \overline{v'_{i} \theta'}}{\partial x_{k} \partial x_{k}}} - \frac{(\nu + \alpha)}{\varepsilon_{i\theta}} \frac{\overline{\partial v'_{i}}}{\partial x_{k}} \frac{\partial \theta'}{\partial x_{k}} - \frac{g_{i} \beta \overline{\theta'^{2}}}{G_{i\theta}}}{G_{i\theta}}$$

The k equation: take the trace of the $\overline{v'_iv'_j}$ equation and divide by two

$$\begin{aligned} \frac{\partial k}{\partial t} + \bar{v}_j \frac{\partial k}{\partial x_j} &= -\overline{v'_i v'_j \frac{\partial \bar{v}_i}{\partial x_j}} - \nu \frac{\overline{\partial v'_i}}{\partial x_j \frac{\partial v'_i}{\partial x_j}}{\varepsilon} \\ & - \frac{\partial}{\partial x_j} \left\{ \overline{v'_j \left(\frac{p'}{\rho} + \frac{1}{2} v'_i v'_i\right)} \right\} + \nu \frac{\partial^2 k}{\partial x_j \partial x_j} - \frac{g_i \beta \overline{v'_i t}}{G^k} \\ & D_t^k \end{aligned}$$

- Unkown terms
 - $D^k_t\,\, {\rm Turbulent} \,\, {\rm diffusion}$
 - ε Dissipation

► The Boussinesq assumption

The diffusion term of time-averaged Navier-Stokes

$$\frac{\partial}{\partial x_j} \left\{ \nu \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) - \overline{v'_i v'_j} \right\} \Rightarrow \frac{\partial}{\partial x_j} \left\{ (\nu + \nu_t) \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) \right\}$$

$$\overline{v'_i v'_j} = -\nu_t \left(\frac{\partial \overline{v}_i}{\partial x_j} + \frac{\partial \overline{v}_j}{\partial x_i} \right) + \frac{2}{3} \delta_{ij} k$$

$$\nu_t \propto v' \ell = k^{1/2} \frac{k^{3/2}}{\varepsilon} = c_\mu \frac{k^2}{\varepsilon}$$

Production term in k equation

$$P^{k} = -\overline{v'_{i}v'_{j}}\frac{\partial \bar{v}_{i}}{\partial x_{j}} = \nu_{t} \left[\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}} + \frac{\partial \bar{v}_{j}}{\partial x_{i}} \right) - \frac{2}{3}\delta_{ij}\frac{\partial \bar{v}_{k}}{\partial x_{k}} \right] \frac{\partial \bar{v}_{i}}{\partial x_{j}} = 2\nu_{t}\bar{s}_{ij}\bar{s}_{ij}$$

 $\blacktriangleright Modelled k equation$

$$\frac{\partial k}{\partial t} + \bar{v}_j \frac{\partial k}{\partial x_j} = 2\nu_t \bar{s}_{ij} \bar{s}_{ij} + \frac{\partial}{\partial x_j} \left\{ \left(\nu + \frac{\nu_t}{\sigma_k}\right) \frac{\partial k}{\partial x_j} \right\} - \varepsilon$$

 $\triangleright \varepsilon$ equation

$$C^{\varepsilon} = P^{\varepsilon} + D^{\varepsilon} + G^{\varepsilon} - \Psi^{\varepsilon}$$

Use same source terms as in k equation and add turbulent time-scale ε/k to get the right dimensions:

$$P^{\varepsilon} - \Psi^{\varepsilon} + G^{\varepsilon} = \frac{\varepsilon}{k} (c_{\varepsilon 1} P^k - c_{\varepsilon 2} \varepsilon + c_{\varepsilon 3} G^k)$$
(3)

> The final form modelled ε equation

$$\frac{\partial\varepsilon}{\partial t} + \bar{v}_j \frac{\partial\varepsilon}{\partial x_j} = \frac{\varepsilon}{k} (c_{\varepsilon 1} P^k - c_{\varepsilon 2} \varepsilon + c_{\varepsilon 3} G^k) + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_\varepsilon} \right) \frac{\partial\varepsilon}{\partial x_j} \right]$$

► The heat flux:

$$-\overline{v_i'\theta'} = -\alpha_t \frac{\partial \bar{\theta}}{\partial x_i}, \, \alpha_t = \frac{\nu_t}{\sigma_t}$$

Diffusion term in k eq: compare with heat conduction:

$$q_i = -k \frac{\partial \bar{\theta}}{\partial x_i}.$$

Flux of *k*:

$$d_{j,t}^{k} = \frac{1}{2}\overline{v_{j}^{\prime}v_{i}^{\prime}v_{i}^{\prime}} = -\frac{\nu_{t}}{\sigma_{k}}\frac{\partial k}{\partial x_{j}} \Rightarrow -\frac{1}{2}\frac{\partial\overline{v_{j}^{\prime}v_{i}^{\prime}v_{i}^{\prime}}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}}\left(\nu_{t}\frac{\partial k}{\partial x_{j}}\right)$$

Dissipation term in the RSM, ε_{ij} Small-scale turbulence is isotropic

1. $\overline{v_1'^2} = \overline{v_2'^2} = \overline{v_3'^2}$.

2. All shear stresses are zero $\Rightarrow \varepsilon_{ij} = \frac{2}{3} \varepsilon \delta_{ij}$

► Slow pressure-strain term

 $\frac{\partial v_2'}{\partial x_2} > 0, \quad \frac{\partial v_3'}{\partial x_3} > 0$

If this happens then

$$\overline{v_1'^2} > \overline{v_2'^2}, \overline{v_1'^2} > \overline{v_3'^2}$$

$$\frac{1}{\rho} \overline{p' \frac{\partial v_1'}{\partial x_1}} \propto -\frac{\rho}{2t} \left[\left(\overline{v_1'^2} - \overline{v_2'^2} \right) + \left(\overline{v_1'^2} - \overline{v_3'^2} \right) \right] = -\frac{\rho}{t} \left[\overline{v_1'^2} - \frac{1}{2} \left(\overline{v_2'^2} + \overline{v_3'^2} \right) \right]$$

$$= -\frac{\rho}{t} \left[\frac{3}{2} \overline{v_1'^2} - \frac{1}{2} \left(\overline{v_1'^2} + \overline{v_2'^2} + \overline{v_3'^2} \right) \right] = -\frac{\rho}{t} \left(\frac{3}{2} \overline{v_1'^2} - k \right)$$

$$\Phi_{ij,1} \equiv \overline{p' \left(\frac{\partial v_i'}{\partial x_j} + \frac{\partial v_j'}{\partial x_i} \right)} = -c_1 \rho \frac{\varepsilon}{k} \left(\overline{v_i' v_j'} - \frac{2}{3} \delta_{ij} k \right)$$

Decaying grid turbulence

$$\bar{v}_1 \frac{d\bar{v}'_i v'_j}{dx_1} = \frac{p'}{\rho} \left(\frac{\partial v'_i}{\partial x_j} + \frac{\partial v'_j}{\partial x_i} \right) - \varepsilon_{ij}$$
(4)

stress tensor which is defined as

$$a_{ij} = \frac{\overline{v'_i v'_j}}{k} - \frac{2}{3} \delta_{ij} \tag{5}$$

When isotropic, $a_{ij} = 0$. We introduce a_{ij} (Eq. 5), $\phi_{ij,1}$ and $\varepsilon_{ij} = (2/3)\delta_{ij}$ into Eq. 4 so that

$$\bar{v}_1\left(\frac{d(ka_{ij})}{dx_1} + \delta_{ij}\frac{2}{3}\frac{dk}{dx_1}\right) = \underline{-c_1\varepsilon a_{ij} - \frac{2}{3}\delta_{ij}\varepsilon}$$

Using
$$\bar{v}_1 \frac{dk}{dx_1} = -\varepsilon$$
 gives

$$\bar{v}_1 \frac{da_{ij}}{dx_1} = \underline{-c_1 \frac{\varepsilon}{k} a_{ij} - \frac{2}{3} \delta_{ij} \frac{\varepsilon}{k} + \frac{\varepsilon}{k} a_{ij} + \frac{2}{3} \delta_{ij} \frac{\varepsilon}{k} = \frac{\varepsilon}{k} a_{ij} (1 - c_1)$$

 $da_{ij}/dx < 0$ (the turbulence becomes isotropic) $\Rightarrow c_1 > 1$.

$$\frac{1}{\rho} \frac{\partial^2 p'}{\partial x_j \partial x_j} = -\underbrace{2 \frac{\partial \bar{v}_i}{\partial x_j} \frac{\partial v'_j}{\partial x_i}}_{\text{rapid term}} - \underbrace{\frac{\partial^2}{\partial x_i \partial x_j} \left(v'_i v'_j - \overline{v'_i v'_j} \right)}_{\text{slow term}}$$
$$\frac{\partial^2 \varphi}{\partial x_j \partial x_j} = f$$

► There exists an exact analytical solution given by Green's formula (derived from Gauss divergence law)

$$\varphi(\mathbf{x}) = \frac{1}{4\pi} \int_{V} \frac{f(\mathbf{y}) dy_1 dy_2 dy_3}{|\mathbf{y} - \mathbf{x}|}$$

where $dy_1 dy_2 dy_3 = dV = dy^3$. The integral is carried out for all points, y, in volume V.

$$p'(\mathbf{x}) = -\frac{\rho}{4\pi} \int_{V} \left[\underbrace{\frac{2 \overline{\partial v_i(\mathbf{y})}}{\partial y_j} \frac{\partial v'_j(\mathbf{y})}{\partial y_i}}_{\text{rapid term}} + \underbrace{\frac{\partial^2}{\partial y_i \partial y_j} \left(v'_i(\mathbf{y}) v'_j(\mathbf{y}) - \overline{v'_i(\mathbf{y}) v'_j(\mathbf{y})} \right)}_{\text{slow term}} \right] \frac{d\mathbf{y}^3}{|\mathbf{y} - \mathbf{x}|}$$
$$\Phi_{ij,2} = -c_2 \rho \left(P_{ij} - \frac{2}{3} \delta_{ij} P^k \right) \quad \text{IP model}$$

► Wall models of pressure-strain:

$$\Phi_{ij} = \Phi_{ij,1} + \Phi_{ij,2} + \Phi_{ij,1w} + \Phi_{ij,2w}$$
$$\Phi_{22,1w} = -2c_{1w}\frac{\varepsilon}{k}\overline{v_2'^2}f, \quad f = \frac{k^{\frac{3}{2}}}{2.55|n_{i,w}(x_i - x_{i,w})|\varepsilon}$$

 $Traceless \Rightarrow$

$$\Phi_{11,1w} = \Phi_{33,1w} = c_{1w} \frac{\varepsilon}{k} \overline{v_2'^2} f$$

The wall model for the shear stress is set as

$$\Phi_{12,1w} = -\frac{3}{2}c_{1w}\frac{\varepsilon}{k}\overline{v_1'v_2'}f$$

The general form reads:

$$\Phi_{ij,1w} = c_{1w} \frac{\varepsilon}{k} \left(\overline{v'_k v'_m} n_{k,w} n_{m,w} \delta_{ij} - \frac{3}{2} \overline{v'_k v'_i} n_{k,w} n_{j,w} - \frac{3}{2} \overline{v'_k v'_j} n_{i,w} n_{k,w} \right) f$$

The analogous wall model for the rapid part reads

$$\Phi_{ij,2w} = c_{2w} \left(\Phi_{km,2} n_{k,w} n_{m,w} \delta_{ij} - \frac{3}{2} \Phi_{ki,2} n_{k,w} n_{j,w} - \frac{3}{2} \Phi_{kj,2} n_{i,w} n_{k,w} \right) f$$

► The modelled $\overline{v'_i v'_j}$ equation with IP model

$$\begin{aligned} \frac{\partial \overline{v'_i v'_j}}{\partial t} &= \text{ (unsteady term)} \\ \overline{v}_k \frac{\partial \overline{v'_i v'_j}}{\partial x_k} &= \text{ (convection)} \\ -\overline{v'_i v'_k} \frac{\partial \overline{v}_j}{\partial x_k} - \overline{v'_j v'_k} \frac{\partial \overline{v}_i}{\partial x_k} \quad \text{(production)} \\ -c_1 \frac{\varepsilon}{k} \left(\overline{v'_i v'_j} - \frac{2}{3} \delta_{ij} k \right) \quad \text{(slow part)} \\ -c_2 \left(P_{ij} - \frac{2}{3} \delta_{ij} P^k \right) \quad \text{(rapid part)} \\ +c_{1w} \rho \frac{\varepsilon}{k} \left[\overline{v'_k v'_m} n_k n_m \delta_{ij} - \frac{3}{2} \overline{v'_i v'_k} n_k n_j \\ &- \frac{3}{2} \overline{v'_j v'_k} n_k n_i \right] f \quad \text{(wall, slow part)} \\ +c_{2w} \left[\Phi_{km,2} n_k n_m \delta_{ij} - \frac{3}{2} \Phi_{ik,2} n_k n_j \\ &- \frac{3}{2} \Phi_{jk,2} n_k n_i \right] f \quad \text{(wall, rapid part)} \\ &+ \nu \frac{\partial^2 \overline{v'_i v'_j}}{\partial x_k \partial x_k} \quad \text{(viscous diffusion)} \\ &+ \frac{\partial}{\partial x_k} \left[\frac{\nu_i}{\sigma_k} \frac{\partial \overline{v'_i v'_j}}{\partial x_m} \right] \quad \text{(turbulent diffusion)} \\ &- g_i \beta \overline{v'_j \theta'} - g_j \beta \overline{v'_i \theta'} \quad \text{(buoyancy production)} \\ &- \frac{2}{3} \varepsilon \delta_{ij} \quad \text{(dissipation)} \end{aligned}$$

Boundary layer flow where $\bar{v}_2 = 0$, $\bar{v}_1 = \bar{v}_1(x_2)$.

$$P_{ij} = -\overline{v'_i v'_k} \frac{\partial \bar{v}_j}{\partial x_k} - \overline{v'_j v'_k} \frac{\partial \bar{v}_i}{\partial x_k}$$

In this special case we get:

$$P_{11} = -2\overline{v_1'v_2'}\frac{\partial \bar{v}_1}{\partial x_2}$$

$$P_{12} = -\overline{v_2'^2} \frac{\partial \bar{v}_1}{\partial x_2}$$

 $P_{22} = 0$

$$\Phi_{22,1} = c_1 \frac{\varepsilon}{k} \left(\frac{2}{3} k - \overline{v_2'^2} \right) > 0$$

$$\Phi_{22,2} = c_2 \frac{1}{3} P_{11} = -c_2 \frac{2}{3} \overline{v_1' v_2'} \frac{\partial \bar{v}_1}{\partial x_2} > 0$$

 $\varepsilon_{12} = 0$: No sink term in $\overline{v'_1v'_2}$ eq? Answer: the pressure strain term $\Phi_{12,1}$ and $\Phi_{12,2}$.

► The <u>Algebraic Reynolds Stress</u> <u>Model</u> (ASM)

 $RSM : C_{ij} - D_{ij} = P_{ij} + \Phi_{ij} - \varepsilon_{ij}$ $k - \varepsilon : C^k - D^k = P^k - \varepsilon$

Assumption in ASM:

$$C_{ij} - D_{ij} = \frac{\overline{v'_i v'_j}}{k} \left(C^k - D^k \right)$$
$$\Rightarrow P_{ij} + \Phi_{ij} - \varepsilon_{ij} = \frac{\overline{v'_i v'_j}}{k} \left(P^k - \varepsilon \right)$$

This gives

$$\overline{v'_i v'_j} = \frac{2}{3} \delta_{ij} k + \frac{k}{\varepsilon} \frac{(1-c_2) \left(P_{ij} - \frac{2}{3} \delta_{ij} P^k\right) + \Phi_{ij,1w} + \Phi_{ij,2w}}{c_1 + P^k/\varepsilon - 1}$$

 $\blacktriangleright \Phi_{ij}$ in boundary layer flow

$$P_{11} = -2\overline{v_1'v_2'}\frac{\partial \bar{v}_1}{\partial x_2}, \quad P_{12} = -\overline{v_2'^2}\frac{\partial \bar{v}_1}{\partial x_2}, \quad P_{22} = 0$$

$$\Phi_{22,1} = c_1\frac{\varepsilon}{k}\left(\frac{2}{3}k - \overline{v_2'^2}\right) > 0$$

$$\varepsilon_{12} = \delta_{12}\varepsilon = 0, \quad \Phi_{12,1} = -c_1\frac{\varepsilon}{k}\overline{v_1'v_2'} < 0 \quad \text{(if } \overline{v_1'v_2'} > 0\text{)}$$

Stable stratification because $\partial \bar{\theta} / \partial x_3 > 0$.

$$G_{ij} = -g_i \beta \overline{v'_j \theta'} - g_j \beta \overline{v'_i \theta'} \quad \Rightarrow \overline{v'_3}^2 \text{ eq.:} \quad G_{33} = 2g \beta \overline{v'_3 \theta'}$$

which is the source term in the $\overline{v_3'^2}$ eq due to buoyancy. Now we need $\overline{v_3'\theta'}$. Its main source term reads

 $P_{3\theta} = -\overline{v_3'v_k'}\frac{\partial\bar{\theta}}{\partial x_k} - \overline{v_k'\theta'}\frac{\partial\bar{x}_3}{\partial x_k} = -\overline{v_3'^2}\frac{\partial\bar{\theta}}{\partial x_3} < 0$

 $P_{3\theta} \max_{v_1'^2} \overline{v_2'^{\theta'}} < 0$ so that $G_{33} < 0$ which dampens $\overline{v_3'^2}$ (but not $\overline{v_1'^2}, \overline{v_2'^2}$) as it should.

$$ightarrow k - \varepsilon$$
 model

$$G^{k} = 0.5G_{ii} = -g_{i}\beta\overline{v_{i}'\theta'} = g\beta\overline{v_{3}'\theta'}, \quad \overline{v_{i}'\theta'} = -\frac{\nu_{t}}{\sigma_{\theta}}\frac{\partial\theta}{\partial x_{i}}$$

For $g_i = (0, 0, -g)$ it reads $G^k = g\beta \overline{v'_3 \theta'}$ which gives

$$G^k = -g\beta \frac{\nu_t}{\sigma_\theta} \frac{\partial \theta}{\partial x_3}$$

which dampens k (i.e. $\overline{v_1'^2}, \overline{v_2'^2}, \overline{v_3'^2}$).

Streamline curvature. Streamline aligned with the θ axis.

$$v_r$$
 eq. with $\mu = 0$: $\frac{\rho v_{\theta}^2}{r} - \frac{\partial p}{\partial r} = 0$ (6)

 $\partial v_{\theta}/\partial r > 0$. Hence $(v_{\theta})_A > (v_{\theta})_0$, which from Eq. 6 gives $(\partial p/\partial r)_A > (\partial p/\partial r)_0$.

RSM,
$$\overline{v_1'^2} - \text{eq.}: P_{11} = -2\overline{v_1'v_2'}\frac{\partial \bar{v}_1}{\partial x_2}$$
 (7a)

RSM,
$$\overline{v_1'v_2'} - \text{eq.}: P_{12} = \boxed{-\overline{v_1'^2}\frac{\partial \bar{v}_2}{\partial x_1}} - \overline{v_2'^2}\frac{\partial \bar{v}_1}{\partial x_2}$$
 (7b)

RSM,
$$\overline{v_2'^2} - \text{eq.}$$
: $P_{22} = \boxed{-2\overline{v_1'v_2'}\frac{\partial \bar{v}_2}{\partial x_1}}$ (7c)

$$k - \varepsilon \quad P^{k} = \nu_{t} \left\{ \left(\frac{\partial \bar{v}_{1}}{\partial x_{2}} \right)^{2} + \left[\left(\frac{\partial \bar{v}_{2}}{\partial x_{1}} \right)^{2} \right] \right\}$$
(7d)

► Stagnation 2D flow

The flow pattern for stagnation flow.

$$\begin{split} RSM : 0.5 \left(P_{11} + P_{22} \right) &= -\overline{v_1'^2} \frac{\partial \bar{v}_1}{\partial x_1} - \overline{v_2'^2} \frac{\partial \bar{v}_2}{\partial x_2} = -\frac{\partial \bar{v}_1}{\partial x_1} (\overline{v_1'^2} - \overline{v_2'^2}) \\ k - \varepsilon : P^k &= 2\nu_t \left\{ \left(\frac{\partial \bar{v}_1}{\partial x_1} \right)^2 + \left(\frac{\partial \bar{v}_2}{\partial x_2} \right)^2 \right\} \end{split}$$

▶ Realizability

$$\overline{v_i'^2} \ge 0 \text{ for all } i$$

$$\frac{\left|\overline{v_i'v_j'}\right|}{\left(\overline{v_i'^2} \overline{v_j'^2}\right)^{1/2}} \le 1 \text{ no summation over } i \text{ and } j, \ i \ne j$$

$$\overline{v_1'^2} = \frac{2}{3}k - 2\nu_t \frac{\partial \overline{v}_1}{\partial x_1} = \frac{2}{3}k - 2\nu_t \overline{s}_{11}$$

\bar{s}_{11} largest in the principal coordinate directions

$$|\bar{s}_{ij} - \delta_{ij}\lambda| = 0$$

which gives in 2D

$$\begin{vmatrix} \bar{s}_{11} - \lambda & \bar{s}_{12} \\ \bar{s}_{21} & \bar{s}_{22} - \lambda \end{vmatrix} = 0$$

The resulting equation is

$$\begin{split} \lambda^{2} &- I_{1}^{2D} \lambda + I_{2}^{2D} = 0\\ I_{1}^{2D} &= \bar{s}_{ii} = 0 \quad \text{continuity}\\ I_{2}^{2D} &= \frac{1}{2} (\bar{s}_{ii} \bar{s}_{jj} - \bar{s}_{ij} \bar{s}_{ij}) = \det(C_{ij}) = -\bar{s}_{ij} \bar{s}_{ij}/2\\ \lambda_{1,2} &= \pm \left(-I_{2}^{2D} \right)^{1/2} = \pm \left(\frac{\bar{s}_{ij} \bar{s}_{ij}}{2} \right)^{1/2}\\ \overline{v_{1}^{\prime 2}} &= \frac{2}{3} k - 2\nu_{t} \lambda_{1} = \frac{2}{3} k - 2\nu_{t} \left(\frac{\bar{s}_{ij} \bar{s}_{ij}}{2} \right)^{1/2} \Rightarrow \nu_{t} \leq \frac{k}{3|\lambda_{1}|} = \frac{k}{3} \left(\frac{2}{\bar{s}_{ij} \bar{s}_{ij}} \right)^{1/2}\\ \text{In 3D}\\ |\lambda_{k}| &= k \left(\frac{2\bar{s}_{ij} \bar{s}_{ij}}{3} \right)^{1/2} \end{split}$$

► Non-linear eddy-viscosity models

The anisotropy tensor is defined as

$$\begin{aligned} a_{ij} &\equiv \frac{\overline{v'_i v'_j}}{k} - \frac{2}{3} \delta_{ij} \\ a_{ij} &= \boxed{-2c_\mu \tau \bar{s}_{ij}} \\ &+ c_1 \tau^2 \left(\bar{s}_{ik} \bar{s}_{kj} - \frac{1}{3} \bar{s}_{\ell k} \bar{s}_{\ell k} \delta_{ij} \right) + c_2 \tau^2 \left(\bar{\Omega}_{ik} \bar{s}_{kj} - \bar{s}_{ik} \bar{\Omega}_{kj} \right) \\ &+ c_3 \tau^2 \left(\bar{\Omega}_{ik} \bar{\Omega}_{jk} - \frac{1}{3} \bar{\Omega}_{\ell k} \bar{\Omega}_{\ell k} \delta_{ij} \right) + c_4 \tau^3 \left(\bar{s}_{ik} \bar{s}_{k\ell} \bar{\Omega}_{\ell j} - \bar{\Omega}_{i\ell} \bar{s}_{\ell k} \bar{s}_{kj} \right) \\ &+ c_5 \tau^3 \left(\bar{\Omega}_{i\ell} \bar{\Omega}_{\ell m} \bar{s}_{mj} + \bar{s}_{i\ell} \bar{\Omega}_{\ell m} \bar{\Omega}_{mj} - \frac{2}{3} \bar{\Omega}_{mn} \bar{\Omega}_{n\ell} \bar{s}_{\ell m} \delta_{ij} \right) \\ &+ c_6 \tau^3 \bar{s}_{k\ell} \bar{s}_{k\ell} \bar{s}_{ij} + c_7 \tau^3 \bar{\Omega}_{k\ell} \bar{\Omega}_{k\ell} \bar{s}_{ij} \\ \bar{\Omega}_{ij} &= \frac{1}{2} \left(\frac{\partial \bar{v}_i}{\partial x_j} - \frac{\partial \bar{v}_j}{\partial x_i} \right) \end{aligned}$$

The advantage is better normal stresses

$$\overline{v_1'^2} = \frac{2}{3}k + \frac{0.82}{12}k\tau^2 \left(\frac{\partial \bar{v}_1}{\partial x_2}\right)^2$$
$$\overline{v_2'^2} = \frac{2}{3}k - \frac{0.5}{12}k\tau^2 \left(\frac{\partial \bar{v}_1}{\partial x_2}\right)^2$$
$$\overline{v_3'^2} = \frac{2}{3}k - \frac{0.16}{12}k\tau^2 \left(\frac{\partial \bar{v}_1}{\partial x_2}\right)^2$$

 \Rightarrow

► The V2F Model

$$\frac{\partial \rho \bar{v}_1 \overline{v_2'^2}}{\partial x_1} + \frac{\partial \rho \bar{v} \overline{v_2'^2}}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(\mu + \mu_t) \frac{\partial \overline{v_2'^2}}{\partial x_2} \right] \underbrace{-2 \overline{v_2' \partial p' / \partial x_2}}_{\Phi_{22}} - \rho \varepsilon_{22}$$
$$\frac{\partial \rho \bar{v}_1 \overline{v_2'^2}}{\partial x_1} + \frac{\partial \rho \bar{v}_2 \overline{v_2'^2}}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(\mu + \mu_t) \frac{\partial \overline{v_2'^2}}{\partial x_2} \right] + \underbrace{\Phi_{22} - \rho \varepsilon_{22} + \rho \overline{v_2'^2}}_{fk} \varepsilon - \rho \overline{v_2'^2}_k \varepsilon}_{fk}$$

An equation is solved for $fk \propto \Phi_{22}$ (IP & Rotta model).

$$L^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}} - f = -\frac{\Phi_{22}}{k} - \frac{1}{T} \left(\frac{\overline{v_{2}^{\prime 2}}}{k} - \frac{2}{3} \right), \quad T \propto \frac{k}{\varepsilon}, \quad L \propto \frac{k^{3/2}}{\varepsilon}$$

Far from wall $\frac{\partial^{2} f}{\partial x_{2}^{2}} \simeq 0$ so that $-f \to -\frac{\Phi_{22}}{k} - \frac{1}{T} \left(\frac{\overline{v_{2}^{\prime 2}}}{k} - \frac{2}{3} \right)$

$$\frac{\partial \rho \bar{v}_1 \overline{v_2'^2}}{\partial x_1} + \frac{\partial \rho \bar{v} \overline{v_2'^2}}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(\mu + \mu_t) \frac{\partial \overline{v_2'^2}}{\partial x_2} \right] + \Phi_{22} - \rho \varepsilon_{22}$$

Summary of lectures

► V2F model. Wall boundary conditions

Near the wall, the $\overline{v_2'^2}$ equation reads

$$\begin{split} 0 &= \nu \frac{\partial^2 \overline{v_2'^2}}{\partial x_2^2} + fk - \frac{\overline{v_2'^2}}{k}\varepsilon\\ f &= -\frac{20\nu^2}{\varepsilon} \frac{\overline{v_2'^2}}{x_2^4} \end{split}$$

► The SST (<u>Shear Stress</u> <u>T</u>ransport) model

- 1. Combination of a $k \omega$ model (in the inner boundary layer) and $k - \varepsilon$ model (in the outer region of the boundary layer as well as outside of it);
- 2. A limitation of the shear stress in adverse pressure gradient regions.

 $\mathbf{D} \omega = \varepsilon / (\beta^* k) = \varepsilon / (c_{\mu} k). \text{ Use this to obtain an eq. for } \omega$ $\frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{\varepsilon}{\beta^* k}\right) = \frac{1}{\beta^* k} \frac{d\varepsilon}{dt} - \frac{\varepsilon}{\beta^* k^2} \frac{dk}{dt} = \frac{1}{\beta^* k} \frac{d\varepsilon}{dt} - \frac{\omega}{k} \frac{dk}{dt}$

Production term

$$P_{\omega} = \frac{1}{\beta^* k} P_{\varepsilon} - \frac{\omega}{k} P^k = C_{\varepsilon 1} \frac{\varepsilon}{\beta^* k^2} P^k - \frac{\omega}{k} P^k = (C_{\varepsilon 1} - 1) \frac{\omega}{k} P^k$$

► Destruction term

$$\Psi_{\omega} = \frac{1}{\beta^* k} \Psi_{\varepsilon} - \frac{\omega}{k} \Psi_k = C_{\varepsilon 2} \frac{\varepsilon^2}{k} - \frac{\omega}{k} \varepsilon = (C_{\varepsilon 2} - 1)\beta^* \omega^2$$

► Viscous diffusion term

$$D_{\omega}^{\nu} = \frac{\nu}{\beta^* k} \frac{\partial^2 \varepsilon}{\partial x_j^2} - \frac{\nu \omega}{k} \frac{\partial^2 k}{\partial x_j^2} = \frac{\nu}{k} \frac{\partial^2 \omega k}{\partial x_j^2} - \frac{\nu \omega}{k} \frac{\partial^2 k}{\partial x_j^2}$$
$$= \frac{\nu}{k} \left[\frac{\partial}{\partial x_j} \left(\omega \frac{\partial k}{\partial x_j} + k \frac{\partial \omega}{\partial x_j} \right) \right] - \nu \frac{\omega}{k} \frac{\partial^2 k}{\partial x_j^2} = \frac{2\nu}{k} \frac{\partial \omega}{\partial x_j} \frac{\partial k}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial \omega}{\partial x_j} \right)$$

The ω eq. (which really is an ε eq. when the $k - \varepsilon$ constants are used)

$$\frac{\partial}{\partial x_j}(\bar{u}_j\omega) = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_\omega}\right) \frac{\partial \omega}{\partial x_j} \right] + \alpha \frac{\omega}{k} P^k - \beta \omega^2 + \frac{2}{k} \left(\nu + \frac{\nu_t}{\sigma_\varepsilon}\right) \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}$$
$$\alpha = C_{\varepsilon 1} - 1 = 0.44, \beta = (C_{\varepsilon 2} - 1)\beta^* = 0.0828$$

Inner region: $k - \omega$ coeff; outer region: $k - \varepsilon$ coeff. Blending function

$$F_1 = \tanh(\xi^4), \quad \xi \propto \frac{L_t}{x_n} = \frac{k^{1/2}}{\omega x_n}$$
 (8)

 $F_1 = 1$ in the near-wall region and $F_1 = 0$ in the outer region. The β -coefficient, for example, is computed as

$$\beta_{SST} = F_1 \beta_{k-\omega} + (1 - F_1) \beta_{k-\varepsilon}$$
(9)

▶SST model. Limitation of shear stress.

The $k - \omega$ gives too high shear stress. The JK model based on $-\overline{v'_1v'_2} = a_1k$ ($a_1 = c_{\mu}^{1/2}$) gives good results.

Two formulas for ν_t . $\Omega = \partial \bar{v}_1 / \partial x_2$. Formulate JK model with Boussinesq.

JK Model:
$$\nu_t = \frac{-\overline{\nu_1' \nu_2'}}{\Omega} = \frac{a_1 k}{\Omega}$$

 $k - \omega$ model: $\nu_t = \frac{k}{\omega} = \frac{a_1 k}{a_1 \omega}$
 $\left. \right\} \nu_t = \frac{a_1 k}{\max(a_1 \omega, F_2 \Omega)}$

 F_2 is one near walls and zero elsewhere

- ▶The idea is that
- the second part, a_1k/Ω (which mimics the Johnson-King model), should be used in APG flow (where $P^k > \varepsilon$)
- the first part, k/ω (which corresponds to the usual Boussinesq model), should be in the remaining of the flow

► LES

in RANS:

$$\langle \Phi \rangle = \frac{1}{2T} \int_{-T}^{T} \Phi(t) dt, \quad \Phi = \langle \Phi \rangle + \Phi', \quad \langle \Phi' \rangle = 0$$

in LES:

$$\bar{\Phi}(x,t) = \frac{1}{\Delta x} \int_{x-0.5\Delta x}^{x+0.5\Delta x} \Phi(\xi,t) d\xi, \quad \Phi = \bar{\Phi} + \Phi'', \quad \overline{\Phi''} \neq 0$$

$$\frac{\partial \bar{v}_i}{\partial t} + \frac{\partial}{\partial x_j} (\bar{v}_i \bar{v}_j) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}, \quad \tau_{ij} = \overline{v_i v_j} - \bar{v}_i \bar{v}_j$$
Filten and derivative

Filter and derivative

$$\overline{\frac{\partial p}{\partial x_i}} = \frac{1}{V} \int_V \frac{\partial p}{\partial x_i} dV \stackrel{?}{=} \frac{\partial}{\partial x_i} \left(\frac{1}{V} \int_V p dV \right) = \frac{\partial \bar{p}}{\partial x_i}$$
$$\overline{\frac{\partial p}{\partial x_i}} = \frac{\partial}{\partial x_i} \left(\frac{1}{V} \int_V p dV \right) + \mathcal{O}\left((\Delta x)^2 \right) = \frac{\partial \bar{p}}{\partial x_i} + \mathcal{O}\left((\Delta x)^2 \right)$$

Non-linear term

$$\frac{\partial \overline{v_i v_j}}{\partial x_j} = \frac{\partial}{\partial x_j} (\overline{v_i v_j}) + \mathcal{O} \left((\Delta x)^2 \right)$$
Left side : $\frac{\partial}{\partial x_j} (\overline{v_i v_j}) - \frac{\partial}{\partial x_j} (\overline{v_i v_j}) + \frac{\partial}{\partial x_j} (\overline{v_i v_j}) = \frac{\partial}{\partial x_j} (\overline{v_i v_j})$
Right side : $-\frac{\partial}{\partial x_j} (\overline{v_i v_j}) + \frac{\partial}{\partial x_j} (\overline{v_i v_j}) = -\frac{\partial \tau_{ij}}{\partial x_j}$

$$\blacktriangleright \frac{\partial \overline{v_i}}{\partial t} + \frac{\partial}{\partial x_j} (\overline{v_i v_j}) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{v_i}}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}$$
 $\tau_{ij} = \overline{v_i v_j} - \overline{v_i v_j}$

► Filtering (used for turbulence modelling)

$$\overline{v}_{I} = \frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \overline{v}(\xi) d\xi = \frac{1}{\Delta x} \left(\int_{-\Delta x/2}^{0} \overline{v}(\xi) d\xi + \int_{0}^{\Delta x/2} \overline{v}(\xi) d\xi \right) = \\ = \frac{1}{\Delta x} \left(\frac{\Delta x}{2} \overline{v}_{A} + \frac{\Delta x}{2} \overline{v}_{B} \right) \cdot = \frac{1}{2} \left[\left(\frac{1}{4} \overline{v}_{I-1} + \frac{3}{4} \overline{v}_{I} \right) + \left(\frac{3}{4} \overline{v}_{I} + \frac{1}{4} \overline{v}_{I+1} \right) \right] \\ = \frac{1}{8} \left(\overline{v}_{I-1} + 6 \overline{v}_{I} + \overline{v}_{I+1} \right) \neq \overline{v}_{I}$$

► Resolved & SGS scales (GS & SGS)

I=large scales II=-5/3 range III=dissipation range $\kappa \leq \kappa_c$: <u>G</u>rid <u>S</u>cales $\kappa > \kappa_c$: <u>Sub-G</u>rid <u>S</u>cales

▶ Physical and wavenumber space.

A Fourier series (see Appendix D)

$$v_1'(x) = \sum_{n=-\infty}^{\infty} c_n \exp(i\kappa_n x_1))$$

two cells : $\kappa_c 2\Delta x_1 = 2\pi \Rightarrow \kappa_c = 2\pi/(2\Delta x_1) = \pi/\Delta x_1$ four cells : $\kappa_c 4\Delta x_1 = 2\pi \Rightarrow \kappa_c = 2\pi/(4\Delta x_1) = \pi/(2\Delta x_1)$

► Smagorinsky Subgrid model

$$\tau_{ij} - \frac{1}{3} \delta_{ij} \tau_{kk} = -\nu_{sgs} \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) = -2\nu_{sgs} \bar{s}_{ij}$$
$$\nu_{sgs} = (C_S \Delta)^2 \sqrt{2 \bar{s}_{ij} \bar{s}_{ij}} \equiv (C_S \Delta)^2 |\bar{s}|$$
$$\Delta = (\Delta V_{IJK})^{1/3}$$

 $|\bar{s}|$ stems from the production term in the k eq., $|\bar{s}^2| = 2\bar{s}_{ij}\bar{s}_{ij}$

► One-equation model

$$\frac{\partial k_{sgs}}{\partial t} + \frac{\partial}{\partial x_j} (\bar{v}_j k_{sgs}) = \frac{\partial}{\partial x_j} \left[(\nu + \nu_{sgs}) \frac{\partial k_{sgs}}{\partial x_j} \right] + P_{k_{sgs}} - \varepsilon$$

$$\nu_{sgs} = c_k \Delta k_{sgs}^{1/2}, \quad P_{k_{sgs}} = 2\nu_{sgs} \bar{s}_{ij} \bar{s}_{ij}, \quad \varepsilon = C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta}$$

► Energy path

$$\begin{aligned} v_i &= \langle v_i \rangle + v'_i, \quad v_i = \bar{v}_i + v''_i = \langle \bar{v}_i \rangle + \bar{v}'_i + v''_i \\ k &\equiv \frac{1}{2} \langle v'_i v'_i \rangle = \int_0^\infty E(\kappa) d\kappa, \quad k_{sgs} \equiv \frac{1}{2} \langle v''_i v''_i \rangle = \int_{\kappa_c}^\infty E(\kappa) d\kappa \\ \bar{k} &\equiv \frac{1}{2} \langle \bar{v}'_i \bar{v}'_i \rangle = \int_0^{\kappa_c} E(\kappa) d\kappa, \quad \bar{K} \equiv \frac{1}{2} \langle \bar{v}_i \rangle \langle \bar{v}_i \rangle \\ K &= \frac{1}{2} \langle v_i \rangle \langle v_i \rangle \end{aligned}$$

► The dynamic model. *C* is <u>computed</u>. Test filter, $\widehat{\Delta} = 2\Delta$ $\frac{\partial \widehat{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\widehat{v}_i \widehat{v}_j \right) = -\frac{1}{\rho} \frac{\partial \widehat{p}}{\partial x_i} + \nu \frac{\partial^2 \widehat{v}_i}{\partial x_j \partial x_j} - \frac{\partial T_{ij}}{\partial x_j}$ (10) $T_{ij} = \widehat{v_i v_j} - \widehat{v}_i \widehat{v}_j$ $\frac{\partial \widehat{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\widehat{v}_i \widehat{v}_j \right) = -\frac{1}{\rho} \frac{\partial \widehat{p}}{\partial x_i} + \nu \frac{\partial^2 \widehat{v}_i}{\partial x_j \partial x_j} - \frac{\partial \widehat{\tau}_{ij}}{\partial x_j} - \frac{\partial}{\partial x_j} \frac{\left(\widehat{v}_i \widehat{v}_j - \widehat{v}_i \widehat{v}_j \right)}{\int_{\mathcal{L}_{ij}} \mathcal{L}_{ij}}$ (11)

Identification of Eqs. 10 and 11 gives

$$T_{ij} = \widehat{\overline{v}_i v_j} - \widehat{\overline{v}_i v_j} + \widehat{\tau}_{ij} = \mathcal{L}_{ij} + \widehat{\tau}_{ij}, \quad \frac{1}{3} \delta_{ij} T_{kk} = \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} + \frac{1}{3} \delta_{ij} \widehat{\tau}_{kk}$$
(12)

Smag.model for both grid and test level SGS stresses:

$$\tau_{ij} - \frac{1}{3}\delta_{ij}\tau_{kk} = -2C\Delta^2 |\bar{s}|\bar{s}_{ij}$$
(13)

$$T_{ij} - \frac{1}{3}\delta_{ij}T_{kk} = -2C\widehat{\Delta}^2 |\widehat{\overline{s}}|\widehat{\overline{s}}_{ij}$$
(14)

where

$$\widehat{s}_{ij} = \frac{1}{2} \left(\frac{\partial \widehat{v}_i}{\partial x_j} + \frac{\partial \widehat{v}_j}{\partial x_i} \right), \ |\widehat{s}| = \left(2 \widehat{s}_{ij} \widehat{s}_{ij} \right)^{1/2}$$

 \widehat{v} is computed as $(\Delta x = 2\Delta x)$

$$egin{aligned} & au_{ij} = \overline{v_i v_j} - ar{v}_i ar{v}_j \;\; ext{stresses with} \; \ell < \Delta \ &T_{ij} = \widehat{\overline{v_i v_j}} - \widehat{\overline{v}}_i \widehat{\overline{v}}_j \;\; ext{stresses with} \; \ell < \widehat{\Delta} \ &\mathcal{L}_{ij} = T_{ij} - \widehat{\overline{\tau}}_{ij} \;\; ext{stresses with} \; \Delta < \ell < \widehat{\Delta} \end{aligned}$$

Eqs. 13. 14 into Eq. 12 gives

$$\mathcal{L}_{ij} - \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} = -2C \left(\widehat{\Delta}^2 |\widehat{s}| \widehat{s}_{ij} - \Delta^2 |\overline{s}| \widehat{s}_{ij} \right)$$
(15)

31

$$\mathcal{L}_{ij} - \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} = -2C \left(\widehat{\Delta}^2 |\widehat{s}| \widehat{s}_{ij} - \Delta^2 |\overline{s}| \widehat{s}_{ij} \right)$$
(16)

$$Q = \left(\mathcal{L}_{ij} - \frac{1}{3}\delta_{ij}\mathcal{L}_{kk} + 2CM_{ij}\right)^2$$
(17a)

$$M_{ij} = \left(\widehat{\Delta}^2 | \widehat{\bar{s}} | \widehat{\bar{s}}_{ij} - \Delta^2 | \widehat{\bar{s}}_{ij} \right)$$
(17b)

Find a Q which best satisfies Eq. 16 for all i, j

$$\frac{\partial Q}{\partial C} = 4M_{ij} \left(\mathcal{L}_{ij} - \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} + 2CM_{ij} \right) = 0, \quad \partial^2 Q / \partial C^2 = 8M_{ij} M_{ij} > 0$$

We get

$$C = -\frac{\mathcal{L}_{ij}M_{ij}}{2M_{ij}M_{ij}},$$
 stability problems: needs smoothing

► Numerical method: RANS vs. LES

	RANS	LES
Domain	2D or 3D	always 3D
Time domain	steady or unsteady	always unsteady
Space discretization	2nd order upwind	central differencing
Time discretization	1st order	2nd order (e.g. C-N)
Turbulence model	> two-equations	zero- or one-equation

Start and end time averaging. $t_{end} - t_{start} \simeq 100 H / \langle \bar{v} \rangle_{center}$

► Numerical dissipation

$$\begin{split} \bar{v}_{I} \left(\frac{\partial \bar{v}}{\partial x} \right)_{exact} &= \bar{v}_{I} \left(\frac{\bar{v}_{I} - \bar{v}_{I-1}}{\Delta x} + \mathcal{O} \left(\Delta x \right) \right) \\ \bar{v}_{I-1} &= \bar{v}_{I} - \Delta x \left(\frac{\partial \bar{v}}{\partial x} \right)_{I} + \frac{1}{2} (\Delta x)^{2} \left(\frac{\partial^{2} \bar{v}}{\partial x^{2}} \right)_{I} + \mathcal{O} \left((\Delta x)^{3} \right) \\ \text{diffusion term} &= \frac{\partial}{\partial x} \left\{ (\nu + \nu_{sgs} + \nu_{num}) \frac{\partial \bar{v}}{\partial x} \right\}, \quad \varepsilon_{sgs+num} = 2(\nu_{sgs} + \nu_{num}) \bar{s}_{ij} \bar{s}_{ij} \end{split}$$

- Smagorinsky model derived from the one-equation model
- Small isotropic scales: production = dissipation

$$P_{k_{sgs}} = 2\nu_{sgs}\bar{s}_{ij}\bar{s}_{ij} = \varepsilon$$

Replace ε by ν_{sgs} and Δ .

 $\nu_{sgs} = \varepsilon^a (C_S \Delta)^b \Rightarrow a = 1/3, b = 4/3 \Rightarrow \nu_{sgs} = (C_S \Delta)^{4/3} \varepsilon^{1/3}$

which gives

 $\nu_{sgs} = (C_s \Delta)^2 |\bar{s}|$

In LES we resolve *large* scales. Near the wall, the "large" scales are not that large \Rightarrow very expensive to resolve these "large" scales.

$$\Delta x_1^+ \simeq 100, \, \Delta x_{2,min}^+ \simeq 1, \, \Delta x_3^+ \simeq 30 \quad \Rightarrow \text{VERY expensive}$$

▶ URANS. The usual Reynolds decomposition is employed

$$\bar{v}(t) = \frac{1}{2T} \int_{t-T}^{t+T} v(t) dt, \ v = \bar{v} + v''$$

URANS eqns=RANS, but with the unsteady term retained

- Decomposition of velocities: $v = \bar{v} + v'' = \langle \bar{v} \rangle + \bar{v}' + v''$ (note that v'' is not shown in the figure above)
- In theory, T should be \ll resolved time scale= scale separation. In practice, it is seldom satisfied.
- RANS turbulence models are used: one should choose a model with small dissipation (i.e. small ν_t)
- Modelled dissipation (turbulence model) and numerical dissipation (discretization scheme) may be of equal importantance

► DES=<u>D</u>etached <u>E</u>ddy <u>S</u>imulations: Use RANS near walls and LES away from walls

The S-A one-equation model (RANS)

$$\frac{d\rho\tilde{\nu}_t}{dt} = \frac{\partial}{\partial x_j} \left(\frac{\mu + \mu_t}{\sigma_{\tilde{\nu}_t}} \frac{\partial\tilde{\nu}_t}{\partial x_j}\right) + \text{cr. term} + P - C_{w1}\rho f_w \left(\frac{\tilde{\nu}_t}{d}\right)^2, \quad d = x_n$$
$$\left(\frac{\tilde{\nu}_t}{d}\right)^2 \Rightarrow \left(\frac{\tilde{\nu}_t}{\tilde{d}}\right)^2, \quad \tilde{d} = \min\{C_{DES}\Delta, d\}, \quad \Delta = \max\{\Delta x_1, \Delta x_3, \Delta x_3\}$$

The S-A one-equation model (DES)

► Two-equation DES models $k - \varepsilon$ RANS $C^{k} = D^{k} + P^{k} - \varepsilon, \quad C^{\varepsilon} = D^{\varepsilon} + P^{\varepsilon} - \Psi$ $k - \varepsilon$ DES (modify ε_T) $C^{k} = D^{k} + P^{k} - \varepsilon \Rightarrow C^{k} = D^{k} + P^{k} - \varepsilon_{T}, \quad \varepsilon_{T} = \max\left(\varepsilon, C_{\varepsilon} \frac{k^{3/2}}{\Lambda}\right)$ $k - \varepsilon$ DES (modify ν_T and ε_T) $C^k = D^k + P^k - \varepsilon_T, \quad C^\varepsilon = D^\varepsilon + P^\varepsilon - \Psi^\varepsilon \quad \nu_t = k^{1/2} \ell_t$ 1. $\varepsilon_T = \max\left(\varepsilon, C_{\varepsilon} \frac{k^{3/2}}{\Delta}\right): \varepsilon_T \uparrow \Rightarrow \nu_t, k \downarrow \text{ in LES region}$ 2. $\ell_t = \min\left(C_\mu \frac{k^{3/2}}{\varepsilon}, C_k \Delta\right) \Rightarrow \nu_t$ decreases in LES region $k - \omega$ SST DES (modify $\beta^* k \omega$) $C^{k} = D^{k} + P^{k} - F_{DES}\beta^{*}k\omega, F_{DES} = \max\left\{\frac{L_{t}}{C_{DES}\Lambda}, 1\right\}$ Dissip. term $\beta^* k \omega \propto \frac{k^{3/2}}{L_t} \Rightarrow \beta^* k \omega \propto \frac{k^{3/2}}{C_{DES} \Lambda}$ in LES region

The grid size is critical to the switching position. Two examples below: $\Delta x_1 = \delta$ and $\Delta x_1 = \delta/20$

► It may occur that the F_{DES} term switches to DES in the boundary layer because Δx is too small (Δz is usually smaller than Δx)

Hence boundary layer is treated in LES mode with too a coarse mesh \Rightarrow poorly resolved LES \Rightarrow inaccurate predictions.

► The solution is **DDES** (Delayed DES)

$$F_{DES} = \max\left\{\frac{L_t}{C_{DES}\Delta}(1 - F_S), 1\right\}$$

where F_S is taken as F_1 or F_2 of the SST model.

DES: The entire boundary layer is modelled with URANS

Hybrid LES-RANS: Only the inner part (inner part of the log region) is modelled with URANS. This is also call **WM-LES** (WM=Wall-modelled)

► Hybrid LES-RANS *wall* URANS region x_2 URANS region x_2 x_1 *wall wall*

One-equation model in both URANS and LES region

$$\frac{\partial k_T}{\partial t} + \frac{\partial}{\partial x_j} (\bar{v}_j k_T) = \frac{\partial}{\partial x_j} \left[(\nu + \nu_T) \frac{\partial k_T}{\partial x_j} \right] + P_{k_T} - C_{\varepsilon} \frac{k_T^{3/2}}{\ell}$$
$$P_{k_T} = -\tau_{ij} \bar{s}_{ij}, \quad \tau_{ij} = -2\nu_T \bar{s}_{ij}, \quad \nu_T \propto k^{1/2} \ell$$

Inner region ($x_2 \leq x_{2,ml}$): $\ell \propto \kappa x_2$; outer region: $\ell = \Delta$

The SAS model: This is a method to improve URANS. The objective is to reduce ν_t when the equations want to go into unsteady, resolving turbulence mode (LES mode).

An additional source term, P_{SAS} , is introduced in the ω equation. $P_{SAS} \propto \frac{L_t}{L_{vK,3D}}$.

$$L_t \propto \frac{k^{1/2}}{\omega}, \quad L_{vK,3D} = \kappa \frac{|\bar{s}|}{|U''|}, \quad U'' = \left(\frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} \frac{\partial^2 \bar{v}_i}{\partial x_k \partial x_k}\right)^{0.5}$$

► The von Kármán length scale is used to detect unsteadiness; when it happens:

- the P_{SAS} term increases
- $\rightarrow \omega$ increases
- $\rightarrow \nu_t$ and k decrease
- ullet ightarrow mom.eqns go into (or stay in) unsteady mode

► In URANS, resolved fluctuations may be damped.

Solid line: $L_{vk,1D}$; dashed line: $L_{vk,3D}$

▶ PANS: Partial-Averaging Navier-Stokes. The k and ε eqns read (subscript u=unresolved)

$$\frac{\partial k_u}{\partial t} + \frac{\partial (k_u \bar{v}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_u}{\sigma_{ku}} \right) \frac{\partial k_u}{\partial x_j} \right] + P_u - \varepsilon_u$$
$$\frac{\partial \varepsilon_u}{\partial t} + \frac{\partial (\varepsilon_u \bar{v}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_u}{\sigma_{\varepsilon u}} \right) \frac{\partial \varepsilon_u}{\partial x_j} \right] + C_{\varepsilon 1} P_u \frac{\varepsilon_u}{k_u} - C_{\varepsilon 2}^* \frac{\varepsilon_u^2}{k_u}$$

where

$$C_{\varepsilon 2}^* = C_{\varepsilon 1} + \frac{f_k}{f_{\varepsilon}} (C_{\varepsilon 2} - C_{\varepsilon 1}), \quad C_{\varepsilon 1} = 1.44, \quad C_{\varepsilon 2} = 1.92$$
$$\Rightarrow C_{\varepsilon 2}^* = 1.44 + \frac{f_k}{f_{\varepsilon}} 0.48$$

- $f_k = k/(k + k_{res})$ and $f_{\varepsilon} = \varepsilon/(\varepsilon + \varepsilon_{res})$ denote the ratio of modelled to total k and ε , respectively.
- Usually $f_{\varepsilon} = 1$; $f_{\varepsilon} < 1$ implies that dissipative scales are resolved.
- If f_k is smaller than one (say, $f_k = 0.4$) then:

-
$$C_{\varepsilon 2}^* \frac{\varepsilon_u^2}{k_u}$$
 is reduced

- $\Rightarrow \varepsilon_u$ is increased
- $\Rightarrow k_u$ and ν_u are decreased
- \Rightarrow the momentum eqns go into LES mode.

► In LES and DES the large-scale turbulence is resolved: hence, turbulent fluctuations should be provided as inlet boundary conditions

Synthetic fluctuations is one method. The inlet velocity can be written as a Fourier series

Amplitude \hat{u}^n related to energy spectrum: $\hat{u}^n = (E(\kappa)\Delta\kappa)^{1/2}$

► Usually we generate energy spectra from turbulent fluctuations. Here we do the opposite: we assume a spectrum and generate turbulent fluctuations. A -5/3 spectrum is assumed: this gives the amplitude \hat{u}^n for wavenumber κ_n

 $\triangleright \kappa_{max}$ from the cells size

 $ightarrow \kappa_e \propto 1/L_t$ from the integral turbulent length scale

 $\kappa_{min} = \kappa_e/2 \ \Delta \kappa = (\kappa_{max} - \kappa_{min})/N \Rightarrow \kappa_1 = \kappa_{min}, \ \kappa_2 = \kappa_1 + \Delta \kappa, \dots \kappa_N = \kappa_{max}$

► However, they are not correlated in time. An asymmetric time filter is used $(\mathcal{V}'_1)^m = a(\mathcal{V}'_1)^{m-1} + b(v'_1)^m$

The coefficient a is related to the turbulent integral timescale, ${\cal T},$ as $a=\exp(-\Delta t/{\cal T})$

The coefficient b is computed as $b=(1-a^2)^{1/2}$ which ensures that $\mathcal{V}_{1,rms}'=v_{1,rms}'$

► Finally, the turbulent synthetic fluctuations are superimposed to the inlet mean velocity.