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1. Motion, flow 13

T(Xi,t1)

T(x%, t2)

Figure 1.1: The temperature of a fluid particle described in Lagrangian, T'(Xj, ¢), or Eulerian,
T (z;,t), approach.

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative

SEE also [1], Chapt. 3.2.

Assume a fluid particle is moving along the line in Fig. 1.1. We can choose to study
its motion in two ways: Lagrangian or Eulerian. In the Lagrangian approach we keep
track of its original position (X;) and follow its path which is described by x;(X;, ).
For example, at time ¢; the temperature of the particle is T'(X;, t1), and at time ¢5 its
temperature is 7'(X;, t2), see Fig. 1.1. This approach is not used for fluids because it
is very tricky to define and follow a fluid particle. It is however used when simulating
movement of particles in fluids (for example soot particles in gasoline-air mixtures in
combustion applications). The speed of the particle is then expressed as a function of
time and its position at time zero, i.e. v; = v;(X;, ).

In the Eulerian approach we pick a position, e.g. x}, and watch the particle pass
by. This approach is used for fluids. The temperature of the fluid, 7', for example, is
expressed as a function of the position, i.e. T = T'(z;), see Fig. 1.1. It may be that the
temperature at position x;, for example, varies in time, ¢, and then T = T'(x;, t).

Now we want to express how the temperature of a fluid particle varies. In the
Lagrangian approach we first pick the particle (this gives its starting position, X;).
Once we have chosen a particle its starting position is fixed, and temperature varies
only with time, i.e. T'(¢) and the temperature gradient can be written d7'/dt.

In the Eulerian approach it is a little bit more difficult. We are looking for the
temperature gradient, d7'/dt, but since we are looking at fixed points in space we
need to express the temperature as a function of both time and space. From classical
mechanics, we know that the velocity of a fluid particle is the time derivative of its
space location, i.e. v; = dz;/dt. The chain-rule now gives

dr _or  dz; 0T _ 0T oT

@ o om0 Yom, (1-1)

Note that we have to use partial derivative on 7" since it is a function of more than one
(independent) variable. The first term on the right side is the local rate of change; by
this we mean that it describes the variation of 7" in time at position x;. The second term
on the right side is called the convective rate of change, which means that it describes

local rate
of change
Conv. rate
of change
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the variation of 1" in space when it passes the point x;. The left side in Eq. 1.1 is called
the material derivative and is in this text denoted by d7/dt.

Exercise 1 Write out Eq. 1.1, term-by-term.

d 0
1.2 What is the difference between % and %?

d 0
Students sometimes get confused about the difference between 992 and 22 Here we
give a simple example. Figure 1.2 shows a flow path of fluid particles which can be

expressed in time as
x1 = exp(t), x2 =exp(—t) (1.2)

and hence 25 = 1/x1. The flow path is steady in time and it starts at (z1, 22) = (0.5, 2)
and ends at (x1,22) = (2,0.5). The flow path is taken from stagnation flow, see
Fig. 4.7. Equation 1.2 gives the velocities

d d
vl = % =exp(t), vk = % = —exp(—t) (1.3)
and Egs. 1.2 and 1.3 give
v =g, W=, (1.4)

(cf. Eq. 4.52). The superscripts E and L denote Eulerian and Lagrangian, respectively.
Note that v1 = vF and v} = v¥; the only difference is that v is expressed as function
of (t,21,22) and viL as function of ¢ (and in general also starting location, X, X5).
Now we can compute the time derivatives of the vy velocity as

d L

% = exp(—t)

dvE L oE E (1-5)
2 2 E 2 E 2

o2 0% 2 % _p 0 — 1) =

G o TV any Ty, OtE 0w (Fh) =

d do¥  dv¥
We find, of course, that % = % = % = 19 = exp(—t).
Consider, for example, the point (21, z2) = (1, 1) in Fig. 1.2. The difference bet-

d 0

ween % and % is now clearly seen by looking at Eq. 1.5. The velocity at the point

o E

(21,22) = (1,1) does not change in time and hence % = 0. However, if we sit on

a particle which passes the location (x1,z2) = (1, 1), the velocity, vZ, increases by
dvk d

time, % = % = 1 (the velocity, vy, gets less negative) . Actually it increases all

d

the time from the starting point where % = 2 and v9 = —2 until the end point where

d’Ug

— =0.5and vy = —0.5.

p and v9

1.3 Viscous stress, pressure
See also [1], Chapts. 6.3 and 8.1.
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€2

T

Figure 1.2: Flow path 2 = 1/x1. The filled circle shows the point (z1,x2) = (1,1). </ start
(t =In(0.5)); A: end (t = In(2)).

We have in Part I [2] derived the balance equation for linear momentum which
reads

pii —0jig — pfi =0 (1.6)
Switch notation for the material derivative and derivatives so that
d’Ui (’)aji
= i 1.7
"ot = B, +rf 1.7

where the first and the second term on the right side represents, respectively, the net
force due to surface and volume forces (o;; denotes the stress tensor). Stress is force
per unit area. The first term on the right side includes the viscous stress tensor, 7;;. As
you have learnt earlier, the first index relates to the surface at which the stress acts and
the second index is related to the stress component. For example, on a surface whose
normal is n; = (1,0, 0) act the three stress components 011, 012 and 013, see Fig. 1.3a;
the volume force acts in the middle of the fluid element, see Fig. 1.3b.

In the present notation we denote the velocity vector by v = v; = (v1,v2,v3)
and the coordinate by x = z; = (x1,x2,x3). In the literature, you may find other
notations of the velocity vector such as u; = (u1, u2, ug). If no tensor notation is used
the velocity vector is usually denoted as (u, v, w) and the coordinates as (z, y, 2).

The diagonal components of ¢;; represent the normal stresses and the off-diagonal
components of ¢;; represent the shear stresses. In Part I [2] you learned that the pres-
sure is defined as minus the sum of the normal stress, i.e.

P=—0/3 (1.8)

The pressure, P, acts as a normal stress. In general, pressure is a thermodynamic
property, p;, which can be obtained — for example — from the ideal gas law. In that
case the thermodynamics pressure, p;, and the mechanical pressure, P, may not be the
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012

011
013

Z2 fi

€2

X1 z

(a) Stress components and stress vector on a surface. (b) Volume force, f; = (0, —g, 0), acting in
the middle of the fluid element.

Figure 1.3: Stress tensor, volume (gravitation) force and stress vector, tgél), see Eq. D.2.

same but Eq. 1.8 is nevertheless used. The viscous stress tensor, 7;;, is obtained by
subtracting the trace, ok /3 = — P, from 0;;; the stress tensor can then be written as

Uij = 7P5” + Tz’j (19)

7;; is the deviator of o;;. The expression for the viscous stress tensor is found in Eq. 2.4
at p. 26. The minus-sign in front of P appears because the pressure acts info the surface.
‘When there is no movement, the viscous stresses are zero and then of course the normal
stresses are the same as the pressure. In general, however, the normal stresses are the
sum of the pressure and the viscous stresses, i.e.

o011 =—P+m71, 02=—P+Tyn, o033=—P+733, (1.10)

Exercise 2 Consider Fig. 1.3. Show how 021,092, 023 act on a surface with normal
vector n; = (0, 1,0). Show also how o031, 032, 033 act on a surface with normal vector
n; = (0,0,1).

Exercise 3 Write out Eq. 1.9 on matrix form.

1.4 Strain rate tensor, vorticity
See also [1], Chapt. 3.5.3, 3.6.

We need an expression for the viscous stresses, 7;;. They are needed in the mo-
mentum equations, Eq. 1.7 (see also Eq. 1.9). They will be expressed in the velocity
gradients, g;? . Hence we will now discuss the velocity gradients.

J

The velocity gradient tensor can be split into two parts as

8vi 1 8vi 8vi 8vj (91)]'
- _ + — —_J4

(’)xj 2 axj (’)xj Iaxi (’)xil
20v; /0x; =0

1 a’l}i (’)vj 1 (’)vi an
= _ —_J - —_—J ) =4.. 0.,
2 (8$j + 8%) + 2 (al'] 8%) SU + *

(1.11)
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where
Si; is a symmetric tensor called the strain-rate tensor
Q;; is a anti-symmetric tensor called the vorticity tensor

The vorticity tensor is related to the familiar vorticity vector which is the curl of
the velocity vector, i.e. w = V X v, or in tensor notation

Oy,
w; = eijk%"f (1.12)
J

where €;;1, is the permutation tensor, see lecture notes of Ekh [2] and Table C.1 in
Appendix C. If we set, for example, 1 = 3 we get

w3 = 802/8$1 - (91)1/8$2. (113)
The vorticity represents rotation of a fluid particle. Inserting Eq. 1.11 into Eq. 1.12
gives

wi = €k (Skj + Nj) = €0k (1.14)

since €;;:5%; = 0 because the product of a symmetric tensor (Si;) and an anti-

symmetric tensor (€;5) is zero. Let us show this for + = 1 by writing out the full

equation. Recall that Sij = Sji (i.e. S12 = S91, S13 = S31, Soz3 = S39) and
€ijk = —€ikj = €jk; etc (1.e. €123 = —€132 = €231 ..., €113 = €221 = ...€331 = 0)

€1jkSk; = €111511 + €112521 + €113531
+ €121512 + €122522 + £123.532
+€131513 + €132523 + £133533
=0-511+0-595+0-S31 (1.15)
4+0-S124+0-83 +1-S39
+0'51371~523+0'S33
= S32 —S23=0
Now let us invert Eq. 1.14. We start by multiplying it with ;¢,,, so that
EitmWi = Eilmeiijkj (1.16)
The e-6-identity gives (see Table C.1 at p. 327)
Citm€ijk i = (00j0mk — O00kOmj) s = Qe — Qo = 2Qme (1.17)

This can easily be proved by writing out all the components, see Table C.1 at p. 327.
Now Eqgs. 1.16 and 1.17 give

1 1 1
Qe = SitmWi = 5EmiWi = — 5 Emeils (1.18)
or, switching indices
1
Qij = —§5ijkwk (1.]9)

It turns out that is is much easier to go from Eq. 1.14 to Eq. 1.19 by writing out the
components of Eq. 1.14 (here we do it for : = 1)

w1 = €1238232 + €132023 = 3y — Qo3 = =203 (1.20)

Strain-rate
tensor
vorticity ten-
sor
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and we get
1
923 = 75(4]1 (121)
which indeed is identical to Eq. 1.19.

Exercise 4 Write out the second and third component of the vorticity vector given in
Eq. 1.12 (i.e. wy and w3).

Exercise 5 Complete the proof of Eq. 1.15 fori =2 and 1 = 3.

Exercise 6 Write out Eq. 1.20 also for i = 2 and i = 3 and find an expression for Q15
and Q13 (cf. Eq. 1.21). Show that you get the same result as in Eq. 1.19.

Exercise 7 In Eq. 1.21 we proved the relation between );; and w; for the off-diagonal
components. What about the diagonal components of €;;? What do you get from
Eq. 1.117

Exercise 8 From your course in linear algebra, you should remember how to compute
a vector product using Sarrus’ rule. Use it to compute the vector product
€& € @&
_ - | o2 2 o
w=VXxv= dry  Ory  Ows
U1 U2 U3

Verify that this agrees with the expression in tensor notation in Eq. 1.12.

1.5 Product of a symmetric and antisymmetric tensor

In this section we show the proof that the product of a symmetric and antisymmetric
tensor is zero. First, we have the definitions:

e A tensor a;; is symmetric if a;; = aj;;
e A tensor b;; is antisymmetric if b;; = —bj;.

It follows that for an antisymmetric tensor all diagonal components must be zero;
for example, by; = —by1 can only be satisfied if b;; = 0.

The (inner) product of a symmetric and antisymmetric tensor is always zero. This
can be shown as follows

aijbij = ajibi; = —ajibyi,
where we first used the fact that a;; = a;; (symmetric), and then that b;; = —bj;
(antisymmetric). Since the indices ¢ and j are both dummy indices we can interchange
them in the last expression (—a;;b;; = —a;;b;;), which gives
aijbij = —aijbij
This expression says that A = — A which can be only true if A = 0 and hence a;;b;; =

0.
This can of course also be shown be writing out a;;b;; on component form, i.e.

ai;bi; = a11bi1 + a12biz + ai3bis
T 1
+ a21ba1 +a22b22 + a23bas
| SSE— — | I |
7 177;
+ a31b31 + az2bzz +azzbzz =0
—— | I )
173 TI1
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T
Figure 1.4: Rotation of a fluid particle during time At. Here Ov1/0x2 = —Ov2/dz1 so that

—Q12 = w3/2 = vz /dz1 > 0. The distance of the upper-left corner is negative because the
corner has moved with a negative vy velocity.

The underlined terms are zero (b1; = bgos = bz = 0); terms I cancel each other
(a12 = as1, bia = —ba1) as do terms II and II1.

1.6 Deformation, rotation
See also [1], Chapt. 3.3.

The velocity gradient can, as shown above, be divided into two parts: S;; and €2;;.
‘We have shown that the latter is connected to rotation of a fluid particle. During rotation ~rotation
the fluid particle is not deformed. This movement can be illustrated by Fig. 1.4. The
vertical movement (vo) of the lower-right corner (z1 + Ax1) of the particle in Fig. 1.4
is estimated as follows. The velocity at the lower-left corner is v2(x1). Now we need
the velocity at the lower-right corner which is located at z; + Axy. It is computed
using the first term in the Taylor series as'

va(z1 + Azxy) = vax1) + AJH%

61}1
It is assumed that the fluid particle in Fig. 1.4 is rotated the angle A« during the
time At. The angle rotation per unit time can be estimated as A« /At ~ da/dt =
—0v1 /029 = Qvg/Dxy; if the fluid element does not rotate as a solid body, the rotation
is computed as the average, i.e. da/dt = (Qva/dx1 — Ov1/0x2)/2. The vorticity
is computed as w3y = Jve/dx1 — Ov1/0x9 = —2012 = 2da/dt, see Eq. 1.13 and

Ithis corresponds to the equation for a straight line y = kx + £ where k is the slope which is equal to the
derivative of y, i.e. dy/dz, and £ = va(z1)
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A:L‘l

D A oA = AaAds
8:1:2

I

Aa

AZ‘Q

— Az At = AaAx;

Figure 1.5: Deformation of a fluid particle by shear during time At. Here Ov1 /Ox2 = Ova/dx1
so that S12 = Ov1 /8302 > 0.

Exercise 4. Hence, the vorticity ws can be interpreted as twice the average rotation per
unit time of the horizontal edge (Qv2/0x1) and vertical edge (—dv1/0x2).

Next let us have a look at the deformation caused by .S;;. It can be divided into two
parts, namely shear and elongation (also called extension or dilatation). The deforma-
tion due to shear is caused by the off-diagonal terms of S;;. In Fig. 1.5, a pure shear de-
formation by S12 = (Ov1/0x2 + Ova/dx1)/2 is shown. The deformation due to elon-
gation is caused by the diagonal terms of S;;. Elongation caused by S11 = dv1/0x; is
illustrated in Fig. 1.6.

In general, a fluid particle experiences a combination of rotation, deformation and
elongation as indeed is given by Eq. 1.11.

Exercise 9 Consider Fig. 1.4. Show and formulate the rotation by w;.
Exercise 10 Consider Fig. 1.5. Show and formulate the deformation by Sa3.

Exercise 11 Consider Fig. 1.6. Show and formulate the elongation by Sas.

1.7 Irrotational and rotational flow

In the previous subsection we introduced different types of movement of a fluid parti-
cle. One type of movement was rotation, see Fig. 1.4. Flows are often classified based
on rotation: they are rotational (w; # 0) or irrotational (w; = 0); the latter type is also
called inviscid flow or potential flow. We will talk more about that later on, see Sec-
tion 4.4. In this subsection we will give examples of one irrotational and one rotational
flow. In potential flow, there exists a potential, ®, from which the velocity components
can be obtained as

0P

Ve =
8:%

(1.22)
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Figure 1.6: Deformation of a fluid particle by elongation during time At.

t;dl

T2

x

Figure 1.7: The surface, S, is enclosing by the line ¢. The vector, ¢;, denotes the unit tangential
vector of the enclosing line, /.

Before we talk about the ideal vortex line in the next section, we need to introduce
the concept circulation. Consider a closed line on a surface in the ;1 — x5 plane, see
Fig. 1.7. When the velocity is integrated along this line and projected onto the line we
obtain the circulation

F:%%%M (1.23)

Using Stokes’s theorem we can relate the circulation to the vorticity as

r:fwmﬂz/%ﬁﬁwwz/wwﬁz/mw (1.24)
s Ox; s s

where n; = (0,0, 1) is the unit normal vector of the surface S. Equation 1.24 reads in
vector notation

F:%V~td€:/(v><v)~ndS:/w~ndS:/w3dS (1.25)
S S S
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The circulation is useful in, for example, aeronautics and windpower engineering
where the lift of a 2D section of an airfoil or a rotorblade is expressed in the circulation
for that 2D section. The lift force is computed as (see Eqgs. 4.85 and 4.86)

L =pVI (1.26)

where V' is the velocity around the airfoil (for a rotorblade it is the relative velocity,
since the rotorblade is rotating). In an PhD project, an inviscid simulation method
(based on the circulation and vorticity sources) is used to compute the aerodynamic
loads for windturbine rotorblades [3].

Exercise 12 In potential flow w; = €;;,0v/0x; = 0. Multiply Eq. 1.22 by €;;, and
derivate with respect to xy, (i.e. take the curl of) and show that the right side becomes
zero as it should, i.e. £;;,0°®/(dxy0x;) = 0.

1.7.1 Ideal vortex line

The two-dimensional ideal vortex line is an irrotational (potential) flow where the fluid
moves along circular paths, see Fig. 1.8. The governing equations are derived in Sec-
tion 4.4.5. The velocity field in polar coordinates reads

r
vg=—, v, =0 (1.27)
27r
where I is the circulation. Its potential reads
re
P =— (1.28)
2
The velocity, vy, is then obtained as
100 r
— = - 1.29
v r o0 2nr ( )

To transform Eq. 1.27 into Cartesian velocity components, consider Fig. 1.9. The
Cartesian velocity vectors are expressed as

€2 €2

v] = —vgsin(f) = —vg— = —Vg—5—5—75
r (22 + x2)1/2 (130)
@) =wv Ty T .
vy =vgcos(f) =vg— = vp—5—573
2 0 0~ e(z%+$§)1/2
Inserting Eq. 1.30 into Eq. 1.27 we get
vy = _ T vy = _ Tm (1.31)

2m(a? +a3) 2m(23 + 23)’

To verify that this flow is a potential flow, we need to show that the vorticity, w; =
€4j60Vk /O is zero. Since it is a two-dimensional flow (v3 = 0/0z3 = 0), w1 =
wo = 0, we only need to compute ws = vg/Ox1 — dv1 /Dx2. The velocity derivatives
are obtained as

ovy r a?— 22 O0vg r % —a?

el " T R R (1.32)
Orz  2m(a}4a3)” Om 27 (a4 a3)’
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Figure 1.8: Ideal vortex. The fluid particle (i.e. its diagonal, see Fig. 1.4) does not rotate. The
locations of the fluid particle is indicated by black, filled squares. The diagonales are shown as
black dashed lines. The fluid particle is shown at = 0, w /4, 37 /4, 7, 57 /4, 37 /2 and —7 /6.

Vo

Figure 1.9: Transformation of v into Cartesian components.

and we get
r 1

3= 5= .
2 2
27 (2% + 23)
which shows that the flow is indeed a potential flow, i.e. irrotational (w; = 0). Note
that the deformation is not zero, i.e.

1 r 2
S = (am n (%2) S (1.34)

2 (on on) Ty

(23 — 23 +23 —23)=0 (1.33)

Hence a fluid particle in an ideal vortex does deform but it does not rotate (i.e. its
diagonal does not rotate, see Fig. 1.8).
It may be little confusing that the flow path forms a vortex but the flow itself has no
vorticity. Thus one must be very careful when using the words “vortex” and vorticity”. vortex vs.
By vortex we usually mean a recirculation region of the mean flow. That the flow has  vorticity
no vorticity (i.e. no rotation) means that a fluid particle moves as illustrated in Fig. 1.8.
As a fluid particle moves from position a to b — on its counter-clockwise-rotating path
— the particle itself is not rotating. This is true for the whole flow field, except at the
center where the fluid particle does rotate. This is a singular point as is seen from
Eq. 1.27 for which vy — oo.
Note that generally a vortex has vorticity, see Section 4.2. The ideal vortex is a very
special flow case.
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Figure 1.10: A shear flow. The fluid particle rotates. v; = cz3.

022 ~ Vi
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Figure 1.11: A two-dimensional fluid element. Left: in original state; right: rotated to principal
coordinate directions. A1 and A2 denote eigenvalues; ¥1 and V2 denote unit eigenvectors.

1.7.2 Shear flow

Another example — which is rotational — is the lower half of fully-developed channel
flow for which the velocity reads (see Eq. 3.28)

U1 743@2 (1,E

22 h), vy =0 (1.35)

V1,max B h
where z2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads

Ovy Oy 4 2z
w1 =wy =0, ws Py B h < h ) (1.36)

When the fluid particle is moving from position a, via b to position c it is indeed
rotating. It is rotating in clockwise direction. Note that the positive rotating direction
is defined as the counter-clockwise direction, indicated by a in Fig. 1.10. This is why
the vorticity, ws, in the lower half of the channel (z2 < h/2) is negative. In the upper
half of the channel the vorticity is positive because dvy /dza < 0.

1.8 Eigenvalues and eigenvectors: physical interpretation
See also [1], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure
it is oriented along the x; — x5 coordinate system. On the surfaces act normal stresses
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(011, 022) and shear stresses (012, 021). The stresses form a tensor, ;. Any tensor has
eigenvectors and eigenvalues (also called principal vectors and principal values). Since
0;; is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are
obtained from the characteristic equation, see [1], Chapt. 2.5.5 or Eq. 13.5 at p. 165.
When the eigenvalues have been obtained, the eigenvectors can be computed. Given
the eigenvectors, the fluid element is rotated o degrees so that its edges are aligned
with the eigenvectors, V1 = 21, and Vo = T/, see right part of Fig. 1.11. Note that the
sign of the eigenvectors is not defined, which means that the eigenvectors can equally
well be chosen as —V; and/or —V. In the principal coordinates 1, — xo/ (right part
of Fig. 1.11), there are no shear stresses on the surfaces of the fluid element. There
are only normal stresses. This is the very definition of eigenvectors. Furthermore, the
eigenvalues are the normal stresses in the principal coordinates, i.e. Ay = oy/1/ and
)\2 = 09/9/.
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2 Governing flow equations

SEE also [1], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation

2.1.1 The continuity equation

The first equation is the continuity equation (the balance equation for mass) which

reads [2]
p+pvi; =0 2.1)

Change of notation gives

dp v;
il =0 2.2
praa 0z, (2.2)
For incompressible flow (p = const) we get
a’l}i
=0 23
0z, (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have formulated the constitutive law
for Newtonian viscous fluids [2]

2
0ij = —P0ij + 21Sij — 5 115kk i
) 2.4)
Tij = 21855 — gﬂskkéij

Inserting Eq. 2.4 into the balance equations, Eq. 1.7, we get

dUi oP aTji oP 0 2 (’)vk
p dt Oz + Ox; +ofi= ox; + Ox; (Q'US” 3'u<9xk
where p denotes the dynamic viscosity. This is the Navier-Stokes equations (sometimes
the continuity equation is also included in the name “Navier-Stokes”). It is also called
the transport equation for momentum. Note that the stress tensor, 0;;, depends only on
the symmetric part (i.e. S;;, see Eq. 1.11) of the velocity gradient. It is only the part
of the velocity gradient that deforms the fluid (see Figs. 1.5 and 1.6) that appears in
o0;j. The part of the velocity gradient that rotates the fluid (i.e. 2;;, see Eq. 1.11 and
Fig. 1.4) does not appear in o;;.

If the viscosity, u, is constant it can be moved outside the derivative. Furthermore,
if the flow is incompressible the second term in the parenthesis on the right side is zero
because of the continuity equation. If these two requirements are satisfied we can also
re-write the first term in the parenthesis as

0 0 ov;  Ov; 0%v;
— (2u8;;) = p— d 20 =
8xj ( H J) M(?IL']' (81'] + axz) 'uaxjal'j

because of the continuity equation, i.e.

0 a’l}j 0 a’l}j
—_— = —_— = . 2-
M(?IL']' (81‘1) M(?:L'i (8%) 0 ( 7)

51’]‘) +pfi (2.5)

(2.6)
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Equation 2.5 can now — for constant ;. and incompressible flow — be written

d’l}i oP 62’1}7;
= - ; 2.
p dt 81‘1 + 'uaxjal'j + sz ( 8)

The viscous stress tensor then reads

ov;  Ov;
Tij = 2uSij = (895- + 8;) (2.9)
7 i

In inviscid (potential) flow, there are no viscous (friction) forces. In this case, the
Navier-Stokes equation reduces to the Euler equations
d’l}i oP

=——— 4 pf; 2.1
P B +pf (2.10)

Exercise 13 Equation 1.7 states that mass times acceleration is equal to the sum of
forces forces (per unit volume). Write out the momentum equation (without using the
summation rule) for the x1 direction and show the surface forces and the volume force
on a small, square fluid element (see lecture notes of Toll & Ekh [2]). Now repeat it for
the x5 direction.

Exercise 14 Formulate the Navier-Stokes equation for incompressible flow but non-
constant viscosity.

2.2 The energy equation
See also [1], Chapts. 6.4 and 8.1.

We have in Part I [2] derived the energy equation which reads

pU — ;04 + Gii = Pz (2.11)

where u denotes internal energy (N.B.: in [2] it is denoted by e). ¢; denotes the
conductive heat flux and z the net radiative heat source. For simplicity, we neglect the
radiation from here on. Change of notation gives

du 8vi aqi
— =0, —
p dt J (’)xj axi

2.12)

In Part I [2] we formulated the constitutive law for the heat flux vector (Fourier’s
law)

oT
i = —k 2.13
q Bz, (2.13)
Inserting the constitutive laws, Egs. 2.4 and 2.13, into Eq. 2.12 gives

du ov; 2 0 oT
— =—P— +2u85;;S;; — = i t— | k 2.14
pdt axi +l'quS] SMSkkS .Jr(’)xi < axz) ( )

<1>

where we have used S;;0v;/0x; = S;;(Si; + Qi) = Si;S:; because the product of
a symmetric tensor, S;;, and an anti-symmetric tensor, §2;;, is zero. The dissipation
term, ®, can be re-written as

1 1 ?
o =2 (SijSij - gSkkSii) = [QM (Sij - gskk(sij)] >0

Euler
equations
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which shows that ® is positive. The dissipation represents irreversible viscous heating
(i.e. transformation of kinetic energy into thermal energy); it is important at high-
speed flow? (for example re-entry from outer space) and for highly viscous flows (lu-
bricants). The first term on the right side represents reversible heating and cooling due
to compression and expansion of the fluid. Equation 2.14 is the transport equation for
(internal) energy, u.

Now we assume that the flow is incompressible (i.e. the velocity should be smaller
than approximately 1/3 of the speed of sound) for which

du = cpdT (2.15)
where ¢, is the heat capacity (see Part I) [2] so that Eq. 2.14 gives (¢, is assumed to be
constant)

dr 0 oT
— =0+ — | k— 2.16
Pep dt + 81‘1 ( 81‘1) ( )

The dissipation term is simplified to & = 211.5;;.5;; because S;; = Ov;/0z; = 0. If we
furthermore assume that the heat conductivity coefficient is constant and that the fluid
is a gas or a common liquid (i.e. not an lubricant oil) so that the viscous dissipation is
negligible (i.e. & = 0), we get

ar 9T
dt N aaxiaxi

2.17)

where o = k/(pcp) is the thermal diffusivity. The Prandtl number is defined as
Pr=— (2.18)

where v = 1/ p is the kinematic viscosity. The physical meaning of the Prandtl number
is the ratio of how well the fluid diffuses momentum to how well it diffuses internal
energy (i.e. temperature).

The dissipation term, P, is neglected in Eq. 2.17 when one of two assumptions are
valid:

1. The fluid is a gas with low velocity (lower than 1/3 of the speed of sound); this
assumption was made when we assumed that the fluid is incompressible

2. The fluid is a common liquid (i.e. not an lubricant oil). In lubricant oils the
viscous heating (i.e. the dissipation, ®) is large. One example is the oil flow in a
gearbox in a car where the temperature usually is more than 100°C’ higher when
the car is running compared to when it is idle.

Exercise 15 Write out and simplify the dissipation term, ®, in Eq. 2.14. The first term
is positive and the second term is negative; are you sure that ® > 0?

2.3 Transformation of energy

Now we will derive the equation for the kinetic energy, k = v;v;/2. Multiply Eq. 1.7
with v;
d’l}i 80'3‘1'
Vi—— — U;
p dt 8:rj

—vipfi =0 (2.19)

2High-speed flows relevant for aeronautics will be treated in detail in the course “TME085 Compressible
flow” in the MSc programme.

thermal
diffusivity
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Using the product rule backwards (Trick 2, see Eq. 8.4), the first term on the left side
can be re-written

dvi 1 d(’l)i’l)i) dk
; =yt 2.20
Poar — 2P a P (&20)
(v;v;/2 = k) so that
dk 80]-1-
— = v ifi 2.21
T + pvif (2.21)
Re-write the stress-velocity term so that (Trick 1, see Eq. 8.2)
=T St poif (2.22)

PH T Tom,  Tiow,
This is the transport equation for kinetic energy, k. Adding Eq. 2.22 to Eq. 2.12 gives

d(u+ k) o 80]-1-1)1- _ 8qi
P dt N axj axi

+ pvifi (2.23)

This is an equation for the sum of internal and kinetic energy, v + k. This is the
transport equation for total energy, u + k.

Let us take a closer look at Eqs. 2.12, 2.22 and 2.23. First we separate the term
0;0v;/0z; in Egs. 2.12 and 2.22 into work related to the pressure and viscous stresses
respectively (see Eq. 1.9), i.e.

a’l}i c’)vi a’l}i
Gt =Pt 4t 2.24
9 8xj 8351 +TJ 835]- ( )
a b=

The following things should be noted.

e The physical meaning of the a-term in Eq. 2.24 — which includes the pressure, P
— is heating/cooling by compression/expansion. This is a reversible process, i.e.
no loss of energy but only transformation of energy.

e The physical meaning of the b-term in Eq. 2.24 — which includes the viscous
stress tensor, 7;; — is a dissipation, which means that kinetic energy is trans-
formed to thermal energy. It is denoted ®, see Eq. 2.14, and is called viscous
dissipation. It is always positive and represents irreversible heating.

e The dissipation, ®, appears as a sink term in the equation for the kinetic energy, k
(Eq. 2.22) and it appears as a source term in the equation for the internal energy,
u (Eq. 2.12). The transformation of kinetic energy into internal energy takes
place through this source term. In incompressible flow for which the viscous
term in Navier-Stokes can be simplified (see Eq. 2.8), the viscous term reads

% _Ov; Ov;
TJZ 836]- B Mal‘j axj

(2.25)

This quantity is very important in turbulent flow, cf. Eqs. 8.14 and 8.36.

e & does not appear in the equation for the total energy u—+ k& (Eq. 2.23); this makes
sense since ® represents a energy transfer between w and k and does not affect
their sum, v + k.
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Dissipation is very important in turbulence where transfer of energy takes place at
several levels. First energy is transferred from the mean flow to the turbulent fluctua-
tions. The physical process is called production of turbulent kinetic energy. Then we
have transformation of kinetic energy from turbulence kinetic energy to thermal en-
ergy; this is turbulence dissipation (or heating). At the same time we have the usual
viscous dissipation from the mean flow to thermal energy, but this is much smaller than
that from the turbulence kinetic energy. For more detail, see Section 5.

2.4 Left side of the transport equations

So far, the left sides in transport equations have been formulated using the material

derivative, d/dt. Let v denote a transported quantity (i.e. ¢ = v;,u, T ...); the left

side of the equation for momentum, thermal energy, total energy, temperature etc reads
dw 51&

0
P =Py TP 8;/; non-conservative (2.26)

This is often called the non-conservative Using the continuity equation, Eq. 2.2, it can
be re-written as

d1/) 81/) +p 81/} +1/} <dp 8vj>

Pt = "ot Ty
= 2.27)

81# oY Op 81)]

Pat TP o “D( Vi 5w, P ox,

The two underlined terms will form a time derivative term, and the other three terms
can be collected into a convective term, i.e.

S0 Dpuyy

P = e oz, conservative (2.28)

Thus, the left side of the temperature equation and the Navier-Stokes, for example, can
be written in three different ways (by use of the chain-rule and the continuity equation)

dv; ov; n ov; Opv;  Opujv;
— )— Vs — - J
Pat =Pt Tz, T ot T oy 220
dT oT oT  Opv; n Opv; T (2.29)

P = Par TP T Tar o,
The continuity equation can also be written in three ways (by use of the chain-rule)

dp dv; _ dp op ov; Op  Opv;
Yo~ ot T Vow, TPox, ot T om

(2.30)

The forms on the right sides of Eqs. 2.29 and 2.30 are called the conservative form.
When solving transport equations (such as the Navier-Stokes) numerically using finite
volume methods, the left sides in the transport equation are always written as the ex-
pressions on the right side of Eqs. 2.29 and 2.30; in this way Gauss law can be used
to transform the equations from a volume integral to a surface integral and thus ensur-
ing that the transported quantities are conserved. The results may be inaccurate due
to too coarse a numerical grid, but no mass, momentum, energy etc is lost (provided a
transport equation for the quantity is solved): “what comes in goes out”.
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2.5 Material particle vs. control volume (Reynolds Transport The-
orem)

See also lecture notes of Toll & Ekh [2] and [1], Chapt. 5.2.

In Part I [2] we initially derived all balance equations (mass, momentum and en-
ergy) for a collection of material particles. The conservation of mass, d/dt [ pdV = 0,
Newton’s second law, d/dt f pv; = F; etc were derived for a collection of particles in
the volume V),q,-¢, where V4,4 is a volume that includes the same fluid particles all the
time. This means that the volume, V),4,+, must be moving and it may expand or contract
(if the density is non-constant), otherwise particles would move across its boundaries.
The equations we have looked at so far (the continuity equation 2.3, the Navier-Stokes
equation 2.8, the energy equations 2.14 and 2.22) are all given for a fixed control vol-
ume. How come? The answer is the Reynolds transport theorem, which converts the
equations from being valid for a moving, deformable volume with a collection of parti-
cles, Vpqrt, to being valid for a fixed volume, V. The Reynolds transport theorem reads

(first line)
4 BV = / 4@ 5% gy

dt VpaTt 1% dt 81‘1

0P 0P ov; od v ®
— il i— + d—L ) dV = il i A% 2.31
/V((?t—i_vaxi—’— 8zi) /V(Z%—’—a:ri) (23D

= a—(I)dV—l—/vini(I)dS
v Ot s

where V' denotes a fixed non-deformable volume in space. The divergence of the ve-
locity vector, Ov;/Ox;, on the first line represents the increase or decrease of Viart
during dt. The divergence theorem was used to obtain the last line and S' denotes the
bounding surface of volume V. The last term on the last line represents the net flow
of ® across the fixed non-deformable volume, V. & in the equation above can be p
(mass), pv; (momentum) or pu (energy). This equation applies to any volume at every
instant and the restriction to a collection of a material particles is no longer necessary.
Hence, in fluid mechanics the transport equations (Eqgs. 2.2, 2.5, 2.12, ...) are valid
both for a material collection of particles as well as for a volume; the latter is usually
fixed (this is not necessary).
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Figure 3.1: The plate moves to the right with speed V; for ¢t > 0.
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Figure 3.2: The vy velocity at three different times. t3 > t2 > t;.

3 Solutions to the Navier-Stokes equation: three exam-
ples

3.1 The Rayleigh problem

MAGINE the sudden incompressible motion of an infinitely long flat plate. For time

greater than zero the plate is moving with the speed V4, see Fig. 3.1. Because the
plate is infinitely long, there is no x; dependency. Hence the flow depends only on z2
and ¢, i.e. v; = v1(z2,t) and p = p(z2,t). Furthermore, Ov, /0x1 = Jvs/Oxs = 0 so
that the continuity equation gives Qvy/9xo = 0. At the lower boundary (22 = 0) and
at the upper boundary (xo2 — o0) the velocity component v = 0, which means that
vo = 0 in the entire domain. So, Eq. 2.8 gives (no body forces, i.e. f; = 0) for the vy
velocity component

8’01

ot

82’01

v
2
0x3

3.1

where we have divided the equation by density so that v = u/p. The boundary condi-
tions for Eq. 3.1 are
vi1(22,=0) =0, wvi(z2=0,¢)=V, vi(r2—00,t)=0 (3.2)
The solution to Eq. 3.1 is shown in Fig. 3.2. For increasing time (t3 > to > t;), the
moving plate affects the fluid further and further away from the plate.
It turns out that the solution to Eq. 3.1 is a similarity solution; this means that the
number of independent variables is reduced by one, in this case from two (z2 and ) to

one (). The similarity variable, n, is related to x5 and t as

=S (3.3)

similarity
solution



3.1. The Rayleigh problem 33

If the solution of Eq. 3.1 depends only on 7, it means that the solution for a given fluid
will be the same (“similar”) for many (infinite) values of x> and ¢ as long as the ratio
x2/+/vt is constant. Now we need to transform the derivatives in Eq. 3.1 from 9/0t
and 0/0x4 to d/dn so that it becomes a function of 7 only. We get

avl_dvl 517_ .Z’Qﬁ_s/2d’l)1_ 1ndv
ot dn ot 4y dnp 2t dp
Ovi _dvi On 1 duv
dry  dn Oz 2wt dn

o _ o0 (ou)_ 0 (1 du\_ 1 9 (dw)_ 1w
z3 © Oxy \Oxo ) Oxo \ 2wt dn ) 2wt Oxs \ dn )  4ut dn?

(3.4)
We introduce a non-dimensional velocity
(%1
== 35
v (35)
Inserting Egs. 3.4 and 3.5 in Eq. 3.1 gives
d’f df
—= +2n— =20 3.6
n? +2n dn (3.6)

‘We have now successfully transformed Eq. 3.1 and reduced the number of independent
variables from two to one. Now let us find out if the boundary conditions, Eq. 3.2, also
can be transformed in a physically meaningful way; we get

v1(22,6=0)=0= f(n > 00)=0
vi(ze =0,t) =V = f(n=0)=1 3.7)
vi(x2 > 00,t) =0= f(n > 00)=0
Since we managed to transform both the equation (Eq. 3.1) and the boundary conditions

(Eq. 3.7) we conclude that the transformation is suitable.
Now let us solve Eq. 3.6. Integration once gives

d
d_{7 = Cy exp(—n?) (3.8)
Integration a second time gives
n
f= Cl/ exp(—n"?)dn’ + Cy 3.9
0

The integral above is the error function

9 [
erf(n) = ﬁ/o exp(—n?)dn’ (3.10)

At the limits, the error function takes the values 0 and 1, i.e. erf(0) = 0 and erf(n —
oo) = 1. Taking into account the boundary conditions, Eq. 3.7, the final solution to
Eq. 3.9is (with Cy = 1 and C; = —2//7)

f(n) =1 —erf(n) (3.11)
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Figure 3.3: The velocity, f = v1/Vp, given by Eq. 3.11.
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Figure 3.4: The shear stress for water (v = 10~ °%) obtained from Eq. 3.12 at time ¢ = 100 000.

The solution is presented in Fig. 3.3. Compare this figure with Fig. 3.2 at p. 32; all
graphs in that figure collapse into one graph in Fig. 3.3. To compute the velocity, v,
we pick a time ¢ and insert 22 and ¢ in Eq. 3.3. Then f is obtained from Eq. 3.11 and
the velocity, vy, is computed from Eq. 3.5. This is how the graphs in Fig. 3.2 were
obtained.
From the velocity profile we can get the shear stress as
oy pwVo df — pWo

2
Tol = p—— = - = exp (—
21 'u(9$2 2/t dn VTt P ( K )

where we used v = u/p. Figure 3.4 presents the shear stress, 721. The solid line is
obtained from Eq. 3.12 and circles are obtained by evaluating the derivative, df /dn,
numerically using central differences (fj41 — fj—1)/(nj+1 — nj—1). As can be seen
from Fig. 3.4, the magnitude of the shear stress increases for decreasing 7 and it is
largest at the wall, 7, = —pVy/\/7t

The vorticity, w3, across the boundary layer is computed from its definition (Eq. 1.36)

(3.12)

81)1 Vo df Vo
W = —— — — —_ =
5T Oas wWwtdny vt
From Fig. 3.2 at p. 32 it is seen that for large times, the moving plate is felt further
and further out in the flow, i.e. the thickness of the boundary layer, ¢, increases. Often

exp(—12) (3.13)
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Figure 3.5: Flow in a horizontal channel. The inlet part of the channel is shown.

the boundary layer thickness is defined by the position where the local velocity, vy (22),
reaches 99% of the freestream velocity. In our case, this corresponds to the point where
v1 = 0.01V;. Find the point f = v1/V = 0.01 in Fig. 3.3; at this point ) ~ 1.8 (we
can also use Eq. 3.11). Inserting z2 = § in Eq. 3.3 gives

0
N
It can be seen that the boundary layer thickness increases with t!/2. Equation 3.14 can

also be used to estimate the diffusion length. After, say, 10 minutes the diffusion length
for air and water, respectively, are

n=18 = §=3.6Vut (3.14)

Ouir = 10.8cm

Owater = 2.8cm

(3.15)

The diffusion length can also be used to estimate the thickness of a developing bound-
ary layer, see Section 4.3.1.

diffusion
length

Exercise 16 Consider the graphs in Fig. 3.3. Create this graph with Python/Matlab/Octave.

Exercise 17 Consider the graphs in Fig. 3.2. Note that no scale is used on the xo axis

and that no numbers are given for t1, to and ts. Create this graph with Python/Matlab/Octave

for both air and engine oil. Choose suitable values onti, t3 and ts.

Exercise 18 Repeat the exercise above for the shear stress, To1, see Fig. 3.4.

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensional channel, see Fig. 3.5, with
constant physical properties (i.e. ;# = const).

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the velocity near the walls is larger
than in the center, see Fig. 3.5. The reason is that the flow (with velocity V') following
the curved wall must change its direction. The physical agent which accomplish this
is the pressure gradient which forces the flow to follow the wall as closely as possible
(if the wall is not sufficiently curved a separation will take place). Hence the pressure
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Figure 3.6: Flow in a channel bend.

in the center of the channel, P, is higher than the pressure near the wall, P;. It is thus
easier (i.e. less opposing pressure) for the fluid to enter the channel near the walls than
in the center. This explains the high velocity near the walls.

The same phenomenon occurs in a channel bend, see Fig. 3.6. The flow V ap-
proaches the bend and the flow feels that it is approaching a bend through an increased
pressure. The pressure near the outer wall, P>, must be higher than that near the inner
wall, P, in order to force the flow to turn. Hence, it is easier for the flow to sneak
along the inner wall where the opposing pressure is smaller than near the outer wall:
the result is a higher velocity near the inner wall than near the outer wall. In a three-
dimensional duct or in a pipe, the pressure difference P, — P; creates secondary flow
downstream the bend (i.e. a swirling motion in the x5 — x3 plane).

3.2.2 Flat plates

The flow in the inlet section (Fig. 3.5) is two dimensional. Near the inlet the velocity is
largest near the wall and further downstream the velocity is retarded near the walls due
to the large viscous shear stresses there. The flow is accelerated in the center because
the integrated mass flow (from x5 = 0 to h) at each x; must be constant because of
continuity. The acceleration and retardation of the flow in the inlet region is “paid for
by a pressure loss which is rather high in the inlet region; if a separation occurs because
of sharp corners at the inlet, the pressure loss will be even higher. For large z; the flow
will be fully developed; the region until this occurs is called the entrance region, and
the entrance length can, for moderately disturbed inflow, be estimated as [4]
Ye _ .016Rep, = 0.01672"

h 14

(3.16)

where V' denotes the bulk (i.e. the mean) velocity, and D), = 4A/S, where Dy,
A and S, denote the hydraulic diameter, the cross-sectional area and the perimeter,
respectively. For flow between two plates we get Dy, = 2h.

Let us find the governing equations for the fully developed flow region; in this
region the flow does not change with respect to the streamwise coordinate, x; (i.e.
Ovy/0xy = Ovg/Ox1 = 0). Since the flow is two-dimensional, it does not depend
on the third coordinate direction, 23 (i.e. 8/0x3), and the velocity in this direction is
zero, i.e. v3 = (. Taking these restrictions into account the continuity equation can be
simplified as (see Eq. 2.3)

802

2 _ 17
s 0 (3.17)
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Integration gives vy = C and since vy = 0 at the walls, it means that
vy =0 (3.18)

across the entire channel (recall that we are dealing with the part of the channel where
the flow is fully developed; in the inlet section vy # 0, see Fig. 3.5).

Now let us turn our attention to the momentum equation for vs. This is the vertical
direction (z2 is positive upwards, see Fig. 3.5). The gravity acts in the negative x»
direction, i.e. f; = (0, —g, 0). The momentum equation can be written (see Eq. 2.8 at
p-27)

2
P%PM%JFPWS—Z;—ZJFM%PQ (3.19)
Since vy = 0 we get
g—i =—pg (3.20)
Integration gives
P = —pgxs + Cy (1) 3.21)

where the integration “constant” C; may be a function of z; but not of 5. If we denote
the pressure at the lower wall (i.e. at z2 = 0) as p we get

P = —pgzs + p(z1) (3.22)

Hence the pressure, P, decreases with vertical height. This agrees with our experience
that the pressure decreases at high altitudes in the atmosphere and increases the deeper
we dive into the sea. Usually the hydrodynamic pressure, p, is used in incompressible
flow. This pressure is zero when the flow is szatic, i.e. when the velocity field is zero.
However, when you want the physical pressure, the pgxo as well as the surrounding
atmospheric pressure must be added.

We can now formulate the momentum equation in the streamwise direction

don _  Ov o O dp 0w
Pt _plazl p28$2_ dx1 'u(?:rg

(3.23)

where P was replaced by p using Eq. 3.22. Since vy = 0v1 /021 = 0 the left side is
Z€ro SO
0%, dp
# 0r2  dry
Since the left side is a function of x5 and the right side is a function of x;, we conclude
that they both are equal to a constant (i.e. Eq. 3.24 is independent of x1 and z2) . The
velocity, vy, is zero at the walls, i.e

(3.24)

(% (0) =1 (h) =0 (325)
where h denotes the height of the channel, see Fig. 3.5. Integrating Eq. 3.24 twice and
using Eq. 3.25 gives
1——= (3.26)
The minus sign on the right side appears because the pressure is decreasing for increas-

ing x1; the pressure is driving the flow. The negative pressure gradient is constant (see
Eq. 3.24) and can be written as —dp/dx; = Ap/L.

hydrodynamic
pressure
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Figure 3.7: The velocity profile in fully developed channel flow, Eq. 3.28.

The velocity takes its maximum in the center, i.e. for 25 = h/2, and reads

h Aph 1 h? A
Vimae = — == (1-2) ==L (3.27)
’ 2u L 2 2 8u L
We often write Eq. 3.26 on the form
U1 4z T2
=—(1-— 3.28
V1, mazx h ( h ) ( )

The mean velocity (often called the bulk velocity) is obtained by integrating Eq. 3.28
across the channel, i.e.

h
V1, mazx 4.%'2 €T 2
mean — : 1- _) d = V1, mazx 3.29
1, h /0 h ( n) T g .29

The velocity profile is shown in Fig. 3.7
Since we know the velocity profile, we can compute the wall shear stress. Equa-

tion 3.26 gives
vy h dp h Ap
Tw = o= = =g —7— = 5
8$2 2 d$1 2 L
Actually, this result could have been obtained by simply taking a force balance of a
slice of the flow far downstream.

This flow is analyzed in Appendix D.

(3.30)

3.2.3 Force balance, channel flow

‘We continue to consider fully developed flow between two parallel plates. To formulate
a force balance in the z; direction, we start with Eq. 1.7 which reads fori = 1

dvy _ ojn
p dt o axj

(3.31)

The left hand side is zero since the flow is fully developed. Forces act on a volume and
its bounding surface. Hence we integrate Eq. 3.31 over the volume of a slice (length
L), see Fig. 3.8

anl

0= A (3.32)

v 8:rj
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Figure 3.8: Force balance of the flow between two plates.

Recall that this is the form on which we originally derived the momentum balance
(Newton’s second law) in Part I. [2] Now use Gauss divergence theorem

\%4 J S

The bounding surface consists in our case of four surfaces (lower, upper, left and right)
so that

0: / lendeJr/
Steft S.

The normal vector on the lower, upper, left and right are 7; jower = (0,—1,0), N upper =
(0,1,0), 7 1efe = (—1,0,0), n4.righe = (1,0,0). Inserting the normal vectors and us-
ing Eq. 1.9 give

lende+/ lende (334)

SuppeT

O’jﬂ’bde‘i’/

right Slower

OZ—/ (—p+T11)dS+/ (—p+T11)dS— 721d5+/ To1dS
Steft Sright Stower Supper

(3.35)
711 = 0 because vy /0x1 = 0 (fully developed flow). The shear stress at the upper and
lower surfaces, 71, have opposite sign because (1(0v1 /022)10wer = —p(0V1/0%2)upper-

Using this and Eq. 3.22 give (p = p(z1) and 7, is constant and can thus be taken out
in front of the integration)

0=pWh — poWh — 21, LW (3.36)

where 7, = p(0v1/0%2)10wer and W is the width (in x5 direction) of the two plates
(for convenience we set W = 1). With Ap = p; — p2 we get Eq. 3.30.
3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic energy, Eq. 2.22. Let us integrate
this equation in the same way as we did for the force balance. The left side of Eq. 2.22
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is zero because we assume that the flow is fully developed; using Eq. 1.9 gives

- aviaﬁ c’)vi

0= — Ui iJ1
ox; ~ V'ax, +'pi_of'
dujp I OviTj; Ov; ov; (3.37)
- . i — Tii ~—
axj axj Pois axj J axj

[ii]

On the first line v; f; = v1 f1 + v2fo = 0 because vo = f; = 0. The third term on
the second line pd;;0v;/Ox; = pdv;/Ox; = 0 because of continuity. The last term
corresponds to the viscous dissipation term, ¢ (i.e. loss due to friction), see Eq. 2.24
(term b). Now we integrate the equation over a volume

Opv; | OTjiv
0/( p”3+ﬂq>)dv (3.38)
\a (’)xj (’)xj

Gauss divergence theorem on the two first terms gives

0= /(fpvj JFTjiUi)nde*/ ddV (3.39)
S 1%

where S is the surface bounding the volume. The unit normal vector is denoted by n;
which points out from the volume. For example, on the right surface in Fig. 3.8 it is
n; = (1,0,0) and on the lower surface it is n; = (0, —1,0). Now we apply Eq. 3.39
to the fluid enclosed by the flat plates in Fig. 3.8. The second term is zero on all
four surfaces and the first term is zero on the lower and upper surfaces (see Exercises
below). We replace the pressure P with p using Eq. 3.22 so that

/ (—pv1 + pgravi)nidS = —(p2 — pl)/ vindS
Sleft&Sright Steft&Sright

= Apvl,meanWh

(3.40)

because pgranivy on the left and right surfaces cancels; p can be taken out of the
integral as it does not depend on z2. Finally we get

1
Ap= ———— ddV 3.41
P Whvl,mean /V ( )

3.3 Two-dimensional boundary layer flow over flat plate

The equations for steady, two-dimensional, incompressible boundary layer flow reads
(z1 and x5 denote streamwise and wall-normal coordinates, respectively)

Oy Oon 0?v;

R T e
op
_E 3.42
5 =0 (3.42)
v, O _
(’)xl 8$2 o

where the pressure gradient is omitted in the v; momentum equation because dp/dx1 =
0 along a flat plate in infinite surroundings. The boundary conditions are
o =0:v; =vy =0 (at the wall)

(3.43)
Ty — 00 : V1 = Vi 0,2 =0 (far from the wall)
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Let’s introduce the streamfunction ¥, which is useful when re-writing the two-
dimensional Navier-Stokes equations. It is defined as

LG
= a—, ’U2 = allj (3.44)
8$2

V1 -
8351

With the velocity field expressed in W, the continuity equations is automatically satis-

fied which is easily shown by inserting Eq. 3.44 into the continuity equation

ou  Ov, &Y T
(9%1 8362 B 83618352 8:7528:751 B

0 (3.45)

Inserting Eq. 3.44 into the streamwise momentum equation gives

ov 9%V ov 9*w 3w

il - = = 3.46
09 Ox10z2  Om1 O3 v o3 (3.46)
The boundary conditions for the streamfunction read
v
e =0:V = g— =0 (at the wall)
T2 (3.47)

ov
To —> 00 : — — Vi (far from the wall)
8$2 ’

As in Section 3.1 we want to transform the partial differential equation, Eq. 3.46,
into an ordinary differential equation. In Section 3.1 we replaced x; and ¢ with the new
non-dimensional variable . Now we want to replace x; and x» with a new dimension-
less variable, say £. At the same time we define a new dimensionless streamfunction,

9(§), as

v 1/2
g:( 1’°°> 2o, U =(Viem) g (3.48)

vxy
First we need the derivatives 9¢ /01 and 9 /O
o _ 1 (V_oo)/_ _ £

oxy 2\ v T1 211

ﬁ:(w_,m)”:g

Oxo v To

(3.49)

Now we express the first derivatives of ¥ in Eq. 3.46 as derivatives of g, i.e. (g’
denotes dg/d§)

ov _ 0 1/2 1/2 4 65
oxy  Oxy ((VV1,OO$1) )g + (Vi) g O0x;
1 Vi 1/2
) (L) g (Vi) g
T 2$1
o ” (3.50)
:§< z1°°> (9—¢&9")
oV o) o€

oY _ o 1/2) 12 95, _ ’
929 — D ((VV1,oow1) g+ (VW1 ,001) gY V1,009

stream-
function
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The second and third derivatives of ¥ read

W o€ Vioo\ /2 ¢
:Vooll :Voo 2 I/:Voo "
(’)x% 1,009 D2 1, < > g 1, mg

rvxy
83\11 ‘/1 1/2 66 ‘/1 € 2
— =Vie _x® ///_:Voo_aoo L 7 m - (3.51)
o3 1 ( VT ) g Oxo 1 VT g L (zQ) g
O*v o€ 3
=V "= — __> - 2
0x10x2 L 0x1 2x Lood

Inserting Egs. 3.50 and 3.51 into Eq. 3.46 gives

1 /i \ Y2 Vieo\ 2
7‘/1,oog/ivl,oog// o = (9—€9") | Vieo [ — g’
211 2 T VT

(3.52)
2
—y 1,00 111
vxy
Divide by Vf)oo and multiply by x; gives
/E 1 1 / no__ 3 53
—959" —59-¢)9" =9 (3.53)
so that 1
99" +4¢" =0 (3.54)

2
This equation was derived (and solved numerically!) by Blasius in his PhD thesis
1907 [5, 6]. The numerical solution is given in Table 3.1. The flow is analyzed in
Appendix E.

Exercise 19 For the fully developed flow, compute the vorticity, w;, using the exact
solution (Eq. 3.28).

Exercise 20 Show that the first and second terms in Eq. 3.39 are zero on the upper and
the lower surfaces in Fig. 3.8.

Exercise 21 Show that the second term in Eq. 3.39 is zero also on the left and right
surfaces in Fig. 3.8 (assume fully developed flow).

Exercise 22 Using the exact solution, compute the dissipation, ®, for the fully devel-
oped flow.

Exercise 23 From the dissipation, compute the pressure drop. Is it the same as that
obtained from the force balance (if not, find the error; it should be!).

3.3.1 Momentum balance, boundary layer

Let’s make a momentum balance for the boundary layer in the same way as we did
for fully-developed channel flow in Section 3.2.3. The left boundary (see Fig. 3.9) is
located upstream of the plate, i.e. at z < 0, see Fig. E.1, Note that here — contrary to
the channel flow — we do not have any pressure gradient. At the upper boundary we
also have an outflow because the right boundary includes a boundary layer meaning
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£ g g g’

0 | 0.000000000E+00 | 0.000000000E+00 | 3.320573362E-01
0.2 | 6.640999715E-03 | 6.640779210E-02 | 3.319838371E-01
0.4 | 2.655988402E-02 | 1.327641608E-01 | 3.314698442E-01
0.6 | 5.973463750E-02 | 1.989372524E-01 | 3.300791276E-01
0.8 | 1.061082208E-01 | 2.647091387E-01 | 3.273892701E-01
1.0 | 1.655717258E-01 | 3.297800312E-01 | 3.230071167E-01
1.2 | 2.379487173E-01 | 3.937761044E-01 | 3.165891911E-01
1.4 | 3.229815738E-01 | 4.562617647E-01 | 3.078653918E-01
1.6 | 4.203207655E-01 | 5.167567844E-01 | 2.966634615E-01
1.8 | 5.295180377E-01 | 5.747581439E-01 | 2.829310173E-01
2.0 | 6.500243699E-01 | 6.297657365E-01 | 2.667515457E-01
2.2 | 7.811933370E-01 | 6.813103772E-01 | 2.483509132E-01
2.4 | 9.222901256E-01 | 7.289819351E-01 | 2.280917607E-01
2.6 | 1.072505977E+00 | 7.724550211E-01 | 2.064546268E-01
2.8 | 1.230977302E+00 | 8.115096232E-01 | 1.840065939E-01
3.0 | 1.396808231E+00 | 8.460444437E-01 | 1.613603195E-01
3.2 | 1.569094960E+00 | 8.760814552E-01 | 1.391280556E-01
3.4 | 1.746950094E+00 | 9.017612214E-01 | 1.178762461E-01
3.6 | 1.929525170E+00 | 9.233296659E-01 | 9.808627878E-02
3.8 | 2.116029817E+00 | 9.411179967E-01 | 8.012591814E-02
4.0 | 2.305746418E+00 | 9.555182298E-01 | 6.423412109E-02
4.2 | 2.498039663E+00 | 9.669570738E-01 | 5.051974749E-02
4.4 | 2.692360938E+00 | 9.758708321E-01 | 3.897261085E-02
4.6 | 2.888247990E+00 | 9.826835008E-01 | 2.948377201E-02
4.8 | 3.085320655E+00 | 9.877895262E-01 | 2.187118635E-02
5.0 | 3.283273665E+00 | 9.915419002E-01 | 1.590679869E-02
5.2 | 3.481867612E+00 | 9.942455354E-01 | 1.134178897E-02
5.4 | 3.680919063E+00 | 9.961553040E-0 | 17.927659815E-03
5.6 | 3.880290678E+00 | 9.974777682E-0 | 15.431957680E-03
5.8 | 4.079881939E+00 | 9.983754937E-0 | 1 3.648413667E-03
6.0 | 4.279620923E+00 | 9.989728724E-01 | 2.402039844E-03
6.2 | 4.479457297E+00 | 9.993625417E-01 | 1.550170691E-03
6.4 | 4.679356615E+00 | 9.996117017E-01 | 9.806151170E-04
6.6 | 4.879295811E+00 | 9.997678702E-01 | 6.080442648E-04
6.8 | 5.079259772E+00 | 9.998638190E-01 | 3.695625701E-04
7.0 | 5.279238811E+00 | 9.999216041E-01 | 2.201689553E-04
7.2 | 5.479226847E+00 | 9.999557173E-01 | 1.285698072E-04
7.4 | 5.679220147E+00 | 9.999754577E-01 | 7.359298339E-05
7.6 | 5.879216466E+00 | 9.999866551E-01 | 4.129031111E-05
7.8 | 6.079214481E+00 | 9.999928812E-01 | 2.270775140E-05
8.0 | 6.279213431E+00 | 9.999962745E-01 | 1.224092624E-05
8.2 | 6.479212887E+00 | 9.999980875E-01 | 6.467978611E-06
8.4 | 6.679212609E+00 | 9.999990369E-01 | 3.349939753E-06
8.6 | 6.879212471E+00 | 9.999995242E-01 | 1.700667989E-06
8.8 | 7.079212403E+00 | 9.999997695E-01 | 8.462841214E-07

Table 3.1: Blasius numerical solution of laminar flow along a flat plate.

43
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Figure 3.9: Force balance of boundary layer flow along a flat plate.

that the outflow here is smaller than the inflow at the left boundary. Hence, the right
side of the momentum equation reads (cf. Eq. 3.34)

0:/ O'jlnde:—/
S S

using Eq. 1.9 and n; = (0,—1,0). Only the contribution from the lower boundary
appears. The reason is that is no pressure forces on the left and right (or, rather, they
cancel each other) and there is no shear stress on the top boundary since dv; /0x2 = 0.
The other difference compared to the channel flow in Section 3.2.3 is that the left side
of Eq. 3.31 is not zero. It reads

0921 — —/ deS (355)
S

lower lower lower

d’l)l _ (91)]"[)1

pdt - 8:rj '

(3.56)

Gauss divergence theorem gives

v
v]vldV:/ vjvlnde—i—/
v Oz, Siere s

where the contribution at the lower boundary is zero since the velocity is zero at
the walls. The unit normal vector at the left, right and top boundaries are (1,0, 0),
(—1,0,0) and (0, 1, 0), respectively, which gives

8vjv1 dv :/
v Oz s

At the left boundary v; = V which gives

’Uj’UlTLde + / ’Uj’UlTLde (3.57)

right Stop

v3dS — v2dS + / v102dS (3.58)
Steft S.

right top

9uyv gy / (v = Vi) dS + / v1v2dS (3.59)
v (’)xj S ’ Stop

Combining Eqgs. 3.55 and 3.59 we can write (assuming that the extent of the integration
domain in the third direction is one)

1
Tw = —

L

/ (Vi — 07) daa + / U1U2d$1] (3.60)
S Stop
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We find one important difference between fully-developed channel flow and bound-
ary layer flow: the flow in channel flow is driven by a pressure gradient (the pressure
decreases) whereas in the boundary layer the “force” to overcome the opposing wall
shear stress is achieved by decreasing momentum in the convective term. Making a bal-
ance of the mass flow and combining it with Eq. 3.60 the expression for the momentum
thickness, E.2, is derived.
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Figure 4.1: Surface forces acting on a fluid particle. The fluid particle is located in the lower
half of fully developed channel flow. The v1 velocity is given by Eq. 3.28 and vo = 0. Hence
Ti1 = To2 = O7112/0x1 = 0 and —9721/0x2 > 0. The vy velocity field is indicated by dashed
vectors.

4 Vorticity equation and potential flow

4.1 Vorticity and rotation

ORTICITY, w;, was introduced in Eq. 1.12 at p. 17. As shown in Fig. 1.4 at p. 19,
Vvorticity is connected to rotation of a fluid particle. Figure 4.1 shows the surface
forces acting on a fluid particle in a shear flow. Looking at Fig. 4.1 it is obvious that
only the shear stresses are able to rotate the fluid particle; the pressure acts through the
center of the fluid particle and is thus not able to affect rotation of the fluid particle.
Note that the v momentum equation (see Eqgs. 2.4 and 3.32) requires that the vertical
viscous stresses in Fig. 4.1 are in balance. The v; momentum equation requires that
the horizontal viscous stresses balance the pressure difference.

Let us have a look at the momentum equations in order to show that the viscous
terms indeed can be formulated with the vorticity vector, w;. In incompressible flow
the viscous terms read (see Egs. 2.4, 2.5 and 2.6)

aTji 62%
= 4.1
8xj 'uaxj 81']' ( )
The right side can be re-written using the tensor identity
821)1' - 821)]‘ 621}3' 62%
8zj8xj o (9%]81'1 8:L'](9$1 81']'81']'
0 81)]- 821)k 821)k (42)
= o | “CinmEmijk 3 . — “EinmEmiky o5
Ox; \ Oz; i 0x;0xy, i 0x;0x,

=0
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where the first on the second line is zero because of continuity. Let’s verify that

2,,. 2,,. 2
< 0%, 0%v; ) 0%y, @.3)

- = EinmEmjk
O0x;0x; Ox;0x; 0x;0xy,

Use the ¢ — J-identity (see Table C.1 at p. 327)

D2y, %y, & vy 0%v;
Emmsm]—km = (0ij0nk — OirOny) 0,0z,  Oxi0xy - dx;0r;

4.4

which shows that Eq. 4.3 is correct. At the right side of Eq. 4.3 we recognize the
vorticity, Wy, = €m;x0vi/0x;, so that

0%v; Owm,
— = i —= 4.5
a$jal'j ¢ axn ( )
In vector notation the identity Eq. 4.5 reads
Viv=V(V-v) - VXxVxv=-Vxuw (4.6)
Using Eq. 4.5, Eq. 4.1 reads
(97']'1' awm
= —HEinm 5 4.7
O0x; He Oz, 7

Thus, there is a one-to-one relation between the viscous term and vorticity: no viscous
terms means no vorticity and vice versa. An imbalance in shear stresses (left side of
Eq. 4.7) causes a change in vorticity, i.e. generates vorticity (right side of Eq. 4.7).
Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception is when
vorticity is transported info an inviscid region, but also in that case no vorticity is
generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called
irrotational flow (i.e. no rotation) or potential flow. The vorticity is always created at
boundaries, see Section 4.3.1.
The main points that we have learnt in this section are:

1. The viscous terms are responsible for creating vorticity; this means that the vor-
ticity can not be created or destroyed in inviscid (friction-less) flow

2. The viscous terms in the momentum equations can be expressed in w;; consider-
ing Item 1 this was to be expected.

Exercise 24 Prove the first equality of Eq. 4.5 using the £--identity.

Exercise 25 Write out Eq. 4.7 for © = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We have learnt that physically
it means rotation of a fluid particle and that it is only the viscous terms that can cause
rotation of a fluid particle. The terms inviscid (no friction), irrotational and potential
flow all denote frictionless flow which is equivalent to zero (change in) vorticity. There
is a small difference between the three terms because there may be vorticity in inviscid
flow that is convected into the flow at the inlet(s); but also in this case the vorticity is not

potential

friction-
less



4.2. The vorticity transport equation in three dimensions 48

affected once it has entered the inviscid flow region. However, usually no distinction is
made between the three terms.

In this section we will derive the transport equation for vorticity in incompressible
flow. As usual we start with the Navier-Stokes equation, Eq. 2.8 at p. 27. First, we
re-write the convective term of the incompressible momentum equation (Eq. 2.8) as

, 1
= = 0 (S + Qij) = v; <Sij - §€ijkwk> (4.8)

where Eq. 1.19 on p. 17 was used. Inserting S;; = (dv;/0x; + Jv;/0x;)/2 and
multiplying by two gives

8vi < avi 81)]-
+

2 = O 61}) — EijkUVjWE (49)
J T

v =

J awj J

The second term on the right side can be written as (Trick 2, see Eq. 8.4)
_81)]' - lﬁ(vjvj) ok

= = — 4.10
Y (’)xl 2 (’)xl (’)xl ( )
where k = v;jv;/2. Equation 4.9 can now be written as
8vi 8l<:
Uj Oz = O — Eijk VWi (411)
J 4 rotation

no rotation

The last term on the right side is the vector product of v and w, i.e. v X w.

The trick we have achieved is to split the convective term into one term without
rotation (first term on the right side of Eq. 4.11) and one term including rotation (second
term on the right side). Inserting Eq. 4.11 into the incompressible momentum equation
(Eq. 2.8) yields

c’)vi ok 190P 821)1'
v = : 4.12
ot * 0x; .Eﬂ:#c. p O0x; * Vazj(?xj +f (4.12)

no rotation

The volume source is in most engineering flows represented by the gravity, i.e. f; = g;.
From Eq. 4.12 we get Crocco’s theorem for steady inviscid flow

EijkVjWh = oz, (g + k‘) - fi= 8(; (% +k+ ¢) (4.13)
Po/p
where 0¢/0x; = — f; is the potential of the body force. In vector notation, Eq. 4.13
reads
VXWw= %V(Po) (4.14)

These equations states that the gradient of stagnation pressure, Py, is orthogonal to
both the velocity and vorticity vector.

Since the vorticity vector in Eq. 1.12 is defined by the cross product &,,4;0v; /0z,
(V x v in vector notation, see Exercise 8), we start by applying the operator &,,4,0/9x,
to the Navier-Stokes equation (Eq. 4.12) so that

9%v; 0%k Ovjwy,
Epai O0tox, Epai O0x;0x, ~ Cpai€igh O0xq
Ler o oa )
P p Oz,0, P 9w ;0x 0z, " Oz,
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where the body force f; was replaced by g;. We know that €;;;, is anti-symmetric in
all indices, and hence the second term on line 1 and the first term on line 2 are zero
(product of a symmetric and an anti-symmetric tensor). The last term on line 2 is
zero because the gravitation vector, g;, is constant (it is zero even if it is non-constant,
because it can be expressed as a potential, see Eq. 4.31). The last term on line 1 is
re-written using the - identity (see Table C.1 at p. 327)

Ovjwy Oviwy Ov,w,  Ovgw
I ot D S S SNP S d Re hnd e b
Epqi€ijk oz, (0pj0q — Opkdag;) Dz, Dz Dz,
(4.16)
Owy, Ovp Owp O0vg
=Up— Wk — Vg —Wpa
Oxy, Oxy, O0xq 0xq
Using the definition of w; we find that its divergence
Ow; 0 vy, 0%y,
—=—|eiyjr=— ) =cijk=—=—=0 4.17
Oxz; Oz (E ik 8z-) c Jk@xjaxi 417)

is zero (product of a symmetric and an anti-symmetric tensor). Using the continuity
equation (Jv,/0x, = 0) and Eq. 4.17, Eq. 4.16 can be written

Ovjwy, Ovp owp

iEijk——— = W= — Vg = 4.18
“pai€ik 8xq Wk 8:L'k Uk 8xk ( )

The second term on line 2 in Eq. 4.15 can be written as

03v; 9? ov; 52wp

; = i— | = 4.19
Vere 0x;0x;0x, Vaxjaxj (qu axq) V@xjaxj (4.19)

Inserting Eqs. 4.18 and 4.19 into Eq. 4.15 gives finally
dop _ Owp Oy _ v Oy (4.20)

@~ ot oz “om. Von00

We recognize the usual unsteady term, the convective term and the diffusive term.
Furthermore, we have got rid of the pressure gradient term. That makes sense, because
as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the
vorticity) of a fluid particle since the pressure acts through its center. Equation 4.20
has a new term on the right-hand side which represents amplification and bending or
tilting of the vorticity lines. If we write it term-by-term it reads

ov ov ov
w1—1 +w2—1—|—w3—1, =1
B oo G G
wkaﬁ = wlﬂ +w2ﬂ+w3ﬂ, p=2 4.21)
Tk 0xq 012 Oxs3
w1 % +w2% + wg% =3
83@1 al’g (’)x3 ’

The diagonal terms in this matrix represent vortex stretching. Imagine a slender,
cylindrical fluid particle with vorticity w; and introduce a cylindrical coordinate system
with the z;-axis as the cylinder axis and 72 as the radial coordinate (see Fig. 4.2) so
that w; = (w1, 0,0). We assume that a positive Qv /Ox; is acting on the fluid cylinder;
it will act as a source in Eq. 4.20 increasing w; and it will stretch the cylinder. The vol-
ume of the fluid element must stay constant during the stretching (the incompressible

Vortex
stretching
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Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching. 8—1)1 > 0.
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Figure 4.3: Vortex tilting. Dashed lines denote fluid element before bending or tilting.

continuity equation), which means that the radius of the cylinder will decrease. Hence
vortex stretching will either make a fluid element longer and thinner (as in the example
above) or shorter and thicker (when dv; /0x1 < 0).

The off-diagonal terms in Eq. 4.21 represent vortex tilting. Again, take a slender
fluid particle, but this time with its axis aligned with the x2 axis, see Fig. 4.3. Assume
is has a vorticity, wa, and that the velocity surrounding velocity field is v; = vy (x2).
The velocity gradient dvy /Dxo will tilt the fluid particle so that it rotates in clock-wise
direction. The second term wydv1 /dz4 in line one in Eq. 4.21 gives a contribution to
w1. This means that vorticity in the xo direction, through the source term wydv1 /9x2,
creates vorticity in the z; direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions:
fluid which initially is two dimensional becomes quickly three dimensional through
these phenomena. Vorticity is useful when explaining why turbulence must be three-
dimensional, see Section 5.4.

Vortex
tilting
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4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no influence in two dimensions; in
this case the vortex stretching/tilting term vanishes because the vorticity vector is or-
thogonal to the velocity vector (for a 2D flow the velocity vector reads v; = (v1, v2,0)
and the vorticity vector reads w; = (0,0,ws) so that the scalar product is zero, i.e.
wiOvp/Oxy, = 0). Thus in two dimensions the vorticity equation reads

dw3 0 2w3

otV oraor., *422)

(Greek indices are used to indicate that they take values 1 or 2). This equation is exactly
the same as the transport equation for temperature in incompressible flow, see Eq. 2.17.
This means that vorticity is convected and diffused in the same way as temperature. In
fully developed channel flow, for example, the vorticity and the temperature equations
reduce to

82w3
0= V—[?x% (4.23a)
02T
0=k—5 4.23b
5 (4.23b)
For the temperature equation the heat flux is given by g = —k9T/Jxo; with a hot

lower wall and a cold upper wall (constant wall temperatures) the heat flux is constant
for all x5 and goes from the lower wall to the upper wall. We have the same situation for
the vorticity. Its gradient, i.e. the vorticity flux, 2 = —vdws/Ox2, is constant across
the channel (you have plotted this quantity in 31446 Assignment 1). Equation 4.23 is
turned into relations for g and v, by integration

Ywall = Y2 (4243)
Qwall = 42 (424b)

If the wall-normal temperature derivative 07/0x2 = 0 at both walls (adiabatic
walls), the heat flux at the walls, g,,411, Will be zero and the temperature will be equal to
an arbitrary constant in the entire domain. It is only when the wall-normal temperature
derivative at the walls are non-zero that a temperature field is created in the domain.
The same is true for ws: if vOws /Oxa = —73 = 0 at the walls, the flow will not include
any vorticity. Hence, vorticity is — in the same way as temperature — generated at the
walls.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section 3.1 we studied the Rayleigh problem (unsteady diffusion). As shown above,
the two-dimensional unsteady temperature equation is identical to the two-dimensional
unsteady equation for vorticity. The diffusion time, ¢, or the diffusion length, J, in
Eq. 3.14 can now be used to estimate the thickness of a developing boundary layer
(recall that the limit between the boundary layer and the outer free-stream region can
be defined by vorticity: inside the vorticity is non-zero and outside it is zero).
In a boundary layer, the streamwise pressure gradient is zero, see Eq. 3.42. This
means that
8201 -0
K 03 B

wall
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Vo

T2 - =
Z1 ¢6
T ,

Figure 4.4: Boundary layer. The boundary layer thickness, ¢, increases for increasing stream-
wise distance from leading edge (z1 = 0).

because, at the wall, the only non-zero terms in the Navier-Stokes equation are the
streamwise pressure gradient and the wall-normal diffusion term (see, for example,
Egs. 2.8 and 3.23). Hence, the flux of vorticity

821)1

= —F
2
0x}

8w3

wall wall

(recall that (Ove /021 )waen = 0) along the wall which means that no vorticity is created
along the boundary. The vorticity in a developing boundary layer is created at the
leading edge of the plate (note that in channel flow, vorticity is indeed created along the
walls because in this case the streamwise pressure gradient is not zero). The vorticity
generated at the leading edge is transported along the wall by convection and at the
same time it is transported by diffusion away from the wall.

Below we will estimate the boundary layer thickness using the expression derived
for the Rayleigh problem. In a boundary layer there is vorticity and outside the bound-
ary layer it is zero (in the Rayleigh flow problem, the vorticity is created at time ¢t = 0™
when the plate instantaneously accelerates from rest to velocity Vj). Hence, if we can
estimate how far from the wall the vorticity diffuses, this gives us an estimation of the
boundary layer thickness.

Consider the boundary layer in Fig. 4.4. The boundary layer thickness at the end of
the plate is 6(L). The time it takes for a fluid particle to travel from the leading edge of
the plate to « = L is L/V} (in the Rayleigh problem this corresponds to the flow field
after time ¢ = L/V}). During this time vorticity will be transported by diffusion in the
2o direction the length ¢ according to Eq. 3.14. If we assume that the fluid is air with
the speed Vo = 3m/s and that the length of the plate L = 2m we get from Eq. 3.14
that §(L) = 1.2¢em.

Exercise 26 Note that the estimate above is not quite accurate because in the Rayleigh
problem we assumed that the convective terms are zero, but in a developing boundary
layer, as in Fig. 4.4, they are not (vo # 0 and Ovy/0x1 # 0). The proper way to
solve the problem is to use Blasius solution, see Section 3.3. Blasius solution gives (see
Eq. E.1)

1) 5 VoL
—=——. Rep,=— 4.26
L RelL/2 7 cL v ( )

Compute what 6(L) you get from Eq. 4.26.

Exercise 27 Assume that we have a developing flow in a pipe (radius R) or between
two flat plates (separation distance h). We want to find out how long distance it takes
for the the boundary layers to merge. Equation 3.14 can be used with § = R or h.
Make a comparison with this and Eq. 3.16.
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4.4 Potential flow

N potential flow, the velocity vector can be expressed as the gradient of its poten-
tial ®, see Eq. 1.22. The vorticity is then zero by definition since the curl of the
divergence is zero. This is easily seen by inserting Eq. 1.22 (v; = 9®/Jx;) into the
definition of the vorticity, Eq. 1.12, i.e.
(%k 82(1)

Wi = €ijk 5

=€ip——— = 4.27
O0x; ”’“axjaxk 0 (427)

since €y, is anti-symmetric in indices j and k and 9*® /9 ;0z), is symmetric in j and
k. Inserting Eq. 1.22 into the continuity equation, Eq. 2.3, gives
_Ovy; 0 (0D  0*0
N axi N (’)xl (’)xl N (’)xlc’)xl
i.e. the potential satisfies the Laplace equation. This is of great important since many
analytical methods exist for the Laplace equation.

(4.28)

4.4.1 The Bernoulli equation

The velocity field in potential flow is thus given by the continuity equation, Eq. 4.28

(together with Eq. 1.22). Do we have any use of the Navier-Stokes equation? The

answer is yes: this equation provides the pressure field. We use the Navier-Stokes

equation (Eq. 4.12) with the viscous term expressed as in Eq. 4.5

ov; n ok 10P Owm

—— — EijkVjWE = ———=— — V€ipnm 5 ——

ot " ow, IR B)

Since w; = 0 in potential (irrotational) flow, we get (with f; = ¢;) and using k =
v /2 =v2/2

o + fi (4.29)

n

o (0P 1 0v? 10P
ox; (8%) 20x;  poxy t i (4.30)
where v; in the unsteady term was replaced by its potential (Eq. 1.22). The gravity
force can be expressed as a force potential, g; = —0X /Jz; (see Eq. 4.13), because it is
conservative. The gravity force is conservative because when integrating this force, the
work (i.e. the integral) depends only on the starting and ending points of the integral:
in mathematics this is called an exact differential.
Inserting g; = —0X'/0z; in Eq. 4.30 gives

o (0 v P
—+—+—+X] =0 4.31
axi<8t+2+p+) (4.31)
Integration gives the famous Bernoulli equation
o 2 P
—+—+—+X=C(t 4.32
5 T3t ; + (t) (4.32)
where X = —g;z;. In steady flow, we get
v? P
2 p

where g; = (0,0, g3). Using the height, gh = —gsx3, we get the more familiar form

1)2

P
—+—+gh=C (4.34)
2

conservative
force
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4.4.2 Complex variables for potential solutions of plane flows

Complex analysis is a suitable tool for studying potential flow. We start this section by
repeating some basics of complex analysis. For real functions, the value of a partial
derivative, Of /Ox, at & = x is defined by making x approach zy and then evaluating
(f(x+x0)— f())/xo. The total derivative, df /dt, is defined by approaching the point
Z10, 20, T30, t as a linear combination of all independent variables (cf. Eq. 1.1).

A complex derivative of a complex variable is defined as (f(z + 2z0) — f(2))/20
where z = x4y and f = u+iv. We can approach the point zg both in the real coordi-
nate direction, x, and in the imaginary coordinate direction, y. The complex derivative
is defined only if the value of the derivative is independent of how we approach the
point zo. Hence

aj - f(z0 + Az) — f(20)
dz =~ Az=0 Az
f(zo,iyo + iAy) — f(xo,iyo)

f(zO + A‘Ta Zy()) - f(an ZyO) _

- Alggo Ax Alyl;go iAy '
(4.35)
The second line can be written as
1 .
of _1of _iof _ of (4.36)
or 10y 120y oy
since 12 = —1. Inserting f = u + v and taking the partial derivative of f we get
af Ou 0Ov
— = — 4 i—
Jdx Oz ox (4.37)
figffi@ff@f,i%jL@ '
gy oy dy 9y Oy
Using Eq. 4.36 gives
Ou v Ou v 4.38)

dor oy Oy Oz
Equations 4.38 are called the Cauchy-Riemann equations. Another way to derive
Eq. 4.38 is to require that f should depend only on z but not on Z [7] (Z is the complex
conjugate of 2, i.e. Z = x — 1y).
So far the complex plane has been expressed as z = x +iy. It can also be expressed
in polar coordinates (see Fig. 4.5)

z =re? = r(cosf + isinh) (4.39)

Now we return to fluid mechanics and potential flow. Let us introduce a complex
potential, f, based on the streamfunction, ¥ (Eq. 3.44), and the velocity potential, ®
(Eq. 1.22)

f=0+10 (4.40)

Recall that for potential (i.e. inviscid, ¥ = 0) two-dimensional, incompressible flow,
the velocity potential satisfies the Laplace equation, see Eq. 4.28. The streamfunction
also satisfies the Laplace equation in potential flow where the vorticity, w;, is zero. This
is easily seen by taking the divergence of the streamfunction, Eq. 3.44

82\11 82\11 802 (91)1

oV oW Ov  On 441
Ox? * x3 011 * 0z ws =0 (4.41)
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Figure 4.5: The complex plane in polar coordinates. Real and imaginary axes correspond to the
horizontal and vertical axes, respectively.

see Eq. 1.13. Hence the complex potential, f, also satisfies the Laplace equation.
Furthermore, f also satisfies the Cauchy-Riemann equations, Eq. 4.38, since
0 ov
oxr Oy

0 ov
V1 and a—y = *% = V2 (442)

see Egs. 3.44 and 1.22. Thus we can conclude that f defined as in Eq. 4.40 is differen-
tiable, i.e. df /dz exists. We have now defined a complex funtction, f = ® +4¥ which
satisfies Laplace equation and which has a physical meaning in fluid dynamics.

443 f x 2"

Now we will give some examples of f(z) which correspond to useful engineering
flows. The procedure is as follows:

e assume that f oc 2" is complex potential
o verify that this is true (see, e.g, Eqs. 4.43-4.47)
e choose an n and find out what physical flow the complex potential describes

We can choose any exponent n in f o< 2™ and multiply with any constant in order
to get a physical, meaningful flow. The solution

f=0C2" (4.43)

is one example. Let’s first verify that this is a solution of the Laplace equation (i.e. the
continuity equation, 4.28 and thet the flow is inviscid, ws = 0, Eq. 4.41). We write it
in polar coordinates

f=0C¢ (rei‘g)n = C1re™ = O (cos(nd) + isin(nd)) (4.44)

The Laplace operator in polar coordinates reads

2p 1O (O 10%f
vf_rar r@r +T2 002 (4.45)
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Figure 4.6: Parallel flow.

Taking the first and the second derivatives of Eq. 4.44 with respect to r and 6 gives

% = Cynr™ Y (cos(nb) + isin(nd))
182 (r%) = C1n2r""?(cos(nb) + isin(nh))
ror g (4.46)
8_£ = Cynr™(—sin(n#) + i cos(nf))
Pf Cun2pm 0) + i sin(nd
agz = —Cun’r (cos(nd) + isin(nb))

When we divide the fourth line with 72 and add it to the second line we find that the
Laplace equation (Eq. 4.45) is indeed zero, i.e.

10 of 1 0%f
e ) 5 = 4.47
Vi r Or <r6r> 72 002 0 ( )
4.4.3.1 Parallel flow
When we set n = 1 in Eq. 4.43 we get (C}] = Vo)
f=Veoz =Vlz+iy) (4.48)

The streamfunction, ¥, is equal to the imaginary part, see Eq. 4.40. Equation 4.42
gives the velocity components

1)1:8—\11:‘/Oo and vgz—a—\P:O (4.49)
dy Or

The flow is shown in Fig. 4.6.

4.4.3.2 Stagnation flow

When we set n = 2 in Egs. 4.43 and 4.44 we get (inviscid) stagnation flow onto a wall.
The streamfunction, ¥, corresponds to the imaginary part of f, see Eqs. 4.40 and 4.44,
so that (C; = 1)
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Figure 4.7: Potential flow. Stagnation flow.
U = % 5in(20) (4.50)

The solution in form of a vector plot and contour plot of the streamfunction is given in
Fig. 4.7. The flow impinges at the wall at z2 = 0. The streamfunction is zero along the
symmetry line, z; = 0, and it is negative to the left and positive to the right. The polar
velocity components are obtained as (see. Eq. 4.42)

10V
vy = Lov = 27 cos(20)
r 00
(4.51)
ov 27 sin(20)
vg = ——— = —2rsin
f or
and in Cartesian components (see Fig. 1.9)
v1 = vy cos @ — vg sin @ = 2r cos 0 cos(260) + 2r sin 6 sin(260)
= 2rcos (1 — 2sin® @) + 4rsin? fcosl = 2r cos O = 2z,
(4.52)

vy = v, sin @ + vg cos @ = 27 sin 6 cos(260) — 2r cos 6 sin(260)

= 2rsinf(2cos® 0 — 1) — 4rsinfcos® = —2rsinh = 2

Recall that since the flow is inviscid (no friction), the boundary condition on the wall is
slip, i.e. a frictionless wall (same as a symmetric boundary). Note that this flow is the
same as we looked at in Section 1.2 except that the velocities are here twice as large
because we chose C; = 1 (see Eq. 1.4).

Figure 4.7 was generated in Matlab by evaluating Eqs. 4.50, 4.51 and 4.52 on a
polar grid.

4.4.3.3 Flow over a wedge and flow in a concave corner

Next we set n = 6/5 in Eqgs. 4.43 and 4.44. This gives us (inviscid) flow over a
wedge and flow over a concave corner (n should be in the interval 1 < n < 2). The
streamfunction, the imaginary part of f, is given by (Egs. 4.40 and 4.44)

U = 7% 5in(66/5) (4.53)
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Figure 4.8: Potential flow. The lower boundary for 21 < 0 can either be a wall (concave corner)
or symmetry line (wedge).

(C1 = 1) and the velocity components read (see Fig. 4.51)

19
U = —2—9 = §7“(:05(66’/5)
r 5 (4.54)
= S Gnenys)
YT T 58

The velocity vector field and the streamfunction are presented in Fig. 4.8. The stream-
function is zero along the lower boundary. The angle, «, in Fig. 4.8a is given by

(n—1)m

s
= =— 4.55
- 5 (4.55)
4.4.4 Analytical solutions for a line source
The complex potential for a line source reads
f=—lnz (4.56)

21

where m is the strength of the source; the physical meaning of 71 is volume flow
assuming that the extent of the domain in the third coordinate direction, z3, is one.
Writing Eq. 4.56 on polar form gives

T o . i ,
f:%ln(re‘g):%(lnTlen(e‘g)):%(lnrer) (4.57)

First, we need to make sure that this solution satisfies the Laplace equation, Eq. 4.45.
The first and second derivatives read

of _ 1
or  2mr
12 (20 g
ror or . 4.58)
or _;m
00 _ZQW
2
o-f _0

902
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Figure 4.9: Line source. 7 > 0

which shows that Eq. 4.47 is satisfied.
The streamfunction corresponds to the imaginary part of f and we get (see Eq. 4.51)

10v m
Vp = ——— = ——
r 00 27r
o i (4.59)
v = —— =
o or

We find that the physical flow is in the radial direction, see Fig. 4.9. If 12 > 0, the flow
is outwards directed and for 7 < 0 it is going inwards toward origo. When origo is
approached, the velocity, v,., tends to infinity. Hence, Eq. 4.59 gives nonphysical flow
near origo. The reason is that the inviscid assumption (zero viscosity) is not valid in
this region.

It was mentioned above that the physical meaning of 7 is volume flow. This is
easily seen by integrating v, (Eq. 4.59) over a cylindrical surface as

2 2m m 2
/d:cg/ vrrde/ dzg/ —T df = — // dxsdf = m. (4.60)

4.4.5 Analytical solutions for a vortex line

A line vortex is another example of a complex potential; it is very similar to Eq. 4.56
and reads

r
f=—i—Inz (4.61)
27
which on polar form reads (cf. Eq. 4.57)

f= —Lﬂ (ilnr —0) (4.62)
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Figure 4.10: Vortex line.

From the streamfunction (the imaginary part of f) we get (cf. Eq. 4.59)

10v
Vp = ——— =
r 00
o1 69
vo = or  2mr

This flow was introduced in Section 1.7.1 (where we called it an ideal vortex line) as an
example of a flow with no vorticity. The flow is in the positive 6 direction along lines
of constant radius, see Fig. 4.10. The circulation, I', appears in the expression of vg. It
was introduced in Section 1.7. It is defined as a closed line integral along line C, see
Eq. 1.23 and can be expressed as an integral of the vorticity over surface .S bounded by
line C, see Eq. 1.25 and Fig. 1.7.

4.4.6 Analytical solutions for flow around a cylinder

The complex potential for the flow around a cylinder can be found by combining a
doublet and a parallel flow. A doublet consists of a line source (strength 1) and sink
(strength —rh) separated by a distance ¢ in the z; direction (line sources were intro-
duced in Section 4.4.4). Imagine that we move the source and the sink closer to each
other and at the same time we increase their strength |ri2| so that the product p = rhe
stays constant. The resulting complex potential is

=2 (4.64)
Tz

When adding the complex potential of parallel flow, see Eq. 4.48, we get
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Figure 4.11: Flow around a cylinder of radius r¢.
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Figure 4.12: Flow around a cylinder of radius r¢. Integration of surface pressure.
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(a) CFD of unsteady laminar flow [8]. The mark- (b) Potential flow, Eq. 4.73
ers show the time-averaged location of separation.

Figure 4.13: Pressure coefficients.
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f=E v (4.65)
Tz
Now we define the radius of a cylinder, 7, as

o = p/(7Va) (4.66)

so that
_ VooTd

f

+ Va2 (4.67)

On polar form it reads

2
_ Ver

2
f + Vaore®® =V (T—Oew + rew)
T

ret?
9 (4.68)
=V <T—O(c059 —isinf) + r(cos + i sin@))
r
The streamfunction reads (imaginary part)
r2
U=V <r - —0> sinf (4.69)
r
Now we can compute the velocity components (see Eq. 4.51)
10V r3
vT:;@: Oo(l—r—Q)cose w0
ov AN .
Vg = —E = _Voo (1 + 7’_2) sin 0

We find that v, = 0 for r = rg as intended (thanks to the definition in Eq. 4.66). We
are not interested in the solution inside the cylinder (r < rg). Furthermore, we see
that the tangential velocity is zero at § = 0 and m; hence these points correspond to
the stagnation points, see Fig. 4.11. The velocity field at the cylinder surface, r = ro,
reads

Ups =0

’ . 4.71)
vg,s = —2Vo sind

where index s denotes surface. Note that the local velocity gets twice as large as the
freestream velocity at the top (8 = 7/2) and the bottom (§ = —x/2) of the cylinder.
The surface pressure is obtained from Bernoulli equation (see Eq. 4.34)

V2 P ,UQ) 2 2)
Joo p foo O P pg e O 4.72)
2 p 2 p 2

where we neglected the gravitation term. The surface pressure is usually expressed as
a pressure coefficient
2
DPs — P 0o UH,s

— _ _ 102

using Eq. 4.71.
It should be stressed that although Eqgs. 4.71 and 4.73 are exact they are not realistic
because of the strict requirement that the flow should be inviscid. This requirement is
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valid neither in the boundary layers nor in the wake; the boundary layers may be thin
but the wake is a large part of the domain. Figure 4.13 presents the pressure coefficient
for potential flow and accurate unsteady CFD of two-dimensional viscous flow [8] (the
Reynolds number is sufficiently low for the flow to be laminar); Eqs. 2.3 and 2.8 are
solved numerically [8]. The potential solution agrees rather well with viscous flow up
to 6 ~ 20°.

How do we find the lift and drag force? The only force (per unit area) that acts
on the cylinder surface is the pressure (in viscous flow there would also be a viscous
stress, but it is usually much smaller). To find the lift force, Fr,, we simply integrate
the pressure over the surface. Usually the lift force is expressed as a lift coefficient,
C',, which is scaled with the dynamic pressure pV.2 /2. The lift coefficient is obtained
as

Fy, ! o Ds .
V23 = /0 dxg/o V23 sin Orqdo

L
1 27
= —7o / dxs / (1 — 4sin? ) sin 0d6 (4.74)
0 0
= 0—4 L (36) 3 9 2W—o
= —-To CcOoS T CcoS 4cos . =

The sin 0 on the first line appears because we project the pressure force in the vertical
direction (see Fig. 4.12) and minus sign is because pressure acts inwards, see Eq. 1.9
and Fig. 4.1. We assume in Eq. 4.74 that the length of the cylinder in the 3 direction
is one. The drag coefficient is computed as

FD 1 27
= = — dx 1 — 4sin? 6) cos Orodo
e A Jeostra

1 2m 4 27
= 77’0/ dIEg/ [sin@ — —sin® 9} =0
0 0 3 0

The cos @ on the first line appears because we project the pressure force in the hori-
zontal direction (see Fig. 4.12). Equations 4.74 and 4.75 give C;, = Cp = 0; hence
we find that inviscid flow around a cylinder creates neither lift nor drag. The reason is
that the pressure is symmetric both with respect to 1 = 0 and 2 = 0. The lift force
on the lower surface side cancels the force on the upper side. Same argument for the
drag force: the pressure force on the upstream surface cancels that on the downstream
surface.

Cp
(4.75)

4.4.7 Analytical solutions for flow around a cylinder with circulation

We will now introduce a second example of potential flow around cylinders, which is
by far the most important one from engineering point of view. Here we will introduce
the use of additional circulation which alters the locations of the stagnation points and
creates lift. This approach is used in potential methods for predicting flow around
airfoils in aeronautics (mainly helicopters) and windpower engineering.

We add the complex potential of a vortex line (see Eq. 4.61) to Eq. 4.67 so that

2
_ Voot

r
f 4+ Veoz—i—1Inz 4.76)
27
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\F/
Figure 4.14: Flow around a cylinder of radius 7o with additional circulation which give a (neg-
ative) lift force, see Eq. 4.85.

~_1

Figure 4.15: Flow around a cylinder of radius ¢ with maximal additional circulation.

On polar form it reads (see Eqgs. 4.62 and 4.68)

2
o

r
f=Vs (—(cos@ —isinf) +r(cosf + ¢ sin@)) ~ 3 (¢lnr —0) (4.77)
T T
The imaginary part gives the streamfunction

2
r
U=V, (7’ - T—O) sinf — o~ Inr (4.78)

T s

We get the velocity components as (see Eqs. 4.63 and 4.70)

10V 2
vy = =V (1—%)0059
r

r 00 4.79)
__8_\11__‘/ 1+ﬁ i 9+L .
vo = ar = r2 St 27r
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The effect of the added vortex line is, as expected, to increase vy while leaving v,
unaffected. The larger the circulation, the larger vg.
The velocity at the surface, » = rg, reads

Ups =0

(4.80)

r
Vs = —2Voo sinf +
’ 27rg
Now let’s find the location of the stagnation points, i.e. where vg s = 0. Equation 4.80
gives

. T . r
2V sinlstag = = Ostag = arcsin <7> (4.81)
0

27y 4mroVeo

The two angles that satisfy this equation are located in the the first and second quad-
rants. The two positions are indicated with a and b in Fig. 4.14. For a limiting value of
the circulation, I';, 4., the two locations s and b will merge at § = 7/2, denoted with ¢
in Fig. 4.15,

Tinaz = 47Vooro.- (4.82)

This corresponds to the maximum value of the circulation for which there is a stag-
nation point on the cylinder surface. For circulation larger than I';,,,, the stagnation
point will be located above the cylinder.

The pressure is obtained from Bernoulli equation as (see Eq. 4.73)

Vs

r 2
=12 =1 (—2sinf+-——o
Cr V2 ( sme+ 27T7“0V00>

AT sin r 2
=1—4sin’0 + sy
27119 Vso 2719 Vso

(4.83)

We found in Section 4.4.6 that a cylinder without circulation gives neither drag nor
lift, see Eqgs. 4.74 and 4.75. What about the present case? Let’s compute the lift. We
found in Eq. 4.74 that the two first terms in Eq. 4.83 give no contribution to the lift.
The last term cannot give any contribution to the lift because it is constant on the entire
surface. Hence we only need to include the third term in Eq. 4.83 so that

FL ! m DPs .
Cr = pV—2/2 = —/ dacg/ V22 sin Orqdo

21
9T sin 6
= —rg / dxs / W:m sin 0o (4.84)
2m
or
S 20)| =-—
LTVOO 27TV sin )]0 Voo

We find that the lift force on a unit length of the cylinder can be computed from the
circulation as
Fr, = —pV, I’ (4.85)

This relation is valid for any body and it is called the Kutta-Joukowski law who —
independent of each other — formulated it. The reason to the sign of the lift force can
easily be seen from Fig. 4.14. The stagnation points, where the pressure is largest, are
located at the top of the cylinder and hence the pressure is higher on the top than on the
bottom. The "lift” force is acting downwards, i.e. in the negative x5 direction.
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Figure 4.16: Table tennis. The loop uses the Magnus effect. Side view.
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Figure 4.17: Football. A free-kick uses the Magnus effect. Top view
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Figure 4.18: Flettner rotor (in blue) on a ship. The relative velocity between the ship and the
wind is Viyind + Vship. The ship moves with speed Vipip. Top view.

The drag is, however, still zero. In Eq. 4.75 we found that the first and the second
terms in Eq. 4.83 gives no contribution to drag. Hence, we only need to consider the
third terms. In the drag integral (see Eq. 4.75), this term in Eq. 4.83 gives rise to a term
proportional to sin # cos § whose contribution is zero. Hence, the additional circulation
does not give rise to any drag.

4.47.1 The Magnus effect

Circulation around a cylinder is very similar to a rotating cylinder. Instead of adding a
circulation, we let the cylinder rotate with speed w. A rotating cylinder produces lift.
This has interesting application in sports, for example football, table tennis and golf.
In table tennis, the ball must hit the table on the side of the opponent. One way to
improve the chance that this will happen is to make a loop. This means that you hit the
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ball slightly on the top. The ball experiences a force, F', when you hit it (see Fig. 4.16)
and this force makes it rotate with rotation speed w (clockwise direction). The rotation
causes a lift, F,, which acts downwards so that the ball drops down quickly and (hope-
fully) hits the table on the other side of the net. The lift force is downwards because
the stagnation points are located on the upper surface. Recall that the relative velocity
of the air is in the negative z; direction.

Another example where the Magnus effect is important is golf. Here the object is
often vice versa. You want the ball to go as far as possible. Hence you hit it with a
slice so that it spins with a positive w (counter-clockwise). The result is a lift force in
the positive x5 direction which makes the ball go further.

A final sports example is football. Here the lift is used sideways. Imagine there is a
free-kick rather close to the opponents’ goal, see Fig. 4.17. The opponents erects a wall
of players between the goal and the location of the free-kick. The player who makes
the free-kick wants to make the ball go on the left side of the wall; after the wall of
players, the ball should turn right towards the goal. The Magnus effect helps to achieve
this. The player hits the ball with her/his left foot on the left side of the ball which
creates a force I on the ball. This makes the ball rotate clockwise, see Fig. 4.17, and
creates a lift force so that the ball after it has passed the wall turns to the right towards
the goal. The reason that the ball turns to the right first after the wall (and not before)
is that the forward momentum created by F’ (the player) is much larger than FT..

If you are interested in football you may be pleased to learn that by use of fluid
dynamics it is now scientifically proven that it was much harder to make a good freekick
in 2010 worldcup than in 2014 [9]. Figure 7b in that paper is particularly interesting.

As an experiment, two identical freekicks are made with the football used at
the 2013 FIFA Confederations. The freekicks are made 25m from the goal. The
initial velocity of the football is 30 m/s. The result of the two freekicks is that the
two footballs reach the goal three meters from each other in the vertical direction.
Why? Because the ball was rotated 45 degrees before the second freekick (see
Figs. 2¢,d) in [9].

Finally we give an engineering example of the use of the Magnus effect. The first
Flettner rotors on ships were produced in 1924. It has recently gained new interest as
the cost of fuel is rising. A Flettner rotor is a rotating cylinder (or many) on a ship,
see Fig. 4.18. The diameter of this rotor can be a couple of meter and have a length
(i.e. height) of 10 — 20 meter. The ship is moving to the right with speed V;,. The
wind comes towards the ship from the left-front (relative wind at an angle of 7/4).
The Flettner rotor rotates in the clockwise direction. The Magnus effect creates a force
in the orthogonal direction to the relative windspeed, i.e. at an angle of —m/4. Note
that if the wind comes from the right instead of from the left, the rotor should rotate
in the counter-clockwise direction. The additional propulsion force is FJ, cos(«). The
Division of Fluid Dynamics recently took part in an EU project where we studied the
flow around rotating cylinders in relation to Flettner rotors [10].

4.4.8 The flow around an airfoil

Flow around airfoils is a good example where potential methods are useful. These
methods are still in use in wind engineering and for helicopters. At the Division of
Fluid Dynamics we have an on-going PhD project where we use potential methods for
computing the aerodynamic loads for windturbine rotorblades [11].
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Figure 4.19: Airfoil. The boundary layers, §(z1), and the wake illustrated in red. 1 = 0 and
x1 = c at leading and trailing edge, respectively.

=

Figure 4.20: Airfoil. Streamlines from potential flow. Rear stagnation point at the upper surface
(suction side).

The flow around airfoils is a good example where the flow can be treated as inviscid
in large part of the flow. For low angles of attack (which is the case for, for example, an
aircraft in cruise conditions) the boundary layers and the wake are thin. Outside these
regions the flow is essentially inviscid.

Figure 4.19 (see also Fig. 16.1) shows a two-dimensional airfoil. The boundary
layers and the wake are illustrated in red. The boundary layer is thinner on the pres-
sure (lower) side than on the suction (upper) side. It grows slightly thicker towards the
trailing edge (denoted by 6(z1) in Fig. 4.19). When this flow is computed using po-
tential methods, the location of the front stagnation point is reasonably well captured,
see Fig. 4.20. However, the stagnation point near the trailing edge is located on the
suction side which is clearly nonphysical. The flow on the pressure (lower) side cannot
be expected to make a 180 turn at the trailing edge and then go in the negative x;
direction towards the stagnation point located on the suction side.

The solution is to move the stagnation points in the same way as we did for the
cylinder flow in Section 4.4.7. We want to move the rear stagnation point towards
the trailing edge. This is achieved by adding a circulation in the clockwise direction,
see Fig. 4.21. The magnitude of the circulation is determined by the requirement that
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P

Figure 4.21: Airfoil. Streamlines from potential flow with added circulation. Rear stagnation
point at the trailing edge.

the stagnation point should be located at the trailing edge. This is called the Kutta
condition. The added circulation is negative (clockwise). In aeronautics, the sign of
circulation is usually changed so that "¢ ongutic = —I'- The lift of a two-dimensional
airfoil (or a two-dimensional section of a three-dimensional airfoil) is then computed
as (see Eq. 4.85)

Fp = pVooFaeronautic (4.86)
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5 Turbulence

5.1 Introduction

LMOST all fluid flow which we encounter in daily life is turbulent. Typical exam-
Aples are flow around (as well as in) cars, aeroplanes and buildings. The boundary
layers and the wakes around and after bluff bodies such as cars, aeroplanes and build-
ings are turbulent. Also the flow and combustion in engines, both in piston engines
and gas turbines and combustors, are highly turbulent. Air movements in rooms are
turbulent, at least along the walls where wall-jets are formed. Hence, when we com-
pute fluid flow it will most likely be turbulent. In turbulent flow we usually divide the
velocities in one time-averaged part ¥;, which is independent of time (when the mean
flow is steady), and one fluctuating part v} so that v; = ¥; + v.

There is no definition on turbulent flow, but it has a number of characteristic fea-
tures (see Pope [12] and Tennekes & Lumley [13]) such as:

L. Irregularity. Turbulent flow is irregular and chaotic (they may seem random,
but they are governed by Navier-Stokes equation, Eq. 2.8). The flow consists of a
spectrum of different scales (eddy sizes). We do not have any exact definition of an
turbulent eddy, but we suppose that it exists in a certain region in space for a certain
time and that it is subsequently destroyed (by the cascade process or by dissipation,
see below). It has a characteristic velocity and length (called a velocity and length
scale). The region covered by a large eddy may well enclose also smaller eddies. The
largest eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet
width, etc). At the other end of the spectrum we have the smallest eddies which are
dissipated by viscous forces (stresses) into thermal energy resulting in a temperature
increase. Even though turbulence is chaotic it is deterministic and is described by the
Navier-Stokes equations.

II. Diffusivity. In turbulent flow the diffusivity increases. The turbulence increases
the exchange of momentum in e.g. boundary layers, and reduces or delays thereby
separation at bluff bodies such as cylinders, airfoils and cars. The increased diffusivity
also increases the resistance (wall friction) and heat transfer in internal flows such as
in channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.
For example, the transition to turbulent flow in pipes occurs that Rep ~ 2300, and in
boundary layers at Re, ~ 500 000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.

However, when the equations are time averaged, we can treat the flow as two-dimensional

(if the geometry is two-dimensional).

V. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in
the small (dissipative) eddies are transformed into thermal energy. The small eddies
receive the kinetic energy from slightly larger eddies. The slightly larger eddies receive
their energy from even larger eddies and so on. The largest eddies extract their energy
from the mean flow. This process of transferring energy from the largest turbulent
scales (eddies) to the smallest is called the cascade process, see Fig. Q.5.

VI. Continuum. Even though we have small turbulent scales in the flow they are
much larger than the molecular scale and we can treat the flow as a continuum.

turbulent
eddy

cascade
process
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flow of kinetic energy
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dissipative scales

intermediate scales
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Figure 5.1: Cascade process with a spectrum of eddies. The energy-containing eddies are
denoted by vo; ¢1 and /2 denotes the size of the eddies in the inertial subrange such that
ly < £y < Lo; £y is the size of the dissipative eddies.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (the boundary layer thickness,
for example), with length scale ¢y and velocity scale vy. These scales extract kinetic
energy from the mean flow which has a time scale comparable to the large scales, i.e.

B2 ~tot ~ g/l 5.D

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which
the large scales interact. Through the cascade process, kinetic energy is in this way
transferred from the largest scale to the smallest scales. At the smallest scales the
frictional forces (viscous stresses) become large and the kinetic energy is transformed
(dissipated) into thermal energy. The kinetic energy transferred per unit time from
eddy-to-eddy (from an eddy to a slightly smaller eddy) is the same for each eddy size.

The dissipation is denoted by € which is energy per unit time and unit mass (¢ =
[m?/s3]). The dissipation is proportional to the kinematic viscosity, v, times the fluc-
tuating velocity gradient up to the power of two (see Section 8.2). The friction forces
exist of course at all scales, but they are largest at the smallest eddies. In reality a small
fraction is dissipated at all scales. However it is assumed that most of the energy that
goes into the large scales per unit time (say 90%) is finally dissipated at the smallest
(dissipative) scales.

The smallest scales where dissipation occurs are called the Kolmogorov scales
whose velocity scale is denoted by v,, length scale by ¢,, and time scale by 7,,. We
assume that these scales are determined by viscosity, v, and dissipation, . The argu-
ment is as follows.
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viscosity: Since the kinetic energy is destroyed by viscous forces it is natural to assume
that viscosity plays a part in determining these scales; the larger viscosity, the
larger scales.

dissipation: The amount of energy per unit time that is to be dissipated is €. The more
energy that is to be transformed from kinetic energy to thermal energy, the larger
the velocity gradients must be.
Having assumed that the dissipative scales are determined by viscosity and dissipation,
we can express vy, £, and 7, in v and € using dimensional analysis. We write
vy — a Eb

[m/s] = [m2/s] [m?/s%] (5.2)

where below each variable its dimensions are given. The dimensions of the left and the
right side must be the same. We get two equations, one for meters [m]

1 =2a+ 29, (5.3)
and one for seconds [s]
“1=—a—3b, (5.4)

which give ¢ = b = 1/4. In the same way we obtain the expressions for ¢, and 7,, so
that

1/4
vy = (e)*, 4, = (”—) =" 5.5

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are composed of a wide range of
scales. We can think of them as eddies, see Fig. 5.1. It turns out that it is often conve-
nient to use Fourier series to analyze turbulence. In general, any periodic function, g,
with a period of 2L (i.e. g(z) = g(x + 2L)), can be expressed as a Fourier series, i.e.

1

g(z) = 540 + Z(an cos(knx) + by, sin(k,x)) (5.6)

n=1
where z is a spatial coordinate and

nmw 2T
Kp=— Of K= —

L L’

Kn, is called the wavenumber. The Fourier coefficients are given by

(5.7)

Ay =

/L g(x) cos(kpx)dx

—L

SIES

by = /_ LL (@) sin(kn)da

Parseval’s formula states that

L oo
L
/ g*(x)dx = §a3 + L § (a2 4+ b2) (5.8)
—L n=1
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iy 8<'Dl>

Figure 5.2: Spectrum for turbulent kinetic energy, k. I: Range for the large, energy containing
eddies. II: the inertial subrange. III: Range for small, isotropic scales. For a discussion of &, vs.
€, see Section 8.2.1. The wavenumber, «, is proportional to the inverse of the length scale of a
turbulent eddy, £,., i.e. & o< £ . For a discussion of £, vs. &, see Section 8.2.1.

For readers not familiar to Fourier series, a brief introduction is given in Appendix H.
An example of a Fourier series and spectra are given in Appendix I. Let g be a fluctuat-
ing velocity component, say v. The left side of Eq. 5.8 expresses v}? in physical space
(vs. z) and the right side v’12 in wavenumber space (vs. ky). The reader who is not
familiar to the term “wavenumber”, is probably more familiar to “frequency”. In that
case, express g in Eq. 5.6 as a series in fime rather than in space. Then the left side of
Eq. 5.8 expresses v}2 as a function of time and the right side expresses v}? as a function
of frequency.

The turbulent scales are distributed over a range of scales which extends from the
largest scales which interact with the mean flow to the smallest scales where dissipation
occurs, see Fig. 5.1. Let us think about how the kinetic energy of the eddies varies with
eddy size. Intuitively we assume that large eddies have large fluctuating velocities
which implies large kinetic energy, vjv}/2. It is convenient to study the kinetic energy
of each eddy size in wavenumber space. In wavenumber space the energy of eddies
can be expressed as

E(k)dr (5.9)

where Eq. 5.9 expresses the contribution from the scales with wavenumber between
and k + dk to the turbulent kinetic energy k. The energy spectrum, F(x), corresponds
to g2(x) in Eq. 5.8. The dimension of wavenumber is one over length; thus we can think
of wavenumber as proportional to the inverse of an eddy’s diameter, i.e £ & 1/d. The
total turbulent kinetic energy is obtained by integrating over the whole wavenumber



5.3. Energy spectrum 74

space, i.e.
k= / E(r)dr =LY g*(kn) (5.10)
0

Think of this equation as a way to compute the kinetic energy by first sorting all eddies
by size (i.e. wavenumber), then computing the kinetic energy of each eddy size (i.e.
E(k)dk), and finally summing the kinetic energy of all eddy sizes (i.e. carrying out the
integration). Note that the physical meaning of E is kinetic energy per unit wavenum-
ber of eddies of size ¢,. o< k1. Hence the dimension of E is v2/m, see Eq. 5.10; for a
discussion on the dimension of E, see Appendix I.

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity
components, i.e.

1l /—  — — 1—
k=3 (U/12 + v + U§2) = §v§v§ (5.11)
The spectrum of E is shown in Fig. 5.2. We find region I, II and III which are discussed
below.

I. In this region we have the large eddies which carry most of the energy. These
eddies interact with the mean flow and extract energy from the mean flow. This
energy transfer takes places via the production term, P, in the transport equation
for turbulent kinetic energy, see Eq. 8.14. Part of the energy extracted per unit
time by the largest eddies is transferred (per unit time) to slightly smaller scales.
The eddies’ velocity and length scales are vy and £, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here that the
dissipation occurs. The energy transfer from turbulent kinetic energy to thermal
energy (increased temperature) is governed by ¢ in the transport equation for
turbulent kinetic energy, see Eq. 8.14. The scales of the eddies are described by
the Kolmogorov scales (see Eq. 5.5)

II. Inertial subrange. The existence of this region requires that the Reynolds number

is high (fully turbulent flow). The eddies in this region represent the mid-region.
The turbulence is also in this region isotropic. This region is a “transport re-
gion” (i.e. in wavenumber space) in the cascade process. The “transport” in
wavenumber space is called spectral transfer. Energy per time unit, P* = ¢, is
coming from the large eddies at the lower part of this range and is transferred
per unit time to the dissipation range at the higher part. Note that the relation
P* = {dissipation at small scales}, see Fig. 5.2, is given by the assumption of
the cascade process, i.e. that the energy transfer per unit time from eddy-size—
to—eddy-size is the same for all eddy sizes.
The kinetic energy, &k, = v, ;v;. ;/2, of an eddy of size (lengthscale), 1/, repre-
sents the kinetic energy of all eddies of this size. The kinetic energy of all eddies
(of all size) is computed by Eq. 5.11. The eddies in this region are indepen-
dent of both the large, energy-containing eddies and the eddies in the dissipation
range. One can argue that the eddies in this region should be characterized by
the spectral transfer of energy per unit time (£) and the size of the eddies, 1/k.
Dimensional analysis gives

E = K gl

m3/s?] = [1/m] [m?/sY ©-12)

spectral
transfer
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We get two equations, one for meters [1m]
3= —a+2b,

and one for seconds [s]
—2 = —3b,

so that b = 2/3 and a = —5/3. Inserted in Eq. 5.12 we get
E(k) = Cgeir3 (5.13)

where the Kolmogorov constant C'x ~ 1.5. This is a very important law (Kol-
mogorov spectrum law or the —5/3 law) which states that, if the flow is fully
turbulent (high Reynolds number), the energy spectra should exhibit a —5/3-
decay in the inertial region (region II, Fig. 5.2).

Above we state that the eddies in Region II and III are isotropic. This means that —
in average — the eddies have no preferred direction, i.e. the fluctuations in all directions
are the same so that v{?> = v/ = v{2. Note that is not true instantaneously, i.e. in
general v] # v} # v5. Furthermore, isotropic turbulence implies that if a coordinate
direction is switched (i.e. rotated 180°), nothing should change. For example if the
x1 coordinate direction is rotated 180° the v} v4 should remain the same, i.e. vjvh =
—uv]vh. This is possible only if v{ v, = 0. Hence, all shear stresses are zero in isotropic
turbulence. Using our knowledge in tensor notation, we know that an isotropic tensor
can be written as const. - §;;. Hence, the Reynolds stress tensor for small scales can be
written as Tvé = const.d;; which, again, shows us that the shear stresses are zero in
isotropic turbulence.

As discussed on p. 71, the concept of the cascade process assumes that the energy
extracted per unit time by the large turbulent eddies is transferred (per unit time) by
non-linear interactions through the inertial range to the dissipative range where the
kinetic energy is transformed (per unit time) to thermal energy (increased temperature).
The spectral transfer rate of kinetic energy from eddies of size 1/x to slightly smaller
eddies can be estimated as follows. An eddy loses (part of) its kinetic energy during
one revolution. The kinetic energy of the eddy is proportional to v2 and the time for
one revolution is proportional to £,,/v,.. Hence, the energy spectral transfer rate, &,
for an eddy of length scale 1/x can be estimated as (see Fig. 5.2)

1)2

V2 v3
e Ui e Uk 5.14
ty En/vn L ( )

Kinetic energy is transferred per unit time to smaller and smaller eddies until the trans-
fer takes place by dissipation (i.e. increased temperature) at the Kolmogorov scales. In
the inertial subrange, the cascade process assumes that €,, = €. Applying Eq. 5.14 for
the large energy-containing eddies gives

2 3
v [
~J ~ — Y K = 5.]5
=0 go/vo o c c ( )

The dissipation at small scales (large wavenumbers) is determined by how much energy
per unit time enters the cascade process at the large scales (small wavenumbers). We

isotropic
turbulence
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generation | x; | X2 | X3
15% 1ol o
ond 0111
3rd 2 |1 1
4th 213 |3
5th 6 |55
6th 10 | 11 | 11
Tth 22 | 211 21

Table 5.1: Number of eddies at each generation with their axis aligned in the x1, x2 or x3
direction, see Fig. 5.3.

can now estimate the ratio between the large eddies (with vg and ¢;) to the Kolmogorov
eddies (v, and £,)). Equations 5.5 and 5.15 give

v _ —1/4
= = (ve) WAy = (vvi/0o) / vy = (voﬁo/y)1/4 = Rel/*

A L3N\ /4 V30, —1/4 L3\ /4
— i V= | —= Vo = | —— =R 3/4
no(5) (%) e ‘ (510

—1/2 3\ 1/2 1/2
To _ (V_go) o= (v_o) b _ (%) _ Rel/?
T vy vl o v

where Re = vglo/v. We find that the ratio of the velocity, length and time scales of the
energy-containing eddies to the Kolmogorov eddies increases with increasing Reynolds
number. This means that the eddy range (wavenumber range) of the intermediate region
(region II, the inertial region) increases with increasing Reynolds number. Hence, the
larger the Reynolds number, the larger the wavenumber range of the intermediate range
where the eddies are independent of both the large scales and the viscosity. or in other
words: the larger the Reynolds number, the larger the difference between the largest
and the smallest scales. This is the very reason why it is so expensive (in terms of
computer power) to solve the Navier-Stokes equations. With a computational grid we
must resolve all eddies. Hence, as the Reynolds number increases, the number of grid
cells increases rapidly, see Eq. 28.1.

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradients is an essential ingredient to
create and maintain turbulence. Disturbances are amplified by interaction between the
vorticity vector and the velocity gradients; the disturbances are turned into chaotic,
three-dimensional fluctuations, i.e. into turbulence. Two idealized phenomena in this
interaction process can be identified: vortex stretching and vortex tilting.

The equation for the instantaneous vorticity (w; = @; + w}) reads (see Eq. 4.20)

&ul- &ul- avi 82wi
Vi— = W;j 14
ot jaxj ]axj (’):cjaxj
8vk

Wi = €ijk o

8acj

(5.17)
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Figure 5.3: Family tree of turbulent eddies (see also Table 5.1). Five generations (indidcated in
bold). Orientation of eddy is indicated in red. The large original eddy, with axis aligned in the
x1 direction, is 1% generation. Adapted from [14].

As we learnt in Section 4.2 this equation is not an ordinary convection-diffusion equa-

tion: it has an additional term on the right side which represents amplification and
rotation/tilting of the vorticity lines (the first term on the right side). The i = j com-

ponents of this term represent (see Eq. 4.21) vortex stretching. A positive Ov}/0x1  Vortex
will stretch the cylinder, see Fig. 4.2 and from the requirement that the volume must stretching
not change (incompressible continuity equation) we find that the radius of the cylinder

will decrease. We may neglect the viscosity since viscous diffusion at high Reynolds

number is much smaller than the turbulent one and since viscous dissipation occurs at

small scales (see p. 71). Thus we can assume that there are no viscous stresses acting

on the cylindrical fluid element surface which means that the angular momentum

2w = const. (5.18)
remains constant as the radius of the fluid element decreases. Note that also the cir-
culation, I' — which is the integral of the tangential velocity round the perimeter, see
Eq. 1.23 — is constant. Equation 5.18 shows that the vorticity increases if the radius
decreases (and vice versa). As was mentioned above, the continuity equation shows
that stretching results in a decrease of the radius of a slender fluid element and an in-
crease of the vorticity component (i.e. the tangential velocity component) aligned with
the element. For example, an extension of a fluid element in one direction (z; direc-
tion) decreases the length scales in the 5 direction and increases wf, see Fig. 5.4. At
the same time, vortex tilting creates small-scale vorticity in the x5 and x3 direction,
wh and wh. The increased w) means that the velocity fluctuation in the x2 direction
is increased, see Fig. 5.5. The increased v} velocity component will stretch smaller
fluid elements aligned in the x5 direction, see Fig. 5.5. This will increase their vortic-

T3
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Figure 5.5: The rotation rate of the fluid element (black circles) in Fig. 5.4 increases and its
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radius decreases. This creates a positive 8_3 > 0 which stretches the small red fluid element
X3

aligned in the x3 direction and increases w4. The radius of the red fluid element decreases.

ity w} and decrease their radius. In the same way will the increased wj also stretch a
fluid element aligned in the x3 direction and increase w4 and decrease its radius. At
each stage, the length scale of the eddies — whose velocity scale are increased — de-
creases. Figure 5.3 illustrates how a large eddy whose axis is oriented in the x; axis
in a few generations creates — through vortex stretching — smaller and smaller eddies
with larger and larger velocity gradients. Here a generation is related to a wavenumber
in the energy spectrum (Fig. 5.2); young generations correspond to high wavenumbers.
The smaller the eddies, the less the original orientation of the large eddy is recalled.
In other words, the small eddies “don’t remember” the characteristics of their original
ancestor. The small eddies have no preferred direction. They are isotropic. The cre-
ation of multiple eddies by vortex stretching from one original eddies is illustrated in
Fig. 5.3 and Table 5.1. The large original eddy (1%¢ generation) is aligned in the
direction. It creates eddies in the =5 and x5 direction (2% generation); the eddies in
the x5 direction create new eddies in the z; and z3 (3"¢ generation) and so on. For
each generation the eddies become more and more isotropic as they get smaller.
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The ¢ # j components in the first term on the right side in Eq. 4.21 represent vortex
tilting. Again, take a slender fluid element, now with its axis aligned with the xo axis,
Fig. 4.3. The velocity gradient dvq /Oxo (or Qv /Dzo, which is equivalent) will tilt the
fluid element so that it rotates in the clock-wise direction. As a result, the second term
wo0v1 /Ox2 in line one in Eq. 4.21 gives a contribution to wy (and w}). This shows
how vorticity in one direction is transferred to the other two directions through vortex
tilting.

Vortex stretching and vortex tilting qualitatively explain how interaction between
vorticity and velocity gradient create vorticity in all three coordinate directions from
a disturbance which initially was well defined in one coordinate direction. Once this
process has started it continues, because vorticity generated by vortex stretching and
vortex tilting interacts with the velocity field and creates further vorticity and so on.
The vorticity and velocity field becomes chaotic and three-dimensional: turbulence has
been created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence always must be
three-dimensional (Item IV on p. 70). If the instantaneous flow is two-dimensional
(z1 — z2 plane) we find that the vortex-stretching/tilting term on the right side of
Eq. 5.17 vanishes because the vorticity vector and the velocity vector are orthogonal.
The only non-zero component of vorticity vector is w3 because

b = Qs Ov2
8$2 (’)x3
by = v Ovs
81‘3 8351_

Since vz = 0, we get w;0v;/0z; = 0.

Vortex
tilting
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6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

WHEN the flow is turbulent it is preferable to decompose the instantaneous vari-
ables (for example the velocity components and the pressure) into a mean value
and a fluctuating value, i.e.

— /
V; = U5 +U;

p=p+p ©b
where the bar, -, denotes the time averaged value defined as
1 (T
U= oT . vdt. (6.2)
where 7' is sufficiently large. When we time average Eq. 6.1 we get
By =0; + 0L =0 + U] (6.3)
where we used the fact that v; = 9;, see Section 8.1.4. Hence, Eq. 6.3 gives
vj=0, pP=0 6.4)

One reason why we decompose the variables is that when we measure flow quan-
tities we are usually interested in their mean values rather than their time histories.
Another reason is that when we want to solve the Navier-Stokes equation numerically
it would require a very fine grid to resolve all turbulent scales and it would also require
a fine resolution in time (turbulence is always unsteady).

The continuity equation and the Navier-Stokes equation for incompressible flow
with constant viscosity read

(’)vi

0, 0 (6.5)
ov; Ov;v; dp 9%v;

(At 6.6

The gravitation term, —pg;, has been omitted which means that the p is the hydro-
dynamic pressure (i.e. when v; = 0, then p = 0, see p. 37). Inserting Eq. 6.1 into the
continuity equation (6.5)

v, +v, O, Ov. v O

?

8,%1' o 8,%1' (’)xl o (’)xl o 8,%1'

6.7)

where we used the fact that U_; = 0 (see Eq. 6.4 and U; = ©;, see section 8.1.4).
Next, we use the decomposition in Navier-Stokes equation (Eq. 6.6)

o +v)) | Owi+v)(; +v)  op+yp) | 0*(vi+v])
P ot Tt 81']- - ox; tH axjal'j 6.8)

I 11 111 1%

Let us consider the equation term-by-term.
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Term I: .
0(; +v)) 0y,  ov) 0Ov; O

o ot ot ot ot
We assume that the mean flow, v;, is steady, and hence the term is zero.

Term 1I:

8(1_)1' + U;-)(i_)j + ’U;) . 861-6]- + T)ﬂ)‘; + ’U;’l_)j + ’U;’U;

8xj 81']'
. c’)@iﬁj " 81_11'1); n c’)vgﬁj n 81}1’.1);

o 8xj 8xj 81']' axj

e Section 8.1.4 shows that v;v; = v;7;.

e Section 8.1.3 shows that v;v; = v;v) = 0 and ;v = v,

PV
J i_o

Hence, Term II reads
— /i
81}1-1)]- a’Ui'Uj

axj (’)xj
Term III: _ _
op+p) _ Op N op' _ Op
(’)xi N axi axi - axi
Term IV: _
R +o) 0% 0] 0%0;

axj(’)xj - axj(’)xj + (’)xjaxj N axj(’)xj

Now we van finally write the time averaged continuity equation and Navier-Stokes
equation

on
o, 0 (6.9)
a’lji’Uj ap 0 0v; ——
_ Vi 1
p 81']' 83:1 + 81']' (Ma:p]— p’UZUj (6 0)

It is assumed that the mean flow is steady. This equation is the time-averaged
Navier-Stokes equation and it is often called the Reynolds Averaged Navies-Stokes
(RANS) equation. A new term pvgvé appears on the right side of Eq. 6.10 which is

called the Reynolds stress tensor. The tensor is symmetric (for example v| v}, = vhv}).
It represents correlations between fluctuating velocities. It is an additional stress term
due to turbulence (fluctuating velocities) and it is unknown. We need a model for vév}
to close the equation system in Eq. 6.10. This is called the closure problem: the num-
ber of unknowns (ten: three velocity components, pressure, six stresses) is larger than
the number of equations (four: the continuity equation and three components of the
Navier-Stokes equations).

The continuity equation applies both for the instantaneous velocity, v; (Eq. 6.5),
and for the time-averaged velocity, v; (Eq. 6.9); hence it applies also for the fluctuating
velocity, v}, i.e.

!
% -0 6.11)

RANS

closure
problem
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Figure 6.1: Flow between two infinite parallel plates. The width (i.e. length in the 3 direction)
of the plates, Znqq, is much larger that the separation between the plates, i.e. Zpaz > 9.

6.1.1 Boundary-layer approximation

For boundary-layer type of flow (i.e. boundary layers along a flat plate, channel flow,
pipe flow, jet and wake flow, etc.) the following relations apply
_ 0N 0vy
— < — 6.12
Vo K V1, 921 <<8:L'2, ( )
Assume steady (0/9t = 0), two-dimensional (5 = 9/0x3 = 0) boundary-layer flow.
First we re-write the left side of Eq. 6.10 using the continuity equation

81_)i’l)j _ 0y, _ 81_)j _ O
— o 2y, 2 6.13
p 81']' PYi 8xj +pU 81']' PY; 81']' ( )
=0

Using Eq. 6.13, Eq. 6.10 can be written

_ 0Ny _ 0 op o Oy .
pU1 0z + po2 e R + B [Mau pUh (6.14)

T12,tot

z1 and 2 denote the streamwise and wall-normal coordinate, respectively, see Fig. 6.1.
Note that the two terms on the left side are of the same order, because they both include
the product of one large (7; or 9/9x5) and one small (3 or §/dx) part.

In addition to the viscous shear stress, 1001 /0x2, an additional furbulent one — a
Reynolds shear stress — appears on the right side of Eq. 6.14. The total shear stress is
thus 95

T2 tot = ua—;: — ] (6.15)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velocity gradient is largest as
the velocity drops down to zero at the wall over a very short distance. One important
quantity is the wall shear stress which is defined as

0ty

= A 1
Tw = My . (6.16)

shear
stress
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Figure 6.2: The wall region (adapted from Ch.7 in [12]) for Re, = 10000. § denotes half
width of the channel, see Fig. 6.1 and 2] = 2ou. /v denotes the normalized wall distance.

From the wall shear stress, we can define a wall friction velocity, u., as
2\ 12
Tw = pUz = u, = (—w) (6.17)
p

In order to take a closer look at the near-wall region, let us, again, consider fully
developed channel flow between two infinite plates, see Fig. 6.1. In fully developed
channel flow, the streamwise derivative of the streamwise velocity component is zero
(this is the definition of fully developed flow), i.e. 0v1/0x1 = 0. The continuity
equation gives now v = 0, see Eq. 3.18 at p. 37. The first term on the left side of
Eq. 6.14 is zero because we have fully developed flow (991 /9x1 = 0) and the last term
is zero because v2 = (. The streamwise momentum equation, Eq. 6.14, can now be
written

ap 0 o0 _
0=————+— — — pvi) 6.18
81'1 + 81'2 (/’L 81'2 pU1U2) ( )
We know that the first term is a function only of x; and the two terms in parenthesis
are functions of x5 only; hence they must be constant (see Eq. 3.24 and the text related

to this equation), i.e.

9%
9P _ constant
1 (6.19)
0 0V — O0T12,t0t '
— | p=— — pvjvh | = ——=— = constant
Oxo \" Ox2 172 O

where the total stress, 712 ¢0¢, 1S given by Eq. 6.15. Integrating Eq. 6.18 from zo = 0
to zo gives

_ o5
b T2 = T12 tot :Tw+—p$2 = Tw (17E) (6.20)
’ 83@1 1)

le,tot($2) — Tw = %
1

At the last step we used the fact that the pressure gradient balances the wall shear stress,
i.e. —0p/Ox1 = 7y, /9, see Eq. 3.30 (note that h = 26) and Eq. 6.38.

wall
friction
velocity
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The wall region can be divided into one outer and one inner region, see Fig. 6.2.
The inner region includes the viscous region, x; < 5 (dominated by the viscous diffu-
sion), and the logarithmic region, zg 2 30 (dominated by turbulent diffusion); the log-
arithmic region is sometimes called the inertial region, because the turbulent stresses
stem from the inertial (i.e. the non-linear convection) term. The buffer region acts as a
transition region between these two regions where viscous diffusion of streamwise mo-
mentum is gradually replaced by turbulent diffusion. In the inner region, the total shear
stress is approximately constant and equal to the wall shear stress 7, see Fig. 6.3.
Note that the total shear stress is constant only close to the wall (Fig. 6.3b); further
away from the wall it decreases (in fully developed channel flow it decreases linearly
with the distance from the wall, see Eq. 6.20 and Fig. 6.3a). The Reynolds shear stress
vanishes at the wall because vj = v5 = 0, and the viscous shear stress attains its
wall-stress value 7, = pu2. As we go away from the wall the viscous stress decreases
and the turbulent one increases and at x5 =~ 11 they are approximately equal. In the
logarithmic layer the viscous stress is negligible compared to the Reynolds stress.

At the wall, the velocity gradient is directly related to the wall shear stress, i.e. (see
Eq. 6.16 and 6.17)

| _Tw_rp_lp (6.21)
Ora|, K B v
Integration gives (recall that both v and u2 are constant)

1
2
U1 = —uirs + o
1%

Since the velocity, v1, is zero at the wall, the integration constant C'y = 0 so that

i _ Urt2 (6.22)

Uy v
Equation 6.22 is expressed in inner scaling (or wall scaling) which means that v; and
x9 are normalized with quantities related to the wall, i.e. the friction velocity stemming
from the wall shear stress and the viscosity (here we regard viscosity as a quantity

related to the wall, since the flow is dominated by viscosity). Often the plus-sign (‘ + )
is used to denote inner scaling and equation Eq. 6.22 can then be written

of =3 (623)

From the friction velocity and the viscosity we can define the viscous length scale, {,,,
for the near-wall region as

af = aafl, = b, = ui (6.24)

T

Further away from the wall at 30 < 23 < 3000 (or 0.003 < 22/6 < 0.3), we

2~

encounter the log-law region, see Fig. 6.2. In this region the flow is assumed to be
independent of viscosity. The Reynolds shear stress, pv} v}, is in the region z3 < 200

~

(i.e. 2 /6 < 0.1) fairly constant and approximately equal to the wall shear stress, i.e.

T = plOT0}] (6.25)

see Fig. 6.3b. Hence the friction velocity, u., is a suitable velocity scale in the inner
logarithmic region; it is used in the entire region.
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Figure 6.3: Reynolds shear stress. Rer = 2000. a) lower half of the channel; b) zoom
near the wall. DNS (Direct Numerical Simulation) data [15, 16]. == —pvjv}/Tw; ==
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Figure 6.4: Velocity profiles in fully developed channel flow. Re; = 2000. == : DNS (Direct
Numerical Simulation) data [15, 16]; = = : @1 /u, = (Inz3)/0.41 4 5.2; = = : Ty Ju, = 23 .

What about the length scale? Near the wall, an eddy cannot be larger than the
distance to the wall and it is the distance to the wall that sets an upper limit on the
eddy-size. Hence it seems reasonable to take the wall distance as the characteristic
length scale; a constant, «, is added so that

! = Kkxo. (6.26)
The velocity gradient can now be estimated as

o _ ur (6.27)
0xa KXo

based on the velocity scale, u,, and the length scale kz2. Another way of deriving the
expression in Eq. 6.27 is to use the Boussinesq assumption (see Eq. 11.33) in which a
turbulent Reynolds stress is assumed to be equal to the product between the turbulent
viscosity and the velocity gradient as

— Ui?}é = UVt Ei;;; (6.253)

The turbulent viscosity, v, represents the turbulence and has the same dimension as v,
i.e. [m?/s]. Hence 14 can be expressed as a product of a turbulent velocity scale and a
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Figure 6.5: Symmetry plane of channel flow.

3

turbulent length scale, and in the log-law region that gives
Vi = Ur KT (6.29)
so that Eq. 6.28 gives (inserting —v} v}, = u?)

2 = gy O o 90 (6.30)
0xo 0xa KTo

u

In non-dimensional form Egs. 6.27 and 6.30 read

vy 1

= — 6.31
oxf  kaf (031
Integration gives now
1
o ==In(2z3)+B or
U1 T Tol (6.32)
B in() e
Ur K v

where B is an integration constant. Equation 6.32 is the logarithmic law due to von
Karman [17]. The constant, , is called the von Karman constant. The constants in the
log-law are usually set to k = 0.41 and B = 5.2.

As can be seen in Fig. 6.2 the log-law applies for 3 < 3000 (z2/6 < 0.3).
Figure 6.4 — where the Reynolds number is lower than in Fig. 6.2 — shows that the log-
law fit the DNS (Direct Numerical Simulation) up to zg < 500 (z2/0 < 0.25). Hence,
the upper limit for the validity of the log-law is dependent on Reynolds number; the
larger the Reynolds number, the larger the upper limit.

In the outer region of the boundary layer, the relevant length scale is the boundary
layer thickness. The resulting velocity law is the defect law

where ¢ denotes centerline. The velocity in the log-region and the outer region (often
called the wake region) can be written as

vy 1 X 211 . 5 /7o
UT—Kln(y )+ B+ —sin (25) (6.34)

where k = 0.38, B = 4.1 and II = 0.5 are taken from boundary layer flow [18-20].

log-law
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Figure 6.6: Fully developed channel flow. Re, = 2000. Forces in the v, equation, see Eq. 6.18.
a) near the lower wall of the channel; b) lower half of the channel excluding the near-wall re-
gion. DNS (Direct Numerical Simulation) data [15, 16]. === —p(0|0} /022)/Te; == :
w(0%01/023) [ Tw; ===+ —(05/0x1) [ Tw.

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensional (o3 = 0 and 9/dx5 = 0). Consider the x5 — x5 plane,
see Fig. 6.5. Since nothing changes in the x5 direction, the viscous shear stress

To = <% + ‘%2) =0 (6.35)

6172 6—.173

because 3 = 0U2/0x3 = 0. The turbulent part shear stress, pv5v5, can be expressed
using the Boussinesq assumption (see Eq. 11.33)

— pUhul = iy (g—;jz + g—zz) =0 (6.36)
and it is also zero since 73 = Ovy/0x3 = 0. With the same argument, vjv} = 0.
However note that v§?> = v # 0. The reason is that although the fime-averaged flow
is two-dimensional (i.e. v3 = 0), the instantaneous turbulent flow is always three-
dimensional and unsteady. Hence v3 # 0 and v # 0 so that v§* # 0. Consider, for
example, the time series v3 = v5 = (—0.25,0.125,0.125, —0.2, 0.2). This gives

3 = (—0.25+0.125+0.125— 0.2+ 0.2)/5 = 0

but

v =02 = [(—0.25)% + 0.1252 + 0.125% + (—0.2) + 0.22] /5 = 0.03475 # 0.

Figure 6.3 presents the Reynolds and the viscous shear stresses for fully developed
flow. As can be seen, the viscous shear stress is negligible except very near the wall. It
is equal to one near the wall and decreases rapidly for increasing wall distance. On the
other hand, the Reynolds shear stress is zero at the wall (because the fluctuating veloc-
ities are zero at the wall) and increases for increasing wall distance. The intersection
of the two shear stresses takes place at x5 ~ 11.

Looking at Eq. 6.18 we find that it is not really the shear stress that is interesting,
but its gradient. The gradient of the shear stress, —d(pv|v})/Ox and ud*v, /03
represent, together with the pressure gradient, —9p/dx1, the forces acting on the fluid.




6.3. Reynolds stresses in fully developed channel flow 88

ovjvh M(‘?Qﬁl
X — - -
21 P 0xa ax%
> @ <«
1 1
op | 1 ovjvh
8501 : ! 812
: > @ <« |
i/'L 77777777777 I
0 T —
0 1 u

Figure 6.7: Forces in a boundary layer. The red (dashed line) and the blue (solid line) fluid
particle are located at x5 ~ 400 and x3 ~ 20, respectively (see Fig. 6.6).

Figure 6.6 presents the forces. Start by looking at Fig. 6.6b which shows the forces
in the region away from the wall, see the red fluid particle in Fig. 6.7. The pressure
gradient is constant and equal to one: this is the force driving the flow. This agrees
— fortunately — with our intuition. We can imagine that the fluid (air, for example) is
driven by a fan. Another way to describe the behaviour of the pressure is to say that
there is a pressure drop. The pressure must decrease in the streamwise direction so that
the pressure gradient term, —9p/0x1, in Eq. 6.18 takes a positive value which pushes
the flow in the z; direction. The force that balances the pressure gradient is the gradient
of the Reynolds shear stress. This is the force opposing the movement of the fluid. This
opposing force has its origin at the walls due to the viscous wall force (viscous shear
stress multiplied by area).

Now let us have a look at the forces in the near-wall region, see Fig. 6.6a. Here the
forces are two orders of magnitude larger than in Fig. 6.6b but they act over a very thin
region (x5 < 40 or z2/6 < 0.02). In this region the Reynolds shear stress gradient
term is driving the flow and the opposing force is the viscous force, see the blue fluid
particle in Fig. 6.7. We can of course make a force balance for a section of the channel,
as we did for laminar flow, see Eq. 3.36 at p. 39 and Fig. 3.8 at p. 39 which reads

0= pIZma$26 - ﬁQZma$25 - 2TwLZwuz;v (637)
where L is the length of the section. We get

Ap op _ Tw
— == 6.38
As can be seen the pressure drop is directly related to the wall shear stress. In turbulent
flow the velocity profile in the center region is much flatter than in laminar flow (cf.
Fig. 6.4 and Fig. 3.7 at p. 38). This makes the velocity gradient near the wall (and
the wall shear stress, 7,,) much larger in turbulent flow than in laminar flow: Eq. 6.38
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Figure 6.8: Normal Reynolds stresses and turbulent kinetic energy. Re- = 2000. DNS (Direct
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Figure 6.9: Velocity profiles in a boundary layer along a flat plate. === : DNS (Direct Numer-
ical Simulation) data [21]; = = : U2 /ur = (Inz3)/0.41 + 5.2; =« = : ¥ /u, = x3.

shows why the pressure drop is larger in the former case compared to the latter; or —
in other words — why a larger fan is required to push the flow in turbulent flow than in
laminar flow. __ o

Figure 6.8 presents the normal Reynolds stresses, pviZ, pv%? and pvf?. As can
be seen, the streamwise stress is largest and the wall-normal stress is smallest. The
former is largest because the mean flow is in this direction; the latter is smallest because
the turbulent fluctuations are dampened by the wall. The turbulent kinetic energy,
k= m/ 2, is also included. Note that this is smaller than v/2.

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel flow. What is the dif-
ference between that flow and a boundary layer flow? First, in a boundary layer flow
the convective terms are not zero (or negligible), i.e. the left side of Eq. 6.14 is not
zero. The flow in a boundary layer is continuously developing, i.e. its thickness, &,
increases continuously for increasing x;. The flow in a boundary layer is described by
Eq. 6.14. Second, in a boundary layer flow the wall shear stress is not determined by
the pressure drop (indeed it is zero); the total shear stress is balanced by the convective
terms. Third, the outer part of the boundary layer is highly intermittent, consisting of
turbulent/non-turbulent motion.

However, the inner region of a boundary layer (x2/6 < 0.1) is principally the same
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as for the fully developed channel flow, see Fig. 6.9: the linear and the log-law regions
are very similar for the two flows. However, in boundary layer flow the log-law is
valid only up to approximately x2/d ~ 0.1 (compared to approximately x5 /6 ~ 0.3 in
channel flow)
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Figure 7.1: Time history of v’. Horizontal red lines show +v; .

7 Probability density functions

OME statistical information is obtained by forming the mean and second moments,
for example v and vg, as was done in Section 6. The root-mean-square (RMS) can
be defined from the second moment as

Vpms = (W)W (7.1)

The RMS is the same as the standard deviation which is equal to the square-root of the
variance. In order to extract more information, probability density function is a useful
statistical tool to analyze turbulence. From the velocity signals we can compute the
probability densities (sometimes called histograms). With a probability density, f,,, of
the v velocity, the mean velocity is computed as

U= /00 vfy(v)dv (7.2)

Normalize the probability functions, so that

/Oo fo(v)dv =1 (7.3)

Here we integrate over v. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time average, (see Eq. 6.1 at p. 80),
ie.

T

— dt 7.4
T (7.4)

v =
where T is “sufficiently” large.
Consider the probability density functions of the fluctuations. The second moment
corresponds to the variance of the fluctuations (or the square of the RMS, see Eq. 7.1),
ie.

V2 = / 0" for (V)0 (7.5)
As in Eq. 7.4, v'2 is usually computed by integrating in time, i.e.
— 1 [T
V2 = v (t)dt

=oF »

root-mean-
square
RMS

standard
deviation
variance
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7.68. 5.81. 2.77.

Figure 7.2: Probability density functions of time histories in Fig. 7.1. Vertical red lines show
+vrms. The skewness, S, and the flatness, F', are given for the three time histories.

A probability density function is symmetric if positive values are as frequent and
large as the negative values. Figure 7.1 presents the time history of the v’ history at
three different points in a flow (note that v/ = 0). The red horizontal lines indicate the
RMS value of v". The resulting probability densities functions are shown in Fig. 7.2.
The red vertical lines show plus and minus RMS of v’. Let us analyze the data at the
three points.

Point 1. The time history of the velocity fluctuation (Fig. 7.1a) shows that there ex-
ists large positive values but no large negative values. The positive values are
often larger than +v,.,,s (the peak is actually close to 8v,,,s) but the negative
values are seldom smaller than —wv,.,,s. This indicates that the distribution of v’
is skewed towards the positive side. This is confirmed in the PDF distribution,
see Fig. 7.2a.

Point 2. The fluctuations at this point are much smaller and the positive values are as
large the negative values; this means that the PDF should be symmetric which is
confirmed in Fig. 7.2b. The extreme values of v’ are approximately +1.5v,,s,
see Figs. 7.1b and 7.2b.

Point 3. At this point the time history (Fig. 7.1c) shows that the fluctuations are clus-
tered around zero and much values are within +v,,s. The time history shows
that the positive and the negative values have the same magnitude. The PDF
function in Fig. 7.2c confirms that there are many value around zero, that the ex-
treme value are small and that positive and negative values are equally frequent
(i.e. the PDF is symmetric).

In Fig. 7.2 we can judge whether the PDF is symmetric, but instead of “looking” at
the probability density functions, we should use a definition of the degree of symmetry,
which is the skewness. It is defined as

V3 = / V3 for (V) dv'

— 00

3

rms?

1 * 13 ! ! 1 ’ 13
Sy = V" for (V) dv" = 208 T v (t)dt

3 3
Urms J —co 2’07'ms =T

and is commonly normalized by v so that the skewness, S,, of v’ is defined as

skewness
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Note that f must be normalized (see Eq. 7.3).

There is yet another statistical quantity which sometimes is used for describing
turbulent fluctuations, namely the flatness. The variance (the square of RMS) tells us
how large the fluctuations are in average, but it does not tell us if the time history
includes few very large fluctuations or if all are rather close to v,.,,s. The flatness gives
this information, and it is defined computed from v"4 and normalized by v . i.e.

rms?

F = L /OO V™ fur(v)dv

Ugms — 00
The fluctuations at Point 1 (see Fig. 7.1a) includes some samples which are very large
and hence its flatness is large (see caption in Fig. 7.2a), whereas the fluctuation for
Point 3 all mostly clustered within £2v,.,,5 giving a small flatness, see Fig. 7.1c and
the caption in Fig. 7.2c. For a Gaussian distribution

) = e (e

2
Urms 2vrms

for which F' = 3.

flatness
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IN this section and Section 9 we will derive various transport equations. There are two
tricks which often will be used. Both tricks simply use the product rule for derivative

backwards.

Trick 1: Using the product rule we get
A; B, B; A;
15) ) i& + Bj &
Oxy, Oxy, Oy,
This expression can be re-written as
A 0B; _ 0AiB; B, 04;
and then we call it the “product rule backwards”.

Trick 2: Using the product rule we get
10A4;A4; 1 ( 0A; 8A1-) 4 0A4;

2 ox; 2 i@xj * i@xj -81:3-
This trick is usually used backwards, i.e.
04, 104;A;
i@xj 2 81:3

8.1 Rules for time averaging

8.1.1 What is the difference between v/ v}, and v/ v}?

Using 6.2 we get

whereas

v vl = L Tvdt ! Tvdt
1 V2 = 2T | 1 o 1

We take a numerical example. Let us the time series of v{ and v5 be

v} =[0.2,-0.3,0.18, —0.08]
vty = [0.15, —0.25,0.04, 0.06]

(0.2—0.3+0.18 - 0.08)/4 =0

2 |

o —
1
o —
2

i
Vs

2 |

so that

(1 & 1 &
Ui”é(ﬁZ”in) <szé’">0.00
n=1 n=1

However, the time average of their product is not zero, i.e.

=(0.15—-0.25+0.04 +0.06)/4 =0

8.1)

(8.2)

(8.3)

(8.4)

Vvl = NZUMUM (0.2:0.15-0.3-0.25+0.18-0.04—0.08-0.06) /4 = 0.02685
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8.1.2 What is the difference between v/2 and EQ?
Using 6.2 we get
_ 1 T )
v = — v'"2dt.
Yoor ) o,

whereas

The numerical example gives

2

— 1
VR = ¥ v, = (0.22 + 0.3% + 0.18° 4 0.08%) /4 = 0.0422

N
— 1
VR = ¥ Z vy, = (0.15% + 0.25% + 0.04> 4 0.06%) /4 = 0.02255

but

N 2
_ 1
o= <N > vi,n> = [(0.2 — 0.3+ 0.18 — 0.08)/4]* = 0

N 2
_ 1
%= (N > vé,n> = [(0.15 — 0.25 + 0.04 + 0.06)/4]° = 0

8.1.3 Show that 5,02 = 7,0
Using 6.2 we get
T
" — 2
D = oT » vrodt

and since v does not depend on ¢ we can take it out of the integral as

1 7 —
_ 2 _
g | =i

Now let us do it with numerical values. Assume that v; = 10.

1L (1 &
53 (5 ) -
n=1 m=1
= (10-0.22 +10-0.3%> + 10 - 0.18% + 10 - 0.08%) /4 = 0.422
— (1 & 1
1_)11)’12 = <N;v1_’n> <N;U/12”> =

= [10-(0.2* +0.3% + 0.18 4 0.08%) /4] = 0.422

171U/12 =
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8.1.4 Show that 51 =11

Using 6.2 we get

2

1 T
1= — 01dt
2T [T

and since v does not depend on ¢ we can take it out of the integral as
1 (T

1
b | dt =027 =70
Yot | 4T e u

With numerical values we get

<l

N
1 _
1:Nngl:(10+10+10+10)/4:10:v1

8.2 The Exact k£ Equation

The equation for turbulent kinetic energy, k = %W, is derived from the Navier-Stokes
equation. Again, we assume incompressible flow (constant density) and constant vis-
cosity (cf. Eq. 6.6). We subtract Eq. 6.10 from Eq. 6.6 and divide by density, multiply

by v} and time average which gives

/ 9 =
Y B [viv; — 5;74] =
J
(8.5)
I’
_lv{i 5+ ! 02 [vi—z’)i]Jranj .
p ‘oz t0x;0x; Ox; '
Using v; = 0; + vj, the left side can be rewritten as
/i [(7'"‘1‘ /)(—‘_’_ /)_—,—‘] — [—4 g+ /} (86)
Ui&rj Ui + ;) (05 + vj) — 005 _Ui&rj Uiv; + 005 + v;v5 ] .

Using the continuity equation 81}} /0z; = 0 (see Eq. 6.11), the first term is rewritten as

9 N _ 77 90

v;a—w] (17ivj) = v} oz, 8.7)
For the second term in Eq. 8.6 we start using 99, /0z; = 0
_ _,0u)
v;a—% (vjv;) = v} 9z, (8.8)

Next, we use Trick 2

ol 0 (1 0 0
V. / 2 = 0. — | =0 = V;— = — (Vs
o (’Uz 5$j> o oz, <2’U1’U1> oh oz, (k) oz, (v;k) (8.9)

The third term in Eq. 8.6 can be written as (replace v; by vé and use the same technique
as in Eq. 8.9)

N~

a [
9, (U;U;v;) (8.10)
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The first term on the right side of Eq. 8.5 is re-written using Trick 1

R 10pv, 1 19p'v)
g Lophv pav _ _Lopv @.11)
00w~ pom  p ox, p Oz;

where the continuity equation was used at the last step. The second term on the right
side of Eq. 8.5 can be written

o 0% —yv’i o} —yi AN 81} o} (8.12)
axj(?:r] -0z \ Oz ) Oz 8% 8% dx; ’

applying Trick 1 (A = v} and B = 9v}/dz;). For the first term in Eq. 8.12 we use the
same trick as in Eq. 8.9 so that

yi , OU] 0 o , OU] Py o} B
O0x; 81:3 830] “x; "0z B

L0 (1 (v, —yl Popl _ Ok
ij 2 8:rj o 28£Ej8$j o 8xj8:rj

The last term on the right side of Eq. 8.5 is zero because it is time averaging of a
fluctuation, i.e. ab’ = ab’ = 0. Now we can assemble the transport equation for the
turbulent kinetic energy. Equations 8.7, 8.9, 8.11, 8.12 and 8.13 give

(8.13)

81_)jk 8@1 (9 1,—/ 1 77 (9]6 81) (91)
— = - —viviv, —v— 8.14
O0x; i 830] 830] [ upE 9 iti% V@xj 830] 81:3 .14)
T T 7] ' v

The terms in Eq. 8.14 have the following meaning.
I Convection.

II Production, P*. The large turbulent scales extract energy from the mean flow.
This term (including the minus sign) is almost always positive. It is largest for
the energy-containing eddies, i.e. for small wavenumbers, see Fig. 5.2. This term
originates from the convection term (the first term on the right side of Eq. 8.6).
It can be noted that the production term is an acceleration term, U} 07v;/0z ;, mul-
tiplied by a fluctuating velocity, v}, i.e. the product of an inertial force per unit
mass (acceleration) and a fluctuating velocity. A force multiplied with a velocity
corresponds to work per unit time. When the acceleration term and the fluctuating
velocity are in opposite directions (i.e. when P* > 0), the mean flow performs
work on the fluctuating velocity field. When the production term is negative, it
means that the fluctuations are doing work on the mean flow field. In this case, v§
and the acceleration term, v/;09; / Oz, have the same sign.

Using Eq. 1.11, the production terms reads

v, - —— -
¢ == 71)1/-1)3(51']' + QU) = 71);1);»9”' (815)

k 100

P" = vV oz,

(the product of the symmetric tensor, WU}, and the anti-symmetric tensor, Qij, is

zero). Thus it is only the symmetric part of the velocity gradient (Sij, the part

that deforms a fluid element) that creates turbulence. The production does not

depend on Qij, the part of the velocity gradient that rotates a fluid element. This

is consistent with the fact that the stress tensor, o;;, depends only on .S;;, not on
€2;;, see discussion below Eq. 2.5.
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Figure 8.1: The size of the largest eddies (dashed lines) for different velocity profiles.

IIT The two first terms represent turbulent diffusion by pressure-velocity fluctua-
tions, and velocity fluctuations, respectively. The last term is viscous diffusion.
The velocity-fluctuation term originates from the convection term (the last term
on the right side of Eq. 8.6).

IV Dissipation, €. This term is responsible for transformation of kinetic energy at
small scales to thermal energy. The term (excluding the minus sign) is always
positive (it consists of velocity gradients squared). It is largest for large wavenum-
bers, see Fig. 5.2. The dissipation term stems from the viscous term (see Eq. 8.12)
in the Navier-Stokes equation. It can be written as v;J7;;/0z;, see Eq. 4.1. The
divergence of 7/; is a force vector (per unit mass), i.e. 7] = O7;;/0x;. The
dissipation term can now be written W which is a scalar product between two
vectors. When the viscous stress vector is in the opposite direction to the fluctuat-
ing velocity, the term is negative (i.e. it is dissipative); this means that the viscose
stress vector performs work and transforms kinetic energy into internal energy.

The transport equation for £k can also be written in a simplified easy-to-read sym-
bolic form as
ck =Pk DF—¢ (8.16)

where C*, P*, D* and ¢ correspond to terms I-IV in Eq. 8.14.

Above, it is stated that the production takes place at the large energy-containing
eddies, i.e. we assume that the large eddies contribute much more to the production
term more than the small eddies. There are two arguments for this:

1. The Reynolds stresses (which appear in P*) are larger for large eddies than for
small eddies.

2. The mean flow generates large eddies which will have same time scale as the
mean velocity gradient, 97;/0x;. In the fully turbulent region of a boundary
layer, for example, both time scales are proportional to xKx2/u,. The time scale
of the velocity gradient is given by xx2/u,, see Eq. 6.27, and the time scale of
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E(k)

Kk + dk

dr

Figure 8.2: Zoom of the energy spectrum for a wavenumber located in Region II or III, see
Fig. 5.2.

a large eddy is also given by ¢y /vy = Kkx2/u,. Figure 8.1 shows how different
velocity profiles create different largest eddies. The largest eddies created by the
velocity profile A are much smaller than those created by the velocity profile
B, because the gradient of profile A acts over a much shorter length than the
gradient of profile B.

In the cascade process (see Section 5.3) we assume that the viscous dissipation, ¢,
takes places at the smallest scales. How do we know that the majority of the dissipation
takes place at the smallest scales? First, let us investigate how the time scale varies with
eddy size. Consider the inertial subrange. let us denote the energy that is transferred
in spectral space (i.e. from eddy-to-eddy) per unit time by ¢,. How large is € — that
is generating heat — at wavenumber «, which we here denote £(x) (see Section 8.2.1
and Fig. 8.2)? Recall that the viscous dissipation, €, is expressed as viscosity times
the square of the velocity gradient, see Eq. 8.14. The velocity gradient for an eddy
characterized by velocity v,; and lengthscale /,; can be estimated as

ov Vg 1/2
(£)N o< 7. o< (vi) K (8.17)

since £, oc k1. We know that the energy spectrum (see Eqs. 5.10 and 5.13),
E(k) < ke/k x 02 /6 x k7% = 0% o k723 (8.18)

in the inertial region. Inserting Eq. 8.18 into Eq. 8.17 gives

1/2
<@) x (/i*Q/B) ko kY3 o k23 (8.19)
o /.

Thus the viscous dissipation at wavenumber « can be estimated as (see the last term in
Eq. 8.14)

a7 A0yl 2
€= v v; = 5(&)0((81}) o k3, (8.20)

o V@l‘j axj % “
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i.e. €(k) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy per unit time in spectral space can also be
used for estimating the velocity gradient of an eddy. The cascade process assumes that
this energy transfer per unit time is the same for each eddy size, i.e. £, = ¢ = v3 /(. =
02 /73 = (%2/73, see Eq. 5.14. We find from (2 /73 = (%/73 that for decreasing eddy
size (decreasing /), the time scale, 7, also decreases, i.e.

0\ 23
Lo

where 7y and ¢, are constants (they are given by the flow we’re looking at, for example
a boundary layer which has the large scales, 7y and ¢;). Hence

@ x Or o Tl o 4723 n2/3, (8.22)
or ), L ® ®

which is the same as Eq. 8.19.

8.2.1 Spectral transfer dissipation ¢, vs. ““true” viscous dissipation, ¢

As a final note to the discussion in the previous section, it may be useful to look at the
difference between the spectral transfer dissipation €, and the “true” viscous dissipa-
tion, ¢; the former is the energy transferred from eddy-to-eddy per unit time, and the
latter is the energy transformed per unit time to internal energy (i.e. increased temper-
ature) for the entire spectrum (occurring mainly at the small, dissipative scales), see
Fig. 5.2. Now consider Fig. 8.2 which shows a zoom of the energy spectrum. We as-
sume that no mean flow energy production occurs between  and « + dk, i.e. the region
may be in the —5/3 region or in the dissipation region. Turbulent kinetic per unit time
energy enters at wavenumber « at a rate of ,; and leaves at wavenumber x + dk a rate
of extdx- If k and k + dk are located in the inertial region (i.e. the —5/3 region),
then the usual assumption is that €,, ~ €,.4 4, and that there is no viscous dissipation to
internal energy, i.e. €(k) ~ 0. If there is viscous dissipation at wavenumber x (which
indeed is the case if the zoomed region is located in the dissipative region), then (k)
is simply obtained through an energy balance per unit time, i.e.

e(K) = €xtdr — €x (8.23)

8.3 The Exact k£ Equation: 2D Boundary Layers
In 2D boundary-layer flow, for which 9/0xo > 0/0xz1 and U2 < 7, the exact k

equation reads
ovik  Ovgk —— 001
= —vvi—
81‘1 8x2 1 281'2

7 Ll Ok dv; dv; ®29

_ 8—1'2 ;p Uy + §U2U'LU'L — 1/8—1'2 — Va—:pja—;p]

Note that the dissipation includes all derivatives. This is because the dissipation term

is at its largest for small, isotropic scales for which all derivatives are of the same order

and hence the usual boundary-layer approximation 9/0x; < 0/0x2 does not apply
for these scales.
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Figure 8.3: Channel flow at Re, = 2000. Terms in the k equation scaled by u?/v. Re, =
2000. a) Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15,16].
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Figure 8.4: Channel flow at Re, = 2000. DNS (Direct Numerical Simulation) data [15, 16].

Figure 8.3 presents the terms in Eq. 8.24 for fully developed channel flow. The left
side is — since the flow is fully developed — zero. In the outer region (Fig. 8.3b) all terms
are negligible except the production term and the dissipation term which balance each
other. This is called local equilibrium, see p. 102. Closer to the wall (Fig. 8.3a) the
other terms do also play a role. Note that the production and the dissipation terms close
to the wall are two orders of magnitude larger than in the logarithmic region (Fig. 8.3b).
At the wall the turbulent fluctuations are zero which means that the production term is
zero. Since the region near the wall is dominated by viscosity the turbulent diffusion
terms due to pressure and velocity are also small. The dissipation term and the viscous
diffusion term attain their largest value at the wall and they much be equal to each other
since all other terms are zero or negligible.

The turbulence kinetic energy is produced by its main source term, the production
term, P~ = —vjvh 01 /Oxo. The velocity gradient is largest at the wall (see Fig. 8.4a)
where the shear stress is zero (see Fig. 8.4b)); the former decreases and the magnitude
of the latter increases with wall distance and their product takes its maximum at z3 =~
11. Since P* is largest here so is also k, see Fig. 6.8. k is transported in the 5 direction
by viscous and turbulent diffusion and it is destroyed (i.e. dissipated) by ¢.

local equilib-
rium
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8.4 Spatial vs. spectral energy transfer

In Section 5.3 we discussed spectral transfer of turbulent kinetic energy from large to
small eddies (which also applies to the transport of the Reynolds stresses). In Sec-
tion 8.2 we derived the equation for spatial transport of turbulent kinetic energy. How
are the spectral transfer and the spatial transport related? The reason that we in Sec-
tion 5.3 only talked about spectral transfer was that we assumed homogeneous tur-
bulence in which the spatial derivatives of the time-averaged turbulent quantities are
zero, for example Ovi2/dz; = 0, Ok/Ox; = 0 etc. (Note that the derivatives of the
instantaneous turbulent fluctuations are non-zero even in homogeneous turbulence, i.e.
0v} /Ox; # 0, the instantaneous flow field in turbulent flow is — as we mentioned at the
beginning of this section, p. 70 — always three-dimensional and unsteady). In homoge-
neous turbulence the spatial transport terms (i.e. the convective term, term I, and the
diffusion terms, term III in Eq. 8.14) are zero. Hence, in homogeneous turbulence there
is no time-averaged spatial transport. However, there is spectral transfer of turbulent
kinetic energy which takes place in wavenumber space, from large to small eddies. The
production term (term II in Eq. 8.14) corresponds to the process in which large energy-
containing eddies extract energy from the mean flow. The dissipation term (term IV in
Eq. 8.14) corresponds to transformation of the turbulent kinetic energy at the small ed-
dies to thermal energy. However, real flows are hardly ever homogeneous. Some flows
may have one or two homogeneous directions. Consider, for example, fully developed
channel turbulent flow. If the channel walls are very long and wide compared to the
distance between the walls, 24, then the turbulence (and the flow) is homogeneous in
the streamwise direction and the spanwise direction, i.e. 01 /9z1 = 0, dv/?/dx1 = 0,
Ovl?/dxs = 0 etc.

In non-homogeneous turbulence, the cascade process is not valid. Consider a large,
turbulent eddy at a position x4 (see Fig. 6.1) in fully developed channel flow. The
instantaneous turbulent kinetic energy, k. = v, ;v ;/2, of this eddy may either be
transferred in wavenumber space or transported in physical (spatial) space, or both. It
may first be transported in physical space towards the center, and there lose its kinetic
energy to smaller eddies. This should be kept in mind when thinking in terms of the
cascade process. Large eddies which extract their energy from the mean flow may not
give their energy to the slightly smaller eddies as assumed in Figs. 5.2 and 5.1, but k,,
may first be transported in physical space and then transferred in spectral space (i.e. to
a smaller eddy).

In the inertial range (Region II), however, the cascade process is still a good ap-
proximation even in non-homogeneous turbulence. The reason is that the transfer of
turbulent kinetic energy, k., from eddy-to-eddy, occurs at a much faster rate than the
spatial transport by convection and diffusion. In other words, the time scale of the cas-
cade process is much smaller than that of convection and diffusion which have no time
to transport k,; in space before it is passed on to a smaller eddy by the cascade process.
We say that the turbulence at these scales is in local equilibrium. The turbulence in
the buffer layer and the logarithmic layer of a boundary layer (see Fig. 6.2) is in local
equilibrium. In Townsend [22], this is (approximately) stated as:

the local rates of turbulent kinetic energy (i.e. production and dissipation)
are so large that aspects of the turbulent motion concerned with these pro-
cesses are independent of conditions elsewhere in the flow.

This statement simply means that production is equal to dissipation, i.e. P* = ¢, see
Fig. 8.3.

homogeneous
turbulence

local
equilibrium
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In summary, care should be taken in non-homogeneous turbulence, regarding the
validity of the cascade process for the large scales (Region I).

8.5 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the production term is to increase k, i.e. if we
integrate the production term over the entire domain, V', we get

/ PFav >0 (8.25)
v
Similarly, the net effect of the dissipation term is a negative contribution, i.e.

/ —edV <0 (8.26)
”

What about the overall effect of the transport terms, i.e. convection and diffusion?
Integration of the convection term over the entire volume, V', gives, using Gauss diver-
gence law,
8173‘/{?
v Oz;
where S is the bounding surface of V. This shows that the net effect of the convection
term occurs only at the boundaries. Inside the domain, the convection merely transports
k with out adding or subtracting anything to the integral of &, fv kdV; the convection
acts as a source term in part of the domain, but in the remaining part of the domain it
acts as an equally large sink term. Similarly for the diffusion term, we get

0 (14— 1— ok
/8%( ViU v + pv _Vaz] 1%

=— vy, + pv —v— | n;dS
/(2]kk aj J

The only net contribution occurs at the boundaries. Hence, Eqs. 8.27 and 8.28 show
that the transport terms only — as the word implies — transports k without giving any
net effect except at the boundaries. Mathematically these terms are called divergence
terms, i.e. they can both be written as the divergence of a vector A4,

dv = / v,kn;dS (8.27)
S

(8.28)

0A;
J 8.29
e (8.29)
where A; for the convection and the diffusion term reads
vk convection term
= 1—— 1 — ok
4 - (2 Vv, + p vl — V@xj> diffusion term (8.30)

8.6 The transport equation for v,v;/2

The equation for K = 7;7;/2 is derived in the same way as that for v}v]/2. Multiply
the time-averaged Navier-Stokes equations, Eq. 6.10, by ; so that

61}11)] _ _l op B 0%, Ul@vév}
Zaz](?:r] " Oz

8z] p Oz

(8.31)

divergence
terms
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Figure 8.5: Channel flow at Re; = 2000. Comparison of mean and fluctuating dissipation
terms, see Eqgs. 8.37 and 8.38. Both terms are normalized by u>/v. DNS (Direct Numerical
Simulation) data [15, 16]. —— : v(9%1 /0x2)%; — = : €.

Using the continuity equation and Trick 2 the term on the left side can be rewritten as

Ov;0; ov; B la’lji’lji 0v; K
viv; 00 7 an‘ — g# (8.32)
7 J

’l_)i = V;U;
c’)xj J axj

The viscous term in Eq. 8.31 is rewritten in the same way as the viscous term in Sec-
tion 8.2, see Eqgs. 8.12 and 8.13, i.e.

82’51‘ ’K 0v; 0v;
az = — . 8.33
vy 8zj8xj V@xja:rj Vaxj 835]- ( )
Equations 8.32 and 8.33 inserted in Eq. 8.31 gives
9, K O*K v dop  Ov ov  Ovjy;
vk Y A I N k3 (8.34)
836]- 8zj8xj 14 8351 axj 835]- axj
The last term is rewritten using Trick 1 as
viv', ov vV, —— 9w,
_ 7] 177 77 7
— =_ A ) 8.35
Y axj c’)xj + UZ’UJ c’)xj ( )

Note that the first term on the right side differs to the corresponding term in Eq. 8.14
by a factor of two since Trick 2 cannot be used because @; # v}. Inserted in Eq. 8.34
gives (cf. Eq. 8.14)

(’)T)jK — dv;  v; Op 0 _ oK 0v; 0v;
= vjv) - —— |l —v— | v ———

Oz T0x; p Ox; Oz J Ox; Oz Ox; (8.36)
— Pk sink  source €mean, Sink

On the left side we have the usual convective term. On the right side we find:
e loss of energy to k due to the production term

e work performed by the pressure gradient; in channel flow, for example, this term
gives a positive contribution to K (as expected) since —v19p/9x1 > 0

e diffusion by velocity-stress interaction
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e
0 G

Figure 8.6: Transfer of energy between mean kinetic energy (X)), turbulent kinetic energy (k)
and internal energy (denoted as an increase in temperature, AT). K = %171-171- and k = %vgvg.

e viscous diffusion.

e viscous dissipation, €,,eq5. This corresponds to the dissipation term in Eq. 2.22;
if you replace v; with v; and use the continuity equation to get rid of the sec-
ond velocity gradient in S‘ij you find that the dissipation term in Eq. 2.22 (see
Eq. 2.25), is identical to €yeqn.-

Note that the first term in Eq. 8.36 is the same as the first term in Eq. 8.14 but with
opposite sign: here we clearly can see that the main source term in the k equation (the
production term) appears as a sink term in the K equation.

In the K equation the dissipation term and the negative production term (represent-
ing loss of kinetic energy to the £ field) read

0v; 07; — 07v;

_ 23 8.37
Vaxj (’)xj v a$j7 ( )
and in the k£ equation the production and the dissipation terms read
T vl o
B A A (8.38)

v axj (’)xj G—:UJ

The gradient of the time-averaged velocity field, ¥;, is much smoother than the gradient
of the fluctuating velocity field, v}. Hence, the dissipation by the turbulent fluctuations,
€, in the turbulent region (logarithmic region and further out from walls), is much larger
than the dissipation by the mean flow (left side of Eq. 8.37). This is seen in Fig. 8.5
(xF = 15). The energy flow from the mean flow to internal energy is illustrated in
Fig. 8.6. The major part of the energy flow goes from K to k and then to dissipation.
In the viscous-dominated wall region (3[:;r < 5), the mean dissipation, v(97; /61’2)2,

is much larger than ¢, see Fig. 8.5. At the wall, the mean dissipation takes the value
v = 1/2000 (normalized by u? /v).
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9 Transport equations for Reynolds stresses

N this section we will derive the transport equation for the Reynolds stress tensor.
This is an unknown quantity in the time-averaged Navier-Stokes equations, Eq. 6.10,
which must be known before Eq. 6.10 can be solved. The most accurate way to find
;v} is, of course, to solve a transport equation for it. This is computationally expen-

sive since we then need to solve six additional transport equations (recall that v§v§- is

symmetric, i.e. Vvl = vhv} etc). Often, some simplifications are introduced, in which

’ ’ is modeled by expressing it as the product of a turbulent viscosity and velocity

gradlents Two-equations models are commonly used in these simplified models; no
transport equation for v;v; is solved.

In Section 8 we derived transport equations for kinetic turbulent energy, k£, which

is the trace of the Reynolds stress tensor v;v’; divided by two, i.e. k = viv}/2. This

means that k is equal to half the sum of the diagonal components of v] v ,le k=

0.5(v2 4+ v 4 vi2).

Now let us start to derive the transport equation for v/v’. U] This approach is very
similar to that we used when deriving the k equation in Section 8.2. Steady, incom-
pressible flow with constant density and viscosity is assumed. Subtract Eq. 6.10 from
Eq. 6.6 and divide by density, multiply by vé and time average and we obtain

v VU — U;Uk) =

iy
J ka
1 0 0% vy, ,
8 ] 8$ka$k 8$k J
Equation 6.10 is written with the index ¢ as free index, i.e. ¢ = 1,2 or 3 so that the

equation is an equation for vy, v2 or v3. Now write Eq. 6.10 as an equation for v; and
multiply this equation by v;. We get

©.1)

Uéa—xk [vjvr — U;0k] =

S 9.2)
1 8 0%v 3 o', vk .
_p i p v 8:Ek8xk + oz, Yi

It may be noted that Eq. 9.2 is conveniently obtained from Eq. 9.1 by simply switching
indices 7 and j. Adding Egs. 9.1 and 9.2 together gives

v — [vio — U;0k] + 9 [vjvr — T;0] =
I 0wy, 8 I I

1 8p v’. ap’

Yi O0x; J axi

/ /

v Z(’)xkaxk T ]awkal’k

aU Uk / av;v;c ’

al’k i al’k j

Note that each line in the equation is symmetric: if you switch indices ¢ and j in any
of the lines nothing changes. This is important: since the tensor vz’-v3 is symmetric, all
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terms in its transport equation must also be symmetric. Furthermore, you can check
that the equation is correct according to the tensor notation rules. Indices ¢ and j appear
once in each term (not more, not less) and index % (the dummy index) appears exactly
twice in each term (implying summation). Note that it is permitted to use any other
index than k in some terms (but you must not use ¢ and j). You could, for example,
replace k with m in the first term and with ¢ in the second term; however, usually we
use the same dummy index in every term.
Using v; = ¥; + v}, the first line can be rewritten as

]
/ 73.09/ !5 U
V= [0v), + vjUk + vjvp] + v

. [ﬁjvi, + véﬂk + vg-vﬂ 9.4)

/—
Za:L'k

Using the continuity equation the first terms in the two groups are rewritten as

D + vy, D2y 9.5)

!,
’Uj’l)k

We merge the second terms in the two groups in Eq. 9.4.

A= s a7 ’
’ vtk vl Ov; = T, 0v; + ﬁku’-—av]
J 8:% ¢ al’k J al’k 18:%

9.6)
_ Qv Qi
= ’Uk = ——

The continuity equation was used twice (to get the right side on the first line and to get
the final expression) and the product rule was used backwards to get the second line.
Re-writing also the third terms in the two groups in Eq. 9.4 in the same way, the second
and the third terms in Eq. 9.4 can be written

1oyl 55 oyl oyl
8vivjvk N 8vivjvk

9.7
The second line in Eq. 9.3 is also re-written using Trick 1
10— —— Jovl 1 0v;
——=—vp - == - L+ —p— 9.8
pox; P pon " " 0z, o ©5)

It will later turn out that it is convenient to express all derivatives as 9/dzy,. Therefore
we re-write the derivative in the two first terms as

0 0 0 0
so that
10— 10— 1 ov 1 0
— 4 __/_/_61, Z T o/ 1 0/ J 9.10
Jkpaxkvzp kpaxkv]p + pp oz, + pp B, 9.10)

The third line in Eq. 9.3 is also re-written using Trick 1

L N R AN
Oy, Ui&’rk Oy, Ujaxk Oxy, Oz,
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The product rule is used backwards to merge the two first terms so that the third line in

Eq. 9.3 reads
0 3 ' n , Ov] _ 9y o, 31}
y— 2
8$k 8$k U] 8$k 8$k 81‘k

dvj) 1oV O*v[v), 1oV
9 <Uﬂj>_2yavl v 5, 001 0%

©.11)

- V@xz a:L'k 8$k a:L'k &L'kaxk B 8$k 81‘k

The terms on the fourth line in Eq. 9.3 are zero because ab/ = al/ = 0. We can now
put everything together. Put the first term in Eq. 9.7 on the left side and the second
term on the right side together with Egs. 9.5, 9.10 and 9.11 so that

— Jv; 0v;
= (F, ) ! awa J
I&Ek (vkvlvj)l | —Vjv 3V Dy — v} vka .
Cij-,I Pi]‘,II
9 ToT o7 —= e = 81)21)/‘
- g, + 6»kv§ [+ =0 vp — v
Oz ( k RO T ORGP Oz 9.12)
Di; 101
n 8 / n 81}3 _ 9y 81} (91)
p 81'] (9 €Ty 8$k &L'kl
m, v ' ey IV

Note that the manipulation in Eq. 9.9 allows the diffusion (term III) to be written on a
more compact form. After a derivation, it is always useful to check that the equation is
correct according to the tensor notation rules.

e Every term — or group of terms — should include the free indices ¢ and j (only
once);

e Every term — or group of terms — should be symmetric in ¢ and 7;

e A dummy index (in this case index k) must appear exactly twice (=summation)
in every term

Equation 9.12 can also be written in a simplified easy-to-read symbolic form as
Cij = Pij + Dij +1lij — €45 (9.13)

where II;; denotes the pressure-strain term

o ]1 81); 81);
IL;; = P (8$j + Bz, 9.14)

Equation 9.12 is the (exact) transport equation of the Reynolds stress, W It is called
the Reynolds stress equations. It is an equation for a second-order tensor which con-
sists of nine equations, but since it is symmetric we only need to consider six of them.
Compare Eq. 9.12 with the equation for turbulent kinetic energy, Eq. 8.14. An alter-
native — and maybe easier — way to derive Eq. 8.14 is to first derive Eq. 9.12 and then
take the trace (setting + = j) and divide by two. In both the £ and the v§v§- equations

Reynolds
stress
equations
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Figure 9.1: Channel flow at Re, = 2000. Terms in the v 2 equation scaled by u2 /v. a) Zoom
near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15, 16]. == P;;;
—— gy e Iy —O(Vh0]2) /O2a; 01 O V(2 /O

there is a convection term (I), a production term (II), a diffusion term (III) and a dis-
sipation term (IV). In the vz’-vé equation there is a fifth term (V), see Eq. 9.14, which
is called the pressure strain term. The physical meaning of this term is to redistribute
energy between the normal stress components (if we transform Eq. 9.12 to the princi-
pal coordinates of vjv ’ there are no shear stresses, only normal stresses). The average

of the normal stresses is v’2 = vjv} / 3. For a normal stress that is larger than vt’fv, the
pressure-strain term is negative and vice-versa. It is often called the Robin Hood term
because it — as Robin Hood — “takes from the rich and gives to the poor”. Note that the

trace of the pressure-strain term is zero, i.e.

1 ov o,
Mit =~/ (azz + azz) 0 (9.15)

because of the continuity equation and this is the reason why this term does not appear
in the k equation.
For 2D boundary layer flow, Eq. 9.12 reads

o — 0v; —8@-
0z By TG v+ 8—:@(”2”;”9) = U dxy v%%
0 1. — 1. — c%{v’
92, ( iVjvs + p5j2v§p’+ ;51'2”31’/ - 5:52] (9.16)
el ov; sy ! Ov)
+ p 8% + 8361 a:L'k 8xk

Now let us look at this equation for fully developed channel flow for which

Uy =03 =0
() a() 0 9.17)
(9%1 B aIL'g o
Note that on the second line the streamwise (1) and the spanwise (z3) derivatives

operate on time-averaged quantities; those that operate on instantaneous quantities,
such as in €;; and II;;, are not zero.

pressure
strain

Robin Hood
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Figure 9.2: One-dimensional unsteady heat conduction. In the middle there is a heat source, Q).

9.1 Source terms

In order to analyze the Reynolds stress equation, Eq. 9.16, we will now look at the
source terms. A positive source term in a transport equation, for example @, increases
the value of ®. A simple example is the one-dimensional unsteady heat conduction
equation (Eq. 2.17 with v; = 0)

oT o*T
— =a-——5+ 9.18
o~ %o @ ©.18)
where () is a heat source, see Fig. 9.2. If () is positive, T will increase and vice-versa.

Now we will look at an important source term in the v} U; equation, namely the
production term. The production term in Eq. 9.16 reads

P ol 0v; B v’v’ 0v;
1 72 2
al’g al’g

(9.19)

In fully- developed channel flow, we get for the v/2 V2 =j=1,v (i =35 =2), v_{f
(i=j =3)andvjv} (i = 1, j = 2) equations

(%1
Py = —20ju)—+ . (9.20a)
802
Pyy = 200} o =0 (9.20b)
Py = —20] 2‘%3 -0 (9.20¢)
0
—0vy 6172 —5 001
Py = —vlvl éa— — vjvg 8— = _U/228—$2 (9.20d)

using Eq. 9.17.

Figure 9.1 presents the terms in the v'2 v equation (Eq. 9.16 with i = 7 = 1). As
we saw for the k equation, the production term, P;1, reaches its maximum at zo ~ 11
where also v/? takes its maximum (Fig. 6.8). The pressure-strain term, Ty, and the
dissipation term act as sink terms. In the outer region (Fig. 9.1b) the production term
balances the pressure-strain term and the dissipation term.

The terms in the wall-normal stress equation, v_§2 are shown in Fig. 9.4. Here we
find — as expected — that the pressure-strain term, 52, acts as the main source term.
As mentioned previously, Ilss — the “Robin Hood” term — takes from the “rich” 2
equation and gives to the “poor” v} equation energy because v{? is large and v%? is
small.
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Figure 9.4 presents the terms in the v}2 v equation. As for the v/2 v? equation, the main
source term is the pressure strain term, but it may be noted that here it is positive

near the wall; for the v}? equation it goes negative near the wall since the pressure-

strain term dampens v/ o2

near the wall. Another difference is that the pressure diffusion
term, 28v3p /O, is zero (as it is in the v}? equation), whereas it near the wall gives
an important contribution in the v? equation (it balances the negative pressure-strain
term).

Figure 9.6 presents the terms in the v/ v}, equation. The production term — which
should be a source term — is here negative. Indeed it should be. Recall that v} v} is
here negative and hence its source must be negative; or, rather, the other way around:
vjv} is negative because its production term, Pjs = —v520v; /x>, is negative since
071 /0x2 > 0. Note that in the upper half of the channel 97, /022 < 0 and hence P25
and v} v} are positive. Furthermore, note that the dissipation, €19, is zero. This is be-
cause dissipation takes place at the smallest scales and they are isotropic. That implies
there is no correlation between two fluctuating velocity components, e.g. v{v5 = 0 (in
general, for i # j, the stresses vgvg in isotropic turbulence are zero). Hence, also their
gradients are zero so that

v Ol
€12 = 2Va$k 81‘k =0 (92])

However, very close to the wall, ac;r < 10, €12 # 0 because here the wall affects
the dissipative scales making them non-isotropic; £12 is positive since v{vs < 0, see
Fig. 9.6. When looking at the energy spectrum, neither the production term nor the
dissipation of the mean kinetic energy enters the spectrum, see Fig. 9.3

The main sink term in the v} v} equation is the pressure-strain term, 712, see Fig. 9.6.
But since v{v4 < 0 in the lower half of the channel, it means that it is positive. In order
to understand the sign of 715, we can look at the pressure-strain term in the principal
coordinate directions and transform it to the x1 — x5 coordinate system, see Eq. 11.52.

If you want to learn more how to derive transport equations of turbulent quantities,
see [23] which can be downloaded here
http://www.tfd.chalmers.se/ lada/allpaper.html

9.2 Reynolds shear stress vs. the velocity gradient

In boundary-layer type of flow, the Reynolds shear stress and the velocity gradient
001/ 0z have nearly always opposite signs. For channel flow, for example, Eq. 9.20
shows that P; 2 is negative (and hence also v{v4) in the lower half because 071 /0z2 > 0
and it is positive in the upper half because 071 /dx2 < 0. It can be summarized as:

o Py = is the source term in v/ v/, equation and it is large

— )
2 a o
= Pj9 and v]v} have the same sign. Compare Fig. 9.2 (temperature in °C' and
T = 0 at the boundaries): a negative source, (), gives negative temperature
and vice versa;
9%,
= v/vh and —

8$2

have opposite sign;

|
‘ —

> 0;

,_.\

o~

Q| QO
<

= The production term in the k equation, P* = —v/v
Z2

e P is always positive in fully-developed channel flow;


http://www.tfd.chalmers.se/~lada/allpaper.html
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Figure 9.3: Energy spectrum. Transfer of kinetic energy. The cascade process assumes that the

term in red are negligible (see also Fig. 8.2). The term in blue show the viscous dissipation of
the mean flow.
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Figure 9.6: Channel flow at Re. = 2000. Terms in the v} v}, equation scaled by u% /v. a) Zoom
near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15, 16]. == : Pj2;
== —c12; V: —OU|p' [Oxa; = = Tl1a; +: —O(v|vR)/Ox2; 0 vO* V]l /O3,

T2,B
vh <0
2

T2, A

T2

L.

Z1

Figure 9.7: Sign of the Reynolds shear stress —pv/ v4 in a boundary layer.
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e In general flows, P¥ is almost always positive.

The fact that m and 001 /0x2 almost always have different signs can also be
shown by physical argumentation. Consider the flow in a boundary layer, see Fig. 9.7.
A fluid particle is moving downwards (particle drawn with solid line) from z2 g to
x2, 4 with (the turbulent fluctuating) velocity v4. At its new location the vy velocity is
in average smaller than at its old, i.e. U1 (22,4) < U1(x2,p). This means that when the
particle at x2 p (which has streamwise velocity vq (1:27 B)) comes down to x2 4 (Where
the streamwise velocity is vq (1:27 A)) it has an excess of streamwise velocity compared
to its new environment at zo_4. Thus the streamwise fluctuation is positive, i.e. v > 0
and the correlation between v{ and v5 is in average negative (vjvs < 0).

If we look at the other particle (dashed line in Fig. 9.7) we reach the same con-
clusion. The particle is moving upwards (v) > 0), and it is bringing a deficit in vy
so that v] < 0. Thus, again, vivi < 0. If we study this flow for a long time and
average over time we get vj v, < 0. If we change the sign of the velocity gradient so
that 07 /0z2 < 0 we will find that the sign of v} v} also changes.

In cases where the shear stress and the velocity gradient have the same sign (for
example, in a wall jet) the reason is that the other terms (usually the transport terms)
are more important than the production term.
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Figure 10.1: Two-point correlation.

10 Correlations

10.1 Two-point correlations

WO-point correlations are useful when describing some characteristics of the tur-

bulence. By “correlation”, we mean the tendency for two values or variables to
change together, in either the same or opposite way. Pick two points along the x; axis,
say z{ and 2, and sample the fluctuating velocity in, for example, the z; direction.
We can then form the correlation of v} at these two points as

Bui(ai, 2f) = v{ (z)v) (2) (10.1)

Often, it is expressed as

Bui(at, &1) = vf (a{)v] (= + 1) (10.2)

where 71 = 2 — x{' is the separation distance between point A and C.

It is obvious that if we move point A and C closer to each other, B;; increases;
when the two points are moved so close that they merge, then By; = v2(z{'), see
Fig. 10.1. If, on the other hand, we move point C further and further away from point
A, then By will go to zero. It is convenient to normalize By so that it varies between

—1 and +1. The normalized two-point correlation reads

1
Brerm (p4 7)) = — ! () (28 + (10.3)
11 ( 1 ) U177-ms($i4)vl77-ms($i4+ZC1) 1( 1) 1( 1 )

where subscript rms denotes root-mean-square, which for v/, for example, is defined
as

Ul rms = (@)1/ ’ (10.4)

RMS is the same as standard deviation (Python command np . st d and Matlab/Octave
command std) which is the square-root of the variance (Python command np.var
and Matlab/Octave command var).

Consider a flow where the largest eddies have a length scale of L;,, see Fig. 10.2.
We expect that the two point correlation, B11, approaches zero for separation distance,
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(b) Large integral length scale

Figure 10.2: Schematic relation between the two-point correlation, the largest eddies (thick
lines) and the integral length scale, L;n:.
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|z‘14 — xlc| > L;n: because for separation distances larger than L;,. there is no correla-
tion between v/ (2{') and v} (x¢). Hence, flows with large eddies will have a two-point
correlation function which decreases slowly with separation distance. For flows with
small eddies, the two-point correlation, B11, decreases rapidly with 2.

If the flow is homogeneous (see p.102) in the z; direction, the two-point correlation
does not depend on the location of ¢}, but it is only dependent on the separation of the
two points, 21, i.e.

norm (s, 1 EoY
BT (21) = v (z1)vy (21 + 21) (10.5)

vl,rms

From the two-point correlation, B;1, an integral length scale, L;,:, can be com-
puted which is defined as the integral of B;; over the separation distance, i.e.

o0 B 2,
Lo(an) = [ Dulends) 4o (10.6)

0 vl,rmsvl,rms

The integral length scale represents the length scale of the large energy-containing
eddies. If the flow is homogeneous in the z; direction then L;,; does not depend on
x1, and the integral length scale is then computed as

Lint:/ B (&1)da (10.7)
0

10.2 Auto correlation

Auto correlation is a “two-point correlation” in time, i.e. the correlation of a turbulent
fluctuation with a separation in time. If we again choose the v} fluctuation, the auto
correlation reads

Bii(t4, 1) = v} (tA)v, (1A + 1) (10.8)

where ¢ = t© — ¢4, is the time separation distance between time A and C. If the mean
flow is steady, the “time direction” is homogeneous and B;; is independent on t4: in
this case the auto-correlation depends only on time separation, %, i.e.

B () = vi(t)vi(t +1) (10.9)
where the right side is time-averaged over .
The normalized auto-correlation reads
BN 1 ——7
By () = ———vf ()0} (£ + 1) (10.10)

vl,rms

In analogy to the integral length scale, L;,, the integral time scale, T}, is defined
as (assuming steady flow)

Tint = / By™(t)dt (10.11)
0
The integral time scale represents the time scale of the large energy-containing eddies.

It is used an Assignment (see Section Q.3) for finding time samples that are indepen-
dent (i.e. the time beween the samples is at least one integral timescale).

integral
length scale

integral
time scale
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€2

T
Figure 10.3: Two-point correlation and frozen turbulence.

10.3 Taylor’s hypothesis of frozen turbulence

The autocorrelation, BJ*?"™ (#), is much easier to measure than the two-point correla-

tion, BYY"™(%1). Let us try to obtain the two-point correlation from the autocorrela-
tion.

Consider the velocity fluctuation at point A (i.e. v}*(t)) and B (i.e. v(B(t)), see
Fig. 10.3. Assume that the turbulent fluctuation at point A is transported by the mean
velocity, 91, in a frozen state to point B. This is called Taylor’s hypothesis of frozen
turbulence. This asumption is better the smaller the turbulence intensity, v1 yms/?1. It
takes i1 /01 seconds for the fluid particle at point A to reach point B. Based on Taylor’s
hypothesis we can estimate v} at point A by measuring v} at point B i1 /7; seconds
later. This gives

1 = 1 p——
v (v (1) = P (t + 31 /01)0{P (2)
1,rms 1,rms

By (#) =

Based on Taylor’s hypohesis, the integral length scale can in Fig. 10.3 be estimated
from the integral time scale as
Lins = 01Tins (10.12)
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations

11.1.1 Flow equations

For incompressible turbulent flow, all variables are divided into a mean part (time av-
eraged) and fluctuating part. For the velocity vector this means that v; is divided into
a mean part ¥; and a fluctuating part v} so that v; = ¥; + v;. Time average and we get
(see Eq. 6.9 at. p. 81):

07,
8,%1'
8p()’l_)i 0 @ 821_11' aTij

TR PR P . i

=0 (11.1)

— Bpo(0 —0o)g;  (11.2)

(note that 6 denotes temperature) where pg is a constant reference density, the volume
force fi = —B(0 — 0y)g; and the turbulent stress tensor (also called Reynolds stress
tensor) is written as: L

Tij = povgvg (11.3)
The pressure, p, denotes the hydrodynamic pressure, see Eq. 3.22, which means that
when the flow is still (i.e. v; = 0), then the pressure is zero (i.e. p = 0). We have
assumed that the temperature variations are small (typically smaller than 10 °C') so
that the density variations can be neglected (using pg) in all terms except the gravity
term. This is called the Boussinesq approximation.

The body force f; — which was omitted for convenience in Eq. 6.9 — has here been
re-introduced. The body force in Eq. 11.2 is due to buoyancy, i.e. density differences.
The basic form of the buoyancy force is f; = g; where g; denotes gravitational acceler-
ation. Since the pressure, p, is defined as the hydrodynamic pressure we have re-written
the buoyancy source as

pofi = (p— po)gi (11.4)

so that p = 0 when ¥; = 0 (note that the true pressure decreases upwards as pgAh
where Ah denotes change in height). If we let density depend on pressure and temper-
ature, differentiation gives

(o o
dp = (89>pd9+<8p>9dp (11.5)

Our flow is incompressible, which means that the density does not depend on pressure,
i.e. Op/Op = 0; it may, however, depend on temperature and mixture composition.
Hence the last term in Eq. 11.5 is zero and we introduce the volumetric thermal expan-

sion, 3, so that
po \90 ), (11.6)

dp = —poBdf = p — po = —PBpo(6 — bb)

where [ is a physical property which is tabulated in physical handbooks. For a perfect
gasitis simply 3 = 0! (with 6 in degrees Kelvin). Now we can re-write the buoyancy
term as

(p— po)gi = —poB(0 — 0o)g; (11.7)

Reynolds
stress
tensor

Boussinesq
approximation
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which is the last term in Eq. 11.2. Consider the case where 3 is vertically upwards.
Then g; = (0,0, —g) and a large temperature in Eq. 11.7 results in a force vertically
upwards, which agrees well with our intuition.

11.1.2 Temperature equation

The instantaneous temperature, 0, is also decomposed into a mean and a fluctuating
component as = 6 + #’. The transport equation for 6 reads (see Eq. 2.17 where
temperature was denoted by 1)

06  Ov;0 020
= = 11.
where o = k/(pc,), see Eq. 2.17 on p. 28. Introducing § = 6 + 6’ we get
] =0 27 W7
99  ovf _  0°0  Ovib (11.9)

ot T 0w, “omon, o

The last term on the right side is an additional term whose physical meaning is turbulent
heat flux vector. This is similar to the Reynolds stress tensor on the right side of the
time-averaged momentum equation, Eq. 11.2. The total heat flux vector — viscous plus
turbulent — in Eq. 11.9 reads (cf. Eq. 2.13)

2,to 7 7, tur 85
Qitot _ 4i | Qiturb 9V ray (11.10)

pCp  PCp PCp ox; °

11.2  The exact vjv}; equation

Now we want to solve the time-averaged continuity equation (Eq. 11.1) and the three
momentum equations (Eq. 11.2). Unfortunately there are ten unknowns; the four usual
ones (¥;, p) plus six turbulent stresses, vgv;—. We must close this equation system,; it is
called the closure problem. We must find some new equations for the turbulent stresses.
We need a turbulence model.

The most comprehensive turbulence model is to derive exact transport equations
for the turbulent stresses. An exact equation for the Reynolds stresses can be derived
from the Navies-Stokes equation. It is emphasized that this equation is exact; or, rather,
as exact as the Navier-Stokes equations. The derivation follows the steps below.

e Set up the momentum equation for the instantaneous velocity v; = ¥; + v, —
Eq. (A)

e Time average — equation for v;, Eq. (B)
e Subtract Eq. (B) from Eq. (A) — equation for v}, Eq. (C)
e Do the same procedure for v; — equation for v}, Eq. (D)

e Multiply Eq. (C) with v}; and Eq. (D) with v}, time average and add them together

o 1,0
— equation for v;v;

In Section 9 at p. 106 these steps are given in some detail. More details can also be
found in [23] (set the SGS tensor to zero, i.e. Tiaj =0).

closure
problem
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The final vév} -equation (Reynolds Stress equation) reads (see Eq. 9.12)

8v§v9+1_)k 1)21); _ 7/_1)/% 7/_—1/861- p_’ % n 8_1);
ot ) axkl ) ik Oy, J k@xkl p \Oz; Ox;
Cij ]Dij Hij
9 ] p"U;- p'v; 821}1/'1)/‘
= /oyl 5 ) 5 J
By, | ViV Ve T Ok Ok | (11.11)
Dijt Dijuv
— P 81)/, 81}3
lfglﬂvgﬂ’ — gjﬂvl’ﬂ’l— 21/8—13;0—1%
i T
ij

where D;; ; and D;; ,, denote turbulent and viscous diffusion, respectively. The total
diffusion reads D;; = D;; + D;;,. This is analogous to the momentum equation
where we have gradients of viscous and turbulent stresses which correspond to viscous
and turbulent diffusion. Equation 11.11 can symbolically be written

Cij = Pij + ILij + Dyj + Gij — €ij

C;; Convection

P;; Production

IT;; Pressure-strain

D;; Diffusion

G;; Buoyancy production
€;; Dissipation

Which terms in Eq. 11.11 are known and which are unknown? First, let’s think
about which physical quantities we solve for.

v; 1s obtained from the momentum equation, Eq. 11.2

v;v} is obtained from the modeled @ equation, Eq. 11.101

Hence the following terms in Eq. 11.11 are known (i.e. they do not need to be modeled)
o The left side
e The production term, P;;

e The viscous part of the diffusion term, D;;, i.e. D;’j

e The buoyancy term, G;; (provided that a transport equation is solved for W,
Eq. 11.22; if not, v}’ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.3 The exact v/0 equation

If temperature variations occur we must solve for the mean temperature field, see
Eq. 11.9. Then we need the unknown turbulent heat fluxes, v;6’. To derive its transport
equation, start with the equation for the fluctuating temperature. Subtract Eq. 11.9 from
Eq. 11.8

o0 O a Iy
EnLa—xk(vkeJrva +v,0") =

9?0 vl

11.12
a&zkaxk * 81‘k ( )

To get the equation for the fluctuating velocity, v}, subtract the equation for the mean
velocity v; (Eq. 11.2) from the equation for the instantaneous velocity, v; (Eq. 6.6) so
that

5t T G (kO Bkl ) = —2 2 v Ovivg
T

p Ox; Y orrdwy | 0w
Multiply Eq. 11.12 with v} and multiply Eq. 11.13 with ¢’, add them together and
time average

— g:80" (11.13)

vl d d _

o0 T Vi (VO 0+ 0}8) + 6/ 5 (Biv) + O]+ vioy) (11.14)
0oy P 0% __ '
S am T Y anan T onran 907

The Reynolds stress term in Eq. 11.13 multiplied by 6’ and time averaged is zero, i.e.

A J oviv __
tlgr=_"Jg =0

If you have forgotten the rules for time-averaging, see Section 8.1.
The first term in the two parentheses on line 1 in Eq. 11.14 are combined into two
production terms (using the continuity equation, 0v;,/Oxj = 0)
ov

L U — 11.1
kD Dy, (1115

,U/

The second term in the two parenthesis on the first line of Eq. 11.14 are re-written using
the continuity equation

, 000" o, 59’ o’
0 L= 0 — 11.16
Yi Oxy, * Oxy, Uk 8 Tk + Oxy, ( )
Now the two terms can be merged (product rule backwards, Trick 1)
oo’ ov! ovle’  Ovpvle’
vy | v 00— | =vp—=—— = L 11.17
Uk <vl al’k + 5$k> 8:% 8:% ( )

where we used the continuity equation to obtain the right side. The last two terms
on the first line in Eq. 11.14 are re-cast into turbulent diffusion terms using the same
procedure as in Egs. 11.16 and 11.17

!
9 (vlv),) = kT v;v6 (11.18)

0
Ry T 0 ——
v —(v,0') + axk

L Oxy, oxy,
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The viscous diffusion terms on the right side are re-written using the product rule back-
wards (Trick 1, see p. 94)

%67 0 (59')_ ) ( 89’) 90" ou,

!
AV, ———F—— =V, — | m— | = a—
18xk8xk 18:75;9 a:L'k 81‘k 81‘k 8$k 81‘k

o 0% :y@/i o] :Vi o o} 89’ (’)vk
Inserting Eqs. 11.15, 11.17, 11.18 and 11.19 into Eq. 11.14 gives the transport
equation for the heat flux vector v;6’

(11.19)

81)29’ 0 —— - 90 ——ov;, 0oy 6 —
— 0 = v — — v — —— _ oo
ot + oxy, Uk . Y% oxy, Uk axkl p axi. oxy Ukl
Pio ;e Dot

(11.20)

/ / / /
o (2] v (r2D) - ) L

8:ck al’k al’k 8:ck 0 kaw I—l
L 1 Gio

Do, €i0

where Pjg, I1;9 and D;p ; denote the production, scramble and turbulent diffusion term,
respectively. The production term includes one term with the mean velocity gradient
and one with the mean temperature gradient. On the last line, D;g ., €, and G;9 denote
viscous diffusion, dissipation and buoyancy term, respectively. The unknown terms —
110, Dyg , €19, Gip — have to be modeled as usual; this is out of the scope of the present
course but the interested reader is referred to [24].

It can be noted that there is no usual viscous diffusion term in Eq. 11.20. The
reason is that the viscous diffusion coefficients are different in the v; equation and
the @ equation (v in the former case and « in the latter). However, if v ~ « (which
corresponds to a Prandtl number of unity, i.e. Pr = v/a ~ 1, see Eq. 2.18), the
diffusion term in Eq. 11.20 assumes the familiar form

D (DTN D (O
oxy, al’k Oxy, Oy,
%00’ ) v, %L’ ) o0’
— (=] +v L —y— |
awkal’k 8:% al’k awkal’k al’k lal’k
SRR T A LT B
o Pr/) 0x,0x; oxy, Oxy, oxy, axk
v 92010
= _— 1 — D v
(V + Pr) Oxp0xy i,
where D, ,, cancels the corresponding term in Eq. 11.20 if o = v. Often the viscous

diffusion is simplified in this way. Hence, if oo =~ v the transport equation for v}§’ can
be simplified as

(11.21)

e R— 00  ——ou 09 0 ——
) — 500 = //_7 19! e
ot dm T T gy Y Gy 0wy Day
61;9’7 m; a6’ o (122
S D v; a2
+ (Z/ ) a$k8$kl (l/ + a) 8$k 81‘k Iil

Gie
Dig,v €ig
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The same question arises as for the vz’-v} equation: which terms need to be modeled
in Eq. 11.22? The following quantities are known:

¥; 1is obtained from the momentum equation, Eq. 11.2

0 is obtained from the temperature equation, Eq. 11.9

vl vé is obtained from the modeled v;v’; equation, Eq. 11.101

vz’ﬂ’ is obtained from the modeled W equation
Hence the following terms in Eq. 11.22 are known (i.e. they do not need to be modeled)
The left side

The production term, P;

e The viscous diffusion term, D;g ,,

The buoyancy term, Gy (provided that a transport equation is solved for 0'2; if
not, 6’2 is usually modeled via a relation to k)

11.4 The £ equation

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e.

1 1—
kz—( + V5 Jrv)zivgv;

By taking the trace (setting indices ¢ = j) of the equation for v]v’, vl and dividing by two
we get the equation for the turbulent kinetic energy

ot~ 7ox; U I0x 81:3 830]
Ck Pk 3

(11.23)

a / p/ 1 !,y a2k W
Oz {vj (p + 9 Vi +V8xj8xj %

where — as in the vjv} equation — DF and D¥ denotes turbulent and viscous diffusion,

respectively. The total diffusion reads D¥ = DF + D. Equation 11.23 can symboli-
cally be written:

Ct=Pr 4+ DF +GF —¢ (11.24)
The known quantities in Eq. 11.23 are:
¥; 1is obtained from the momentum equation, Eq. 11.2
k is obtained from the modeled k equation, Eq. 11.97
Hence the following terms in Eq. 11.23 are known (i.e. they do not need to be modeled)

e The left side

e The viscous diffusion term, D¥

e The buoyancy term, G;; (provided that a transport equation is solved for W,
Eq. 11.22; if not, v}¢’ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.5 The € equation

Two quantities are usually used in eddy-viscosity model to express the turbulent vis-
cosity. In the k — € model, k and ¢ are used. The turbulent viscosity is estimated —
using dimensional analysis — as the product of a turbulent velocity, I/, and length scale,
L,

v UL (11.25)

The velocity scale is taken as k'/? and the length scale as k>/2 /e which gives

k2
Vy = CN?

where C, = 0.09. An exact equation for the transport equation for the dissipation

v} O]
e=v——t
8xj 81']'

can be derived (see, e.g., [25]), but it is very complicated and in the end many terms
are found negligible. It is much easier to look at the k£ equation, Eq. 11.24, and to setup
a similar equation for €. The transport equation should include a convective term, C¢,
a diffusion term, D?, a production term, P¢, a production term due to buoyancy, G¢,
and a destruction term, W€, i.e.

O = P° + D° + G° — ¢ (11.26)

The production and destruction terms, P and ¢, in the k equation are used to for-
mulate the corresponding terms in the £ equation. The terms in the & equation have
the dimension [m? /s3] (look at the unsteady term, Ok /0t) whereas the terms in the ¢
equation have the dimension [m?/s%] (cf. 9z/9t). Hence, we must multiply P* and ¢
by a quantity which has the dimension [1/s]. One quantity with this dimension is the
mean velocity gradient which might be relevant for the production term, but not for the
destruction. A better choice should be €/k = [1/s]. Hence, we get

Pe+GE—0F = % (ce1 P + co1 GF — cone) (11.27)

where we have added new unknown coefficients in front of each term. The turbulent
diffusion term is expressed in the same way as that in the £ equation (see Eq. 11.40)
but with its own turbulent Prandtl number, 0. (see Eq. 11.37), i.e.

e 0 v\ O
Df = o, KVJFJE) axj] (11.28)

The final form of the ¢ transport equation reads

Oe Oe € 0 v Oe
— 40— = —(c P* LGP — ¢, — ) = 11.2
ot +UJ8:E]- k(C 1 + a1 G c 25)+ 81']' |:(l/+ J€> 3zj:| ( 9)

Note that this is a modeled equation since we have modeled the production, destruction
and turbulent diffusion terms.
For details on how to derive the constants, see [26].
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11.6 The Boussinesq assumption

In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is introduced to model
the unknown Reynolds stresses in Eq. 11.2. Consider the diffusion terms in the incom-
pressible momentum equation in the case of non-constant viscosity (see Eq. 2.5)

0 0v; (91_)]' —
oz, {V <5$j + 81@) — VU5 (11.30)

Now we want to replace the Reynolds stress tensor, vz’-v}, by a turbulent viscosity, v,
so that the diffusion terms can be written

0 0v; (91_)]'
i 11.31
axj {(V+Vt) <(’)x3 +(’)xl)} ( )
Note that v is not constant. Identification of Egs. 11.30 and 11.31 gives
0v; a’ljj
_ vévé = (&Ej + azi) (11.32)

This is identical to the assumption for the Newtonian, viscous stress for incompressible
flow, see Eq. 2.4. Equation 11.32 is not valid upon contraction * (the right side will be
zero due to continuity, but not the left side). Hence we add the trace of the left side to
the right side so that

=y <§;J + gij> + %51-]-1;;% = —2u5;; + gaijk (11.33)
Now the equation is valid also when it is contracted (i.e taking the trace); after contrac-
tion both left and right side are equal (as they must be) to vjv; = 2k. When Eq. 11.33
is included in Eq. 11.2 we replace six turbulent stresses with one new unknown (the
turbulent viscosity, v4). This is of course a drastic simplification. With the Boussinesq
assumption the momentum equation reads (see Eq. 11.2 and 11.33)

8p061- 8 ( _.__)
ot oy Y (11.34)
_ 9ps | D o5 0w, . '
=22t o [k (5 + 52 )| - et = vl

where the turbulent kinetic energy (last term in Eq. 11.33) has been incorporated in the
pressure, i.e. pp = p+ 2k /3. There is a fundamental difference between 1 and pis:  is
different for each fluid (water, air, methane, ...) and depends mainly on temperature;
¢ depends on the flow, i.e. it is function of the location (u; = pe(;)).

If the mean temperature equation, Eq. 11.9, is solved for, we need an equation for
the heat flux vector, v/¢’. One option is to solve its transport equation, Eq. 11.22.
However, it is more common to used an eddy-viscosity model for the heat flux vector.
The Boussinesq assumption reads

v = —oy (11.35)

¢ 8%

3contraction means that i is set to j
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where o; denotes the turbulent thermal diffusivity. Note that this is the same assump-
tion as Fourier’s law for a Newtonian flux, see Eq. 2.13. The turbulent thermal diffu-
sivity, i, is usually obtained from the turbulent viscosity as

o = 2 (11.36)
g6
where oy is the turbulent Prandtl number; it is an empirical constant which is usually
set to 0.7 < 0y < 0.9. The physical meaning of the turbulent Prandtl number, oy,
is analogous to the physical meaning of the usual Prandtl number, see Eq. 2.18; it
defines how efficient the turbulence transports (by diffusion) momentum compared to
how efficient it transports thermal energy, i.e.

og = 2 (11.37)
Qg
It is important to recognize that the viscosity (v), the Prandtl number (Pr), the
thermal diffusivity («) are physical parameters which depend on the fluid (e.g. water
or air) and its conditions (e.g. temperature). However, the turbulent viscosity (1), the
turbulent thermal diffusivity (o) and the turbulent Prandtl number (o) depend on the
flow (e.g. mean flow gradients and turbulence).

11.7 Modeling assumptions
Now we will compare the modeling assumptions for the unknown terms in the vz J,

Z’-H’ , k and € equations and formulate modeling assumptions for the remaining terms in
the Reynolds stress equation. This will give us the Reynolds Stress Model [RSM] (also
called the Reynolds Stress Transport Model [RSTM]) where a (modeled) transport
equation is solved for each stress. Later on, we will introduce a simplified algebraic
model, which is called the Algebraic Stress Model [ASM] (this model is also called
Algebraic Reynolds Stress Model, ARSM)

Summary of physical meaning:

P;j, Py and P* are production terms of /v, vl 29’ and k
Gij, Gip and G* are production terms of v; ;, ;9’ and k due to buoyancy
D¢, Dig t, D are the turbulent diffusion terms of v/v/; vl j, ;9’ and k

I1;p is the pressure-scramble terms of v}¢’

II;; is the pressure-strain correlation term, which promotes isotropy of the tur-
bulence

€ij, €ip and € are dissipation of v 0 v;0’ and k, respectively. The dissipation
takes place at the small-scale turbulence
11.7.1 Production terms

In RSM and ASM the production terms are computed exactly

—aﬁj 81}1 k 1 —8’171‘
P = _Ug%a_xk a ”/“;‘a K’ P = §P”' = —0v; O

S (11.38)
Py = —vjv — 0 0v;

P
ik al’k al’k
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k is usually not solved for in RSM but a length-scale equation (i.e. € or w) is always
part of an RSM and that equation includes P*.

In the k£ — ¢ model, the Reynolds stresses in the production term are computed
using the Boussinesq assumption, which gives

ov; (91_)]' 2
_’U,E’U;- = UVt (a—x‘7 + axz) — géwk

ov; 0y, 2 ov;
Pk = = i) _ 250
{Vt (8% + 81‘1) 361]k} 8xj
07; 0v;\ 0v; o _
- (3$j " axji) g, VS ) = 2SS
1/ 0v; O, 1 /00 0Oy, ov;
5. = — * Q. == t_ 23 =540
5 2 (al'] + 8%) ’ * 2 (8$j 8%) ’ 8:rj 5ij + *

(11.39)

where on the third line we used the fact that 5;;€2;; = 0 because the product between a
symmetric tensor (5;;) and an asymmetric tensor (£);;) is zero. The incompressibility
condition, 97; /0x; = 0, was used to obtain the third line.

11.7.2 Diffusion terms

The diffusion terms in the k and e-equations in the k¥ — € model are modeled using the
standard gradient hypothesis which reads

0 v ok

E_ Y zt) 2
b= Ox; KVJrUk) 5%}
.0 vy \ Oe
P Oy KVJFUE) 3%‘]

The gradient hypothesis simply assumes that turbulent diffusion acts as to even out
all inhomogeneities. In other words, it assumes that the turbulent diffusion term, Df,
transports k from regions where k is large to regions where & is small. The turbulent
diffusion flux of k is expressed as

(11.40)

== (11.41)

Note that this is the same assumption as Fourier’s law for a Newtonian flux, see
Eq. 2.13. Only the triple correlations are included since the pressure diffusion usu-
ally is negligible (see Fig. 8.3 at p. 101). Taking the divergence of Eq. 11.41 (including
the minus sign in Eq. 11.23) gives the turbulent diffusion term in Eq. 11.40.

Solving the equations for the Reynolds stresses, vév}, opens possibilities for a more
advanced model of the turbulent diffusion terms. Equation 11.41 assumes that if the
gradient is zero in x; direction, then there is no diffusion flux in that direction. A more
general gradient hypothesis can be formulated without this limitation, e.g.

—— Ok
d¥, o o V% Far (11.42)

which is called the general gradient diffusion hypothesis (GGDH). It was derived in
[27] from the transport equation of the triple correlation v}v;v;. In GGDH the turbulent
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flux d¥ +.c» for example, is computed as

, — 0k ok ok
AT e U et éaxg (11.43)
Hence, even if 0k/0xz1 = 0 the diffusion flux d’f)tG may be non-zero. A quantity of
dimension [s] must be added to get the correct dimension, and as in Eq. 11.27 we take

k/e so that

—— 0k
d¥ o= ckEv Uf—— Do (11.44)
The diffusion term, D, in the k equation is obtained by taking the divergence of this
equation
ad; 0 —— Ok
Df = —B4C = 11.45
K O0x; 81:3 Ck V% Gy Oxy, ( )

This diffusion model may be used when the £ equation is solved in an RSM or an ASM.
The corresponding diffusion terms for the ¢ and vgvg equations read

0 k Oe
Di=— (e
b Owy <C UiV Eaxk)

) L G (11.46)
Dot = iy ( S )

Equation 11.46 often causes numerical problems. A more stable alternative is to model
the diffusion terms as in 11.40 which for vjv reads

o',
Djj. = 9 (ﬁ—l J) (11.47)
T,

ok 0T

11.7.3 Dissipation term, ;;

The dissipation term ¢;; (see Eq. 11.11) is active for the small-scale turbulence. Be-
cause of the cascade process and vortex stretching (see Figs. 5.2 and 5.3) the small-
scale turbulence is isotropic. This means that the velocity fluctuations of the small-
scale turbulence have no preferred direction, see p. 75. This gives:

T2 2
1. vl =05 = vy,
2. All shear stresses are zero, i.€.
T _ e g
viv; =0 if i
because the fluctuations in two different coordinate directions are not correlated.

What applies for the small-scale fluctuations (Items 1 and 2, above) must also apply
for the gradients of the fluctuations, i.e.

ovy Ovy  Ovh Ovl,  Ovh v
Oxg vy Owmy Drg Oy, Oy,
al’k 8:%

(11.48)
=0 if i#]
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Figure 11.1: Physical illustration of the pressure-strain term.

The relations in Eq. 11.48 are conveniently expressed in tensor notation as

2
Eij = 5561'3‘ (1 149)

where the factor 2/3 is included so that ¢ = %Eii is satisfied, see Eqs. 11.11 and 11.23.

11.7.4 Slow pressure-strain term

The pressure-strain term, II;;, makes a large contribution to the vgv} equation. In

Section 9 it was shown that for channel flow it is negative for the streamwise equation,
v{2, and positive for the wall-normal, v, and spanwise, v§?, equations. Furthermore,
it acts as a sink term for the shear stress equation. In summary, it was shown that the
term acts as to make the turbulence more isotropic, i.e. decreasing the large normal
stresses and the magnitude of the shear stress and increasing the small normal stresses.
The pressure-strain term is often called the Robin Hood terms, because it “takes from
the rich and gives to the poor”.

The role of the pressure strain can be described in physical terms as follows. As-
sume that two fluid particles with fluctuating velocities v] bounce into each other at O
so that Jv} /Ox1 < 0, see Fig. 11.1. As a result the fluctuating pressure p’ increases at
O so that .

p 83@1
The fluid in the x; direction is performing work, moving fluid particles against the
pressure gradient. The kinetic energy lost in the x; direction is transferred to the xo
and x3 directions and we assume that the collision makes fluid particles move in the
other two directions, i.e.

<0

vl v

— >0, —>0 11.50
8x2 81‘3 ( )

Indeed, if Jv]/0z1 < 0, the continuity equation gives dvy/Oxs + Ovs/Oxs > 0.

However, in Eq. 11.50 we assume that not only their sum is positive but also that they

both are positive. If this is to happen the kinetic energy in the x; direction must be
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larger than that in the 25 and z3 direction, i.e. v}2 > v} and v > v:’f If v ~ v,
the pressure strain re-distributes kinetic energy from both v{? and v%? to vZ?.

Now let’s assume that v/2 > o2 and v/2 > v{2. The amount of kinetic energy
transferred from the z; direction to the x5 and 3 directions, should be proportional to

the difference of their energies, i.e.

o p — — — —5
1271 _F 2 02 2 02
Pom x =g |(F —F) + (F - 7)]

Ppl—= 1/ —5 p |3 1 P 3
:‘z{”? 5(”52”&2)}:—;[5“1‘5( +of + o )}: (2“12 ’“

(11.51)

where t denotes a turbulent timescale. The expression in Eq. 11.51 applies only to
the normal stresses, i.e. the principal axis of v; 3 Let us show that by transform-
ing the fluctuations to a coordinate system which is rotated an angle & = m/4 then
P (O] )0z + OVl /Ox1) x —vjvh (v = /4 corresponds to the special case when the
normal stresses are equal). We express Eq. 11.51 in principal coordinates, (14, Z2x ),
and then transform the equation to (z i x2) by rotating it angle aw = 7/4, see Appendix

Y.1. Replacing u;2 in Eq. Y.6b by v} v}, we get

vh =05 <v1* - vg*) (11.52)

since v}, v, = vh,v},. Now we have transformed the right side of Eq. 11.51 (the
right side on the first line). Next step is to transform the left side, i.e. the velocity
gradients. We use Eqs. Y.6b and Y.6c¢: replacing u12 and ugq by v} /0xe and Ovh /Ox1,
respectively, and adding them gives

ol N vy _ vy, vy,
(9%1 8x2 8351* 81‘2*

(11.53)
the pressure-strain term in Eqs. 11.11 and 11.51 can be written
ovl,  0vf v} vl
=2 L)=p |- 2 11.54
p (8:51 + 8:52) p ((’)xl* 8$2*> ( )

Now we apply Eq. 11.51 in the z;, and —x9, directions (looking at the right side of
Eq. 11.54) so that

v} ol 3p
/ 1x 2% 2 11.
P (8x1* 8x2*) x- 2t (vl* UQ*) 155

Inserting Eqgs. 11.52 and 11.54 into Eq. 11.55 gives finally

o), o 3 —
e L) o —=pvfv) 11.56
(3IE1 + 8@) X~ PUIVy ( )

This shows that the pressure-strain term acts as a sink term in the shear stress equation.
Thus, Egs. 11.51 and 11.56 lead as to write

By =y (2005 T — 25k (11.57)
Ul =P\ 5z, " ba C”)k YT g% '




11.7. Modeling assumptions 133

O
O
U1
—_— O —
X2 O €2
O = = L L
a) I1 b) T3

Figure 11.2: Decaying grid turbulence. The circles (a) and the thin rectangles (b) illustrates part
of the grid which consists of a mesh of circular cylinders.

where ® denotes the modeled pressure-strain term and subscript 1 means the slow part;
the concept “slow” and “rapid” is discussed at p. 134. We have introduced the turbulent
time scale ¢t = k/e and a constant ¢;. This pressure-strain model for the slow part was
proposed by Rotta in 1951 [28].

Let us investigate how Eq. 11.57 behaves for decaying grid turbulence, see Fig. 11.2.
Flow from left with velocity v; passes through a grid. The grid creates velocity gra-
dients behind the grid which generates turbulence. Further downstream the velocity
gradients are smoothed out and the mean flow becomes constant. From this point
and further downstream the flow represents homogeneous turbulence which is slowly
approaching isotropic turbulence; furthermore the turbulence is slowly dying (i.e. de-
caying) due to dissipation. The exact vz’-v;- equation for this flow reads (no production
or diffusion because of homogeneity)

viv', 'O OV
A A i J
== — €4 11.58
U1 o, P (8$j + 81'1) €ij ( )

Rotta’s pressure-strain model is supposed to reduce anisotropy. Thus it should be in-
teresting to re-write Eq. 11.58 expressed in the normalized anisotropy Reynolds stress
tensor which is defined as

1,40
VU 2

L 26 11.59

k 37" ( )
Note that when the turbulence is isotropic, then a;; = 0. We introduce a;; (Eq. 11.59),
Rotta’s model (Eq. 11.57) and the model for the dissipation tensor (11.49) into Eq. 11.58

so that

Qi =

_ (d(kai;) 2 Ok 2
(51 (le —+ 5Z]§a—m> = —C1E€Q45 — §5ij€ (1160)
Analogously to Eq, 11.58, the k equation in decaying grid turbulence reads
dk
U1—— = —¢€ (11.61)

d:z:l
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Inserting Eq. 11.61 in Eq. 11.60 and dividing by k£ we obtain

g doij _ €25 E €
N, —  FM T30 TR

2. ¢ ¢
Qij +§6ijE = Eaij(l—cl) (11.62)
Provided that ¢; > 1 Rotta’s model does indeed reduce non-isotropy as it should.
The model of the slow pressure-strain term in Eq. 11.57 can be extended by in-

cluding terms which are non-linear in vév}. To make it general it is enough to include

terms which are quadratic in vz’-v}, since according to the Cayley-Hamilton theorem, a
second-order tensor satisfies its own characteristic equation (see Section 1.20 in [29]);

[ —3 RS —

H icd oy (3 1a,/ — 14/ ! oyl /! /
this means that terms that are cubic in v;v} (i.e. v;v; = v;v) vy, vy, v;) can be
expressed in terms that are linear and quadratic in v;v}. The most general form of ®;; 1

can be formulated as [30]

1
DQij1 = —c1p [Eaz‘j +c (aikakj - géijauaek)]

(11.63)

aij = — =)

a;; is an anisotropy tensor whose trace is zero. In isotropic flow all its components are
zero. Note that the right side is trace-less (i.e. the trace is zero). This should be so
since the exact form of ®;; is trace-less, i.e. ®;; = 2p’'Ov,/0z; = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain term was developed using phys-
ical arguments. Here we will carry out a mathematical derivation of a model for the
rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in turbulence called the rapid
distortion problem, where a very strong velocity gradient 97;/9x; is imposed so that
initially the second term (the slow term) can be neglected, see Eq. 11.65. It is assumed
that the effect of the mean gradients is much larger than the effect of the turbulence,
ie.

‘a”i /(s/k) — 00 (11.64)
(’)xj

Thus in this case it is the first term in Eq. 11.65 which gives the most “rapid”
response in p’. The second “slow” term becomes important first at a later stage when
turbulence has been generated.

Now we want to derive an exact equation for the pressure-strain term, II;;. Since
it includes the fluctuating pressure, p’, we start by deriving an exact equation for p’
starting from Navier-Stokes equations.

1. Take the divergence of the incompressible Navier-Stokes equation assuming con-

0] ov; .
stant viscosity (see Eq. 6.6) i.e. — |( v, i) = = Equation A.
83%- axj

2. Take the divergence of the incompressible time-averaged Navier-Stokes equation
_ 0v;

v;,— | = ...= Equation
Jaxj) q

0

assuming constant viscosity (see Eq. 6.10) i.e. e (
Xq

B.
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T2, Y2

T1,Y1

Figure 11.3: The exact solution to Eq. 11.66. The integral is carried out for all points, y, in
volume V.

Subtraction of Equation B from Equation A gives a Poisson equation for the fluc-
tuating pressure p’

1 o ov; 0V 9

P =255 (’-"— "») 11.65

P 8$jal’j axj ox; 8$i8$j UiV — VU5 ( )
rapid term slow term

The factor two in the rapid term appears because when taking the divergence of the
convective term there are two identical terms, see right-side of Eq. 8.6. For a Poisson
equation
0% B
(’)xj 8acj

there exists an exact analytical solution given by Green’s formula, see Appendix Z (it
is derived from Gauss divergence law)

1 dyidysd
o(x) = —— F(y)dy1dy2dys (11.67)
ar Jy ly — x|

f (11.66)

where the integrals at the boundaries vanish because it is assumed that f — 0 at the
boundaries, see Fig. 11.3. Applying Eq. 11.67 on Eq. 11.65 gives

'(x) = 2

3 (11.68)

dvi(y) 9v;(y) & ., . —————\| _dy
2 + v, (y)v — vi(y)v)
/| 2 e gy () T |

rapid term slow term

where dy® = dy; dy»dys. Now make two assumptions in Eq. 11.68:

i) the turbulence is homogeneous (i.e. the spatial derivative of all time-averaged
fluctuating quantities is zero). This means that the last term in square brackets
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is zero. This requirement is not as drastic as it may sound (although very few
turbulent flows are homogeneous). This term is indeed very small compared to

the second derivative of the instantaneous fluctuations, v;(y)v’ (y).

ii) the variation of 9v;/0x; in space is small. The same argument can be used as
above: the mean gradient 0v;/0z; varies indeed much more slowly than the
instantaneous velocity gradient, 0v}(y)/Jy;

Assumption i) means that the last term in the integral in Eq. 11.68 is zero, i.e.
2
d*vjv} _
0y:0y;

Assumption ii) means that the mean velocity gradient can be taken outside the integral.
Now multiply Eq. 11.68 with 9v;/0x; + Ov};/dx;. Since this term is not a function of
y it can be moved in under the integral. We obtain after time averaging

Y )

8acj 8,%1'
_ Oty (x) i/ ovl(x) n vy (x)\ duy(y) dy?
Oxy 27 Jy Ox; Ox; Ay |y —x|
o (11.69)
1 ovl(x)  Ovi(x) 0?2 , , dy3
ar Jy ( bz; | om; ) Bydye KO

Ais

Note that the mean velocity gradient, 07/0xy, is taken at point x because it has been
moved out of the integral. In order to understand this better, consider the integral

[P g(e)de
f(:c)—/o T— (11.70)

Note that = and ¢ are coordinates along the same axis (think of them as two different
points along the x axis). If the two points, z and &, are far from each other, then the
denominator is large and the contribution to the integral is small. Hence, we only need
to consider £ points which are close to . If we assume that g(&) varies slowly with &,
9(&) can be moved out of the integral and since z is close to £, Eq. 11.70 can be written
as

L
/() =g(l’)/0 |zdf§| (11.71)

Going from Eq. 11.70 to Eq. 11.71 corresponds to moving the mean velocity gradient
out of the integral. Equation 11.69 can be written on shorter form as

! Ol OV v
% <8—xl + a—xj) = Ai; + Mijkéa_xl; =@ij1 + Pij2 (11.72)
j i

where the first term represents the slow term, ®;; 1 (see Eq. 11.57), and second term is
the rapid term, ®;; » (index 2 denotes the rapid part).
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Now we will take a closer look at the rapid part (i.e. the second term) of M; .
The second term of Mj;, in the integral in Eq. 11.69 can be rewritten as

(%) Oy (y) 9 ( , 8v§(x)> o )a2v;(x)
Uy

e oy op \ 1Y) on Y oy0m;

P (e 0 ()
= m (UZ(Y)UJ‘(X)) - a—yk (Uj(x) Z;xz ) (11.73)

s (775)

9°v}j(x)/dyxOz; on line 1 is zero because v (x) is not a function of y. For the same
reason the last term on line 2 is zero.

Note that the terms above as well as in Eq. 11.69 are two-point correlations, the
two points being x and y. Introduce the distance vector between the two points

Ty =Yi — T4 (11.74)
Differentiating Eq. 11.74 gives
0 0 0
- = = 11.75

Equation 11.74 is a coordinate transformation where we replace x; and y; with
I. z; and r;, or
1I. Yi and ;.

Assumption i) at p. 135 gives that 9/0x; = 0 (Item I) or 9/9y; = 0 (Item II). In other
words, the two-point correlations are independent of where in space the two points are
located; they are only dependent on the distance between the two points (i.e. ;). Hence
we can replace the spatial derivative by the distance derivative, i.e.

o B 0
axi N (’)ri
o 0 (11.76)
ayi o 87’1'
We can now write M;;, in Eq. 11.69, using Egs. 11.73 and 11.76, as
1 0? 0? dr3
=5 | [ () s ()]
= Ton /V [arkam Ve ) ¥ Grear; \) | T (11.77)

= Qijke + Ajike

It can be shown that a;j¢ is symmetric with respect to index j and ¢ (recall that v, and
v} are not at the same point but separated by r;), i.e.

QAijke = Qigk; (11.78)

see Appendix L on p. 437. Furthermore, Eq. 11.77 is independent of in which order
the two derivatives are taken, so that a; ;¢ is symmetric with respect to 4 and £, i.e.

Qijke = Qkjie (11.79)
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Now let us formulate a general expression of a;jre which is linear in vjv

% and
symmetric in (4, ¢) and (i, k). We get

ijke = C103V}V;

+ c20;0v}vy,

+ ¢3(0i5v,,v) + dpjvivy + 00V v + Okevvy) (11.80)

+ c40500irk

+ ¢5(0i50ke + 0100k
Each line is symmetric in (4, ¢) and (4, k). For example, on line 3, term 1 & term 3 and
term 2 & term 4 are symmetric with respect to j and £ and term 1 & term 2 and term 3
& term 4 are symmetric with respect to ¢ and k.

Consider Eq. 11.69. Here it is seen that if ¢ = j then M;;, = 0 due to the
continuity equation; looking at Eq. 11.77 we get

aiire =0 (11.81)
Applying this condition to Eq. 11.80 gives
0 = 16k Vjv) + c26:00jv), + ¢3(30},0) + ki VU] + 83V 0] + Skevjv])
+ c40iedirk + c5(30ke + dirdir)k
= c1vv) + cauyvy, + c3(3v 0] + vy 4+ vv) + 20k0k) (11.82)
+ cadpek + c5(30ke + Ore)k

= v v)(c1 + c2 + 5¢3) + kdpe(ca + 2¢3 + 4es)

Green’s third formula reads (see Appendix L on p. 437)
Qijie = 2’031)2 (1183)
Using Eq. 11.83 in Eq. 11.80 gives
2v§v2 = 3011)31)2 + 02(5ng + 03(5@% + (%% + (51-31);1); + 5%1}21}3)
+ (3cadje + c5(8i0i0 + 0;i0:0) )k
= 3011)31)2 + 2c20,0k + 4C3’U3’1}2 + (3cq + 2¢5)d,0)k
= vivy(3e1 + des) + 6j0k(2c2 + 3ca + 2¢5)

(11.84)

Equations 11.82 and 11.84 give four equations

c1+ca+5c3=0, c4+2c3+4c5 =0

(11.85)
3c1+4c3—2=0, 2co+3cs4+2c5=0
for the five unknown constants. Let us express all constants in ¢ which gives

4410
11

3co + 2
11

_ 50cp 44
55 7

_ 20c2+6
55

c1 c3 Cy4 Ccs (11.86)
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Inserting Eq. 11.86 into Eq. 11.80 and 11.72 gives

0v 0v
¢1J,2 - z]ké i (azjké + a]lké)axlz
—81_)i k 81}
Cl(”é'”%%”’ >“2( Lo Ty 1187
ALt (11.87)

0 8
+c3 (2613Uk1}28 +v (9 + 8 +v 8 +o k za )

ov; 51)] 0v; ~ 0v;
+C4k’( )—f— Sk(azi +8xj)

We find that the ¢; term and the second and third part of the c3 term can be merged.
Furthermore, the co term and the third and fourth part of the c3 term can be merged as
well as the ¢4 and c5 terms; using Eq. 11.85 we get

8 8cy — 2 6 4 .  4-60
Pij2 = *ipij -2 Dij + 2t pk g 762]6513'
' 11 11 11 55
om0 (11.88)
D;; = vvka—fv o,

Finally we re-write this equation so that it is expressed in trace-less tensors

co+ 8 2

8cy — 2 2 60cy — 4 (11.89)
2t (Dij - §5ijpk) ~ 22 ks

11 95

where ca = 0.4. Note that ®;; = 0 as we required in Eq. 11.81. This pressure-strain
model is called the LRR model and it was proposed in [31].

All three terms in Eq. 11.89 satisfy continuity and symmetry conditions. It might
be possible to use a simpler pressure-strain model using one or any two terms. Since
the first term is the most important one, a simpler model has been proposed [31, 32]

Dij0 = —cap ( 5szk> (11.90)

It can be noted that there is a close similarity between the Rotta model and Eq. 11.90:
both models represent “return-to-isotropy”, the first expressed in vév} and the second
in P;;. The model in Eq. 11.90 is commonly called the IP model (IP=Isotropization
by Production) . Since two terms are omitted we should expect that the best value of
~v should be different than (cz + 8)/11; a value of v = 0.6 (c2 = —1.4) was found to
give good agreement with experimental data. Since Eq. 11.90 is a truncated form of
Eq. 11.89 it does not satisfy all requirements that Eq. 11.89 do. Equation 11.90 does
satisfy symmetry condition and continuity but it does not satisfy the integral condition
in Eq. 11.83. Although Eq. 11.90 is a simpler, truncated version of Eq. 11.89, it is
often found to give more accurate results [33]. Since the IP model is both simpler and
seems to be more accurate than Eq. 11.89, it is one of the most popular models of the
rapid pressure-strain term. The coefficients for the slow and rapid terms in the LRR
and LRR-IP models are summarized in Table 11.1
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LRR model | LRR-IP model
c1 (Eq. 11.57 1.5 1.5
cs (Eq. 11.89) 0.4 -
cs (Eq. 11.90) - 0.6

Table 11.1: Constants in the LRR and LRR-IP pressure-strain models.

T2

Z1

e

Figure 11.4: Modeling of wall correction in pressure-strain terms.

11.7.6 'Wall model of the pressure-strain term

When we derived the rapid pressure-strain model using Green’s function in Eq. 11.68
we neglected the influence of any boundaries. In wall-bounded domains it turns out
that the effect of the walls must be taken into account. Both the rapid term in the LRR
model and the IP model must be modified to include wall modeling.

The effect of the wall is to dampen turbulence. There are two main effects whose
underlying physics are entirely different.

1. Viscosity. Close to the wall the viscous processes (viscous diffusion and dissi-
pation) dominate over the turbulent ones (production and turbulent diffusion).

2. Pressure. When a fluid particle approaches a wall, the presence of the wall is felt
by the fluid particle over a long distance. This is true for a fluid particle carried
by the wind approaching a building as well as for a fluid particle carried by a
fluctuating velocity approaching the wall in a turbulent boundary layer. In both
cases it is the pressure that informs the fluid particle of the presence of the wall.

Since the pressure-strain term includes the fluctuating pressure, it is obviously the
second of these two processes that we want to include in the wall model. Up to now
we have introduced two terms for modeling the pressure-strain term, the slow and the
fast term. It is suitable to include a slow and a fast wall model term, i.c.

D =Pij1+ Pijo+ Pijiw + Pijow (11.91)

where subscript w denotes wall modeling.

Consider a wall, see Fig. 11.4. The pressure fluctuations dampens the wall-normal
fluctuations. Furthermore, the damping effect of the wall should decrease for increasing
wall distance. We need to scale the wall-normal distance with a relevant quantity and
the turbulent length scale, k3/2 /&, seems to be a good candidate. For the wall-normal
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fluctuations, the IP wall model reads [34]

£—s
_ 72
D2 1w = —2C10 P

L (11.92)
— i 1.0
f = min 2.55|14 0 (%5 — T50)|€

where n; , (; — ;) denotes the distance to the wall. f may exceed one near the wall
and that’s why we put an upper limit on it. As explained above, this damping is inviscid
(due to pressure) and affects the turbulent fluctuations well into the log-region. It has
nothing to do with viscous damping. Away from the wall, in the fully turbulent region,
the damping function goes to zero since the distance to the wall, |n; o (z; — 24.)
increases faster than the turbulence length scale, k3/2 /<. In the viscous region the wall
model term, ®22 14, is not relevant and should be zero since it should account only for
inviscid damping. Moreover, function f should not exceed one.
The IP wall model for the wall-parallel fluctuations reads

>

€
P11,10 = P33,10 = C1wEU§2f (11.93)

The requirement that the sum of the pressure strain term should be zero. i.e. ®;; 1, =
0, is now satisfied since @11 14 + P22,10w + P33,10 = 0.
The wall model for the shear stress is set as

3 €——
D210 = *iclwgvﬂvéf (11.94)

The factor 3/2 is needed to ensure that ®;; 1,, = 0 is satisfied when the coordinate sys-
tem is rotated. You can prove this by rotating the matrix [®11, 1, P12,1w; P21,1w, P22,10]
and taking the trace of ® in the principal coordinates system (i.e. taking the sum of the
eigenvalues).

The general formula for a wall that is not aligned with a Cartesian coordinate axis
reads [34]

Sy — 3——
Dijiw = Cluw— (v;vinm,wnm,wéij — SV wNw — 5 UV Niwkw | f

k 2 2
(11.95)
An analogous wall model is used for the rapid part which reads

Dij 0w = Cow <@km,2nk,wnm,w5ij - §¢ki,2nk,wnj,w - i@kani,wnk,w f

(11.96)

11.8 The k — ¢ model

The exact k equation is given by Eq. 11.23. By inserting the model assumptions for
the turbulent diffusion (Eq. 11.40), the production (Eq. 11.39) and the buoyancy term
(Egs. 11.35 and 11.36) we get the modeled equation for k

%—i—f’%—y 81_21' 817j 8171+ 4614 85
ot " ox;  "\ox; | 0w ) 0m;

A AAY
Ox; or) Oz

09 O
(11.97)
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In the same way, the modeled € equation is obtained from Eq. 11.29

Je _ Oe € (c’)vi c’)vj) 0v;
Ce1lt +

o Yo, & oz, " oz, ) oz,
z ) (11.98)
n e v 00 € n 0 n v\ Oe
Ce1i———=— —Cea— + — v+ — )| —
=19 k og Ox; 2k O0x; 0. ) Oz
The turbulent viscosity is computed as
k2
v =cp— (11.99)
€
The standard values for the coefficients read
(Cps Cet, Ce2, 0%, 02) = (0.09,1.44,1.92,1,1.3) (11.100)

For details on how to obtain these constants are obtained, see Section 11.14.2 and
Section 3 in Introduction to turbulence models. In that report, details on wall-functions
and low-Reynolds number models can be found in Sections 3 and 4, respectively.

11.9 The modeled v/v/ equation with IP model

With the models for diffusion, pressure-strain and dissipation we get the Reynolds
Stress Model [RSM]

Qv
+ (unsteady term)
ot
T etion)
v = (convection
k ka
0] 0v
—vlv, —L — vy, *  (production)

o)
9
_01% (vgvé — §5ij/<?) (pressure strain, slow part)

2
—Co (Pi» - —(51-ij) (pressure strain, rapid part, IP model))

—51)9 vingn; |f (pressurestrain, wall, slow part)
3
+cow [ Phm,2nkNm0ij — §@ik,znknj

3
—=®,ongn; | (pressurestrain, wall, rapid part, IP model))

2
T
Yy B é ;k (viscous diffusion)
9 ovlv!,
o ;/—Z aTmJ (turbulent diffusion)

— giﬁm —gj BW (buoyancy production)
2
- §55ij (dissipation)
(11.101)
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11.10 Algebraic Reynolds Stress Model (ASM)

The Algebraic Reynolds Stress Model is a simplified Reynolds Stress Model. The

RSM and k£ — £ models are written in symbolic form (see p. 122 & 125) as:
o (11.102)
k—e: C"—D"=P"—¢

In ASM we assume that the transport (convective and diffusive) of vgv}

that of k, i.e.

is related to

vl

Cij — Dij = sz (Ck _Dk)

Inserting Eq. 11.102 into the equation above gives

viv',
Py + @iy —eij = ==+ (PF—¢) (11.103)

Thus the transport equation (PDE) for vgvg has been transformed into an algebraic
equation based on the assumption in Eq. 11.102.

Now we want to re-write this equation as an equation for W Insert the IP models
for ®;; 1 (Eq. 11.57) and ®;; 2 (Eq. 11.90) and the isotropic model for ¢;; (Eq. 11.49)
in Eq. 11.103 and multiply by & /¢ so that

k —— 2 k 2 i 2
gPij — C1 (’Ué’l)é- — g(swk) — ng (Rg — §5z]Pk) — g(swk
k (AT
+E ((I)ij,lw + (I)ij,Q'w) = J (Pk - 5)

Collect all vjv} terms so that

Pk
vjU; ?—1—1—01) =

k 2 2
Z |:]Dij —C2 (Pij - §5ijpk) + Pij1w + q)ij,Qw:| + g&'jk(*l + 1)

o | 7

2
i3 + g(sljk/’(Pk/E —1+Cl)

2 2
Pyl 0= P% |— 2 (Pij - §5ijpk) + ®@ij1w + Pij 2w

where (2/3)0;; Pk /e was added and subtracted at the last line (shown in boxes). Di-
viding both sides by P¥ /e — 1 + ¢; gives finally

2 k(1 —c2) (Pij — 3055P%) + ®ij1w + Pij 2w
c1+ Pk/&‘ -1

(11.104)

In boundary layer flow Eq. 11.104 reads (without any wall terms, i.e. ®;;1, =
DQ;j,20 = 0)
Js
C1 — 1+ CQPk/E kz 81_)1
(c1 — 1+ Pk/e) € Oy

(1 - CQ)

!y
U0y =

[ wol b0

C
i

As can be seen, this model can be seen as an extension of an eddy-viscosity model

where the c,, constant is made a function of the ratio P* /e.
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11.11 Explicit ASM (EASM or EARSM)

Equation 11.104 is an implicit equation for vgv;—, i.e. the Reynolds stresses appear both
on the left and the right side of the equation. It would of course be advantageous to
be able to get an explicit expression for the Reynolds stresses. Pope [35] managed
to derive an explicit expression for ASM in two dimensions. He assumed that the
Reynolds stress tensor can be expressed in the strain-rate tensor, 5;;, and the vorticity
tensor, §2;;. Furthermore, he showed that the coefficients, G™  in that expression can

be a function of not more than the following five invariants

2/ 2\2 = 2/ 2\0..0 .z =

(K /e*)51585,  (K?/e))Q;Qji,  (K*/€%)5i5515hi (11.105)

(kg/eg)iijﬁjkgki; (k4/€4)Qiijk§km§mi

There are five invariants because when 5;; and {);; are transformed to principal coordi-

nates, there are three eigenvalue for each of them. Furthermore, 5;; = 0 which means
there are only five independent invariants.
In two dimension the expression reads

r R S C A C LA SO S (11.106)
’Ui’l)j = 3 ij + - Sij + -2 (Szk kj — zksk]) .

In general three-dimensional flow, the Reynolds stress tensor depends on 10 ten-
Sors, T[j’ [35],1i.e.

_ _ 1
1 _ = 2 _ - . 3 _ - = -
Ty = 5ij, T = 88y — 5%, Ti5 = 3ik8kj — géijsikski

,

o 1. _ _
Th = Qi Orj — §5ijQikaz‘, T = QikSkmSmj — SimSmkQh;

_ _ _ _ 2 _ _
9 _ _ _
T = QiQOkSknsnj - Simskaannj - géijmekasannp

ngo = Qimgmkgknﬁnpﬂpj - Qimﬂmkgkngnpﬁpj
(11.107)

where 77; may depend on the five invariants in Eq. 11.105. Equation 11.107 is a general
form of a non-linear eddy-viscosity model. Any ASM may be written on the form of
Eq. 11.107.

It may be noted that Eq. 11.107 includes only linear and quadratic terms of 5;;
and Qij. That is because of Cayley-Hamilton theorem which states that a second-
order tensor satisfies its own characteristic equation (see Section 1.20 in [29]); hence
cubic terms or higher can recursively be expressed in linear (5;;) and quadratic tensors
(5ik5k;). Furthermore, note that all terms in Eq. 11.107 are symmetric and traceless as
required by the left side, W — 20;;k/3.
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11.12 Derivation of the Explicit Algebraic Reynolds Stress Model
(EARSM)

The algebraic stress model (ASM) is given by Eq. 11.104. This equation is implicit,
since the Reynolds stresses appear on the right side (in the production and the rapid
pressure-strain terms). In this section we will derive an explicit algebraic Reynolds
stress model (EARSM). The derivation presented here is based on [36]. Whereas the
ASM employs the IP model (Eq. 11.90) for the rapid pressure-strain term, the EARSM
is based on the LRR model (Eq. 11.89). Thus we start with Eq. 11.103 using the Rotta
model for the slow part (Eq. 11.57) and the LRR model (Eq. 11.89) for the rapid part.

2 co + 8 2
(aij + g%‘)(Pk —e) =Py - acaiy — —— (Pij - g%‘Pk)

8co — 2 2 60cy — 4 2
_ 2@ (Dij — g(SUPk) — Lkgij — géij{:‘

11 55
(11.108)

where the anisotropy tensor, a;;, in Eq. 11.59 is used on the left side. The wall correc-
tion terms are neglected (as they usually are in the LRR model). Equation 11.108 is
re-arranged as

11

802 -2 2 k 6062 —4 _
11 ( i~ 3% ) 55 W

2 8 2
a;j (P + c1e — &) = Py — 36,5 P* — — (Pij - §5ia‘Pk>
(11.109)

Now we introduce the anisotropy tensor, a;;, also on the right side. Start by ex-
pressing the production term, P;; (see Eq. 11.11) in a;;, 5;; and €);; (see Eq. 9.12)

2 _ 2 _
P = —k(ay + §5ik)(§jk + Qi) — k(a, + §5jk)(§ik + Qir)

4 _ _
_gkgij — kai(Sjk + Qjk) — kaji (S + Quik) (11.110)

4 _ _
= *gkgij — k(8jkaik + ajrdri) + k(aiwQr; — Qirar;)

The production term, Pk s equal to 0.5P;;, and Eq. 11.110 gives
PF = —ksipair (11.111)

so that we can express the P* terms on the right side in Eq. 11.109 as

2 b co + 8 8cog — 2 . 2 _ 9co — 5
g(SUP <—1+ 11 + 11 > = _Séz]kszkazk 11 (11.112)

D;; is the same thing as P;; except that the indices on the velocity gradients (i.e.
the tensors a and €2 in Eq. 11.110 are switched), see Eq. 11.88. Hence we get (cf.
Eq. 11.110)

4 _ _
Dij = _gk/’gij — k(gjka/ki + ajkg;ﬂ-) — k‘(aikﬂkj — Qikakj) (11.113)
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Collect all terms including P;;, 5;; and D;; in Eq. 11.109

Pi<<1—62+8)—8c22D“ 60cy — 4 9co — 5

11

2 _
11 1 DT T gg R~ glikSinain

Inserting Eqs. 11.110 and 11.113 gives

c2+8 4 ~ B - B
k (1 — 211 > <§SZ] — (8jk0ik + ajrSki) + (@inldi; — Qikak]_))

8co — 2 4 ~ B
—k 211 (—gsij — (3jkaki + ajrSki) — (@ipSi; — Qikakj)) (11.114)
20 0 9cg —5  60cy —4
— 3 61] kSikaik 11 — 55 ksl]

Gathering all terms including 5;; gives

4 co + 8 8cy — 2 360cy — 4 8
ks (1- _2 = ks 11.115
53( T 1 s ) 15" ¢ )

The terms including the product of the tensors a and s in Eq. 11.114 read

ca+ 8\ ,_ _ 8ca —2 . B
—k (1 - 21—1) (Sjkaik + a;jiski) + iilk(Sjkaki + ajkSKi) =
1 (11.116)
ﬁ(gjkaki + @;15ki)(9c2 — 5)
and the product of the tensors a and  in Eq. 11.114 read
co+8 ~ ~ 8co — 2 ~ _
(11.117)

k ~ ~
ﬁ(aikﬂk]’ — Qipag; ) (1 + Te2)

Using Eqs. 11.115, 11.116, 11.117 and the underlined term in Eq. 11.114, Eq. 11.114
can now be written

8 _ 1+ 7c _ _
—k1—55ij + kTQ(aika]’ - Qikakj)
_ (11.118)
962 5 _ _ 2 _
+k 11 3jk0ki + OjkSki — §5ijk8¢kaik

Equation 11.118 is the right side of Eq. 11.109. Insert Eq. 11.118 into Eq. 11.109 and
divide by ¢

p* k8 _ k1+7c ~ ~
i <? +o - 1) =-Csit gT(aika]’ = Qirag;)
E962*5
e 11

(11.119)

2
<3jkaki + @i Sk — §5ijk8ikaik>

The coefficient, ca, in the LRR model is usually set to co = 0.4, see Table 11.1.
In [37-39], they noted that the relation in Eq. 11.119 is substantially simplified if co =
5/9. This assumption is made in EARSM [36], which gives

p* I .
Qij (? +c1 — 1) = —1—581']‘ + §(aikﬂkj — Qikakj) (11.120)
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where the strain-rate and vorticity tensors are made non-dimensional

k A k
Sij = Egijz Q= gQij (11.121)

Equation 11.120 can now be written as

6. . .

Naij = —¢58ij + (aixQ; — Qirar;) (11.122)
gpk 9

N=——+a, a= la-1) (11.123)

The most general form of a;; is given by Eq. 11.107. In two-dimensional flow, we
will later show (see Section 11.12.1) that it is sufficient to include only the two first
terms, i.e.

aij = 1855 + Ba(BimQmj — Qimmy) (11.124)

where we now denote the coefficients by 1 and (4 as in [36]. In order to solve
Eq. 11.122, insert Eq. 11.124 which gives

R . A A 6. . . .
N(B15i5 + Ba(8irQj — Qirdrs)) = —=5i5 + (B18ik + Ba(BimQlmk — QLimSmik))j

5
— Qi (51§kj + Ba(Bkm mj — ka§mj))

= —=8i + B1(5ikCj — QirSrj) + Ba(BimQVmr i — 2Qim Smk Qs + Qi Qem Smy)

5
(11.125)

The last tern including 84 can be considerably simplified. Recall that Q11 =090 =0

and Q12 = —Qy1, see Eq. 1.11. We get for the 11 component of Eq. 11.125
o §1mQATnk(:2k1A_ QQ1jn§TiLkQAk1 + QlAkQAkmgAml (11.126)
= 511019021 — 2012822021 + 212021811 = 45110212091

since §11 = —3822 ( $4; = 0 due to continuity). In the same way we get 4§22Q12Q21 for
the 22 component. The 12 component (and the 21 component) read

<§1QOka2 - 2Q1m=§kak2 + Q1]4:ka=§7nQ
= 519001010 — 2012801 Q9 + Q19091510 (11.127)
= 51900119 + 2012801 Qo1 + Q12091510 = 4015091519

We find that the last term including 34 in Eq. 11.125 can be written as 211 5;; where
Ilg = QemQmr = Q12021 + Q210212 = 20212051. Equation 11.125 can now be
re-written as

R . A A 6 . . A A .
N(B13i5 + Ba(8ikSj — Qirdrj)) = —55ij + 518k — QinSrj) + 28411085
(11.128)

Separating 3;; and (§ika]— — Qikékj) we get two equations for 31 and 34

6
NB1 = —= + 28411
NpBy =P

(11.129)
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so that
6 1
Bi= -t
5 N*—2llg (11.130)
G_ 6N
YT UE N2 Z o0,

In order to get the final equation for N, multiply Eq. 11.124 by 3;; and then take the
trace (which is equal to the production P* /e = ai;55:, see Eq. 11.111), i.e.
Pk A A
- = —a;ij35; = —P1lls + Ba(3imQmj — QimBmj) 35 (11.131)
where I1s = 5;;5;;. The 34 term reads

812801 — Q2da1)én1

(3112 — Q12d22) 801
)E
)&

(
(

+ (322001 — Q1811) 512
(

(11.132)
+ (521902 — Q21512)820 = 0
since line 2 and 3 are zero and line 1 and 4 cancel each other (Qu = 7Q21, S12 = 891
and §11 = —8§92). (1 is now obtained from Eq. 11.131 as
Pk
= — 11.133
B1 TIee ( )
Inserting 31 in Eq. 11.130 gives
P _ S N I (11.134)
e B5N2-2[I, ° '
Equations 11.123 and 11.134 gives finally an equation for N
96 N
=—-—=———11 ! 11.1
15N2 21, s ta (11.135)

which is re-written as

27
N(N? - 2IIg) — TolsN - ¢y (N? —2I15) =0
so that
27
N3 —¢|N? — (1—0115 + 2110) N +2c11g = 0.

The analytical solution for the positive root reads [36]

/ 1/3 1/3
N:%+(P1+«/P2) +sign(P1—\/P2)‘P1—\/P2} Py >0
’ 1 P
N=5 49 (P12 - P2)1/6 cos [g arccos <71>

3 VP?— P,

,P2<0

(11.136)
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where 0 < ¢ < 7 in arccos(§) and

1 9 2
Po=(=?+—II¢—=IIg |
1 (2761+20 N 9)01 (11.137)
P,=P? — l(:’2+3H +2H ’ .
2= 91 Ty T3

Equation 11.137 is valid for two-dimensional flow. For three-dimensional flow,
Eq. 11.124 includes more (six) of the terms in 11.107. This derivation is given in [36].
It results in a 6" -order equation for N' which must be solved numerically.

In the original LRR model, ¢; = 1.5 and co = 0.4 (see Table 11.1). In the EARSM,
¢1 = 1.8 and ¢2 = 5/9; recall that this choice of ¢y simplifies the rapid pressure-strain
model (cf. Egs. 11.119 and 11.120).

11.12.1 The linear assumption of a;;

In Eq. 11.124 we made an assumption for the relation of a;; expressed in §;; and Qij.
The argument is as follows [40]. We start from the assumption (cf. Eq. 11.122)

aij = 8ij + (@imSQmj — QLim@my) (11.138)

Since 5;; and Qij are independent, a;; must include one 3;; term, a?j = 5;;. Insert this
on the right side of Eq. 11.138

aij = 8ij + (3imQmj — Qim8my) (11.139)

which gives the term a}; = 8immn; — Qim8m;. We continue to iterate. Inserting a;;

on the right side of Eq. 11.138 gives (a),, = 8ix Qm — QixSm)

aij = 855+ BikQm — Qirdrm) Qg — Qim Bk Qj — Qndng) = 855 — 21054
(11.140)
see Eqgs. 11.125-11.128. We get

aj; o 8 = ay; (11.141)

which shows that it is sufficient to include a?j and a%j and hence Eq. 11.124 is complete.
In 3D, we do not get the relation in Eq. 11.141 but another two iterations are re-
quired which gives five independent a;; (i.e. r = 4).

11.13 Boundary layer flow

In order to better understand the Reynolds stress equation, Eq. 11.101, it is useful to
look at its source terms which to a large degree govern the magnitude of vz’-vé. A

large source term in the equation for the v}? equation, for example, will increase v{?

and vice versa, see Section 9.1. Let us study boundary layer flow (Fig. 11.5) where
Ug ~ 0, 001/0x2 > 0v1/0x1. The production P;; has the form:

(’)T)j —— 0v;

P = —viv, —= — vv),
) i kazk J kaxk
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T2

Figure 11.5: Boundary layer flow.

In this special case we get:

—— 001
P11 = —2’1)3’()/26—1'2
—5 071
Py = — 12771
12 Uy D2
Py =0

Is @ zero because its production term P»g is zero? No! The sympathetic term ®,;,

which takes from the rich (i.e. v{?) and gives to the poor (i.e. v4?), saves the unfair
situation! The IP model for ®;; 1 and ®;; 2 (Eq. 11.57) and ®;; > (Eq. 11.90) gives

e (2 —
@2211 = 61E (gk — ’UéQ) >0

— — _ 2 >
’ 3 3 i)
Note also that the dissipation term for the v{v} is zero, but it takes the value %5 for

the v_’12 and v_§2 equations (see p. 131). Since the modeled v{v} does not have any
dissipation term, the question arises: what is the main sink term in the vj v/ equation?
The answer is, again, the pressure strain term ®15 1 and ®12 o.

11.14 Wall boundary conditions

There are two options for treating the wall boundary conditions.

e Use a coarse mesh near the walls and assume that the logarithmic law applies.
This is called wall functions

e Use a fine mesh near the walls and modify the turbulence models to account for
the viscous effects. This is called Low-Reynolds number models

11.14.1 Wall Functions

The natural way to treat wall boundaries is to make the grid sufficiently fine so that
the sharp gradients prevailing there are resolved. Often, when computing complex
three-dimensional flow, that requires too much computer resources. An alternative is to



11.14. Wall boundary conditions 151

20¢
i
< 10
&)
O,
2 e — Production
G-1o P Dissipation
; ---- Diffusion
ool oConvection

0 260 460 660 860 1060 1200
+
Y
Figure 11.6: Boundary along a flat plate. Energy balance in k equation [41]. Res ~ 4400,
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Figure 11.8: Turbulent kinetic energy in a boundary layer predicted by Large Eddy Simulations
at Rep = 8200 [42].

assume that the flow near the wall behaves like a turbulent boundary layer (see Fig. 6.2)
and prescribe boundary conditions employing wall functions. The assumption that the
flow near the wall has the characteristics of a that in a boundary layer if often not true
at all. However, given a maximum number of nodes that we can afford to use in a
computation, it is often preferable to use wall functions which allows us to use fine
grid in other regions where the gradients of the flow variables are large.
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The log-law we use can be written as

1_)1 1 <Eu7z2>
— ="l
u, K v (11.142)

E=9.0

Comparing this with the standard form of the log-law (see Eq. 6.32)

o )
EL::_ln(u z2)4-3. (11.143)
Ur K v
‘We find that i
B=_-E.
K

We compute the friction velocity from Equation 11.142 as

KU1, p

- In(Eu,dxa/v) (11.144)

Ur

where 01, p is the velocity in the wall-adjacent cell and dx5 is the distance from the cell
center, P, to the wall, see Fig. 11.7. Equation 11.144 is solved by iterating (the newest
value of u; is inserted at the right-hand side at every iteration). The equation converges
very quickly. The wall shear stress, 7, = pu? (see Eq. 6.16) is then used as a force
wall boundary condition for the ©; equation.

In a turbulent boundary layer the production term and the dissipation term in the
log-law region (30 < x§ < 400) are much larger than the other terms, see Figs. 8.3

and 11.6. Hence, we can approximate the modelled k£ equation (see Eq. 11.97) as

_ 2
OWmm<@%pa (11.145)
8$2

where we have assumed that the buoyancy term is zero. In the log-law region the shear
stress —pv} v} is equal to the wall shear stress 7,,, see Eq. 6.25 and Fig. 6.3. The
Boussinesq assumption for the shear stress reads (see Eqs. 6.28 and 11.33)

0v

Tw = —pULy = g (11.146)
Inserting Eq. 11.146 into Eq. 11.145 gives
Ozﬂ—szu—i—e (11.147)
vy vy
which with Eq. 11.99 gives ,
C,= (2—3) (11.148)

From experiments and DNS we have that in the log-law region of a boundary layer
u?/k ~ 0.3 so that C;, = 0.09, see Figs. 6.8 and 11.8 (it may be noted that the
DNS/LES data give a slightly larger values of k/u2 than 1/0.3).

When we are using wall functions k and € are not solved at the nodes adjacent to
the walls. Instead they are fixed according to the theory presented above. The turbulent

C, constant

b.c. for k
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kinetic energy is set from Eq. 11.148, i.e.
kp = C; %2 (11.149)

where the friction velocity u, is obtained, iteratively, from the log-law (Eq. 11.142).
Index P denotes the first interior node (adjacent to the wall).
The dissipation ¢ is obtained from Eq. 11.145. The dissipation can thus be written

as
ud
ep—pPh— U (11.150)
KOTo
where the velocity gradient in the production term P¥ = —v|v,0v; /02 ~ u20v; /Oxo

is computed from the log-law (see Eqgs. 6.27 and 11.142), i.e.

81_)1 7 Ur

02s ~ nots’ (11.151)
For the velocity component parallel to the wall the wall shear stress is used as a
force boundary condition (cf. prescribing heat flux in the temperature equation). When
the wall is not parallel to any velocity component, it is more convenient to prescribe
the turbulent viscosity [26].
The log-law is valid for 30 < z3 < 400. If 23 for some wall-adjacent cells is
small, the friction velocity, -, is obtained from the linear law (see Eq. 6.22), i.e.

5 1/2
U, = <y1—P) (11.152)

6$2

The point at which we switch from the log-law to the linear law is taken at 5 = 11
which is the intersection point of the two laws. For ac;r < 11, 77 is set to zero at the
wall and £ and € are set from Egs. 11.149 and 11.150 taking u, from Eq. 11.152. For
11 < 23 < 30, a combination of the linear law and the log-law is sometimes used. In
many commercial codes they interpolate between the linear law and the log-law for the
velocity, k and . In STAR-CCM+ this is called All y+ Wall Treatment.

11.14.2 Low-Re Number Turbulence Models

In the previous section we discussed wall functions which are used in order to reduce
the number of cells. However, we must be aware that this is an approximation which, if
the flow near the boundary is important, can be rather crude. In many internal flows —
where all boundaries are either walls, symmetry planes, inlet or outlets — the boundary
layer may not be that important, as the flow field is often pressure-determined. For
external flows (for example flow around cars, ships, aeroplanes etc.), however, the flow
conditions in the boundaries are almost invariably important. When we are predicting
heat transfer it is in general no good idea to use wall functions, because the heat transfer
at the walls are very important for the temperature field in the whole domain.

When we chose not to use wall functions we thus insert sufficiently many grid lines
near solid boundaries so that the boundary layer can be adequately resolved. How-
ever, when the wall is approached the viscous effects become more important and for
x; < 5 the flow is viscous dominating, i.e. the viscous diffusion is much larger that
the turbulent one (see Fig. 11.9). Thus, the turbulence models presented so far may
not be correct since fully turbulent conditions have been assumed; this type of models
are often referred to as high- Re number models. In this section we will discuss mod-
ifications of high- Re number models so that they can be used all the way down to the

b.c. for

b.c. for veloc-
ity
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0o 5 10 15 20 25 40
73
Figure 11.9: Flow in fully developed channel flow. Direct numerical simulations [43]. Re =
01,00 /v = 7890 (subscript C' denotes the center of the channel). u./71,c = 0.050. Energy
balance in k equation. Production P*, dissipation e, turbulent diffusion (by velocity triple cor-
relations and pressure) DT + DP, and viscous diffusion D”. All terms have been scaled with
ut/v.

wall. These modified models are called low Reynolds number models. Note that “high
Reynolds number” and “low Reynolds number” do not refer to the global Reynolds
number (for example Rey, Re,, Re, etc.) but here we are talking about the local tur-
bulent Reynolds number Rey = U/ /v formed by a turbulent fluctuation and turbulent
length scale, see Eq. 5.16. This Reynolds number varies throughout the computational
domain and is proportional to the ratio of the turbulent and physical viscosity v; /v, i.e.
Re; o vi/v. This ratio is of the order of 100 or larger in fully turbulent flow and it
goes to zero when a wall is approached.

We start by studying how various quantities behave close to the wall when 3 — 0.
Taylor expansion of the fluctuating velocities v; (also valid for the mean velocities ¥;)
gives

vi :a0+a1z2+a2x§+...
vh = b + byxo + boxs + ... (11.153)
vé :Co+61$2+62$§+...
where ag . . . co are functions of space and time. At the wall we have no-slip conditions,
i.e. v} = vl = v = 0 which gives ag = by = ¢¢. Furthermore, at the wall 9v} /dx1 =

O0vg/dx3 = 0 so that the continuity equation gives 9v5/Oxs = 0. This means that
b1 = 0. Equation 11.153 can now be written

v = a1r2 + agz% + ...
vh = box3 + ... (11.154)
vy =ciwe + comi A+ ...
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Figure 11.10: Flow between two parallel plates. Direct numerical simulations [43]. Re =

D1l /v = 7890. u, /D1 = 0.050. Fluctuating velocity components v; = EZ

From Eq. 11.154 we immediately get

v _% + .. = 0(z2)
o2 =b3zs + .. = O(x3)
W —dd+. _ o)
vivlh = arbex3 + = O(x3)
k = (a2 + 2)r3 + = O(x3) (11.155)
0v1/0x2 =a1+ = O(29)
oy /0xe =a1+ = 0(29)
ovh/0xe = 2baxa + ... = 0O(x3)
Ovs/0xy =ai1+... = O(29)

In Fig. 11.10 DNS data of velocity fluctuations for the fully developed flow in a
channel are presented.

11.14.3 Low-Re k£ — ¢ Models

There exist a number of Low-Re number k — ¢ models [44—48]. When deriving low-
Re models it is common to study the behavior of the terms when x2 — 0 in the exact
equations and require that the corresponding terms in the modelled equations behave
in the same way. Let us study the exact k equation near the wall (see Eq. 8.24).

_ 0k g ok —0v1  Op'v) 0 1———

V1 —— Vy—— = —pPU1Vg— — ——— | =PV

p 181‘1 p 28%2 ! ang 8352 83:2 2p 27
————

O(x3 O(z3
2) (z2) (11.156)
2k ] ol

+ Ma—xg B M@xj c’)xj
——

O(x3)

The dissipation term includes all velocity gradients but most of them go to zero close
to the wall, see Eq. 11.155. The only velocity gradients that do not go to zero are
O} /Oz2 and Ovh /Do and hence e x O(29). The pressure diffusion dp'vh/dxo term
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Figure 11.11: Flow between two parallel plates. Direct numerical simulations [43]. Re =
01,00/v = 7890. u,/01,c = 0.050. Energy balance in k equation. Turbulent diffusion by
velocity triple correlations DT, Turbulent diffusion by pressure DP, and viscous diffusion D".
All terms have been scaled with u /v.

is usually neglected, partly because it is not measurable, and partly because close to
the wall it is not important, see Fig. 11.11 (see also [49]). The modelled equation reads
(see Eq. 11.97)

ok Ok on > 9 [ Ok
PULH =+ Plam— = it o\ 5

83@1 8—552 8$2 O’_k 8$2

O(x3) O(x3) (11.157)
2
HE T NG

When arriving at that the production term is O(x3) we have used

k> _ O(z3) 4
v = CM? = o) " O(z5) (11.158)

Comparing Eqs. 11.156 and 11.157 we find that the dissipation term in the modelled
equation behaves in the same way as in the exact equation when xo — 0. However,
both the modelled production and the diffusion term are of O(x3) whereas the exact
terms are of O(z3). This inconsistency of the modelled terms can be removed by
replacing the C, constant by C,, f,, where f,, is a damping function f, so that

fu=0(x3") (11.159)

when 2o — 0 and f, — 1 when z3 > 50. Now we get v; = O(z3). Please note that
the term “damping term” in this case is not correct since f,, actually is increasing ji;
when x5 — 0 rather than damping it. However, it is common to call all low-Re number
functions for “damping functions”.

Instead of introducing a damping function f,,, we can choose to solve for a modified
dissipation which is denoted &, see Refs. [26, 50]

It is possible to compare the exact and the modeled € equation when deriving damp-
ing functions for the € equation [51]. An alternative way is to study the modelled
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€ equation near the wall and keep only the terms which do not tend to zero. From
Eq. 11.29 we get (note that 9s/dxs = O(29), de/0x1 = O(x9))

pglﬁer{&ﬁ:CElékari ﬂﬁ
o0x1 0xo k 0xo \ 0. 022
1
o) 0@?)  Oxy) O(x2)
, , (11.160)
0% €

+ HouZ Ceap-
N—— W—'_2
0@y) Ofxy7)

The left-side has been written on non-conservative form (see Section 2.4) which makes
it easier to see that the term goes to zero at the wall. Furthermore, it has been assumed
that the turbulent viscosity has been suitable modified so that v; = O(z3). We find that
the only terms which do not vanish at the wall are the viscous diffusion term and the
dissipation term so that close to the wall the dissipation equation reads
0% g2
0=pz—= —Cep—. 11.161

Homg ~ Ce2Py, ( )
This equation needs to be modified since the diffusion term cannot balance the destruc-
tion term when x5 — 0. We multiply the destruction term by fo o< O(x3) For more
details, see [26].

11.14.4 Wall boundary Condition for & and ¢

The wall boundary condition of k is simple. Since the first cell is in the viscous sublayer
(xgr ~ 1) and the turbulent fluctuations are zero at the wall we set

k=0 (11.162)

When setting wall boundary condition for € we look at the k£ equation. The largest
term in the k equation (see Eq. 11.156) close to the wall, are the dissipation term and
the viscous diffusion term which both are of O(z9) so that

2
0:ua—$%—ps. (11.163)

From this equation we get immediately a boundary condition for ¢ as

0%k
Ewall =V . (]]164)
0x3

From Eq. 11.163 we can derive alternative boundary conditions. The exact form of
the dissipation term close to the wall reads (see Eq. 8.24)

B o)\ vy ?
g—u{(au) +(8x2) (11.165)

where 0/0xo > 0/0x1 ~ 0/0x3 and Ov} [0z ~ Ovs/Oxa > Ov/Oxs have been
assumed. Using Taylor expansion gives (see Eq. 11.154)

s:u(a_%+¥)+... (11.166)
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In the same way we get an expression for the turbulent kinetic energy (see Eq. 11.154)

1 /— —
k::§(a%+c%)x§+...

(@ﬂ L@ @)

Comparing Eqs. 11.166 and 11.168 we find

2
(a\/E )
Ewall = 2v .
8$2

so that

In many k& — € models the following boundary condition is used

k
Ewall = 2V_2
Lo

This is obtained by assuming a; = ¢; in Egs. 11.166 and 11.167 so that

£ =2va}

— 422
k= ajz;

which gives Eq. 11.170.

(11.167)

(11.168)

(11.169)

(11.170)

(11.171)
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Figure 12.1: Stable stratification due to positive temperature gradient 89 /93 > 0.

12 Reynolds stress models vs. eddy-viscosity models

In this section we present three fundamental physical processes which Reynolds stress
models are able to handle whereas eddy-viscosity models fail. The reason for the
superiority of the former model is in all cases that the production term is treated exactly,
whereas in eddy-viscosity models it is modeled.

12.1 Stable and unstable stratification

In flows where buoyancy is dominating, the temperature has a large effect on the tur-
bulence through the buoyancy term Gj;, see Eq. 11.11. If the temperature increases
upwards (i.e. 99/0x3 > 0), then the flow is stably stratified. This is illustrated in
Fig. 12.1. Consider 90/0x3 > 0. This means that the density decreases with increas-
ing vertical height, i.e. dp/dxs < 0. If a fluid particle is displaced from its equilibrium
level O up to level 2, see Fig. 12.1, it is heavier then the surrounding at this new level
(po > p2). Hence, the buoyancy forces the particle back to its original position 0. In
this way the vertical turbulent fluctuations are dampened. Similarly if a particle origi-
nating at level 0, is moved down to level 1. Here it is lighter than its new environment,
and buoyancy takes it back to its original level 0.

For the case of unstable stratification, the situation is reversed. Cold fluid is
located on top of hot fluid, i.e. 90/0zx3 < 0 and dp/Ox3 > 0. In Fig. 12.1 we would
then have pa > pg. If a fluid particle at level O is displaced upwards to level 2, it is
at this location lighter than its new environment; hence it continues to move upwards.
If it is moved down to level 1 it is heavier than its new environments and it will then
continue downwards. Hence, turbulent fluctuations are enhanced. This flow situation
is called unstable stratification.

Now we will investigate how the Reynolds stress model behaves in stable con-
ditions, i.e. when 90/0x3 > 0. The production term due to buoyancy reads (see
Eq. 11.11)

Gs3 = 2gBv50’ (12.1)

since g; = (0,0, —g). From the equation for the turbulent heat flux, v4¢’ (i.e. Eq. 11.22
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with ¢ = 3), we find the production term for v46’

Py = _Uévl/“[?—xk — v,’ce’g—;}i (12.2)
In the case illustrated in Fig. 12.1, the production term due to temperature gradient
reads P3g = —v?@é /O0x3 < 0 (recall that we assume that buoyancy dominates so that
the first term in Eq. 12.2 is much larger than the second one). Since the main source
term in the v40’ equation, Psg, is negative, it makes v56’ < 0 so that G33 < 0 (see
Eq. 12.1). Thus, for the case illustrated in Fig. 12.1, we find that the production term,
(33, due to buoyancy yields a damping of the vertical fluctuations as it should. Note
that the horizontal turbulent fluctuations are not affected by the buoyancy term, Gj;,
since G171 = Gao = 0 because the gravity is in the x3 direction (i.e. g1 = g2 = 0).

If the situation in Fig. 12.1 is reversed so that 96/0z3 < 0 the vertical fluctuations
are instead augmented. This is called unstably stratified conditions.

When eddy-viscosity models are used, transport equations are usually not solved
for W Instead the heat flux tensor is modeled with an eddy-viscosity assumption
using the Boussinesq assumption, see Eq. 11.35. The buoyancy term, G*, in the k
equation reads, see Eq. 11.11 (take the trace of G;; and divide by two)

GF = 0.5G;; = —g:iBvi0’ (12.3)

For g; = (0,0, —g), it reads G¥ = g3v50’ which with Eq. 11.35 gives
GF = —gB—— (12.4)

Hence it is seen that in stably stratified conditions, Gk < 0as required. The differ-
ence between an eddy-viscosity model and a Reynolds stress model, is that the former
reduces k whereas the latter reduces only the vertical fluctuations.

12.2 Curvature effects

When the streamlines in boundary layer flow have a convex curvature, the turbulence
is stabilized. This dampens the turbulence [52, 53], especially the shear stress and
the Reynolds stress normal to the wall. Concave curvature destabilizes the turbu-
lence. The ratio of boundary layer thickness § to curvature radius R is a common
parameter for quantifying the curvature effects on the turbulence. The work reviewed
by Bradshaw [52] demonstrates that even such small amounts of convex curvature as
d/R = 0.01 can have a significant effect on the turbulence. In [54] they carried out an
experimental investigation on a configuration simulating the flow near a trailing edge
of an airfoil, where they measured §/R ~ 0.03. They reported a 50 percent decrease
of pv? (Reynolds stress in the normal direction to the wall) owing to curvature. The
reduction of pv/? and —pv) v}, was also substantial. In addition they reported significant
damping of the turbulence in the shear layer in the outer part of the separation region.

An illustrative model case is curved boundary layer flow, see Fig. 12.2. A polar
coordinate system r — 6 with 6 locally aligned with the streamline is introduced. As
vg = vg(r) (with Jvg/0r > 0 and v, = 0), the radial inviscid momentum equation
(i.e. the terms including viscosity are omitted) degenerates to

pvy _Op _

wre =0 (12.5)
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Figure 12.2: Flow in a polar coordinate system illustrating streamline curvature. The streamline
is aligned with the 6 axis.

<

U1 streamline

Figure 12.3: Streamline curvature occurring when the flow approaches, for example, a separa-
tion region or an obstacle.

Here the variables are instantaneous or laminar. The centrifugal force exerts a force in
the normal direction (outward) on a fluid following the streamline, which is balanced
by the pressure gradient. Since we have assumed that Qvg/9r > 0, Eq. 12.5 shows that
the pressure gradient increases with r. If the fluid by some disturbance (e.g. turbulent
fluctuation) is displaced outwards to level A, it encounters a pressure gradient larger
than that to which it was accustomed at r = rq, since (vg), > (vg),, which from
Eq. 12.5 gives (Op/0r), > (Op/0r),. Hence the fluid is forced back to r = r.
Similarly, if the fluid is displaced inwards to level B, the pressure gradient is smaller
here than at » = 7 and cannot keep the fluid at level B. Instead the centrifugal force
drives it back to its original level.

It is clear from the model problem above that convex curvature, when Quvg/9r > 0,
has a stabilizing effect on (turbulent) fluctuations, at least in the radial direction. It is
discussed below how the Reynolds stress model responds to streamline curvature.

Assume that there is a flat-plate boundary layer flow, see Fig. 12.3. The ratio of
the normal stresses pv;2 to pvy is typically 5 (or more). At one x; station, the flow
is deflected upwards. How will this affect turbulence? Let us study the effect of con-
cave streamline curvature. The production terms F;; owing to rotational strains (i.e.
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GV,/0r >0 | OVy/0r < 0

convex curvature stabilizing destabilizing
concave curvature | destabilizing stabilizing

Table 12.1: Effect of streamline curvature on turbulence.

51 (132)

€2

1

Figure 12.4: The velocity profile for a wall jet.

001 /Ox, OV2/0x1) can be written as (see Eq. 11.11):

_ o
RSM, v —eq.: Py = —21}3@58—2 (12.6a)
—_ —= 0o — 00
RSM, v/vl, —eq.: Pig=|—vP—|—vi— 12.6b
y U1Ug — €q 12 vy 571 Uy Dy ( )
o) —— 00y
RSM, v§* —eq.: Pay = —21}11)271 (12.6¢)
2
ov 0v
k—e Pf=uy, (8—“1+ ﬂ) (12.6d)
T o1

The terms in boxes appear because of the streamline curvature.

As long as the streamlines are parallel to the wall, all production is a result of
0v1/0x. However as soon as the streamlines are deflected, there are more terms
resulting from 002 /0x1. Even if Oty /0x1 is much smaller than 0t /Jxo it will still
contribute non-negligibly to Py5 as pv}? is much larger than pvZ?. Thus the magnitude
of Pio will increase (P2 is negative) as 902 /0x1 > 0. An increase in the magnitude of
Py will increase —@, which in turn will increase P and P»y. This means that pvi2
and pv}? will be larger and the magnitude of Pj» will be further increased, and so on.
It is seen that there is a positive feedback, which continuously increases the Reynolds
stresses. The turbulence is destabilized owing to concave curvature of the streamlines.
Note that eddy-viscosity models such as k — ¢ and k — w models cannot account for
streamline curvature since the two rotational strains, 9v1/0z4 and 0Us/dz1, in the
production term are multiplied by the same coefficient (the turbulent viscosity).

Above, we have assumed concave curvature and positive velocity gradient. There
are two other options.

1. If the flow (concave curvature) is a wall jet flow where 9v7/0x2 < 0 in the
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Figure 12.5: The flow pattern for stagnation flow.

outer part (see Fig. 12.4) the situation will be reversed: the turbulence will be
stabilized.

2. If the streamline (and the wall) is deflected downwards, the situation will be as
follows: the turbulence is stabilizing when 0%, /0x2 > 0, and destabilizing for
6’171/6,%2 < 0.

The stabilizing or destabilizing effect of streamline curvature depends on the type
of curvature (convex or concave), and whether there is an increase or decrease in tan-
gential momentum with radial distance from its origin (i.e. the sign of 9Vp/0r). For
convenience, these cases are summarized in Table 12.1. It should be noted that con-
cave or convex depends on from which point the streamline is viewed. The streamline
in Fig. 12.3, for example, is concave when viewed from the wall but convex when
viewed from the origin of the circle with radius r.

12.3 Stagnation flow

The k£ — € model does in this type of flow not model the normal stresses properly,
whereas ASM/RSM do. The production term in the k£ equations for RSM/ASM and
k — ¢ model in stagnation flow (see Fig. 12.5) due to 991 /0x1 and Ovy/dxe (Which
are the dominant strains) is:

—0U; —5 009 ov1 —5 —5
RSM/ASM : 0.5 (P, P —uR I 22 = (2 — 2 12.7
/ (P11 + Po2) = —vg o5 % 9y P (vf —vg’) (12.7)
00y 2 00y 2
k—e:PF=2 — — 12.
€ Vt{<6x1> + <8$2 (12.8)
where continuity 077 /0x1 = —002/0x2 has been employed. In RSM, the two terms

are added with sign. In the & — € model, however, the production will be large because
the difference in sign of the two terms is not taken into account because it includes the
square of the velocity gradients.
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12.4 RSM/ASM versus k£ — < models

e Advantages with £ — ¢ models (or eddy viscosity models):

i) simple due to the use of an isotropic eddy (turbulent) viscosity

ii) stable via stability-promoting second-order gradients in the mean-flow equa-
tions

iii) work reasonably well for a large number of engineering flows

e Disadvantages:

i) isotropic, and thus not good in predicting normal stresses (v;2, v, v%
ii) as a consequence of i) it is unable to account for curvature effects

iii) as a consequence of i) it is unable to account for irrotational strains (stag-
nation flow)

iv) in boundary layers approaching separation, the production due to normal
stresses is of the same magnitude as that due to shear stresses [55].

e Advantages with ASM/RSM:

i) the production terms do not need to be modeled

ii) thanks to i) it can selectively augment or damp the stresses due to cur-
vature effects (RSM is better than ASM because the convective terms are
accounted for) and it is more accurate for boundary layers approaching
separation, buoyancy etc.

e Disadvantages with ASM/RSM:

i) RSM is complex and difficult to implement, especially implicit ASM

ii) numerically unstable because small stabilizing second-order derivatives in
the momentum equations (only viscous diffusion)

iii) CPU time consuming
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13 Realizability

There are a number of realizability constraints. The usual two ones are that all normal
stresses should stay positive and that the correlation coefficient for the shear stress
should not exceed one, i.e.

v >0 forall i
v

vl
“731/2 < 1 no summation over i and j, i # j (13.1)

202

7

These criteria are seldom used in RSMs. However, satisfying the first criteria is actually
of importance for eddy-viscosity models in stagnation flow [56]. Assume that the flow
is in the x; direction and that it aﬂaroaches the wall (see Fig. 12.5). The Boussinesq
assumption for the normal stress v/? reads (cf. Eq. 12.7)

0v 2

— 2
’U/12 = gk/’ — 2Vt87 = gk/’ — 2Vt§11 (13'2)
1

Itis seen that if 511 gets too large then v{? < 0 which is nonphysical, i.e. non-realizable.

Let’s now briefly repeat the concept “invariants”. This means something that is
independent of the coordinate system. Here we mean independent of rotation of the
coordinate system. If a tensor is symmetric, then we know that it has real eigenvalues
which means that we can rotate the coordinate system so that the off-diagonal compo-
nents vanish (see, e.g., [29]). This corresponds to the principal coordinate directions.
For the strain tensor it means that the off-diagonal components of 5;; vanish and this
is the coordinate system where the diagonal components become largest (e.g. 517 in
Eq. 13.2). This is thus the coordinate system in which the danger of negative v{? from
Eq. 13.2 is largest. The equation for finding the eigenvalues of a tensor Cj; is (see
e.g. [29] or [57])

Cij — 60 = 0 (13.3)
which gives, in 2D,
Cn—A Cia
=0 134
Ca Coy — A (134

The resulting equation is
N-PA+13°7 =0
1P = Cy (13.5)
1
P = 5(CisCjj — Ci3Cyj) = det(Cyj)
Since Eq. 13.5 is the same irrespectively of the orientation of the original coordinate

system, it follows that its coefficients 77 and I3% are invariants.
In 3D, Eq. 13.3 gives

Cii—Xx Ci2 Ci3
Cyy Cag — A Cos =0 (13.6)
C31 C32 Cz3 — A
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which gives
NP4 BPA-I3P =0
P =cy
3P = %(Cu-cjj — Ci;Cy5) (13.7)
3P = é (2C;;C,Cri — 3C;;C;Cri + C3iCj; Cri) = det(Cij)

The invariants are I37, I3P and I3P.
Let’s go back to Eq. 13.2 and assume incompressible 2D flow. The first invariant
reads (cf. Eq. 13.5)

Iszgiizgn—i—Egg:)\l—i—)\g:O (13.8)
It is zero due to the continuity equation. The second invariant of 5;; reads
2P = —5,5,;/2, (13.9)

(see Eq. 13.5) which is independent of the orientation of the coordinate system (hence
the name “invariant”). The solution to Eq. 13.5, using Eq. 13.8, is

s & \1/2
Nz =+ (—137)" = (22 (13.10)

The eigenvalues of 5;; correspond to the strains in the principal axis. As discussed
above, we apply Eq. 13.2 in the principal coordinate directions of 5;;. Hence, 511 in
Eq. 13.2 is replaced by the largest eigenvalue so that

— 2
v = 5k:—2ut)\1 (13.11)

The requirement W > 0 gives now together with Eq. 13.11

k E/ 2 \Y?
<= (2 13.12
TPV (Eijgij) ( )

In 3D, Eq. 13.7 instead of Eq. 13.5 is used, and Eq. 13.10 is replaced by [56]

25,5, \ "/
| = <%> (13.13)

This is a simple modification of an eddy-viscosity model, and it ensures that the normal
stresses stay positive.

13.1 Two-component limit

Another realizability constraint is to require that when v/? approaches zero near walls,
it should do so smoothly. One way to ensure this is to require that the derivative of v/?

should go to zero when v/? goes to zero, i.e.

2

V20 = M 13.14
v o7 (13.14)
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where d/dt denotes the material derivative (think of Eq. 13.14 in Lagrangian coordi-
nates, i.e. we follow a fluid particle as it approaches the wall). Equation 13.14 requires
that when v/? approaches zero, the left side (and thus also the right side) of the transport

equation of v/2 should also do so. Since we are here concerned about the pressure-strain

term, we’ll take a look at how it behaves near walls when v/> — 0. This is of some rel-
evance in near-wall turbulence where the wall-normal stress goes to zero faster than the
wall-parallel ones: this state of turbulence is called the two-component limit [58]. The
wall-normal component goes to zero as v5? = O(z4) whereas v}? and v§ go to zero as
O(x3), see Section 4 in Introduction to turbulence models. Neither the form of ®;; o
in Eq. 11.90 nor Eq. 11.89 satisfy the requirement that ®52 » = 0 when vf = 0[30].
In Eq. 11.90, for example,

2
Do 0 — C2§5ijpk #0 (13.15)

even if v? = 0. Very complex forms of ®;; » have been proposed [59] [CL96] which
include terms cubic in W The CL96 model does satisfy the two-component limit.
Another advantage of the CL96 model is that it does not need any wall distances, which
is valuable in complex geometries.

The models of the slow pressure-strain in Eq. 11.57 (linear model) and Eq. 11.63
(non-linear model) do also not satisfy the two-component limit. The Rotta model

(Eq. 11.57), for example, gives

2e
(1)2271 — Clpg 7& 0 (1316)

when 52 — 0. The only way to ensure that $o5 1 — 0 is to make ¢; — 0 when

the wall is approached. A convenient parameter proposed in [58] is A which is an
expression of A and Az (the second and third invariant of a;;, respectively), i.e.

9
A2 = Q;5Qjs, Ag = Q5 QjkQks, A=1- g(AQ — A3) (13]7)
The parameter A = 0 in the two-component limit and A = 1 in isotropic turbulence.

Thus A is a suitable parameter to use when damping the constant ¢; as the wall is
approached.


http://www.tfd.chalmers.se/~lada/postscript_files/kompendium_turb.pdf
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14 Non-linear Eddy-viscosity Models

In traditional eddy-viscosity models the turbulent stress U . is formulated from the
Boussinesq assumption, i.e.

Q5 = —21 SI;J
o 1w oy, 4.1)
Sis — =

J 2 axj (’)xl

where the anisotropy tensor is defined as (see Eq. 11.59)

/
The relation between the stress vgvg and the velocity gradient in Eq. 14.1 is, as can
be seen, linear. One way to make eddy-viscosity models more general is to include

non-linear terms of the strain-rate (i.e. the velocity gradient) [35]. A subset of the most
general form (given by 11.107) reads [60]

aij = 720;[7'81']'

<Szk5kj - _Slk5€k51j> + o7 (Qindry — 5iuQj)
2 _

+ 0573 (Ql@ﬂémsmj + SzéﬂéQOJ - _anﬂnéwmél])

+ 7

3 /- - A A - —
+ c37 | QunQk — _Qékﬂék51j> + cam® (SinSkeQej — QieSn5i))

(14.3)

w

+ CGngkégkégij + C7TBQkéQkZ§ij
o 1 (91_)1' B 817j
e 2 axj axi

where 7 is a turbulent time scale; for a non-linear & — £ model 7 = k/e, and for a non-
linear & — w model 7 = 1/w. The tensor groups correspond to a subset of Eq. 11.107:

2

Line 1: Tzlj ,

Line 2: T} and T}

Line 3: T} and T}

Line 4: T}

Line 5: T1 multiplied by the invariants 55,55, and QoQpe

The expression in Eq. 14.3 is cubic in 07;/0x;. However, note that it is only
quadratic in 5;; and Qij. This is due to Cayley-Hamilton theorem which states that a
tensor is only linearly independent up to quadratic terms, see p. 134; this means that,
for example, Ef’j = 5;15,¢5¢; can be expressed as a linear combination of §§j = 515k
and Sij-

a;j is symmetric and its trace is zero; it is easily verified that the right side of
Eq. 14.3 also has these properties (see Exam 2017-05-30, Answers, Question T3a).
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Examples of non-linear models (sometimes also called explicit algebraic Reynolds
stress models, EARSM) in the literature are the models presented in [36,60-62]. EARSMs
are very popular — especially the model in [36] — in the aeronautical community
where explicit time-marching solvers are used. They are computationally cheap, more
accurate than linear eddy-viscosity models and they do not give rise to any numerical
instabilities as in implicit solvers (like SIMPLE). In implicit solvers a large turbulent
viscosity in the diffusion term of the momentum equations is needed to stabilize the
solution procedure.

Let’s take a closer look on Eq. 14.3 in fully developed channel flow (v = v3 =
9/0x1 = 0/0x3 = 0); we obtain

1
ayp = 127’ <g§;> Cl+662+63)
1 ov
ago — ET <a—1 662 =+ 63)
(14.4)
() ¢
aszs = c1 +c3)
a ——CT%—i—lT on (c+c +c7)
127 " 8$2 4 8$2 ° 6 7
Using values on the constants as in [60], i.e ¢c; = —0.05, co = 0.11, ¢35 = 0.21,
cs = —08¢c5 =0,c6 = —0.5and c; = 0.5 we get
0.82 , [0ty 2. 0.82 vy’
= — — = =—-k+ k —
an 12 T <8$2) vl 3 <8$2>
—05 , (00 \° — 2. 05 oo\’
= — — =2 =k—- —kr?(—
2= (au) 37 12 O (14.5)
016 , (05, =5 2 016, , (du\’
= - el Ay X 1
“Bs= Ty T (am T3\ O
k Ovq
1o = —c, ——1
12 M e Oxo

We find that indeed the non-linear model gives anisotropic normal Reynolds stresses.

In Egs. 14.4 and 14.5 we have assumed that the only strain is 001 /0x2. When
we discussed streamline curvature effects at p. 163 we found that it is important to
investigate the effect of secondary strains such as 902 /9z1. Let’s write down Eq. 14.3
for the strain 92 /0x1

1 o0v
a1 = —7? (ﬂ

1 2 (8’1}2
azg = —=7° [ 5—
(14.6)
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Inserting the constants from [60] (see above) we obtain

oy = 002 (002
D Oy

0.82 , [ 912\”
_ 282 o (OU2 14.7
42 =97 (6301 (147
0.16 . [ vy \>
“33:*372 <8—$i) » a12 =0

As can be seen the coefficient for ags is larger than thatin Eq. 14.5, and hence the model
is slightly more sensitive to the secondary strain, Ot /dx1, than to the primary one,
001 /0x5. Thus, the non-linear models are able to account for streamline curvature, but
due to the choice of constants c5 + cg + ¢7 = 0 this effect is weak.
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15 The V2F Model

In the V2F model of [56, 63, 64] two additional equations, apart from the %k and e-
equations, are solved: the wall-normal stress @ and a function f. This is a model
which aims at improving modeling of wall effects on the turbulence.

Walls affect the fluctuations in the wall-normal direction, @, in two ways. The wall

damping of v_f is felt by the turbulence fairly far from the wall (x§r < 200) through the

pressure field (i.e. the pressure-strain term) whereas the viscous damping takes place

within the viscous and buffer layer (x5 < 10). In usual eddy-viscosity models both

these effects are accounted for through damping functions. The damping of v_f is in
the RSM accounted for through the modeled pressure-strain terms P 1., and ®o2 2,

(see Eqgs. 11.95 and Eq. 11.96). They go to zero far away from the wall (x5 > 400).
In the V2F model the problem of accounting for the wall damping of vZ? is simply

resolved by solving its transport equation. The v equation in boundary-layer form
reads (see Eq. 9.16 at p. 109)

Opvivy | Opvvf 0 ovy , o
_ _ — 15.1
83@1 al’g 8$2 (M + Mt) 8$2 2 8$2 pe22 ( )

in which the diffusion term has been modeled with an eddy-viscosity assumption, see
Eq. 11.47 at p. 130. Note that the production term P>z = 0 because in boundary-layer
approximation U3 < 1 and 0/0x; < 0/0x2. The model for the dissipation term,
€99, 18 taken as

vh?
—“~¢

k

This is a more elaborate model than in RSM (see Eq. 11.49). Add and subtract e53°%¢!
on the right side of Eq. 15.1 yields

model __
€22 =

Dpu1vy  Opiavy

(9%1 81‘2
0 of]  Tow 7w P
—_ — L _ 22 o )2
D23 (1 + put) g Vapy, T PE2t P e — e
In the V2F model P is now defined as
2~ oy V2
’P:—;véa—i—sgg—i—%s (15.3)

so that Eq. 15.2 can be written as

O pvy v 8/)172@ 0

v 2
(9%1 8x2 o 81‘2 l(ﬂ+ﬂt) 81‘2

12

w2 v
+p’P—p%€ (15.4)

P is the source term in the v/?-equation above, and it includes the velocity-pressure
gradient term and the difference between the exact and the modeled dissipation. Note
that this term is commonly split into a diffusion term and the pressure-strain term as

, Op' _ Ouyp’ vy

26—.1’2 8$2 al’g
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Physically, the main agent for generating wall-normal stress is indeed the pressure-
strain term via re-distribution, see example in Section 11.13.
A new variable f = P/k is defined and a relaxation equation is formulated for f

Lzﬁf%%gz)
x3 pk T

as

(15.5)

3/2 3\ 1/4
Lchax{’f_,cn <_) }
£ £

where ®4, is the IP model of the pressure-strain term, see Eqgs. 11.57 and 11.90, the
first term being the slow term, and the second the rapid term. The constants are given
the following values: ¢, = 0.23, Cr =6, cc1 = 1.44, cc2 = 1.9, 0, = 0.9, 0. =
1.3, C1 =13, C, =03, CrL =0.2, C;; =90.
The boundary condition for f is obtained from the v/2 vi? equation. Near the wall, the
5 v} equation reads

2? U/22
0= k——= 15.6
v 0x3 +f k c ( )

The first and the last term behave as O(x3) as x5 — 0 because Taylor analysis gives
vE = O(zd), e = O9) and k = O(22), see Section 11.14.2. Furthermore, £ =
2vk /2% (see Eq. 11.170); using this expression to replace k in Eq. 15.6 gives

2,712 2 12
0°vy  fexs  2v5

0—
03 212 3

(15.7)

Assuming that f and e are constant very close to the wall, this equation turns into an
ordinary second-order differential equation with the solution

4

B
o2
v fAzQJr—— f20y2

Since v’22 = O(x3) as 2 — 0, both constants must be zero, i.e. A = B = 0, so we get

2002 vf2
f=- % (15.8)
e x5

For more details, see [65].
Above we have derived the v/2 vi? equation in boundary layer form assuming that x5
is the wall-normal coordinate. In general, three-dimensional flow it reads

8p17jv2 0] ov? v?
_ k— p—
9z, 0 () 5— oz, +pfk—p ks
an (1)22 1 U2 2
L2 o — N - — 15.
0x;0x; / pk T < k 3) (15.9)

(13’22 Cl ’1}2 Pk
[l P Co—
pk T( )+ ’
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T2

Figure 15.1: Illustration of Eq. 15.12

In the V2F model a transport equation for the normal stress normal to walls is solved
for. If the wall lies in the x1 — x3 plane, then v? = v’22. Howeyver, if a wall lies in

the xo — x3 plane, for example, this means that the transport equation for v4? is turned
into an equation for v2, i.e. v? = v{%. This is done automatically since in the general
formulation in Eq. 15.9, 90 /05 in the expression for ®a is replaced by PF. If the
wall lies in the 25 — 23 plane the largest velocity gradient will be 99 /91 or OU3 /0.

Why does the right side of Eq. 15.5 has the form it has? Far from the wall,
the source term in the v/?-equation simplifies to @92 plus isotropic dissipation (see
Eq. 15.1). This is what happens, because far from the wall when 92 f /023 ~ 0, so that

Eq. 15.5 can be written (T = k/¢)
kf =P — ®oo + (v [k —2/3) (15.10)

When this expression is inserted in Eq. 15.4 we get

Dpv1vl? N dpvavl D

12
)

8$2

2
Doy — = 15.11
8351 8362 8x2 +p 2 3p€ ( )

(1 + pt)

which is the usual form of the modeled v/2-equation with isotropic dissipation. Near
the wall, the diffusion term 92 f /0z% makes f go from the value of its source term to
its (negative) wall value (see Eq. 15.8) over the lengthscale L. This is how the influence
of the source term P in Eq. 15.4 is reduced as the wall is approached. The behavior of
the equation for f (Eq. 15.5) is illustrated in Fig. 15.1 where the equation
2 0%f
L' —-f+5=0 (15.12)
0x3
has been solved with f = 0 at the wall and with different L and S.
As can be seen, f is, as required, reduced as the wall is approached. Furthermore,
f approaches the value of the source term as 2 > L. The influence of the lengthscale
L is nicely illustrated: the larger L, the further away from the wall does f go to its
far-field value.
In the V2F model the turbulent viscosity is computed from

vy = CQ T (15.13)
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The k and e-equations are also solved (without damping functions). For conve-
nience, the boundary conditions are given again

k=0, v =0
e = 2wk /r} (15.14)
f:_20u2v_§

exg

The boundary condition for f makes the equation system numerically unstable.
One way to get around that problem is to solve both the k, € and v, f equations
coupled [65]. An alternative is to use the ¢ — f model [66] which is more stable. In

this model they solve for the ratio v5? /k instead of for v5? which gives a simpler wall
boundary condition for f, namely f = 0.

15.1 Modified V2F model

In [67] they proposed a modification of the V2F model allowing the simple explicit
boundary condition f = 0 at walls. They introduced a new variable

f*=f—5ev? /K>

and they neglected the term

—5L2 o2 ﬁ
a$jall'j k2

The resulting v_§2 and f*-equation read [67]

ovjv? 0 Ov? v?
- - * 66— 15.1
8xj 8xj |:(l/ + l/t) 8@} + kf 6 k c ( > 5)
0% f* 1 v? 2 p*
7L2 x o = -1 L
4T =7 [(cl 6% -~ 2 )} TyeRs
ov;  0v;\ 0,
k __ 1 J 7
P = e <8$J + 8:131> (’)xj

(15.16)
T = max {E,G (K)l/Q}
€ €

3/2 3\ 1/4
L:chaX{k_,cn (_) }
g e

Boundary conditions at the walls are

E=0,02=0
e =2uk/x3
fr=0

This modified model is numerically much more stable. Note that the modified model
is identical to the original model far from the wall.
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15.2 Realizable V2F model

The realizable condition for stagnation flow (see p. 165) is used also for the V2F model,
and they read [67]

.|k 0.6k
T = min |—, 1%
€ V60,02 (5i545) (15.17)
3/2 13/2 '
L = min , 72
€ VBC,v? (25,5,)"

These realizable conditions have been further investigated by Sveningsson [65,68-71],
and it was found that the limitation on 7' is indeed important, whereas that for L is
not. Furthermore, it was found that it is important to impose the limitation on 7" in
a consistent manner. For instance, if the limit is used in the f equation, it must for
consistency also be used for € /k in Eq. 15.15.

15.3 To ensure that v* < 2k/3

In the V2F model, v? denotes the generic wall-normal stress. Thus it should be the
smallest one. This is not ensured in the V2F models presented above. Below the
simple modification proposed by [72] is presented.

The source term k f in the v2-equation (Eq. 15.15) includes the modeled velocity-
pressure gradient term which is dampened near walls as f goes to zero. Since v?
represents the wall-normal normal stress, it should be the smallest normal stress, i.e.
v < v and v < v, and thus v should be smaller than or equal to k. In
the homogeneous region far away from the wall, the Laplace term is assumed to be
negligible i.e. 9% f/0z;0x; — 0. Then Eq. 15.16 reduces to f = right side.

It turns out that in the region far away from the wall, the Laplace term is not negli-
gible, and as a consequence v? gets too large so that v? > %kz A simple modification
is to use the right side of Eq. 15.16 as an upper bound on the source term k f in the
v2-equation, i.e.

2k
02 puree = Min {kf, f% {(01 —6)v? — 3(01 — 1)] + OQP’“} (15.18)

This modification ensures that v? < 2k /3. For more details, see [72].
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Figure 16.1: Flow around an airfoil. Pressure contours. Red: high pressure; blue: low pressure

16 The SST Model

The SST (Shear Stress Transport) model of [73] is an eddy-viscosity model which
includes two main novelties:

1. Itis combination of a kK —w model (in the inner boundary layer) and £ — € model
(in the outer region of the boundary layer as well as outside of it);

2. A limitation of the shear stress in adverse pressure gradient regions.

The k — ¢ model has two main weaknesses: it over-predicts the shear stress in
adverse pressure gradient flows because of too large length scale (due to too low dis-
sipation) and it requires near-wall modification (i.e. low-Re number damping func-
tions/terms). Various k—w models are presented in Section 4 Introduction to turbulence

One example of adverse pressure gradient is the flow along the surface of an airfoil,
see Fig. 16.1. Consider the upper surface (suction side). Starting from the leading edge,
the pressure decreases because the velocity increases. At the crest (at z/c ~ 0.15)
the pressure reaches its minimum and increases further downstream as the velocity
decreases. This region is called the adverse pressure gradient (APG) region.

The k£ — w model is better than the £ — € model at predicting adverse pressure
gradient flow and the standard k& — w model of [74] (see also [26]) does not use any
damping functions. However, the disadvantage of the standard £ — w model is that it is
dependent on the free-stream value of w [75,76].

In order to improve both the k — ¢ and the £ — w model, it was suggested in [73]
to combine the two models. Before doing this, it is convenient to transform the & — ¢
model into a k — w model using the relation w = ¢/(8*k), where 5* = ¢,,. The left-
hand side of the w equation will consist of the convection term, dw /dt, which denotes
the material derivative, assuming steady flow, see Eq. 2.26. Let us express the left-
hand side of the w equation as a combination of the left-hand sides of the ¢ and the k&
equations by using the chain rule, i.e.

do _d (e \__1de  edi/k)
dt — dt \p*k) prkdt p* dt
1 de e db 1 de wdk

T Bkdt  BkZdt  Bkdt  kdt

(16.1)
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Now we have transformed the left side of the w equation. The right side should be
transformed in the same manner. For example, the production of the w equation will
consist of two terms, one term from the € equation

1
MPE (the first term at the right side in Eq. 16.1) (16.2)
and one from the k£ equation

- %Pk (the second term at the right side in Eq. 16.1) (16.3)

In the same way we transform the entire right side inserting the modeled equations for

k and ¢ so that
D 1 1
_w:[ﬂ_pa_i‘)pk]_[ N _f\yk}_,_

Dt *k k B*k ° ok
Production, P, Destruction, ¥,
16.4
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Turbulent diffusion, Dw ' Viscous diffusion. D~
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k (16.5)
— (Cgl 1)EP]C
e Destruction term
1 w 1 e w
U= W= U= 2 Coom — =
e L Sy A A (16.6)
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e Viscous diffusion term
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The turbulent diffusion term is obtained as (the derivation is found in [77] which
can be downloaded from http://www.tfd.chalmers.se/"lada)

2
DE _ 2uy 0k Ow g Ut 0 kJr
ok 830] 61:] o da3

+ Y i_ 6% 5k+i v Ow
k \ o 8% Oz;  Oxj \ 0c Oz

(16.8)
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In the standard & — € model we have o, = 1 and 0. = 1.3. If we assume that o, = o,
in the second and third term of the right-hand side, we can considerably simplify the
turbulence diffusion so that

DT — v Ok 8_w 0 (l/t 8w) (16.9)

= k0w, 0w, | 9, \ 0. 02,

We can now finally write the € equation formulated as an equation for w
o ,_ 0 v\ Ow W ok 9
o) = “pk_
Oz (B5) Oz {(V—’— O’E) 8xj] +ak pe

2 v\ Ok Ow (16.10)
7z (”*;) 0z; 0z,

a=C.—1=044,8=(Cey — 1)3* = 0.0828

Since the £ — ¢ model will be used for the outer part of the boundary layer, the vis-
cous part of the cross-diffusion term (second line) is usually neglected (the viscous
terms are negligible in the outer region). The turbulent viscosity is computed as (using
dimensional analysis)
vy = — (16.11)
w
In the SST model the coefficients are smoothly switched from k£ — w values in the
inner region of the boundary layer to k — ¢ values in the outer region. Functions of the
form

(16.12)

P = tanh(£4), ¢ = min lmax{ vk 500”} 402k ]

Brwy’ y*w |7 CD,y?

are used. F; = 1 in the near-wall region and F} = 0 in the outer region. The /-
coefficient, for example, is computed as

Bsst = F1Bk—w + (1 — F1)Br—- (16.13)

where [Br_., = 0.075 and 8;_. = 0.0828. Since the standard k& — w model does
not include any cross-diffusion term, the last term in the w equation (second line in
Eq. 16.10) should only be active in the k —  region; hence it is multiplied by (1 — F}).

At p. 176 it was mentioned that the £ — w model is better than the £ — ¢ model
in predicting adverse pressure-gradient flows because it predicts a smaller shear stress.
Still, the predicted shear stress is too large. This brings us to the second modification
(see p. 176). When introducing this second modification, the author in [73] noted that
a model (the Johnson - King model [JK]) which is based on a transport equation of
the main shear stress v]v5, predicts adverse pressure gradient flows much better than
the & — w model. In the JK model, the v} v} transport equation is built on Bradshaw’s
assumption [78]

— vjvh = a1k (16.14)
where a1 = c}/ 2= £*1/2 In boundary layer flow, the Boussinesq assumption can be
written as

_ _ _ o 2]1/2 1/2
g k0w ek 0u gy ek (00 _ ez (B
172 w, Oz e  Oxo w €2 \ Oxs w €
vi,k—w vi k—e

(16.15)



16. The SST Model 179

It is found from experiments that in boundary layers of adverse pressure gradient flows,
the production is much larger than the dissipation (P* > ¢) and that —v/ v} ~ ci/2k:.
When the Boussinesq assumption is used in the & — w model for adverse pressure

gradient flows, P* >> ¢, and hence (see Eq. 16.15)

AN
V105
1/2
¢/ k

> 1 (16.16)

which explains why the Boussinesq assumption over-predicts the shear stress and works
poorly in this type of flow (recall that according to experiments —@ ~ c,l/ 2k). To
reduce |vjv}| in Eq. 16.15 in adverse pressure gradient flow, [73] proposed to re-define
the turbulent eddy viscosity including the expression in Eq. 16.14. We have two ex-
pressions for the turbulent viscosity (expressing a Johnson-King-turbulent viscosity
with the Boussinesq assumption)

o, 01/2
vy = é 2 — %~ Johnson-King (16.17a)
ko %k
=== 2k —wmodel (16.17b)
w /2
¢l Tw

where () is the absolute vorticity (in boundary layer flow Q = 9%, /0x5); in (a) the
Boussinesq assumption together with Eq. 16.14 were used and (b) is taken from the
k — w model. We want (a) to apply only in the boundary layer and hence we multiply
it with a function F5

2vk 500
F = tanh(€?), ¢ = max i, v (16.18)
Brwy’ y?w
Then we take the minimum of (a) and (b) so that
1/2)
v = “u (16.19)

max(c,l/Qw, Q)

When the production is large (i.e. when  is large), Eq. 16.19 reduces v; according to
the Johnson - King model, i.e. Eq. 16.17a. It is important to ensure that this limitation
is not active in usual boundary layer flows where P* ~ . It can be seen that v; is

reduced only in regions where P* > ¢, because if P* < ¢ then € < ¢/ %w since

~ 1 - wop W
0% = V—tthQ = EP <ge= cuw? (16.20)
Hence, in regions where P* < ¢, Eq. 16.19 returns to v; = k/w as it should.
To summarize the SST modification:

o the second part, c}/ ’k /€ in Eq. 16.19 (which mimics the Johnson-King model),
is active in APG flow

e the first part, k/w in Eq. 16.19 (which corresponds to the usual Boussinesq
model), should be active in the remaining part of the flow. Equation 16.20 shows
that (it is likely that) the second part is active only in APG regions and not else-
where.
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Today, the SST model has been slightly further developed. Two modifications have
been introduced [79]. The first modification is that the absolute vorticity 2 in Eq. 16.19
has been replaced by |5| = (25;;5;;)'/? which comes from the production term using
the Boussinesq assumption (see Eq. 11.39), i.e.

_ 0v; 0v;\ 07v; o _ o
|51 = (8xj + 8;1) 2, 2815 (5i5 + Qhij) = 255554

Q. — 1/ 0v; 0v;

K 2 835]- 83:1
where 5;;€2;; = 0 because 3;; is symmetric and §;; is anti-symmetric. Equation 16.19
with |3| limits v in stagnation regions similar to Eq. 13.12. The second modification

in the SST model is that the production term in the new SST model is limited by 10e,
ie.

(16.21)

Pinew = min (P*,10¢) (16.22)
The final form of the SST model is given in Eq. 20.5 at p. 213.
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17 Overview of RANS models

This section presents a short overview of the presented RANS models. First the models
can be classified as models based on eddy viscosity (i.e. turbulent viscosity) or models
in which equations are solved (algebraic or differential) to obtain the Reynolds stress
tensor, vgvé. Eddy-viscosity models, which are based on the Boussinesq assumption,
see Eq. 11.33, are

e standard k£ — ¢ (see Section 11.8) and k£ — w models

e combination of k — ¢ and £ — w models such as the SST model, see Section 16.
There are more elaborate eddy-viscosity models such as

e non-linear models, see Section 14
Models not based on the eddy-viscosity are the Reynolds stress models such as

o the Reynolds stress transport model (RSM or RSTM), in which transport equa-
tions are solved for vz’-v}, see Eq. 11.101.

o the Algebraic Reynolds stress model, ASM, in which algebraic equations are
solved for vévé, see Eq. 11.104.

e explicit Algebraic Reynolds stress models, in which explicit algebraic equations

are solved for vz’-v;, see Section 11.11.

Finally, there is a class of models which are somewhere in between two-equation eddy-
viscosity models and Reynolds stress models, and that is

e V2F models, see Section 15

The V2F model is an eddy-viscosity model and the model is based on four transport
equations.

Eddy-
viscosity
models

non-linear
models

RSM

ASM
explicit ASM

V2F
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Figure 18.1: Filtering the velocity.

18 Large Eddy Simulations

18.1 Time averaging and filtering

IN CFD we time average our equations to get the equations in steady form. This is
called Reynolds time averaging:

1 T
(@) = —/ O(t)dt, & = (D) + &’ (18.1)
2T J_r
(note that we use the notation {.) for time averaging). In LES we filter (volume average)
the equations. In 1D we get (see Fig. 18.1)

B x+0.5Ax
O(z,t) = A_x/ ia (&, t)dE

=0+ 9"

Since in LES we do not average in time, the filtered variables are functions of space
and time. The equations for the filtered variables have the same form as Navier-Stokes,
ie.

o, o0 1 9p 0%y, oTij
+ 5 (0iv;) = —— v -
ot Ox; p Ox; Ox;0x;  Oz; (18.2)
90 _ '
(’)xi -
where the subgrid stresses are given by
Tij = ViUj — @i’l_)j (183)

It should be noted that it is formally incorrect to denote 7;; as a stress since the density
is omitted (see, e.g., the text below Eq. 6.10 and Eq. 11.3). Contrary to Reynolds time
averaging where (v}) = 0, we have here

vl #0

51'7&1_)1'
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This is true for box filters. Note that for the spectral cut-off filter v; = v;, see
p- 185. However, in finite volume methods, box filters are always used. In this course
we use box filters, if not otherwise stated.

Let’s look at the filtering of Eq. 18.2 in more detail. The pressure gradient term, for
example, reads

Op 1 Op

or. v /V Ry av (18.4)
Now we want to move the derivative out of the integral. When is that allowed? The
answer is “if the integration region is not a function of z;”, i.e. if V' is constant. In finite
volume methods, the filtering volume, V, is (almost always) identical to the control
volume. In general, the size of the control volume varies in space. Fortunately, it can
be shown that if V' is a function of x;, the error we do when moving the derivative out
of the integral is proportional to (Az)? [80], i.e. it is an error of second order. Since

this is the order of accuracy of our finite volume method anyway, we can accept this
error. Now let’s move the derivative out of the integral, i.e.

a—P_i 1 2y _ 0D 2
el (V /VpdV) + 0O ((Az)?) = o2, + O ((Az)?) (18.5)

All linear terms are treated in the same way.
Now we take a look at the non-linear term in Eq. 18.2, i.e. the convective term.
First we filter the term and move the derivative out of the integral, i.e.

(’)g;?;g — % (% /V’Ui’UjdV) +0 ((AJ;)Q) = %(Uivj) +0 ((AJ})Q)

J

There is still a problem with the formulation of this term: it includes an integral of a
product, i.e. T;v;; we want it to appear like a product of integrals, i.e. v;0;. To achieve
this we simple add the term we want (0;7;) and subtract the one we don’t want ( v;v;)
on both the right and left side. This is how we end up with the convective term and the
SGS term in Eq. 18.2.

The filtering in Eq. 18.2 is usually achieved through the finite-volume discretiza-
tion. This means that no additional filtering is done. This is called implicit filtering.
Hence, the discretized momentum equations in RANS and LES (Egs. 6.6 and 18.2)
are identical. The only difference is the magnitude of the modeled Reynolds stresses,
which are much larger in RANS than in LES.

18.2 Differences between time-averaging (RANS) and space filter-
ing (LES)

In RANS, if a variable is time averaged twice ({{v))), it is the same as time averaging
once ((v)). This is because (v) is not dependent on time. From Eq. 18.1 we get

() =57 [ (o)t = 5rt0)2T = o)

This is obvious if the flow is steady, i.e. 9(v)/90t = 0. If the flow is unsteady, we must
assume a separation in time scales so that the variation of (v) during the time interval
T is negligible, i.e. 9/t < 1/T. In practice this requirement is rarely satisfied.

In LES, ¥ # © (and since v = 7 4 v we get v # 0).
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I+1

T

Figure 18.2: Box filter illustrated for a control volume.

Let’s filter o7 once more (filter size Az, see Fig. 18.2. For simplicity we do it in
1D. (Note that subscript I denotes node number.)

_ 1 Az/2 ~ 1 0 B Az/2 _
A IR < [ e | v(s>d§> -

1 Ax JrAJ}_
TAr\ 2 AT B

(18.6)

The trapezoidal rule, which is second-order accurate, was used to estimate the integrals.
U at locations A and B (see Fig. 18.2) is estimated by linear interpolation, which gives

—Vr—1+t V1 —Ur T 7VUI+1
4 4 47 4 (18.7)

= = (U7-1 + 607 + Ur41) # U1

vy =

Ol = N

18.3 Resolved & SGS scales

The basic idea in LES is to resolve (large) grid scales (GS), and to model (small)
subgrid-scales (SGS). Even if LES is alway_s made unsteady, we are usually inter-
ested in the time-averaged results. This means that we time-average all quantities for
post-processing, e.g. (7;) where the brackets denote time-averaging. From the LES
equations, Eq. 18.2, we get the resolved (GS) velocities, v;. Then we can compute the
resolved fluctuations as @} = v; — (T;).
The limit (cut-off) between GS and SGS is supposed to take place in the inertial

subrange (II), see Fig. 18.3.

I: large, energy-containing scales

II:  inertial subrange (Kolmogorov —5/3-range)

III:  dissipation subrange
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Figure 18.3: Spectrum of velocity.

18.4 The box-filter and the cut-off filter
The box filtering is formally defined as (1D)

o(x) = /0; Gp(r)v(z —r)dr

[ 1/Aifr < A)2
GB(T)_{ 0,if 7 > A/2 (18.8)

/OO Gp(r)dr =1

— 00
However, it is often convenient to study the filtering process in the spectral space.
The filter in spectral space is particular simple: we simply set the contribution from
wavenumbers larger than cut-off to zero. Hence the cut-off filter filters out all scales
with wavenumber larger than the cut-off wavenumber k. = 7/A. It is defined as

Ge(k) =

i < Ke
{ 1 if k < ke (18.9)

0 otherwise

We now look at what happens when we filter twice in spectral space. It appears that
the calculations for this gets much easier if we first introduce the Fourier transform.
The Fourier transform is defined as (cf. Eq. H.28)

(k) = /OO v(r) exp(—2mikr)dr (18.10)
0

and its inverse -
v(r) = / (k) exp(2mikr)dk (18.11)
0
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where x denotes the wavenumber and + = /—1. A slightly different definition has
been chosen here compared to Eq. H.28. It is chosen since no factor 27 appears in
front of the integral in Eq. 18.11 (the Fourier par is symmetric); as a consequence it is
also absent in Eq. 18.12.

Note that it is physically meaningful to use Fourier transforms only in a homoge-
neous coordinate direction; in non-homogeneous directions the Fourier coefficients —
which are not a function of space — have no meaning. Using the convolution theorem
(saying that the integrated product of two functions is equal to the product of their
Fourier transforms), we can filter ¢ using Eqs. 18.10 and 18.8

B(s) = B(k) = / " o) exp(—2mann)dn

= /OO /00 exp(—2mkn)G(a)v(n — a)dadn
o Jo (18.12)

- /Ooo /Ooo exp(—2mka) exp(—2mik(n — a))G(a)v(n — a)dadn

= /000 /000 exp(—2mika) exp(—2miké)Ga)v(€)déda = G(r)0(k)

(in the last line we used £ = 17 — «). If we use the cut-off filter and filter twice we get

cGot = Geod (18.13)

SHI

Yy

since G2, = G‘c, see Eq 18.9. Since v = v for the Fourier transform v, we know that
— when using the cuf-off filter — » = 9. Thus, contrary to the box-filter (see Eq. 18.7),
nothing happens when we filter twice in spectral space. The box filter is sharp in
physical space but not in wavenumber space; for the cut-off filter it is vice versa.

In finite volume methods box filtering is always used. Furthermore implicit filtering
is employed. This means that the filtering is the same as the discretization (=integration
over the control volume is equal to the filter volume, see Eq. 18.17).

18.5 Highest resolved wavenumbers

Any function can be expressed as a Fourier series such as Eq. 18.11 (see Section 5.3,
Eq. H.28 and Section I) provided that the coordinate direction is homogeneous. Let’s
choose the fluctuating velocity in the x; direction, i.e. v{, and let it be a function of ;.
We require it to be homogeneous, i.e. its RMS, v1 ., does not vary with z1. Now we
ask the question: on a given grid, what is the highest wavenumber that is resolved? Or,
in other words, what is the cut-off wavenumber?

Consider Fig. 18.4 (cf. Section I). We assume that v} is periodic which makes it
convenient to use Fourier transform. We construct v4 as a sum of four Fourier compo-
nents

, b 27 b 27 b 2 b 2
vy (x2) = by cos <L—/1$2> +bgy cos <L—/2£E2> +bs cos (L—/?)IL'2>+ 4 COS (mxg)
The thick line in Fig. 18.4 shows how v} varies with 2. The blue circles show the
Fourier component with the highest wave number, m = 4. How many grid point does
it take to resolve this Fourier component?
Figure 18.5 shows an example how to resolve the highest Fourier component on
two different grids. The wave shown in Fig. 18.5a reads

v = 0.25[1 + 0.8sin(k121)] (18.14)
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Figure 18.4: vy vs. xo/L. ===: term 1 (m = 1); ==: term 2 (m = 2); =+=: term 3
(m = 3); o: term 4 (m = 4); w=mm : v, Python/Matlab/Octave code is given in Section 1.3.
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Figure 18.5: Physical and wavenumber space. Sinus curves with different wavenumbers illus-
trated in physical space.

and it covers two cells (Az1/L = 0.5). If we define this as the cut-off wavenumber
we get k1,cL = K1,.2Ax; = 27 (i.e. sin(k1,.2Ax1) = sin(2); recall that 27 is one
period) so that

Ki,c = 2m/(2Ax1) = 7/Axq (18.15)

It is of course questionable if v} in Fig. 18.5a really is resolved since the sinus wave
covers only two cells. However this is the usual definition of the cut-off wavenumber.

If we require that the highest resolved wavenumber should be covered by four cells
(Az1/L = 0.25), as in Fig. 18.5b, then the cut-off wavenumber is given by k1. =
27 /(4Ax1) = 7/ (2A21).

18.6 Subgrid model

We need a subgrid model to model the turbulent scales which cannot be resolved by
the grid and the discretization scheme.
The simplest model is the Smagorinsky model [81]:

S SN (i N
Tij 3 Tkk = sgs oz, O, = sgsSij (18.16)
ngs - (CSA>2 V 2§ij§ij = (CSA)Q |§|

and the filter-width is taken as the local grid size

A= (AVi)'? (18.17)
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The scalar |5] is the norm (i.e. the “length”) of 0v;/0x; + 0v;/0x; in the Boussinesq
assumption, see Eq. 16.21. The Smagorinsky model is derived as follows. The turbu-
lent viscosity may — as in RANS — be obtained through dimensional analysis as (see
Eq. 11.25)

Vsgs =UL. (18.18)

The turbulent velocity scale, I/, is obtained as the first term in Taylor expansion,
L97/dx, and the length scale , L, is taken as C's A which gives

Vsgs = (CsA)?[3| (18.19)

where the one-dimensional velocity gradient, 9v/0x was replaced by the general three-
dimensional gradient, |§|. Near the wall, the SGS viscosity becomes quite large since
the velocity gradient is very large at the wall. However, because the SGS turbulent
fluctuations near a wall go to zero, so must the SGS viscosity. A damping function f,
is added to ensure this

fu=1—exp(—z3/26) (18.20)

A more convenient way to dampen the SGS viscosity near the wall is simply to use
the RANS length scale as an upper limit, i.e.

A= min{(AVUK)l/g : m} (18.21)

where n is the distance to the nearest wall.

Disadvantage of Smagorinsky model: the “constant” Cg is not constant, but it is
flow-dependent. It is found to vary in the range from Cg = 0.065 [82] to Cs =
0.25 [83].

18.7 Smagorinsky model vs. mixing-length model

The eddy viscosity according to the mixing length theory reads in boundary-layer
flow [84,85]
0v

—_p2 |2t
l/t_f 81'2

Generalized to three dimensions, we have

— /2 i J i _ 2 27“7"1/25 2|3
n=t [(8xj - 8$i) 8@} (” (25i5545) Al

In the Smagorinsky model the SGS turbulent length scale corresponds to £ = CsA so
that
Vigs = (CsA)7[5|

which is the same as Eq. 18.16

18.8 Energy path

The path of kinetic energy is illustrated in Fig. 18.6. At cut-off, SGS kinetic energy is
dissipated
Esgs = 77’1']'51']' = 2ngs§ij§ij (1822)

from the resolved turbulence. This energy is transferred to the SGS scales and act as
production term (F,,,) in the kg equation. The SGS kinetic energy is then trans-
ferred to higher wave-numbers via the cascade effect and the kinetic energy is finally
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Figure 18.6: Energy spectrum.

dissipated (e=physical dissipation) in the dissipation range. It should be mentioned that
this process is an idealized one. We assume that ALL dissipation takes place in the dis-
sipation range. This is a good approximation, but in reality dissipation (i.e. transfer of
energy from kinetic energy to internal energy which corresponds to an increase in tem-
perature) takes place at all wave numbers, and the dissipation increases for increasing
wave number, see Eq. 8.20.

18.9 SGS Kkinetic energy

The SGS kinetic energy kq4s can be estimated from the Kolmogorov —5/3 law. The
total turbulent kinetic energy is obtained from the energy spectrum as

- /0 " B(w)dn

Changing the lower integration limit to wavenumbers larger than cut-off (i.e. x.) gives
the SGS kinetic energy

Fisgs = / E(k)dr (18.23)

The Kolmogorov —5/3 law now gives

ksgs - / CKHiS/BEQ/BdH
where C'xy = 1.5 (Note that for these high wavenumbers, the Kolmogorov spectrum
ought to be replaced by the Kolmogorov-Pau spectrum in which an exponential de-
caying function is added for high wavenumbers [84, Chapter 3]). Carrying out the
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Figure 18.7: Energy spectrum with grid and test filter.

integration and replacing «. with 7/A we get

A 2/3

™

In the same way as k4, can be computed from Eq. 18.23, the resolved turbulent kinetic
energy, k,¢s, is obtained from

k,.es:/ E(k)dr
0

18.10 LES vs. RANS

LES can handle many flows which RANS (Reynolds Averaged Navier Stokes) cannot;
the reason is that in LES large, turbulent scales are resolved. Examples are:

o Flows with large separation

o Bluff-body flows (e.g. flow around a car); the wake often includes large, un-
steady, turbulent structures

o Transition
e In RANS all turbulent scales are modeled = inaccurate
o In LES only small, isotropic turbulent scales are modeled = accurate

e LES is very much more expensive than RANS.
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18.11 The dynamic model

In this model of [86] the constant C' is not arbitrarily chosen (or optimized), but it is
computed.
If we apply two filters to Navier-Stokes [grid filter and a second, coarser filter (test

filter, denoted by ~~)] where A = 2A we get

90, 0 (A~ 107 . 0%, 0Ty
— |0 ) = ——%— —_— - 18.25
ot + 8:16]- (U UJ) P &m + Va:rj[?xj 8:rj ( )
where the subgrid stresses on the test level now are given by
Tij = V;Vj —,’l?i%\j (1826)
Ty L0 (AA ) 107 N 2Ty Iy
— (7)) =-= v —
ot 8xj J 14 &m &rj@xj ij (1827)
0 (— ~~
— — | U0, — U; 0
8:rj J J
Identification of Eqs. 18.25 and 18.27 gives
VU5 — ,51,1:)\] +?ij =1;; (18.28)
The dynamic Leonard stresses are now defined as
Eij = ’l_)i’l_)j 7/1-_)\1’1:)3 = Tij 7,7.'\1']' (1829)
The trace of this relation reads
Lii=Tu—Tu
With this expression we can re-formulate Eq. 18.29 as
1 1 ~ 1.~
Lij— §5ij£kk =T — g(sikak — 7 — géij T kk (18.30)

In the energy spectrum, the test filter is located at lower wave number than the grid
filter, see Fig. 18.7.

18.12 The test filter

The test filter is twice the size of the grid filter, i.e. N =2A.
The test-filtered variables are computed by integration over the test filter. For ex-

~ loun)
ample, the 1D example in Fig. 18.8 "o is computed as (Az = 2Ax)

—_ 1 E 1 P E
ip = —— vdr = —— ud ovd
Up 5 ac/ vax AL / vx+/va

1 o
= E(vaquveAz) =5 <

Uw + Up 5P+17E> (18.31)
2 + 2

1, _ _
= Z(Uw-l-?vp-i-vE)
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Figure 18.8: Control volume for grid and test filter.
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Figure 18.9: A 2D test filter control volume.

18.12.1 2D filtering

In 2D, we do as in 1D: first compute the value at the center of the four squares (or
rectangles) surrounding the node (7, J, K), marked by x, see Fig. 18.9. For the lower-
left square, for example, we get

1
5{,1/27'],1/271( = 1(6171,(]71,1( + Ur-1,0k + 01,71,k + U1,0,K) (18.32)
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Next, the test filtered variable is computed as

~ 1(—f Lol ot Lo )
V1K = 7 \Wro1y2, 0172,k T VI-1/2,041/2,K T VI+1/2,0-1/2,K T VI+1/2,041/2,K
(18.33)

18.12.2 3D filtering

In 3D we have eight cubes. Filtering at the test level is carried out in the same way
by integrating over the test cell assuming linear variation of the variables [87]. For the
bottom-lower-left cube, for example, we get

5{_1/27J_1/27K_1/2 = %(51—1,J—1,K +Ur-1,0k + U1 J-1,Kk + V10K (18.34)
+0r-1,7-1,K-1 + 0r-1,0,k—1 + 01,0-1,Kk—1 + V1,0, k1)
Next, the test filtered variable is computed as
~ 1o =
VIJK = g(v171/2,J71/2,K71/2 T U100 1/2,K-1/2
+6{—1/2,J+1/2,K—1/2 + 1_){+1/2,J+1/2,K—1/2 (18.35)

= =
F01_1/0,0-172.k+1/72 T Vi1/2,0-1/2, K412

=f =f
01120412, k4172 T UI+1/2,J+1/2,K+1/2)

18.13 Stresses on grid, test and intermediate level
The stresses on the grid level, test level and intermediate level (dynamic Leonard
stresses) have the form

Tij = Viv; — U;0; stresseswith { < A

[ o . N
Ti; =v0;0; — ;0 ; stresseswith ¢ < A

~ . [N
Lij =T;; —T;; stresseswith A </ <A

Thus the dynamic Leonard stresses represent the stresses with lengthscale, ¢, in the

range between A and A.

Assume now that the same functional form for the subgrid stresses that is used at the
grid level (7;;) also can be used at the test filter level (77;). If we use the Smagorinsky
model we get

1
Tij — géikak = 720A2|§|§ij (18.36)

1 2
Tij = 30T = =208 |5 [55 (18.37)
where
~ 1%, 87;\ ~ <,-\ ~ >1/2
54j + = /g

* 2 (’)xj axi

Note that C' in Eq. 18.36 is not squared (cf. the Smagorinsky model, Eq. 18.16 at
p.187). Hence, C' should be compared with C%. Applying the test filter to Eq. 18.36
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(assuming that C varies slowly), substituting this equation and Eq. 18.37 into Eq. 18.30
gives
1 2 —_—
Lij = 30iLw = =20 (’& 155 — A2|§|§ij> (18.38)

where we used the relation

1 1 1
§5ij£kk = g(sikak - g(sij?kk

—_——
obtained from Eq. 18.29. In Eq. 18.38 we have made the assumption CA2|§|§ij ~

—
C A2|§|§ij.
Note that the “constant” C' in Eq. 18.38 really is a function of both space and time,
Equation 18.38 is a tensor equation, and we have five (5;; is symmetric and trace-
less) equations for C'. Lilly [88] suggested to satisfy Eq. 18.38 in a least-square sense.
Let us define the error as the difference between the left-hand side and the right-hand
side of Eq. 18.38 raised to the power of two, i.e.

1 2
Q= (Eij - §5ijﬁkk + QCMU) (18.39a)
/'\2 ~ ~ r—
Mi; = (A |5 [53; — A? |§|§ij> (18.39b)

The error, (), has a minimum (or maximum) when 9Q/9C = 0. Carrying out the
derivation of 18.39a gives
oQ

50 = 4Mij (Lij +2CM;5) =0 (18.40)

Note that %&jﬁkk M;; = %Ekk M;; = 0 since ?” = 5;; = 0 thanks to continuity.
Since 8%Q/0C? = 8M;; M;; > 0 we find that Eq. 18.40 represents indeed a minimum.
Equation 18.40 finally gives

Lij M;;

It turns out that the dynamic coefficient C fluctuates wildly both in space and time.
This causes numerical problems, and it has been found necessary to average C' in homo-
geneous direction(s). Furthermore, C' must be clipped to ensure that the total viscosity
stays positive (v + Vg4 > 0).

In real 3D flows, there is no homogeneous direction. Usually local averaging and
clipping (i.e. requiring that C' stays within pre-defined limits) of the dynamic coeffi-
cient is used.

Use of one-equation models solve these numerical problems (see p. 202).

C = (18.41)

18.14 Numerical dissipation

The main function of an SGS model is to dissipate (i.e. to dampen) resolved turbulent
fluctuations. The SGS model is — hopefully — designed to give a proper amount of
dissipation. This is the reason why in LES we should use a central differencing scheme,
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Figure 18.10: Numerical dissipation.

because this class of schemes does not give any numerical dissipation. All upwind
schemes give numerical dissipation in addition to the modeled SGS dissipation. Indeed,
there are LES-methods in which upwind schemes are used to create dissipation and
where no SGS model is used at all (e.g. MILES [89]). However, in this course we
focus on ensuring proper dissipation through an SGS model rather than via upwind
differencing. It can be shown using Neumann stability analysis that all upwind schemes
are dissipative (see Further reading at
http://www.tfd.chalmers.se/ lada/comp_turb.model/). Below it is
shown that first-order upwind schemes are dissipative.

The first-derivative in the convective term is estimated by first-order upwind differ-
encing as (finite difference, see Fig. 18.10)

[0V N A0) SV )
v (%)emact = vy (T + O (AZC)) (1842)

where we have assumed 7 > 0. Taylor expansion gives

_ _ ov 1 0*v
V-1 =101 — Aac% + §(A$)2@ + 0 ((Az)?)

so that
Vr — V11 . o0v 1 9%v
Az T ox 27 9z
Insert this into Eq. 18.42

_(0v o 1, 0% _ 5
v <%>emct =05 = §AIEU@ +30 ((Az)?) (18.43)
O(Ax)

where the second term on the right side corresponds to the error term in Eq. 18.42.
When this expression is inserted into the LES momentum equations, the second term
on the right-hand side will act as an additional (numerical) diffusion term. The total
diffusion term will have the form

0v

diffusion term = % {(1/ + VUsgs + Z/num)%} (18.44)

where the additional numerical viscosity, Vpym = 0.5|0] Az, see Eq. 18.43. This means
that the total dissipation due to SGS viscosity and numerical viscosity is (cf. Eq. 18.22)

Esgs+num = 2(1/895 + Vnum)gijgij

For more details on derivation of equations transport equations of turbulent kinetic
energies, see [23].
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18.15 Scale-similarity Models

In the models presented in the previous sections (the Smagorinsky and the dynamic
models) the total SGS stress 7;; = ;v; — ¥;U; was modeled with an eddy-viscosity
hypothesis. In scale-similarity models the total stress is split up as

Tij = VU5 — V05 = (’Di + Ug/)(@j + ’Ué-/) — V;V;

= ] 1 P 1 1,01 ]
= V;v; + UV + v;v; +v; Vi — UiV

VU5 — ’Ui’ljj) + |:’Di1)§_/ + T)j'ugli| + Uél'[);_/

|
—

where the term in brackets is denoted the Leonard stresses, the term in square brackets
is denoted cross terms, and the last term is denoted the Reynolds SGS stress. Thus

7ij = Lij + Cij + Iy
Lij = 0;vj — 0;0;
e — (18.45)
Cij = UZ'U;-/ + ’UjU,Z/
— oy
Rij =v; ’Uj .
Note that the Leonard stresses, L;;, are computable, i.e. they are exact and don’t need
to be modeled.
In scale-similarity models the main idea is that the turbulent scales just above cut-
off wavenumber, k., (scales smaller than A) are similar to the ones just below k.
(scales larger than A); hence the word “’scale-similar”. Looking at Eq. 18.45 it seems
natural to assume that the cross term is responsible for the interaction between resolved
scales (7;) and modeled scales (v}'), since C;; includes both scales.

18.16 The Bardina Model

In the Bardina model the Leonard stresses L;; are computed explicitly, and the sum of
the cross term C;; and the Reynolds term is modeled as [90,91]

CY = e (viv; — Vi) (18.46)

<

and Rf;f = 0 (superscript M denotes Modeled). It was found that this model was not
sufficiently dissipative, and thus a Smagorinsky model was added

Cllu = Cp @1‘1—)' 7515
Y \ . f) (18.47)
Rij = —QCSA |S|SU

18.17 Redefined terms in the Bardina Model

In [91] it was found that the Leonard term L;; and the cross term C}; are not Galilean
invariant by themselves, but only the sum L;; 4+ C}; is (see Appendix M). As a con-
sequence, if the cross term is neglected, the Leonard stresses must not be computed
explicitly, because then the modeled momentum equations do not satisfy Galilean in-
variance.
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Figure 18.11: Dissipation terms and production term from DNS data. 96% mesh data filtered
onto a 48> mesh. Rer = 500. = *5§Gs§ == —€gqgs T: —€sGs.

The stresses in the Bardina model can be redefined to make them Galilean invariant
for any value ¢, A modified Leonard stress tensor Lg? is defined as [92]

m_ . _ com m m
T =T = Cij + L + R}
m SR ——
L = e (005 — T,;05)

Cii =0

mo_ .. I
Rij = R;; = v; vy

(18.48)

Note that the modified Leonard stresses is the same as the “unmodified” one plus
the modeled cross term C;; in the Bardina model with ¢, = 1 (right-hand side of
Eq. 18.46), i.e.
LY =Ly +Clf
In order to make the model sufficiently dissipative a Smagorinsky model is added,
and the total SGS stress 7;; is modeled as

Ty = 005 — 0,05 — 2(CsA)?[5]5y (18.49)
Below we verify that the modified Leonard stress is Galilean invariant.
1 mx — % =% —=k=x% — — - —
aLij =0;0] —0;0; = (0 + Vi) (0; + Vj) — (0 + V3) (v + V)
=005 +0iV; + 05 Vi — UiV — 0V = Viv; (18.50)
__ = 1.,
= UiV — VU5 = ZL”

18.18 A dissipative scale-similarity model.

Above it was mentioned that when the first scale-similarity model was proposed it
was found that it is not sufficiently dissipative [90]. An eddy-viscosity model has to
be added to make the model sufficiently dissipative; these models are called mixed
models. Ref. [93] presents and evaluates a dissipative scale-similarity model.
The filtered Navier-Stokes read
dv; 1 0p 0%v; OTik

z — — 18.51
dt + p O0x; V@xkﬁxk oxy, (18.51)
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where d/dt and 7;;, denote the material derivative and the SGS stress tensor, respec-
tively. The SGS stress tensor is given by

Tik = Vilk — UiUk. (18.52)

When it is modeled with the standard scale-similarity model, it is not sufficiently dis-
sipative. Let us take a closer look at the equation for the resolved, turbulent kinetic
energy, k = (viv})/2, which reads

dk —) —/ a<"71> 8<p’@;> 1a<77;c@z/'61/'> _ 6277£ —/
g Ot o s =V Garan

8%_ OTik A 82’172 A aTik{), .
Oz 0z )T\ OOz ! Az ) (18.53)

0%k vl oY} OTike _,
V——— —V —r ) — o

£ €SGS

The first term on the last line is the viscous diffusion term and the second term, &, is
the viscous dissipation term which is always positive. The last term, e 5gg, is a source
term arising from the SGS stress tensor, which can be positive or negative. When it is
positive, forward scattering takes place (i.e. it acts as a dissipation term); when it is
negative, back scattering occurs.

Figure 18.11 presents SGS dissipation, esgs in Eq. 18.53, computed from filtered
DNS data. The forward scatter, EJSFGS, and back scatter, €g,g, SGS dissipation are
defined as the sum of all instants when egg g is positive and negative, respectively. As
can be seen, the scale-similarity model is slightly dissipative (i.e. eggs > 0), but the
forward and back scatter dissipation are both much larger than eggs.

One way to make the SGS stress tensor strictly dissipative is to set the back scatter
to zero, i.e. max(egas, 0). This could be achieved by setting O7;;, /Ox, = 0 when its
sign is different from that of @, (see the last term in Eq. 18.53). This would work if we
were solving for k. Usually we do not, and the equations that we do solve (the filtered
Navier-Stokes equations) are not directly affected by the dissipation term, esgs.

Instead we have to modify the SGS stress tensor as it appears in the filtered Navier-
Stokes equations, Eq. 18.51. The second derivative on the right side is usually called a
diffusion term because it acts like a diffusion transport term. When analyzing the sta-
bility properties of discretized equations to an imposed disturbance, ¥, using Neumann
analysis (see, for example, Chapter 8 in [94]), this term is referred to as a dissipation
term. In stability analysis the concern is to dampen numerical oscillations; in con-
nection with SGS models, the aim is to dampen turbulent resolved fluctuations. It is
shown in Neumann analysis that the diffusion term in the Navier-Stokes equations is
dissipative, i.e. it dampens numerical oscillations. However, since it is the resolved
turbulent fluctuations, i.e. k in Eq. 18.53, that we want to dissipate, we must consider
the filtered Navier-Stokes equations for the fluctuating velocity, ;. The viscous diffu-
sion term in the momentum equations appears in the first term on the right side (first
line) in Eq. 18.53. To ensure that eggs > 0, we set —O7;x /Oxy, to zero when its sign
is different from that of the viscous diffusion term (cf. the two last terms on the second
line in Eq. 18.53). This is achieved by defining a sign function; for details, see [93].
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18.19 Forcing

An alternative way to modify the scale-similarity model is to omit the forward scatter,
i.e. to include instants when the subgrid stresses act as counter-gradient diffusion. In
hybrid LES-RANS, the stresses can then be used as forcing at the interface between
URANS and LES. This new approach is the focus of [95].

18.20 Numerical method

A numerical method based on an implicit, finite volume method with collocated grid
arrangement, central differencing in space, and Crank-Nicolson (o« = 0.5) in time is
briefly described below. The discretized momentum equations read

g2 — e +AtH( n -7“/2)

K2

opni/2 (18.54)

81‘1'

ap"

—aAt
@ 8%

— (1 - a)At

where H includes convective, viscous and SGS terms. In SIMPLE notation this equa-

tion reads 12
n op"+
apv; /2 Z anp" V2 4 Sy — aAtpiAV
b 81‘1

where Sy includes all source terms except the implicit pressure. The face velocities
T)}”{UQ = 0.5(7; "H/Q + *n+1/2) (note that j denotes node number and ¢ is a tensor
index) do not satlsfy continuity. Create an intermediate velocity field by subtracting

the implicit pressure gradient from Eq. 18.54, i.e.

op"
axi

o = o + AH (57,57 7%) - (1 - a) At (18.55a)

a—n+1/2
=g ="t L oA

S 18.55b
* = o~ (18.55b)

Take the divergence of Eq. 18.55b and require that 8v"+1/ 2 /O0x; = 0 so that

82]_)"+1 1 aqj;‘ci
= . 18.
0x;0x; Ata Oz, (18.56)

The Poisson equation for p™* is solved with an efficient multigrid method [96]. In the
3D MG we use a plane-by-plane 2D MG. The face velocities are corrected as

aﬁ’ﬂ,-i—l
81‘1'

vptt =07, — At (18.57)

A few iterations (typically two) solving the momentum equations and the Poisson pres-
sure equation are required each time step to obtain convergence. More details can be
found [97].

1. Solve the discretized filtered Navier-Stokes equation, Eq. 18.55a, for v1, v2 and
Ts.

2. Create an intermediate velocity field ¥} from Eq. 18.55b.
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RANS LES
Domain 2D or 3D always 3D
Time domain steady or unsteady always unsteady
Space discretization 2nd order upwind central differencing
Time discretization 1st order 2nd order (e.g. C-N)
Turbulence model at least two equations Zero- or one-equation

7.
8.

Table 18.1: Differences between a finite volume RANS and LES code.

U1
t
t1: start to: end
Figure 18.12: Time averaging in LES.
. Use linear interpolation to obtain the intermediate velocity field, v ;, at the face

The Poisson equation (Eq. 18.56) is solved with an efficient multigrid method [96].

. Compute the face velocities (which satisfy continuity) from the pressure and the

intermediate face velocity from Eq. 18.57

Step 1 to 4 is performed till convergence (normally two or three iterations) is
reached.

The turbulent viscosity is computed.

Next time step.

Since the Poisson solver in [96] is a nested MG solver, it is difficult to parallelize

with

MPI (Message Passing Interface) on large Linux clusters. Hence, when we do

large simulations (> 20M cells) we use a traditional SIMPLE method.

18.20.1 RANS vs. LES

Above a numerical procedure suitable for LES was described. However, in general,
any numerical procedure for RANS can also be used for LES; for example pressure-
correction methods such as SIMPLE [98, 99] are often used for LES. What are the
specific requirements to carry out LES with a finite volume code? If you have a RANS
finite volume code, it is very simple to transform that into an LES code. An LES code
is actually simpler than a RANS code. Both the discretization scheme and and the
turbulence model are simpler in LES than in RANS, see Table 18.1.
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It is important to use a non-dissipative discretization scheme which does not intro-
duce any additional numerical dissipation, see Section 18.14; hence a second-order (or
higher) central differencing scheme should be employed.

The time discretization should also be non-dissipative. The Crank-Nicolson scheme
is suitable.

As mentioned above, turbulence models in LES are simple. There are two reasons:
first, only the small-scale turbulence is modeled and, second, no equation for the tur-
bulent length scale is required since the turbulent length scale can be taken as the filter
width, A.

In LES we are doing unsteady simulations. The question then arises, when can we
start to time average and for how long? This is exactly the same question we must ask
ourselves whenever doing an experiment in, for example, a windtunnel. We start the
windtunnel: when has the flow (and the turbulence) reached fully developed conditions
so that we can start to measure the flow? Next question: for how long should we carry
out the measurements?

Both in LES and the windtunnel, the recorded time history of the v; velocity at a
point may look like in Fig. 18.12. Time averaging can start at time ¢; when the flow
seems to have reached fully developed conditions. It is difficult to judge for how long
one should carry out time averaging. Usually it is a good idea to form a characteristic
time scale from a velocity, V (free-stream or bulk velocity), and a length scale, L
(width of a wake or a body, length of a recirculation region), and use this to estimate
the required averaging time; 100 time units, i.e. 100L/V, may be a suitable averaging
time for the flow around a bluff body; a value of 10 may be sufficient if L is the
length of a recirculation region. The theoretical statistical error varies with number of
independent samples, N, as N~'/2, see Eq. Q.2 on p. 460.

18.21 One-equation £, model

A one-equation model can be used to model the SGS turbulent kinetic energy. The
equation can be written on the same form as the RANS k-equation, i.e.

Dhee D 9 g
Kggs) = — sgs) | + P, —
8t + axj (’U] g ) axj |:(V+V g ) axj :| =+ ksgs €
(18.58)
2
Vsgs = CkAk;ﬁ, Pksgs = 2ngs§ij§ij; €= CE Ag

Note that the production term, Py, is equivalent to the SGS dissipation in the equa-
tion for the resolved turbulent kinetic energy (look at the flow of kinetic energy dis-
cussed at the end of [100]).

18.22 Smagorinsky model derived from the £, equation

We can use the one-equation model to derive the Smagorinsky model, Eq. 18.16. The
length scale in the Smagorinsky model is the filter width, A fﬁjl, see Fig. 18.13. The
cut-off takes place in the inertial subrange where diffusion and convection in the k4,
equation are negligible (their time scales are too large so they have no time to adapt
to rapid changes in the velocity gradients, 5;;). Hence, production and dissipation in
Eq. 18.58 are in balance so that

Pk = 2ngs=§ij§ij =£ (1859)

sgs
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E(k)

K

Figure 18.13: Spectrum for k. I: Range for the large, energy containing eddies; II: the inertial
subrange for isotropic scales, independent of the large scales (¢) and the dissipative scales (v);
III: Range for small, isotropic, dissipative scales.

Let us replace € by SGS viscosity and A. We can write the SGS viscosity as
Vsgs = €(CsA)’ (18.60)
Dimensional analysis yields a = 1/3,b = 4/3 so that
Vsgs = (CSA)4/351/3- (1861)
Eq. 18.59 substituted into Eq. 18.61 gives
Vi = (CsA)'e = (CsA) ey (25455i5)
= Vsgs = (CsA)?|3| (18.62)
5] = (25:55:5)"/*

which is the Smagorinsky model.

18.23 A dynamic one-equation model

One of the drawbacks of the dynamic model of [86] (see p. 191) is the numerical
instability associated with the negative values and large variation of the C' coefficient.
Usually this problem is fixed by averaging the coefficient in some homogeneous flow
direction. In real applications ad-hoc local smoothing and clipping is used. Below
a dynamic one-equation model is presented. The main object when developing this
model was that it should be applicable to real industrial flows. Furthermore, being a
dynamic model, it has the great advantage that the coefficients are computed rather than
being prescribed.
The equation for the subgrid kinetic energy reads [101, 102] (see also [103, 104])

Oksgs O d Okggs )32
s8gs _Z _-ks R — P, - . 89S o C* 89S
ot + axj (’U] g ) ksgs + awj <V ff axj ) A (1863)
Pksgs = —Tfj@iJ, Tiaj = —QCAks%gsgij

with vepr = v + 2C’homAkfg5. The C' in the production term Py, is computed
dynamically (cf. Eq. 18.41). To ensure numerical stability, a constant value (in space)
of C' (Chom) is used in the diffusion term in Eq. 18.63 and in the momentum equations.



18.24. A Mixed Model Based on a One-Eq. Model 203

Chom 18 computed by requiring that Cl,,,,, should yield the same total production of
ksgs as C, ie.

1 1
<20Ak§gssij5ij>zyz = 20h0m<AkszgsSijsij>wyz
The dissipation term €y, is estimated as:

13/2

= vT5 (v, vig) = Comy (18.64)

£k

sgs

Now we want to find a dynamic equation for C. The equations for k.4, and K read in
symbolic form

k3/2
T(ksgs) = Cksgs — Dksys = Pksg5 _ C* Z]s
5372 (18.65)
T(K)=Ck — Dk = P* - C, —
A

Since the turbulence on both the grid level and the test level should be in local equilib-
rium (in the inertial —5/3 region), the left-hand side of the two equations in Eq. 18.65
should be close to zero. An even better approximation should be to assume T'(ksgs) =
T(K),i.e.

1 3/2 K3/2
?ksgs - Zc*ksgs = PK - C* —~
A
so that
~~
1- >y A
cntl = (PK 7’[5]9595 + ZCQk%f) Il (18.66)

The idea is to put the local dynamic coefficients in the source terms, i.e. in the produc-
tion and the dissipation terms of the k.4, equation (Eq. 18.63). In this way the dynamic
coefficients C' and C,. don’t need to be clipped or averaged in any way. This is a big
advantage compared to the standard dynamic model of Germano (see discussion on
p. 194).

18.24 A Mixed Model Based on a One-Eq. Model

Recently a new dynamic scale-similarity model was presented by [105]. In this model
a dynamic one-equation SGS model is solved, and the scale-similarity part is estimated
in a similar way as in Eq. 18.49.

18.25 Applied LES

At the Department we used LES for applied flows such as flow around a cube [106,
107], the flow and heat transfer in a square rotating duct [108, 109], the flow around
a simplified bus [107, 110], a simplified car [111-113] and the flow around an air-
foil [114, 115], detailed SUV [116], trains and buses subjected to sidewinds and wind
gusts [117-119]. We have also done some work on buoyancy-affected flows [120-126].
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Thick dashed line —5/3 slope

10
R3 = 27Tk3/x3,maw
Figure 18.14: Energy spectra in fully developed channel flow [128]. § denotes half channel
width. Number of cells expressed as (6/Az1,0/Axsz). =——: (10,20); = =: (20,20); == =:
(10,40); o: (5,20); +: (10, 10).

18.26 Resolution requirements

The near-wall grid spacing should be about one wall unit in the wall-normal direction.
This is similar to the requirement in RANS (Reynolds-Averaged Navier-Stokes) using
low-Re number models. The resolution requirements in wall-parallel planes for a well-
resolved LES in the near-wall region expressed in wall units are approximately

z{ < 100 (streamwise) and z7 < 30(spanwise) (18.67)

and, of course, ac;r < 1. This enables resolution of the near-wall turbulent structures
in the viscous sub-layer and the buffer layer consisting of high-speed in-rushes and
low-speed ejections [127], often called the streak process. At low to medium Reynolds
numbers the streak process is responsible for the major part of the turbulence produc-
tion. These structures must be resolved in an LES in order to achieve accurate results.
Then the spectra of the resolved turbulence will exhibit —5/3 range, see figure on p. 73.

In applied LES, this kind of resolution can hardly ever be afforded. In outer scaling
(i.e. comparing the resolution to the boundary layer thickness, ¢), we can afford

§/Axy =10 — 20 ands /Azs = 29 — 40 (18.68)

and, of course, z3 < 1. This resolution requirement is relevant in the log-region. You
can investigate if this requirement is satisfied for the flow over a hump in an Assignment
in Section T.7.

The spectra in the log region will look something like that shown in Fig. 18.14 [128].
Energy spectra are actually not very reliable to judge if a LES simulation is well re-
solved or not. In [128, 129] different ways to estimate the resolution of an LES were
investigated. The suggestion in these works is to use the ratio of integral lengthscale
to cell size (if the ratio is larger than, say, 16, the resolution is sufficient). The integral
lengthscale is computed from two-point correlations is the best way to estimate if an
LES is sufficiently resolved or not. Two-point correlations to estimate resolution are
evaluated in an Assignment, see Section T.7.2.

Even if the turbulence in boundary layer seldom can be resolved, the flow in re-
circulation regions and shear layer can. In [130] the flow (Re ~ 10%) over a bump
was computed. The geometry is shown in Fig. 18.15. The turbulence in the bound-
ary layer on the bump was very poorly resolved: Az /d0;, = 0.33, Axs/d; = 0.44,
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Figure 18.16: Energy spectra Es3(r3) in the recirculation region and the shear layer down-
stream the bump (x1/H = 1.2). Thick dashed line shows —5/3 slope. == z2/H = 0.0035
(near the wall); = = : xo/H = 0.13; =+ =: x2/H = 0.34 (in the shear layer).

Az = 1300 and Azd = 1800. Nevertheless, the turbulence in the recirculation re-
gion and in the shear layer downstream the bump turned out to be well resolved, see
Fig. 18.16.

For wall-bounded flows at high Reynolds numbers of engineering interest, the
computational resource requirement of accurate LES is prohibitively large. Indeed,
the requirement of near-wall grid resolution is the main reason why LES is too ex-
pensive for engineering flows, which was one of the lessons learned in the LESFOIL
project [131, 132].
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19 URANS: Unsteady RANS

O perform an accurate LES, a very fine mesh must be used. This causes problems,

for example, near walls. LES is very good for wake flow, where the flow is gov-
erned by large, turbulent structures, which can be captured by a fairly coarse mesh.
However, if attached boundary layers are important, LES will probably give poor pre-
dictions in these regions, unless fine grids are used.

An alternative to LES for industrial flows can be unsteady RANS (Reynolds-
Averaged Navier-Stokes), often denoted URANS (Unsteady RANS). In URANS the
usual Reynolds decomposition is employed, i.e.

1 t+T
u(t) = ﬁ/t ., v(t)dt, v="1v+0" (19.1)

The URANS equations are the usual RANS equations, but with the transient (unsteady)
term retained; on incompressible form they read

Jv; n 0 (5:5,) 1 dp . 02, ovjvy
= (5:0:) = —= v —
ot = Oxj vity p Ox; O0x;0x; O0x; (19.2)
0v;

Note that the dependent variables are now not only function of the space coordinates,

but also function of time, i.e. ¥; = v;(71,22,23,1), p = p(x1, T2, 23,t) and v]v] =
UZ’-’Ué’(acl, X9, X3, 1).

Even if the results from URANS are unsteady, one is often interested only in the
time-averaged flow. We denote here the time-averaged velocity as (o), which means
that we can decompose the results from an URANS as a time-averaged part, (7), a

resolved fluctuation, ¥, and the modeled, turbulent fluctuation, v”, i.e.
v=0+0" = () +0 +o" (19.3)

see Fig. 19.1. The modeled turbulent fluctuation, v”, is not shown in the figure; when
this is added to (7) + ¢’ we obtain v.

What type of turbulence model should be used in URANS? That depends on type
of flow. If the flow has strong vortex shedding, the standard high-Re number k — ¢

Figure 19.1: Decomposition of velocities in URANS. =——: §; = = : v; =« = (7).
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model can be used, i.e.

pk , pvsk 9 p\ Ok 1 pr
5 T o, Or) u+ o, + P — pe (19.4)
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ot + O0x; O0x; 'u+05 O0x; +k(cl c=2%) (19.5)
k2

e = cup— (19.6)

With an eddy-viscosity, the URANS equations read
8p1_)1' ap’l_)ﬂ_)k - (9]_) 8 81_)i
o " om ~ ow om [P ag,

(19.7)

Usually the standard £ — € model is not a good URANS model because it gives too
much modeled dissipation (i.e. too large turbulent viscosity), which dampens the re-
solved fluctuations too much. The V2F and non-linear eddy-viscosity models are bet-
ter.

So we are doing unsteady simulations, but still we time average the equations. How
is this possible? The theoretical answer is that the time, 7', in Eq. 19.1 should be much
smaller than the resolved time scale, i.e. the modeled turbulent fluctuations, v”/, should
have a much smaller time scale than the resolved ones, o’. This is called scale separa-
tion. In practice this requirement is often not satisfied [97]. On the other hand, how do
the momentum equation, Eq. 19.7, know how they were time averaged? Or if they were
volume filtered? The answer is that they don’t. The URANS momentum equation and
the LES momentum equation are exactly the same, except that we denote the turbulent
viscosity in the former case by v; and in the latter case by v44,. In URANS, much
more of the turbulence is modeled than in LES, and, hence, the turbulent viscosity, 4,
is much larger than the SGS viscosity, Vggs.

The common definition of URANS is that the turbulent length scale is not deter-
mined by the grid, whereas in LES it is. In URANS we do usually not care about scale
separation. What we care about is that the turbulence model and the discretization
scheme should not be too dissipative, i.e. they should not kill the resolved fluctuations,
v,

The standard k£ — € model (Eq. 19.4 and 19.5) was used in [133] for two-dimensional
URANS simulations computing the flow around a triangular flame-holder in a channel,
see Fig. 19.2. This flow has a very regular vortex shedding. and the flow actually has a
scale separation. In Fig. 19.3 the v velocity in a point above the flame-holder is shown
and it can be seen that the velocity varies with time in a sinusoidal manner.

When we’re doing URANS, the question arises how the results should be time
averaged, i.e. when should we start to average and for how long. This issue is the same
when doing LES, and this was discussed in connection to Fig. 18.12.

19.1 Turbulence Modeling

In URANS, part of the turbulence is modeled (v") and part of the turbulence is resolved
(v"). If we want to compare computed turbulence with experimental turbulence, we
must add these two parts together. Profiles downstream the flameholder are shown in
Fig. 19.4. It can be seen that here the resolved and the modeled turbulence are of the
same magnitude.
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Figure 19.2: Configuration of the flow past a triangular flameholder. Flow from left to right
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Figure 19.3: 2D URANS k£ — ¢ simulations [133]. One cycle of the 7> velocity in a cell near
the upper-right corner of the flameholder.

If the turbulence model in URANS generates ’too much” eddy viscosity, the flow
may not become unsteady at all, because the unsteadiness is dampened out; the reason
for this is that the turbulence model is too dissipative. It was found in [134, 135] when
using URANS for the flow around a surface-mounted cube and around a car, that the
standard k£ — € model was too dissipative. Non-linear models like that of [136] was
found to be less dissipative, and was successfully applied in URANS-simulations for
these two flows.

19.2 Discretization

In LES it is well-known that non-dissipative discretization schemes should be used.
The reason is that we don’t want to dampen out resolved, turbulent fluctuations. This is
to some extent true also for URANS. In the predictions on the flame-holder presented
above, the hybrid discretization scheme for the convective terms was used together
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Figure 19.4: 2D URANS k — ¢ simulations compared with experiment [133]. Solid lines: total
turbulent kinetic energy; dashed lines: resolved turbulent kinetic energy: *: experimental data.
Left figure: * = 0.43H; right figure: * = 1.1H (= = 0 at the downstream vertical plane of the
flame-holder).

with fully implicit first-order discretization in time; this gives first-order accuracy in
both space and time. The turbulence model that was used was the standard k£ — ¢
model. Thus, both the discretization and the turbulence model have high dissipation.
The reason why the unsteadiness in these computations was not dampened out is that
the vortex shedding in this flow is very strong.

In general, a discretization scheme which has little numerical dissipation should be
used. How dissipative a scheme needs to be in order to be stable is flow dependent; for
some simple flows, it may work with no dissipation at all (i.e. central differencing),
whereas for industrially complex flows maybe a bounded second-order scheme must
be used. For time discretization, the second-order accurate Crank-Nicolson works in
most cases.

In[134] LES and URANS simulations were carried out of the flow around a surface-
mounted cube (Fig. 19.5) with a coarse mesh using wall-functions. Two different dis-
cretization schemes were used: the central scheme and the Mars scheme (a blend be-
tween central differencing and a bounded upwind scheme of second-order accuracy).
In Fig. 19.6 the time-averaged velocity profile upstream of the cube (x; = —0.6H)
using URANS and LES with central differencing are shown together with URANS and
the Mars scheme. It is seen that with LES and central differencing nonphysical oscilla-
tions are present (this was also found in [106]). However, LES with the Mars scheme
(in which some numerical dissipation is present) and URANS with the central scheme
(where the modeling dissipation is larger than in LES) no such nonphysical oscillations
are present. The main reason to the nonphysical oscillations is that the predicted flow
in this region does not have any resolved fluctuations. If turbulent unsteady inlet fluc-
tuations are used, the nonphysical oscillations do usually not appear, even if a central
differencing scheme is used. In this case the turbulent, resolved fluctuations dominate
over any numerical oscillations.



19.2. Discretization 210

6H

Inlet

Figure 19.5: URANS simulations of the flow around a surface-mounted cube.
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Figure 19.6: URANS simulations of the flow around a surface-mounted cube. Velocity profiles
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20 DES: Detached-Eddy-Simulations

ES (Detached Eddy Simulation) is a mix of LES and URANS. The aim is to treat
Dthe boundary layer with RANS and capture the outer detached eddies with LES.
Since the flow in the boundary layer will be strongly influenced by the unsteady LES
in the outer region, the flow in the boundary layer will also be unsteady. Hence the
boundary layer is treated with unsteady RANS (URANS). The DES was originally
developed for wings at very high angles of attack.

The RANS model that was originally used was the one-equation model proposed
in [137]. It can be written [131, 137, Sect. 4.6]

Opin  Opvst _ O (1t p O | Coap 00 00 |y,
ot ox; Oz os, Oz oy, Ox; 0z, (20.1)

vy = fi

The production term P and the destruction term ¥ have the form

_ .
P=Cunp (S + Wh) Ut
SN2 (20.2)
S = (2571.757,])1/2, U = Cwlpf'w (j)

d in the RANS SA model is equal to the distance to the nearest wall.
In DES [138], d is taken as the minimum of the RANS turbulent length scale d and
the cell length A = max(Ax¢, Az, Az¢), ie.

d = min(d, Cyes A). (20.3)

Az¢, Az, and Az, denote the cell length in the three grid directions £, n and ¢. The
constant Cye is usually set to 0.65.

In the boundary layer d < CgesA and thus the model operates in RANS mode.
Outside the turbulent boundary layer d > CgesA so that the model operates in LES
mode. The modeled length scale is reduced and the consequence is that the destruction
term VU increases, which gives a reduction in the turbulent viscosity 7;. A reduced 7y
gives a smaller production term P so that the turbulent viscosity is further reduced.

At first sight it may seem that as the model switches from RANS mode to LES
mode thus reducing d, this would give rise to an increased production term P through
the second term (see Eq. 20.2). However, this second term is a viscous term and is
active only close to the wall. This term is sometimes neglected [139].

20.1 DES based on two-equation models

The model described above is a one-equation model. In RANS mode it takes its length
scale from the wall distance, which in many situations is not a relevant turbulent length
scale. Recently, DES models based on two-equation models were proposed [140-142].
In these models the turbulent length scale is either obtained from the two turbulent
quantities (e.g. k%/2 /¢ or k'/2 Jw) or the filter width A. A model based on the k — ¢
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model can read

ok 9 D v\ Ok
E+3—%(Ujk)_3$j [(V+0k) 3%}+P o

Oe 0 ,_ 0 ve\ Oe € &

L Y 5= L i B RNy L

ot * 8xj (UJE) ij |:(V * O'E) 8$j:| * k(01 026)
Pk = 2Vt§ij§ija Ve = kl/Qﬂt

The turbulent length scale, ¢, and the turbulent dissipation, 7, are computed as [142,
143]

k3/2
gt = min (C#T, CDESA)

k3/2
er = max (5, C€T>

(20.4)

In other models [79, 140] only the dissipation term, 7 is modified. When the grid
is sufficiently fine, the length scale is taken as A. The result is that the dissipation in
the k equation increases so that k decreases which gives a reduced v;. In regions where
the turbulent length scales are taken from A (LES mode) the e-equation is still solved,
but ¢ is not used. However, ¢ is needed as soon as the model switches to RANS model
again. A third alternative is to modify only the turbulent length scale appearing in the
turbulent viscosity [143].

A rather new approach is to reduce the destruction term in the £ equation as in
PANS [144, 145] (Partially Averaged Navier-Stokes, see Section 23) and PITM [146]
(Partially Integrated Transport Modeling, see Section 24). In these models ¢ increases
because of its reduced destruction term which decreases both k£ and ;. A low-Reynolds
number PANS was recently proposed [145] in which the near-wall modifications were
taken from the AKN model [47]. In [147] different ways of treating the interface
between the URANS and LES regions were evaluated.

In the RANS mode the major part of the turbulence is modeled. When the model
switches to LES mode, the turbulence is supposed to be represented by resolved tur-
bulence. This poses a major problem with this type of models. If the switch occurs at
location x1, say, it will take some distance L before the momentum equations start to
resolve any turbulence. This is exactly what happens at an inlet in an LES simulation if
no real turbulence is given as inlet boundary conditions. One way to get around this is
to impose turbulence fluctuations as forcing conditions [100, 148—151] at the location
where the model switches from RANS mode to LES mode. The forcing is added in the
form of a source term (per unit volume) in the momentum equations.

20.2 DES based on the &£ — w SST model
The standard k — w model SST reads [73,79]
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where d is the distance to the closest wall node. The SST model behaves as a k — w
model near the wall where F}; = 1 and a k — € model far from walls (F; = 0). All
coefficients are blended between the k — w and the & — € model using the function F1,

for a, for example,
a=Fag_,+ (1 - Fl)ak;_g (20.6)

The constants take the following values:

B*=0.09, a3 =0.3
Aqfp—y — 5/97 ﬁk—w = 3/40, Okk—w = 0.85, Ow,k—w = 0.5 (20.7)
A = 0.44, ﬂkfs = 00828, Ok,k—e — 1, Ouk—e = 0.856.

In DES the dissipation term in the k£ equation is modified as [79]

L, k1/2
L, “kwF Fpps = rery R CopsBie "
B*kw = §*kwFpps, Fprs m“{cDEsA’ } maX{CDEsﬁ*AW’

k1/2
A =max {Azxy, Az, Axs}, L= o

(20.8)

where Cpggs = 0.61.

Again, the DES modification is meant to switch the turbulent length scale from a
RANS length scale (o< k'/2/w) to a LES length scale (x A) when the grid is suf-
ficiently fine. When Fpgg is larger than one, the dissipation term in the k equation
increases which in turn decreases k£ and thereby also the turbulent viscosity. With a
smaller turbulent viscosity in the momentum equations, the modeled dissipation (i.e
the damping) is reduced and the flow is induced to go unsteady. The result is, hope-
fully, that a large part of the turbulence is resolved rather than being modeled.

Equation 20.8 shows that it is the grid that determines the location where the model
switches between RANS and LES. Hence it is crucial to generate an appropriate grid.
The larger the maximum cell size (usually Az or Az) is made, the further out from the
wall does the switch take place.
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Figure 20.1: Grid (in blue) and a velocity profile (in red). RANS-LES interface is shown by the
dashed-green line.
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20.3 DDES

In some flows it may occur that the F')ppg term switches to LES in the boundary layer
because Ax or Az (Axy or Axg) are too small (smaller than the boundary layer thick-
ness, §). This means that the flow in the boundary layer is treated in LES mode with
too a coarse mesh. This results in a poorly resolved LES and hence inaccurate pre-
dictions. Two grids are shown in Fig. 20.1. The grid on the left is a good DES mesh.
Here A = CppsAxy (assuming Azs < Azy) is proportional to the boundary layer
thickness, 6. The grid on the right is refined in the x; direction. The result is that
A < § and hence the outer part of the boundary layer is in LES mode. If the resolution
in the spanwise and streamwise direction does not satisfy the requirements for LES
resolution (see Eq. 18.68), the predictions will be inaccurate due to a poorly resolved
LES region.
Different proposals have been made [152, 153] to protect the boundary layer from
the LES mode I
t
Fppes maX{CDESA(l FS),I} (20.9)
where Fg is taken as I} or F; (see Eqgs. 16.12 and 16.18) of the SST model. In [79]
F' = F5. This is called DDES (Delayed DES).
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21 Hybrid LES-RANS

HEN simulating bluff body flows, LES (Large Eddy Simulation) is the ideal

method. Bluff body flows are dominated by large turbulent scales that can be
resolved by LES without too fine a resolution and accurate results can thus be obtained
at an affordable cost. On the other hand, it is a challenging task to make accurate pre-
dictions of wall-bounded flows with LES. The near-wall grid spacing should be about
one wall unit in the wall-normal direction. This is similar to the requirement in RANS
using low-Re number models. The resolution requirements in wall-parallel planes for
a well-resolved LES in the near-wall region expressed in wall units are approximately
100 (streamwise) and 30 (spanwise). This enables resolution of the near-wall turbu-
lent structures in the viscous sub-layer and the buffer layer consisting of high-speed
in-rushes and low-speed ejections [127], often called the streak process.

An event of a high-speed in-rush is illustrated in Fig. 21.1. In the lower part of
the figure the spanwise vortex line is shown. Initially it is a straight line, but due to a
disturbance — e.g. a turbulent fluctuation — the mid-part of the vortex line is somewhat
lifted up away from the wall. The mid-part of the vortex line experiences now a higher
vy velocity (denoted by U in the figure) than the remaining part of the vortex line.
As a result the mid-part is lifted up even more and a tip of a hairpin vortex is formed.
The vorticity of the legs of the hairpin lift each other through self-induction which helps
lifting the tip even more. In the x1 — x5 plane (upper part of Fig. 21.1) the instantaneous
and mean velocity profiles (denoted by U and U in the figure, respectively) are shown
as the hairpin vortex is created. It can be seen that an inflection point is created in the
instantaneous velocity profile, U, and the momentum deficit in the inner layer increases
for increasing z;. Eventually the momentum deficit becomes too large and the high-
speed fluid rushes in compensating for the momentum deficit. The in-rush event is also
called a sweep. There are also events which occurs in the other direction, i.e. low-
speed fluid is ejected away from the wall. These events are called bursts or ejections.
The spanwise separation between sweeps and bursts is very small (approximately 100
viscous units, see Fig. 21.1). This is the main reason why the grid must be very fine
in the spanwise direction. The streamwise distance between the events is related to
the boundary layer thickness (44, see Fig. 21.1). The process by which the events are
formed is similar to the later stage in the transition process from laminar to turbulent
flow. Figure 21.2 presents the instantaneous field of the streamwise velocity fluctuation,
v} in the viscous wall region. As can be seen, the turbulent structures very elongated
in the streamwise direction.

At low to medium Reynolds numbers the streak process is responsible for the major
part of the turbulence production. These structures must be resolved in an LES in order
to achieve accurate results. Thus, for wall-bounded flows at high Reynolds numbers
of engineering interest, the computational resource requirement of accurate LES is
prohibitively large. Indeed, the requirement of near-wall grid resolution is the main
reason why LES is too expensive for engineering flows, which was one of the lessons
learned in the LESFOIL project [131, 132].

The object of hybrid LES-RANS (and of DES) is to eliminate the requirement of
high near-wall resolution in wall-parallel planes. In the near-wall region (the URANS
region), a low-Re number RANS turbulence model (usually an eddy-viscosity model)
is used. In the outer region (the LES region), the usual LES is used, see Fig. 21.3.
The idea is that the effect of the near-wall turbulent structures should be modeled by
the RANS turbulence model rather than being resolved. In the LES region, coarser
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grid spacing in wall-parallel planes can be used. The grid resolution in this region is
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URANS region LES region
4 H6;3 “n[l — exp(—0.2kY/2n /v)] {=A
VT ﬁct/4k1/2n[1 — exp(—0.014k2n/v)] | 0.07k'/%¢
Ce 1.0 1.05

Table 21.1: Turbulent viscosity and turbulent length scales in the URANS and LES regions. n

and x denote the distance to the nearest wall and von Kdrman constant (= 0.41), respectively.
A= (V)13

presumably dictated by the requirement of resolving the largest turbulent scales in the
flow (which are related to the outer length scales, e.g. the boundary layer thickness)
rather than the near-wall turbulent processes. The unsteady momentum equations are
solved throughout the computational domain. The turbulent RANS viscosity is used in
the URANS region, and the turbulent SGS viscosity is used in the LES region.

Hybrid LES-RANS is similar to DES (Detached Eddy Simulations) [138,153,154].
The main difference is that the original DES aims at covering the whole attached
boundary layer with URANS, whereas hybrid LES-RANS aims at covering only the
inner part of the boundary layer with URANS. In later work DES has been used as a
wall model [149, 155] — called wall-modelled LES — and, in this form, DES is similar
hybrid LES-RANS.

21.1 Momentum equations in hybrid LES-RANS
The incompressible Navier-Stokes equations with an added turbulent/SGS viscosity
read

aﬁi +i(6.6.)—7l 8[7 +i aﬁi

ot ox; " pdx; Oxy O0x;

where v = 14 (4 denotes the turbulent RANS viscosity) for z2 < x2 ,,; (the URANS
region, see Fig. 21.3) and, for xo > 22 ,,,; (the LES region), vr = v,gs.

|:(l/ +vr) (21.1)

21.2 The one-equation hybrid LES-RANS model

When a one-equation model is employed in both the URANS region and the LES
region, it reads

dhr 0 9 Okr 2
o T Ox; (vkr) Ox; [(V +vr) axj] P = Oy (21.2)
Prp = —TijSij,  Tij = —2v78;;

In the inner region (x2 < 2 ;) kr corresponds to the RANS turbulent kinetic energy,
k; in the outer region (z2 > %2 ,,1) it corresponds to the subgrid-scale kinetic turbulent
energy (ks4s). No special treatment is used in the equations at the matching plane ex-
cept that the form of the turbulent viscosity and the turbulent length scale are different
in the two regions, see Table 21.1. At the walls, k7 = 0.

When prescribing the location of the RANS-LES interface, the velocity profile may
show unphysical behaviour near the interface because of the rapid variation of the tur-
bulence viscosity. Much work on forcing have been presented in order to alleviate this
problem [100, 128, 149, 150].
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22 The SAS model

22.1 Resolved motions in unsteady

‘% JHEN doing URANS or DES, the momentum equations are triggered through in-
stabilities to go unsteady in regions where the grid is fine enough. In URANS
or in DES operating in RANS mode, high turbulent viscosity often dampens out these
instabilities. In many cases this is an undesired feature, because if the flow wants to go
unsteady, it is usually a bad idea to force the equations to stay steady. One reason is that
there may not be any steady solution. Hence, the equations will not converge. Another
reason is that if the numerical solution wants to go unsteady, the large turbulent scales
— i.e. part of the turbulent spectrum — will be resolved instead of being modeled.
This leads to a more accurate prediction of the flow.
One way to improve a RANS model’s ability to resolve large-scale motions is to
use the SAS (Scale- Adaptive Simulation) model

22.2 The von Karman length scale

The von Kédrmaén length scale

8(171>/(’)x2

92(vy) /O (221

LuK,lD =K

which includes the second velocity gradient is a suitable length scale for detecting
unsteadiness. The von Kdrmén length scale is smaller for an instantaneous velocity
profile than for a time averaged velocity, see Fig. 22.1. This is interesting because, as
noted in [156], the von Karman length scale decreases when the momentum equations
resolve (part of) the turbulence spectrum.

The first and second derivatives in Eq. 22.1 are given in boundary layer form. We
want to extend this expression to a general one, applicable in three dimensions. In the
same way as in, for example, the Smagorinsky model, we take the first derivative as
|5] = (25;75:;)/2. The second derivative can be generalized in a number of ways. In
the SAS model it is taken as

v 0%\
"= d d 222
v <8xj8$j axkaxk) 22.2)

Note than in a CFD code, Eqgs. 22.3 and 22.2 are always used, but when the flow is
steady it is equal to the time-averaged version, i.e. Egs. T.8 and T.9.
There are other options how to compute this second derivative, see Eq. S.3 atp. 481.
Hence, the general three-dimensional expression for the von Kdrmén length scale reads
Lyksp = Iiﬂ (22.3)
N7
In [157] they derived a one-equation v; turbulence model where the von Kdrmén
length scale was used. The model was called the SAS model. Later, based on the
k — k'/2L model of Rotta [158], Menter & Egorov [156] derived a new k — kL model
using the von Karman length scale. Finally, in [159] they modified the k¥ — w-SST
model to include the SAS features; they called this model the SST-SAS model. This
model is described in more detail below.
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Figure 22.1: Velocity profiles from a DNS of channel flow. Solid line: time-averaged velocity
with length scale L. 1p, Eq. 22.1 ; dashed line: instantaneous velocity with length scale L,k 3p,
Eq. 22.3.

The SST-SAS model

The k£ — w SST model is given in Eq. 20.5 at p. 213 (see also the section starting at
p. 176) Now, Menter & Egorov [159] introduced a SAS-term in the w equation. The
object of this term is to decrease the turbulent viscosity when unsteadiness is detected,
i.e. when the von Kdrman length scale becomes small. The production term in the w
equation in the k—w-SST model reads P,, = aP* /v, oc |5|2. To decrease the turbulent
viscosity we should increase w. Thus it seems reasonable to add a new production term
proportional to P,,L;/ L,k 3p where L, denotes a RANS length scale. The additional
term reads

- L, L1/2
Gk|§P———, L= —— (22.4)
2 | | LUK73D t wC}L/4

When unsteadiness occurs — i.e. when the momentum equations attempt to resolve
part of the turbulence spectrum — this term reacts as follows:

e Local unsteadiness will create velocity gradients which decrease von Karman
length scale, L,k 3p (see Fig. 22.1)

e As a consequence the additional source, Eq. 22.4, in the w equation increases
e This gives an increase in w and hence a decrease in vy

e The decreased turbulent viscosity will allow the unsteadiness to stay alive and,
perhaps, grow.

The last item in the list above is the main object of the SAS model. The reaction
to local unsteadiness in a eddy-viscosity model without the SAS feature is as follows:
the increased local velocity gradients will create additional production of turbulent ki-
netic energy and give an increased turbulent viscosity which will dampen/kill the local
unsteadiness. As mentioned in the introduction to this chapter, this is an undesirable
feature.

When incorporating the additional production term (Eq. 22.4) in the k — w-SST
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model, the last term in the w equation is replaced by (for further details, see [159])

Psas = Fsasmax (T1 — 13,0)

T, = F 2
! §2HS LUK,BD
Ty = 2 pax (L 0w 0w 1 Ok Ok (22.5)
7 e w? Oz Ox; k2 Ox; Ox;
L1/2
T i/a
wey!

Note that the term T3 is the “real” additional SAS term; 75 is included to make sure
that the model in steady flow works as a k — w SST model.

22.3 The second derivative of the velocity

To compute U” in Eq. 22.2, we need to compute the second velocity gradients. In finite
volume methods there are two main options for computing second derivatives.
Option I: compute the first derivatives at the faces

(ﬁ) _ Vi1 — Y (ﬁ) _ Vv
8$2 j+1/2 A$2 ’ 81'2 j—1/2 A$2

(821)) _ Vjt1 — 2’Uj + vj—1 (Al’g)2 0%
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and then

Option II: compute the first derivatives at the center
(81}) _Uj+2—1}j ((’)v) _’Uj—’Uj_Q
81'2 G41 2AIL'2 ’ 81'2 j—1 2AIL'2

<821)> Vjt2 — 2’Uj + Vj—2 (A$2)2 841)

) =
0x3

and then

i 4(Axy)? 3 Ok

In [160], Option I was used unless otherwise stated.

22.4 Evaluation of the von Karman length scale in channel flow

In Fig. 22.2 the turbulent length scale, (L, 3p), is evaluated using DNS data of fully
developed channel flow. When using DNS data only viscous dissipation of resolved tur-
bulence affects the equations. This implies that the smallest scales that can be resolved
are related to the grid scale. The von Kdrmdn length scale based on instantaneous ve-
locities, (L 3p), is presented in Fig. 22.2. For zo > 0.2, its magnitude is close to
Axo which confirms that the von Karman length scale is related to the smallest resolv-
able scales. Closer to the wall, (L, 3p) increases slightly whereas Az continues to
decrease.

The von Karmdn length scale, L,k 1p, based on the averaged velocity profile
(v1) = (1) (22) is also included in Fig. 22.2, and as can be seen it is much larger than
(Lok 3 p)- Near the wall L, K,1D increases because the time-average second derivative,
0?(v1)/0x3, goes to zero as the wall is approached. No such behavior is seen for the
three-dimensional formulation, (L, 3p).
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In Fig. 22.3, data from hybrid LES-RANS are used (taken from [100]). When
using hybrid LES-RANS, part of the turbulence is resolved and part of the turbulence is
modeled. The resolved turbulence is dissipated by a modeled dissipation, —2(v75;;5;;)
(v denotes SGS or RANS turbulent viscosity), and v > v. As a result, the length
scale of the smallest resolved turbulence is larger in hybrid LES-RANS than in DNS.

Close to the wall in the URANS region (z2 < 0.0316), the resolved turbulence is
dampened by the high turbulent viscosity, and as a results (L,x 3p) follows closely
Lyk1D-

The RANS turbulent length scale, ¢;_,,, from a 1D RANS simulation at Re, =
2000 with the k¥ — w SST model is also included in Fig. 22.3. In the inner region
(z2 < 0.56), its behavior is close to that of the von Kdrman length scale, L,k 1p. In the
center region the RANS turbulent length scale continues to increase which is physically
correct. However, the von Kdrman length scale, L, x,1p, goes to zero because the



22.4. Evaluation of the von Kdrman length scale in channel flow 222

velocity derivative goes to zero.
Two filter scales are included in Figs. 22.2 and 22.3. In the DNS-simulations,
Azy < (AzqAzy AIE3)1/3 near the wall, whereas far from the wall Az > (Az, Angz3)1/3
because of the stretching in the x5 direction and because of small Az; and Axs. In the
hybrid simulations, it can be noted that the three-dimensional filter width is more that
twice as large as the three-dimensional formulation of the von Kdrman length scale,
i.e. (A$1A$3A$3)1/3 > 2<LUK,3D>~
In [160], the SST-SAS model has been evaluated in channel flow, flow in an asym-
metric diffusor and flow over an axi-symmetric hill.
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23 The PANS Model

HE PANS method uses the so-called “partial averaging” concept, which corresponds
Tto a filtering operation for a portion of the fluctuating scales [161].

To close the system of the partially-averaged Navier-Stokes equations, as in RANS
(see Eq. 11.2) and LES (see Eq. 18.2), a model is needed for 7;;. In [161] they proposed
using the conventional eddy viscosity concept so that 7;; = —21/;5;;, where 5;; is the
strain-rate tensor of the computed flow and v, is the PANS eddy viscosity.

In order to formulate the PANS eddy viscosity, they defined in [161] another two
quantities, the partially-averaged turbulent kinetic energy, k£ and its dissipation rate €,
so that vy = Cuk2 /e. In the derivation of the transport equations for k and &, two
parameters, f and f., have been introduced, relating the unresolved to the resolved
fluctuating scales. Parameter f; defines the ratio of unresolved (partially-averaged)
turbulent kinetic energy (k) to the total kinetic energy (k.¢), and f is the ratio between
the unresolved (¢) and the total (¢,,¢) dissipation rates. These give

k €
ktot fk and Etot fa (231)
The extent of the resolved part is now determined by f, and f.. Usually f. = 1; f. < 1
implies that dissipative scales are resolved. In [161, 162] they employed the standard
k — € model as the base model.

The k;o+ equation is derived by multiplying the RANS k;,; equation (Eq. 11.97) in

the £ — € model by f, i.e. (for simplicity we omit the buoyancy term)

Oktot — Okiot k. tot 0 Vitot \ Oktot
) : — Pk ot o = 5
I { ot Vi Ox; } T { Stor ¥ O0x; v o Ox;

(23.2)

where V; denotes the RANS velocity. Note than the fot index is here equivalent to
RANS. The left side can be re-written

fi {Zﬂfmt 7 8ktot} Ok 7 ok Ok ok — ok

o Vi = (233)

o " Vipa, = o T ag, TV Wy,

Note that we have assumed that fj is constant (non-constant fj is accounted for in
Section 23.1.1). The convective term must be expressed in v; (the PANS averaged
velocity) rather than in V; (the RANS averaged velocity), because it is ©; that transports
k because v; represents the PANS resolved part of v;. Anyway, the last term on the
right side in Eq. 23.3 is usually neglected.

The diffusion term is re-written using Eq. 23.1

0 Vi tot \ Oktot o 0 Vttot \ Ok
fk{awj KH Ok > O ]} O [(VJF Ok )5%}

23.4
0 |, 9k Y
Oz Oku ) 0%;
where )
Oy — O’kf—k (235)
Je
and
k2
Vg =cp— (23.6)

€
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The source terms in Eq. 23.2 are replaced by P* and ¢, i.e.

fio (P10 —g40) = P¥ — ¢ (23.7)
This relation implies
1
phtot — —(pk _ o) 4 — (23.8)
fk ( ) fa
Using Eqgs. 23.3, 23.4 and 23.7 the final transport equation for k£ can now be written as
ok O(kvy) 0 vy ok &
— = — — ) =— P — 23.9
ot + Oz Ox; vt Oku ) OT; c ( )

where the production term, Pk is expressed in terms of the PANS eddy viscosity, v4,
and the strain rate of PANS-resolved flow field, i.e.

ov; oy Ov;
pPF = - L) :
Vi ( oz, 8%_) o, (23.10)

The € equation is derived by multiplying the RANS &;,; equation by f, i.e.
Octot a(Etoth) . Oe 8({—:6]-) _
fs{c’)t T, | T Tom,
0 Vttot \ OEtot k.tot Etot Ef "
= = : Ce1 PP —— — Cp—2
fE { axj |:<V * O¢ c’)xj * el ktot &2 ktot
where f- is assumed to be constant. As in the k equation, the additional term (V; —
0;)0e/0x; is neglected. The diffusion term is re-written using Eq. 23.1

0 Ut tot \ OFtot _i Vt tot ﬁ
o lle) Sl o [0 5) 5

(23.11)

23.12
_ o f(, myee] B
 Oxj v Ocu ) OT;
where 72
Oy = 021 (23.13)
Je

In the same way, the production and destruction terms are re-formulated as (using
Egs. 23.1 and 23.8)

2 2
fs {061Pk7t0t@ - CE EtOt} Csle_fk (i(Pk *5) + i) - CE £ fk

kot kit ko \ fr f- 2 fk
€ g2 e2fy g2
= CatP -CaT 4 cﬂk—J{E" e JZ“ (23.14)
2
€ . €
= CEl Epk - 82Z
where f
Cty=Ca + f_k(CEQ —Cu) (23.15)
IS

The € equation in the PANS model now takes the following form

de  O(ev;) 0 v\ Oe € . €2
i -2 Pl s, P oS 23.1
ot * 8xj ij |:(l/+ Usu) 8$j:| c ! k £2 k ( 3 6)
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The PANS equation for k&, Eq. 23.9, was derived by multiplying the RANS equation
for kot by fr, which was assumed to be constant in space and in time. By referring to
Eqgs. 23.4, 23.6 and 23.5, the turbulent diffusion term was obtained as

0 Vi tot Oktot 0 Vot Ok
— | = = — | == 23.17
fk@xj ( o 0z > Ox; < o axj> (23.172)
0 V¢ ok
= —( — = 23.17b
O0x; (Uku axj> (23 )

The expression on the right-hand side of Eq. 23.17(a) suggests that the turbulent trans-
port for the PANS-modeled turbulent kinetic energy, k, is actually formulated in terms
of the RANS turbulent viscosity from the base model. This is different from the turbu-
lent diffusion in subgrid scale (SGS) modeling of LES with a one-equation k4, model,

which reads 5 ok
Vsgs sgs
oz, ( o0 O ) (23.18)
In Eq. 23.18 the SGS turbulent viscosity is invoked for the transport of k4., whereas
on the right-hand side of Eq. 23.17(a) the total (i.e. the RANS) turbulent viscosity has
been used for k. Equation 23.17(a) suggests that, when used as an SGS model, the
modeled turbulent diffusion in the PANS formulation is a factor of o, /0y = f=/f7
larger than in Eq. 23.18, see Eqgs. 23.9 and 23.17(b). With f. = 1 and f;, = 0.4, for
example, this factor is larger than six. The modification of the diffusion coefficient,
Oku» 18 @ unique property of the PANS model. In other models, such as DES [163],
X-LES [142] and PITM [146], the sink term in the &, € or w equation is modified, but
not the diffusion term. The only difference between PANS and PITM is that in the
former model the diffusion coefficients in the k and ¢ are modified.
A Low Reynolds number PANS model was presented in [145, 164] which reads

Ok , (ko)) _ 9 LR W T
5t+ Oox;  Ox, [<V+aku> axj]Jr(P )

e O(ev;) 5} v\ Oe K € . €2
A Nt Gl “ L PEZ o,
ot * 0z, 0z, v Ocu ) 0% e k 2k

k2
vy = Cﬂf}t?vc‘:Q =Ca + %

(Ceafa — Car)

2 f2
Ohu = k| - | 0cw = 0 £ (23.19)

Je
fo= {1 —exp (- gl)y {1 O.3exp[ (%)QH
R

v
K, U

R=", y==Y U =
ve 1%

The modifications introduced by the PANS modeling as compared to its parent
RANS model are highlighted by boxes. The model constants take the same values as
in the LRN model [47], i.e.

Cey =15,Ce0 = 1.9,04 = 1.4,0. = 1.4,C,, = 0.09 (23.20)
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23.1 PANS as a hybrid LES-RANS model

A new approach to use the partially averaged Navier-Stokes (PANS) model as a hybrid
RANS-LES model was presented by Davidson [165]. It was evaluated in fully devel-
oped channel flow and embedded LES in a hump flow. For the channel flow, the two
RANS-LES interfaces are parallel to the walls. In the URANS region, fj is set to one.
In the LES region, fj is set to a constant value (the baseline value is f;, = 0.4) or it
is computed. It is found that the new model gives good results for channel flow for a
large span of Reynolds numbers (4000 < Re, < 32000). In the channel flow sim-
ulations, three different grids are used in the wall-parallel planes, 322, 642 and 1282,
and the model yields virtually grid-independent flow fields and turbulent viscosities.
Embedded LES is used for the hump flow which is well predicted. The RANS-LES
interface is normal to the flow from the inlet. RANS is used upstream of the interface.
Downstream this interface, RANS is used near the wall and LES is used away from the
wall.

23.1.1 The interface conditions at the RANS-LES interface

The interface plane separates the URANS region near the wall and the LES region in
the outer region. In the former region, the turbulent viscosity, v, should be a RANS
viscosity and in the latter region it should be an SGS viscosity. Hence v; must decrease
rapidly when going from the URANS region to the LES region. This is achieved by

kint; Eint LES, fk <1

!

y URANS, fr =1.0 Yint
wall
T
Figure 23.1: The URANS and the LES regions.
P
y [ ]
x A Interface Ay
—_— AS
B I EE———
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Figure 23.2: Control volume, P, in the LES region adjacent to the interface.
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setting the usual convection and diffusion fluxes of k # at the interface to zero. New
fluxes are introduced in which the interface condition is set to k;,+ = fxkrans, Where
krans is the k value in the cell located in the URANS region adjacent to the interface.
Unless otherwise stated, no modification is made for the convection and diffusion of &
across the interface. The implementation is presented in some detail below. We write
the discretized equation in the y direction (see Figs. 23.1 and 23.2) as [99]

apkp = ankn + asks + Sy, ap =as+any —Sp

where ag and ap are related to the convection and diffusion through the south and
north face, respectively, and Sy and Spkp include the production and the dissipation
term, respectively. For a cell in the LES region adjacent to the interface (cell P), ag
is set to zero, setting the usual convection and diffusion fluxes to zero. New fluxes,
including fy, are incorporated in additional source terms as

Su = (Cs + Ds) frks, Sp=—(Cs+ Ds)
MtotAs (2321)

Cs = max (U:45,0), Dy =

where Cs and D, denote convection (first-order upwind) and diffusion, respectively,
through the south face, and A, is the south area of the cell. As can be seen, the kg
is multiplied by fj and hence the new convective flux is a factor fj, smaller than the
original one. Also the diffusion flux is smaller; it is D(fxks — kp) compared with the
original flux Dy(ks — kp).

The interface is defined along gridlines. The approach presented above is also
applicable when the location is automatically computed where the extent of the RANS
region varies along the wall. The convective and diffusive fluxes are modified in exactly
the same way.

The method of adding a new flux in the k£ equation is similar to the method proposed
in [166]. In that work they take into account the spatial variation of fi. A decrease of
fi in space — as occurs at the interface in Fig. 23.1 — means that the turbulent kinetic
energy should be transferred from modeled to resolved. This is done by introducing
a sink term in the k equation which decreases the turbulent viscosity. [166] also add
a turbulent diffusion term in the momentum equation which appears as a source term
in the equation for turbulent resolved kinetic energy. No source term is used in the
momentum equations in this method. A further difference is that this method modifies
the equations only in the LES region (in which k is reduced), not in the RANS region.
The reason is that this effect is believed to be the most critical; it is important that the
resolved turbulence on the LES side of the interface is activated as soon as possible
(i.e. as close as possible to the interface). The total turbulent kinetic energy across the
interface is not conserved, but as shown below, the total turbulent kinetic energy that is
lost across the interface is not large. For more details and results, see Davidson [165].

23.2 Zonal PANS: different treatments of the RANS-LES interface

In [166], a method was proposed to include the effect of the gradient of fj in PANS.
This approach was used at RANS-LES interfaces by Davidson [147]. Four different
interface models are evaluated in fully developed channel flow and embedded LES of

“4from here on, the modelled turbulent kinetic energy and its viscous dissipation, LES or RANS mode,
are denoted by kand
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channel flow; in both cases, PANS is used as a zonal model with f; = 1 in the URANS
region and fr = 0.4 in the LES region. In fully developed channel flow, the RANS-
LES interface is parallel to the wall (horizontal) and in embedded LES it is parallel to
the inlet (vertical).

The importance of the location of the horizontal interface in fully developed chan-
nel flow is also investigated. It is found that the location — and the choice of the treat-
ment at the interface — may be critical at low Reynolds number or if the interface is
placed too close to the wall. The reason is that the modeled turbulent shear stress at
the interface is large and hence the relative strength of the resolved turbulence is small.
In RANS, the turbulent viscosity — and consequently also the modeled Reynolds shear
stress —is only weakly dependent on Reynolds number. It is found that that also applies
in the URANS region.

23.2.1 The Interface Condition

The commutation error in PANS was recently addressed in [166]. In PANS, the equa-
tion for the modeled turbulent kinetic energy, k, is derived by multiplying the ki
equation (ktot = kres + k) by fi where k,..s denotes the resolved turbulent kinetic
energy. The convective term in the k equation with constant fy, is then obtained as (see
Eq. 23.3)

dktot d(fkktot) dk

fr T L = (23.22)
where
fu= i . (23.23)
ktot
Now, if fj, varies in space, we get instead
) e dE By

Since f; here is constant in time, dfy/dt = ©;0f)/0x;. The second term on the right
side of Eq. 23.24 is the commutation term; it represents (excluding the minus sign)
energy transfer from resolved to modeled turbulence. It can be written (on the right
side of the k equation)

d
ktotﬁ = (k + kres)

y A _ 4 (0i0) dfk (23.25)

dt dt 2 dt

The commutation term in the k,..; equation is the same but with opposite sign, i.e.

e @) dh

o 5 (23.26)

The question is now which term should be added to the momentum equations to get
the commutation term in the k,..s equation. We start by the second term in Eq. 23.26.
This term can be represented by the source term

g Ldh

Ly dik 232
T (2327

in the momentum equation. To show that this term corresponds to the commutation
term in Eq. 23.26, consider the momentum equation for the fluctuating velocity, o;.
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LES, fr =0.4
y URANS, fr =1 Yint
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T
Figure 23.3: The URANS and the LES regions near a wall.
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Figure 23.4: Embedded LES. Vertical thick line shows the interface at z; = 0.95. fj, varies
linearly in the gray area (width x¢,.) from 1to 0.4. § = 1.

Multiplying S} by o} = v; — (7;) and time-averaging gives the source term in the k.
equation as

= - 17/dfk _ 144% _ _1 —1 =1 df_k
- <(Uz‘ — (i) §Uz%> == <2vivi dt > = 2<Uivi> 7 (23.28)

Equation 23.28 is equal to the time average of the second term in Eq. 23.26 as it should.
A term corresponding to the first term in Eq. 23.26 can be added as a source term
in the momentum equation as

> (k)v; _dfx
2 — _ 23.2
T T d (2529
Multiplying S? by v} and time averaging gives
(k)0 V) dfi df
— Lt~ (kY 23.
(0, 07,) dt " 2330

Equation 23.30 is equal to the time average of the first term in Eq. 23.26 as it should.
In [166], the second term on the right side of Eq. 23.24 is represented by introducing
an additional turbulent viscosity, 14, in a diffusion term in the momentum equation as

0 B B 1/ 0v; O
5. o + 23.31
Ox; (verSig) 5y 2 (8xj 8@) (23.31)
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where

(23.32)
The term, Py, ,., is computed as

df
P, = kiot— 23.33
i = Kot~ ( )
P, is an additional production term in the k equation, see Eq. 23.19. In [166], P, is
re-written using Eq. 23.23 as

k dfy
P = _2F 23.34
Ker 7 dt ( )

23.2.2 Modeling the Interface

The gradient of fj across a RANS-LES interface gives rise to an additional term in
the momentum equations and the k equation. These terms are included only when the
flow goes from a RANS region to an LES region. The effect of these terms will reduce
k and act as a forcing term in the momentum equations. Four different models are
investigated.

23.2.2.1 Interface Model 1

This is based on the approach suggested in [166]. The additional turbulent viscosity,
V4, gives an additional production term, Py, ., in the k equation, see Eq. 23.34. Since
we are interested in stimulating resolved turbulence in the LES region adjacent to the
RANS region, only negative values of v, are included. A negative v, means physi-
cally transfer of kinetic energy from modeled to resolved. It is found that the magnitude
of the positive values of 14, is actually larger than the magnitude of the negative ones,
which means that (v4,) > 0. The negative values correspond to dfy/dt < 0 (see
Eqgs. 23.32, 23.33 and 23.34), i.e. when a fluid particle in a RANS region passes the
interface into an adjacent LES region. However, 14, takes such large (negative) values
that 14 + v, < 0. To stabilize the simulations, it was found necessary to introduce a
limit vy + 14, > 0 in the diffusion term in the momentum equation. No such limit is
used in the k equation, and hence Py, + P, is allowed to go negative.

23.2.2.2 Interface Model 2

This model is identical to Model 1 except that Eq. 23.33 is used instead of Eq. 23.34.
kot in Eq. 23.33 is defined as

1
kot = k + 5<@§@§>T.a (23.35)

where subscript .a. denotes running average. Is is averaged in all homogeneous direc-
tions including time (note that time is not a homogeneous direction in decaying grid
turbulence). Since ki, is mostly larger than k/fj, [165], this approach will give a
larger magnitude of the (negative) production than Model 1. It is found in [147] that
this modification is of utmost importance.
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23.2.2.3 Interface Model 3

The right side of Eq. 23.25 is added to the k equation, but only when the flow goes
from a RANS region to an LES region (i.e. dfy/dt < 0), i.e.

df

Py, = kg min | ZE g (23.36)
dt

where ko: is computed as in Eq. 23.35. The production term Py, < 0 which means

that it reduces k as it should. The sum of the S} and S? terms (see Egs. 23.27 and

23.29) in the momentum equations read

_ . dfk k —/
Si = —min (E, 0) (05 + W) U; (2337)

UmVUm

Since dfy,/dt < 0, the source S; has the same sign as v}; this means that the source
enhances the resolved turbulence as it should.

It may be noted that dfy, /dt in Eq. 23.36 assumes the correct (i.e. negative) sign
irrespectively of the orientation of the RANS-LES interface. Consider, for example,
the RANS-LES interfaces at the lower and upper wall in fully-developed channel flow
(Fig. 23.3). For these interfaces, the gradient of fj in Eq. 23.36 reads 90 f,/0y. When
a fluid particles at the lower interface goes from the RANS region to the LES region,
o> 0and Of /0y < 0 so that 5O /Jy < 0 as intended. Also for the upper interface
we get 90fy /0y < 0since © < 0 and Of;/Jy > 0. For non-cartesian grids the
material derivative, dfy /dt < 0, has to be formulated in local grid coordinates.

It is however found that the forcing often becomes too strong when S; is added
to the momentum equation. The effect of adding or neglecting S; in the momentum
equations is evaluated, see [147].

The differences between Model 3 and 2 are that

e When S; = 0, no explicit modification is made in the momentum equation in
Model 3 (recall that —v < vy, < 0 is used in the momentum equation in Models
1 and 2).

e Model 2 (and Model 1) may need regularization in case |5| — 0 in the denomi-
nator of v, in Eq. 23.33. No such regularization, however, is used here. It can
be argued that the commutation term in Model 3 is introduced in a more physical
way compared to Models 1 and 2 where artificially negative viscosities are used.

23.2.2.4 Interface Model 4

This interface model was developed in [165] for horizontal interfaces. The modeled
turbulent kinetic energy in the LES region adjacent to the interface is reduced by setting
the usual convection and diffusion fluxes of k at the interface to zero. New fluxes are
introduced in which the interface condition is set to kj,¢+ = frkrans (fr = 0.4),
where krans is the k value in the cell located in the URANS region adjacent to the
interface. No modification is made for the convection and diffusion of ¢ across the
interface. The implementation is presented in Section 23.1.1. It is described in the next
section.
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23.3 A new formulation of f; for the PANS model

It is natural to link fj, to the mesh resolution and in that aim several proposals have
been made on how to compute f. Girimaji and Abdol-Hamid [162] proposed one way

to compute f%:
B AN 2/3 1:3/2
fe=Cp'® <L—> Ly = et (23.38)
t g

using A = A,,in, the smallest grid cell size. Basara ef al. also used fj, prescribed
from Eq. 23.38, however taking the geometric average A = (AV)'/3. [167] they have
made a slightly different proposal which reads

A

=

(23.39)
More recently, in [168] they derived an expression from the Kolmogorov energy spec-
trum which reads

(a/a2s 1"
©10.23+ (A/A)2/3

Rccently, Davidson and Friess [169] proposed a new formulation for f. It is based
on the H-equivalence introduced by Friess ef al. (2015). In this formulation the ex-
pression of fj, is derived to mimic DES. This new formulation behaves very much like
“classic DES”, even though tthe two formulations use different mechanisms to separate
modeled and resolved scales. They show very similar performance in separated flows
as well as in attached boundary layers. Moreover, the new formulation exhibits similar
robustness features as DES.

fe = (23.40)

23.3.1 fj derived from the equivalence criterion

In [170] a relation between fj, and the grid step is derived, through the establishment of
a statistical equivalence between DES and PITM. To that aim, they performed pertur-
bation analyses about the equilibrium states, representing small variation of the energy
partition. They did the analysis with and without considering inhomogeneity. That
derivation is summarized here in a homogeneous framework, as a first step. Let us
first consider the PAN'S/PITM equations. For equilibrium turbulence dr/dt = 0 where
T =k/e, Eq. 23.19 gives

ﬁzlﬁfﬁﬁzl(kaer,E)
dt edt e2dt e
B o 2 (23.41)
C 1> * _
:z(cdzp L sﬁ) =

where D and D denote the diffusion term for k and &, respectively. For local homo-
geneous turbulence (i.e. D¥ = D¢ = 0), it can be written

Y(Ce1 —1)Sk = (Cy — 1)e
Pk o (23.42)

Y=o ST (251;8,5)"/°
The quantities that are affected by the partition between modeled and resolved turbu-
lence (i.e. fy) in Eq. 23.42 are «, S, k and C%,.°> Differentiation of Eq. 23.42, by

5

€ is independent of f; provided that no dissipation is resolved, which corresponds to fo =1
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considering infinitesimal perturbations -y, 6.5, 6k and §C%, of the variables, yields:

5C%,e

0vSk + 6Svk + 6knS =
vSk + 6Svk + okvyS O 1

(23.43)

so that oy 6 ok 5C: 5C:
GO L 2 _ O (23.44)
~ S k (Car —1)ySE Cx—1
Equation 23.44 was derived for the PANS/PITM equations. Now we repeat the deriva-
tion for the DES equations. The differences between DES and PITM/PANS are that in
DES (i) C%, = C.2 is constant and (ii) the dissipation term in the equation for modeled

energy k is replaced with )¢, i.e.

dk 0 v\ Ok
@& _ 2 S B 23.4
dt Oz, {(V—‘_Jk)azj]—i_ b e (23.45)
k32 /e
1) = max (1, 7) y Apar = max(Azy, Axg, Axg) (23.46)

CDESAmaz

de 0 v\ Oe € g2

oo | 8) ] roang - eat

Assuming dr/dt = 0 and local homogeneous turbulence gives
’}/(Cgl — 1)Sk = (ng — ’L/J)E (2347)

‘We differentiate so that
5_7 " 5_S ok die dy

S T K T T Ca—1)Sky  Ca—4

(23.48)

Equations 23.43 and 23.48 describe how C7; and ¢ depend on variations in -, S and
k. The parameters C'}, and ¢ vary from C,2 and 1 (RANS values), respectively, to C7,
and ¢ (A) (LES values). Combining Eqs. 23.43 and 23.48 and integrating from RANS
to LES conditions (C7; and 1)

/Ciz ‘10;2 /d} di N
Ceo 082 -1 1 052 - w
=1 Ceo —
He2 T 1) _ Ze2 7 ¥
111(082_1) 111(082_1)

By using the expression for C, in Eq. 23.19 (with f; = f. = 1), and ensuring that
0 < fr <1 we finally get

(23.49)

fr = max [o,min (1, 1-— %)] (23.50)

where v is given by Eq. 23.46. This model is evaluated in [169]. It gives much better
results than the old PANS model and very similar results to the DES model. What is
the advantage of the new PANS model vs. the DES model? The PANS model is based

on a rigorous derivation whereas DES is based on an ad-hoc modification of RANS
models.
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24 The PITM model

PITM is an acronym for Partially Integrated Transport Model [146, 171].

24.1 RANS mode

Consider homogeneous turbulence, e.g. decay of grid generated turbulence, see Section
3.4 in [26] and Fig. 11.2. The k and € equations can for this flow is simplified as

dk

= — pk_ 24.1
dt : 4D

de ¢
i E(cglP]C — Ce2€) (24.2)

where d/dt = v1d/dx. The dissipation can be estimated as
k3/2
=c— 24.

e=cp (24.3)

Differentiation of Eq. 24.3 gives

de 3kY2dk K32 dL,

— =Ccz——— —C—5— 24.4
it~ 2L, @t L? dt (24.4)
Inserting Eq. 24.1 into Eq. 24.4
de  3kY? k3/% dLy
= =2 Pk oy ot
TR R A ka7
and using Eq. 24.3 gives
de 3¢ e dlLy 3PF—¢ T dL,ée?
— =Py - ——— = 24.5
T T A A T R R A T (242)
where T = k/e. Comparing Eqgs. 24.5 and 24.2 we find that
T dL
Coi=15 and Cop=Coy + —— " (24.6)

L, dt

24.2 LES mode

Now let’s transform the RANS k£ — ¢ model above to an SGS k& — ¢ model. In the
RANS model, k represents all turbulence. In an SGS model, the modeled turbulent
kinetic energy, kg5, represents scales with wavelength larger that the cut-off, x., see
Fig. 18.6. The viscous dissipation is the same in RANS and LES. The production
P* is replaced by Py,,. = €s4s (see Fig. 18.6). The time scale, T, is replaced by
Tsgs = ksgs/€ since the time scale of the small scales is different (it is smaller) than
that of the large scales. Now, Eq. 24.5 can be written as

de E€sqs e?
E = Csl,sgs L 2 — 0627595 L
598 598 24.7)
0o 3, TuedLy (3 T dLiky,
295 T UL dt 2 Ly dt ko
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Re kg K

Figure 24.1: Spectral energy balance in PITM. Homogeneous turbulence.

where k;,; denotes the total turbulence (i.e. resolved and SGS). Note that L is not
replaced by L4, because Eq. 24.3 is still a valid estimate .
Let’s introduce a new dissipative length scale of wavenumber x4 which is much

larger than x.
€

Kd — ke =&—= (24.8)
1372

sgs
The constant is very large since k. < kq; thus we can write
€

5gs

Consider spectral balance of k45 in homogeneous turbulence, see Fig. 24.1. When the
cut-off does not move we get simply

F.=c¢ (24.10)

where F. = F(k.) denotes the spectral transfer from wavenumber range [0, | into
[k}, 00]; note that kg ~ oo. Recall that kg is the area below E in Fig. 24.1. see
Eq. 18.23. When the cut-off does not move in time (which implies that dks /dt), then

]:c:&_sgs:Pk (24]])

sgs
When &, is time dependent as, for example, in decaying homogeneous grid turbulence,
see Eq. 24.1, we can set-up the balance of k545 when k. moves dk. during the time
interval dt, i.e.

dksgs = Fedt — Ecdr, — edt (24.12)

where E.dk denotes the spectral energy in the slice dx.. Taking the time derivative of

Eq. 24.12 we get
dksgs dk.
/9 _F - FE.—5— 24.1
a7 it © (¢4.19)

Comparing Eq. 24.13 with Eq. 24.10 and 24.11, we find the spectral energy transfer,
Esgs. at the cut-off, k., is
dk.

Esgs :]:C_ECE (24]4)
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We can write a similar equation as Eq. 24.14 at wavenumber x4, i.e.

de
= — E;— 24.15
e=Fq L ( )

where ¢ is the energy transfer rate across k4. Now derivate Eq. 24.9 with respect to

time and insert Eq. 24.15
d € Fa—¢
= = 24.16
o5) -5 st

It may be noted that both the nominator and denominator of the right side go to zero as
kg — 00. The left side is re-written as

1 de 3,5 dhgs

With Eq. 24.13 we get

1 de 3 dk
—— 2k (P - B2 — 24.1

‘ Lsgg @i~ gt \Fem g e .
Replacing the left side of Eq. 24.16 with Eq. 24.18 gives

1 de 3. _ dk. Fqg—¢€
= LTS (R B —E - = 24.1
¢ [k%g at ~ 2'ses © (]: dt 5)] E,; (24.19)

We get (using first Eq. 24.14 and then Eq. 24.9)

de _yspfa—ce 3 € fa—e 3 ¢
dt % €E; 0 2kggs 2

(€sgs —€) =€ + (€sgs —€)  (24.20)

kaEq ksgs

This equation can now be written

2
e_ 3 = = F _ Fsgs (ﬂ - 1)} (24.21)

dat 2 ksgs kegs |2 kKaFq \ €
Ce1,sgs Cen sge
When k. — 0 (RANS), then ksgs — kio¢ SO that
Cal,sgs — Cal (2422)
3 kot (Ja
Ce2.sgs Coo==-——7|—-1 24.23
2,59 — Ce2 2 '“ﬂdEd ( c ( )

It may be noted that both the term in the parenthesis and E; go to zero as kg — 0<.
Inserting Eq. 24.23 in the expression for C,2 445 in Eq. 24.21 gives

3 ksgs Kio F 3 kggs 3
6’62,595:57—9L <_dl)§+ g <052_>

ktot KdEd 9 ktot 2 (24_24)

ksgs
=Ce1 + kg (052 - Csl)
tot

When kg4 /ktot — 0 (only a small part of the turbulent kinetic energy is modeled),
the PITM model is in LES mode, i.e. Cc2 595 — Ce1. Then Ceg 445 is reduced which
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increases € and reduces the modeled turbulent kinetic energy and the turbulent viscos-
ity. On the other hand, when kg /ktot — 1 (everything is modeled), then the PITM
model is in RANS mode (i.e. a usual RANS k — € model).

It should be noted that this model is very similar to the PANS model. Indeed,
Eq. 24.24 is identical to the expression for C,, see Eq. 23.15 (provided that no dissi-
pative scales are resolved so that f. = 1), i.e.

Ce,59s = Ce1 + f1 (Cez — Ce1) (24.25)

In both models the C.o coefficients are modified. The only difference between the
PANS and PITM models is that the diffusion coefficients in the k£ and ¢ are modified in
the former model, see Eq. 23.19.

In [146] they do not use ksgs/kior to compute Ceo s45. Instead they compute it
using the ratio of the integral and the modeled lengthscales as

0.42

Cor=Co+ ———FF—F—=
SRR ERTIANER

where Ly = kf’o/f/s and v = 0.42.
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25 Hybrid LES/RANS for Dummies

25.1 Introduction
FLUID flow problems are governed by the Navier-Stokes equations

Ov; | Ovwy _l Op 0%v;

ot 8:16]- P 8% V@xja:rj

(25.1)

where v; denotes the velocity vector, p is the pressure and v and p are the viscosity and
density of the fluid, respectively. In turbulent flow, the velocity and pressure are un-
steady and v; and p include all turbulent motions, often called eddies. The spatial scale
of these eddies vary widely in magnitude where the largest eddies are proportional to
the size of the largest physical length (for example the boundary layer thickness, 9, in
case of a boundary layer). The smallest scales are related to the eddies where dissipa-
tion takes place, i.e. where the kinetic energy of the eddies is transformed into internal
energy causing increased temperature. The ratio of the largest to the smallest eddies
increases with Reynolds number, Re = |v;|d/v. This has the unfortunate consequence
— unless one is a fan of huge computer centers — that it is computationally extremely
expensive to solve the Navier-Stokes equations for large Reynolds numbers.

25.1.1 Reynolds-Averaging Navier-Stokes equations: RANS

In order to be able to solve the Navier-Stokes equations with a reasonable computa-
tional cost, the velocity vector and the pressure are split into a time-averaged part ({v;)
and (p)) and a fluctuating part (v} and p’), i.e. v; = (v;) + v, p = (p) + p’. The
resulting equation is called the RANS (Reynolds-Averaging Navier-Stokes) equations

Oil{vi) _ _10(p) | O*vi) _ O {viv)

= v
8xj 14 81‘1 8:L'j(9$j 81']' (252)
1) 0 (0
-~ p Oz Oz ! Oz

The last term on the first line is called the Reynolds stress and it is unknown and must
be modeled. All turbulent fluctuation are modeled with a turbulence model and the
results when solving Eq. 25.2 are highly dependent on the accuracy of the turbulence
model. On the right side of Eq. 25.2 the unknown Reynolds stresses are expressed by
a turbulence model in which a new unknown variable is introduced which is called the
turbulent viscosity, v;. The ratio of v; to v may be of the order of 1000 or larger. In in-
dustry today, CFD (Computationally Fluid Dynamics) based on finite volume methods
is used extensively to solve the RANS equations, Eq. 25.2.

25.1.2 Large Eddy Simulations: LES

A method more accurate than RANS is LES (Large Eddy Simulations) in which only
the small eddies (fluctuations whose eddies are smaller than the computational cell) are
modeled with a turbulence model. The LES equations read

0v; 861-6]- . _1 (9]_) y 821_)1' _ 8Tij
ot or;  pOx; O0xz;0x;  Oz;

0 (L on
-~ pOx;  Oxy 9 O

(25.3)
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Note that the time dependence term (the first term on the left side of the first line) has
been retained, because the large, time dependent turbulent (i.e. the resolved) fluctua-
tions are part of v; and p and are not modeled with the turbulence model. The last term
on the first line includes the Reynolds stresses of the small eddies, which are called
SGS (sub-grid stresses). This term must also — as in Eq. 25.2 — be modeled, and at the
second line it has been modeled with a SGS turbulent viscosity, v 4. The difference
of v,4, compared to v; in Eq. 25.2 is that it includes only the effect of the small eddies.
The ratio of vy, to v is of the order of 1 to 100. However, the ratio of the resolved
to the modeled turbulence, [0;0}|/|7;;| (see Egs. 25.2 and 25.3) is much larger than
one. Hence, LES is much more accurate than RANS because only a small part of the
turbulence is modeled with the turbulence SGS model whereas in RANS all turbulence
is modeled. The disadvantage of LES is that it is much more expensive than RANS
because a finer mesh must be used and because the equations are solved in four dimen-
sions (time and three spatial directions) whereas RANS can be solved in steady state
(no time dependence).

When the flow near walls is of importance, is turns out that LES is prohibitively
expensive because very fine cells must be used there. The reason is entirely due to
physics: near the walls, the spatial scales of the “large” turbulent eddies which should
be resolved by LES are in reality rather small. Furthermore, their spatial scales get
smaller for increasing Reynolds number. Much research has the last ten years been
carried out to circumvent this problem. All proposed methods combines RANS and
LES where RANS is used near walls and LES is used some distance away from the
walls, see Fig. 25.1. These methods are called Detached Eddy Simulation (DES), hy-
brid LES/RANS or zonal LES/RANS. The focus here is zonal LES/RANS.

25.1.3 Zonal LES/RANS

Equations 25.2 and 25.3 can be written in a same form as

81—71’ a’l_)i@j . 1 813 0 81—71’
ot i dr; — pow; + dz; <(V+VT)5$J,) (25.4)

Near the walls, a RANS turbulence model is used for the turbulent viscosity, i.e. vy =
vy and away from the walls an LES turbulence model is employed, i.e. vp = vggs.
Note that the time dependence term is now retained also in the RANS region: near the
wall we are using an unsteady RANS, i.e. URANS.

Above, we have describe how to use the zonal LES/RANS method for flows near
walls. Another form of zonal LES/RANS is embedded LES, in which an LES region is
embedded in a RANS region. One example is prediction of aeroacoustic noise created
by the turbulence around an external mirror on a vehicle [116]. The flow around the ve-
hicle can be computed with RANS, but in order to predict the noise in the region of the
external mirror we must predict the large turbulence fluctuations and hence LES must
be used in this region. In Section 25.4 we will present simulations using embedded
LES in a simplified configuration represented by the flow in a channel in which RANS
is used upstream of the interface and LES is used downstream of it, see Fig. 25.4.

25.2 The PANS k& — ¢ turbulence model

The PANS £ — € model can be used to simulate wall-bounded flow at high Reynolds
number as well as embedded LES. The turbulence model reads [144,145], see Eq. 23.19
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URANS, f5, = 1.0 .
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1 3.2

Figure 25.1: The LES and URANS regions. Fully developed channel flow. Periodic boundary
conditions are applied at the left and right boundaries.

(here in a slightly simplified form to enhance readability)

ok ak’ljj 0 vr ok k
il -2 ) 9E 4 pk_ 25.
ot + Ox; Oz {(V—’— O’k) 8@} © (25-5)

_ 2
Oc 00 _ O Kwr V—T) ﬁ} + CalP’“% - Cg*f]? (25.6)

ot Oz, B 3_:E] o. ) Ox;
C:Q = Csl + fk(CEQ - 061)7 Csl = 1-57 C€2 =1.9 (257)
k2
vr=Cu—, Cy=009 (25.8)

Note that k£ and ¢ are always positive. The key elements in the present use of the PANS
k — € model are highlighted in red. When fj, in Eq. 25.7 is equal to one, the model
acts as a standard k — ¢ RANS model giving a large turbulent viscosity. When fj, is
decreased (to 0.4 in the present study), C7, in Eq. 25.7 decreases. As a result

e ¢ increases because the destruction term (last term in Eq. 25.6 which is the main
sink term) in the € equation decreases,

e k decreases because ¢ (last term in Eq. 25.5) is the main sink term in the &
equation increases, and

e vr in Eq. 25.8 decreases because k decreases and € increases.

Hence, the turbulence model in Eqgs. 25.5-25.8 acts as a RANS turbulence model
(large turbulent viscosity) when f;, = 1 and it acts as an LES SGS turbulence model
(small turbulent viscosity) when f, = 0.4.

25.3 Zonal LES/RANS: wall modeling

25.3.1 The interface conditions

The interface plane (see Fig. 25.1) separates the URANS regions near the walls and the
LES region in the core region. In the LES region f; = 0.4 and in the URANS region
fr = 1. In the former region, the turbulent viscosity vr should be an SGS viscosity and
in the latter region it should be an RANS viscosity. Hence v must decrease rapidly
when going from the URANS region to the LES region. This is achieved by setting
the usual convection and diffusion fluxes of k at the interface to zero. New fluxes are
introduced using smaller SGS values [165].
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Figure 25.2: Velocities and resolved shear stresses. (Ny X N;) = (64 X 64) == Re, =
4000; ==": Re; = 8000; =+=": Re, = 16 000; ////: Rer = 32000.

25.3.2 Results

Fully developed channel flow is computed for Reynolds numbers Re, = u,d/v =
4000, 8000, 16 000 and 32 000. The baseline mesh has 64 x 64 cells in the streamwise
(1) and spanwise (x3) directions. The size of the domain is 1 maz = 3.2, T2,maz = 2
and 3 ;mqz = 1.6 (0 = u, = 1). The grid in the =5 direction varies between 80 and
128 cells depending on Reynolds number. The interface is set to x5 =~ 500 for all
grids.

The velocity profiles and the resolved shear stresses are presented in Fig. 25.2. As
can be seen, the predicted velocity profiles are in good agreement with the log-law
which represents experiments. Figure 25.2b presents the resolved shear stresses. The
interface is shown by thick dashed lines and it moves towards the wall for increasing
Reynolds number since it is located at 3 ~ 500 for all Reynolds numbers.

The turbulent viscosity profiles are shown in Fig. 25.3 for three different resolutions
in the z; — x3 plane. It is interesting to note that the turbulent viscosity is not affected
by the grid resolution. Hence, the model yields grid independent results contrary to
other LES/RANS models.

The turbulent viscosity (Fig. 25.3) is sharply reduced when going across the in-
terface from the URANS region to the LES region and the resolved fluctuations (the
Reynolds shear stress in Fig. 25.2b) increase. This shows that the model is switch-
ing from RANS mode to LES mode as it should. More detailed results can be found
in [165].

25.4 Zonal LES/RANS: embedded LES

25.4.1 The interface conditions

The interface plane is now vertical, see Fig. 25.4. The interface conditions for k and
¢ are treated in the same way as in Section 25.3.1. The difference is now that “inlet”
turbulent fluctuations must be added to the LES v; equations (Eq. 25.3) to trigger the
flow into turbulence-resolving mode. Anisotropic synthetic turbulent fluctuations are
used [172,173].
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25.4.2 Results

The Reynolds number for the channel flow is Re, = 950. With a 3.2 X 2 x 1.6 domain,
a mesh with 64 x 80 x 64 cells is used in the streamwise (x1), the wall-normal (z3)
and the spanwise (z3) direction, see Fig. 25.4. Inlet conditions at x = 0 are created by
computing fully developed channel flow with the PANS k£ — £ model in RANS mode
(i.e. with f, = 1).

Figure 25.5a presents the mean velocity and the resolved shear stresses at three
streamwise locations, x1 = 0.19, 1.25 and 3 (recall that the interface is located at
x1 = 1). At z; = 3, the predicted velocity agrees very well with the experimental
log-law profile.

The resolved streamwise velocity fluctuations are zero in the RANS region, as they
should (Fig. 25.5b), and the maximum resolved values increase sharply over the in-
terface thanks to the imposed synthetic turbulent “inlet” fluctuations. The turbulent
viscosity is reduced at the interface from its peak RANS value of approximately 80
to a small LES value of approximately one (these values are both fairly low because
of the low Reynolds number). Hence, it is seen that the present model successfully
switches from RANS to LES across the interface. The results are presented in more
detail in [165].
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26 Commutation terms in the © and w equations

In embedded LES, part of the flow is treated by RANS and part by LES. Here we
are interested in a configuration where the upstream region is treated by RANS and
the downstream by LES, and the interface is vertical, parallel to the inlet. We denote
the interface between the two regions as “the RANS-LES interface” located at xr_ 1,
see Figs.25.4, 26.1 and 26.2. The transition region in which the predicted flow is in
between RANS and LES is often called the grey area, a problem described in [174].
When the flow goes from a RANS region to an LES region through the RANS-LES
interface, it should — in order to minimize the grey area — switch as quickly as possible
from RANS mode to LES mode.

Hamda [175] showed that, when the filter size (i.e. the grid) is non-uniform, a
commutation error appears in SGS models based on transport equations. He found by
analyzing DNS channel data that this commutation term is large at interfaces between
RANS and LES. Here we show how to apply the commutation term derived in [175] at
RANS-LES interfaces. We present a method in which commutations terms are added
in the k and w equations in order to quickly switch from RANS te LES.

The two-equation zonal k£ — w hybrid RANS-LES model of [176] is employed. In
the LES region, the model reads

ok  Ovik X k32 9 v\ Ok
dad —pt_pf o 2 L 26.1
ot " om LA K”* ak) 830]} 26.1
ow  Ov;w w 0 v ow vy Ok Ow
et i X pk_ 2, _“2 Jt )y ot O O
ot + ox; Con fu k Cuaw” + Oz {(V—’— O’w) 8@} Yk Oz Ox;
(26.2)
k ) ov; 0v;\ 0
vy = fuav PF =, <8:C)j + 62) 6;’ i =VppuCresAdw
(26.3)

y A = max{Az, Ay, Az}
n

IRCE
Vppy = min [1Oafk (f—w)

Adw = min (maX [dedw7 Cw Amazv Anstep] ’ Amaz)

where d,, denotes the distance to the nearest wall and A ., is the grid step size in the
wall-normal direction. The damping functions read
(BN
1.5

R\*
(&)
RN\ 0.001 R\

<10> ]}{0.975+ 7 - exp (200> }
The turbulent Reynolds number is defined as R; = k/(vw). The length scale, A gy,
is taken from the IDDES model [163]. In the RANS regions, ¢; = k'/2/(Cyw). The
constants read o, = 0.8, 0, = 1.35, C, = 0.09 C,,; = 0.42, C,,» = 0.075, C, =
0.75, Crgs = 0.7 and Cy,, = 0.15.

The difference between Eqs. 26.1 and 26.2 in the RANS and LES regions can be
summarized as follows: in RANS regions, the RANS lengthscale, ¢; = k'/2 /(Crw),
is used in the dissipation term in the k equation and, in LES regions, the filter length
scale, Agu, 18 used.

fi=1—-0.722-exp , fo=1443 exp

fu=0.025+ {1 — exp
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Figure 26.2: Boundary layer flow.

When the filter size in LES varies in space, an additional term appears in the mo-
mentum equation because the spatial derivatives and the filtering do not commute. For
the convective term in Navier-Stokes, for example, we get

Ov;v; 0 9
= 7 (v Az)?).
or; 9z (viv;) + O (( x) )

Ghosal & Moin [80] show that the error is proportional to (Az)? and, since this error is
of the same order as the discretization error of most finite volume methods, it is usually
neglected.

However, in zonal® hybrid RANS-LES, the length scale at the RANS-LES interface
changes abruptly from a RANS length scale to an LES length scale. Hamda [175]
estimated the commutation error at RANS-LES interfaces and found that it is large.
The commutation term for the divergence of a flux, g;, reads

g O 9A 0g;
8,%1' N 8,%1' (’)xl 0A

(26.4)

The derivation of Eq. 26.4 is giben in [177] For the k equation, the commutation term

by “zonal”, we imply that the interface is chosen at a location where the RANS and LES length scales
differ
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in Eq. 26.4 reads [175]

ou;k . 0v;k 0A 0v;k
Consider a fluid particle in a RANS region moving in the z; direction and passing
across a RANS-LES interface. The filter width decreases across the interface, i.e.

(26.5)

OA  Apps — Arans

~ 26.
0, A, <0 (26.6)

and B
vk  uikrps —uikrans

OA  Arps — Agans

which means that the last term on the right-hand side of Eq. 26.5 gives a positive
contribution on the left side of the k equation, Eq. 26.1; on the right side of Eq. 26.1,
it gives a negative contribution. Hence, the additional term in Eq. 26.5 at a RANS-
LES interface reduces k, as expected. To obtain the right hand of Egs. 26.6 and 26.7,
the derivatives on the left side of the equations have been estimated by simple finite-
difference expressions, i.e.

a _Af

dr Az

It may be noted that the idea of adding an additional source term in the k equation
due to a commutation error is similar to the proposal in [166]; they use a commutation
term based on the gradient of fj in the PANS model. This idea was later used by the
present author at RANS-LES interfaces [147].

To find the corresponding term in the w equation, let us start by looking at the
equation. What happens with € when a fluid particle moves from a RANS region into
an LES region? The answer is, nothing. The dissipation is the same in a RANS region
as in an LES region. This is best seen by looking at the k.4, equation

ak/sgs a/l_)ik/sgs k a Vsgs (9]{:595
g | WiBogs _ phoge . 2| () Yoos ) Soas| 2.
T o to |2 ) B - (26.9)

>0 (26.7)

(26.8)

The dissipation term, €, in Eq. 26.9 is the same as the dissipation term in Eq. 26.1 unless
the resolution is very fine (close to DNS). Then much of the dissipation is resolved,
reducing the production term, PF<ss However, this kind of resolution is not realistic.

Now consider the w equation. It is derived by transformation of the k and ¢ equa-
tions to an w equation as

dt  dt

= - _x= 26.10
Ok ( )

do d (e \_ 1 de edl/k) 1 de wdk
- Cykdt  Cp dt  Cpkdt kdt

The right-hand side shows that the source terms in the w equation correspond to those in
the e equation multiplied by 1/(Cyk) together with those in the k equation multiplied
by —w/k. Hence, the source term due to the commutation error in the w equation is
the commutation term in Eq. 26.5 multiplied by —w/k so that

Ouw  Ovw  OAJvw  Ovw | w OA vk

Ox; or: Oz 0N O +E&Ei A (26.11)

Assuming again a flow in the z; direction from a RANS region to an LES region,
we find that the second term on the right-hand side of Eq. 26.11 is negative since
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OA/0x1 < 0 (see Eq. 26.6) and 9v1k/0A > 0 (see Eq. 26.7) so that the commutation
term in Eq. 26.11 is positive/negative on the right/left-side of the w equation (Eq. 26.2).
This means that the commutation term in Eq. 26.11 will increase w when moving from
a RANS region to an LES region. Hence the source terms in the k£ and w equations both
contribute to reducing the turbulent viscosity, which is an effect we are looking for at
RANS-LES interfaces: a reduced turbulent viscosity will promote growth of resolved
turbulence on the LES side of an interface.
The results using the commutation terms are presented in [178, 179].
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27 Inlet boundary conditions

N RANS it is sufficient to supply profiles of the mean quantities such as velocity
Iand temperature plus the turbulent quantities (e.g. k and €). However, in unsteady
simulations (LES, URANS, DES ...) the time history of the velocity and temperature
need to be prescribed; the time history corresponds to turbulent, resolved fluctuations.
In some flows it is critical to prescribe reasonable turbulent fluctuations, but in many
flows it seems to be sufficient to prescribe constant (in time) profiles [130, 180].

There are different ways to create turbulent inlet boundary conditions. One way is
to use a pre-cursor DNS or well resolved LES of channel flow. This method is limited
to fairly low Reynolds numbers and it is difficult (or impossible) to re-scale the DNS
fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuations is the vortex method [181].
It is based on a superposition of coherent eddies where each eddy is described by a
shape function that is localized in space. The eddies are generated randomly in the
inflow plane and then convected through it. The method is able to reproduce first and
second-order statistics as well as two-point correlations.

A third method is to take resolved fluctuations at a plane downstream of the inlet
plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlet fluctuations.

27.1 Synthesized turbulence

The method described below was developed in [100, 182, 183] for creating turbulence
for generating noise. It was later further developed for inlet boundary conditions [172,
184, 185].

A turbulent fluctuating velocity fluctuating field (whose average is zero) can be
expressed using a Fourier series, see Section 5.3 and Eq. H.17. Let us re-write this
formula as

ap, cos(nz) + by, sin(nz) @71

¢, cos(au, ) cos(nx) + ¢, sin(ay,) sin(nx) = ¢, cos(nz — ay,)

where a,, = ¢, cos(a) , by, = ¢, sin(a, ). The new coefficient, ¢,,, and the phase angle,
«,,, are related to a,, and b,, as

br,
cn = (a2 +12)"?  a, = arctan (—) (27.2)

Qn

A general form for a turbulent velocity field can thus be written as
N
vi(x)=2 Z 0" cos(K™ - x + " )™ (27.3)
n=1

where 4", 9™ and o}’ are the amplitude, phase and direction of Fourier mode n. The
synthesized turbulence at one time step is generated as follows.

27.2 Random angles

The angles ™ and 6" determine the direction of the wavenumber vector k, see Eq. 27.3
and Eq. 27.1; o™ denotes the direction of the velocity vector, v'. For more details, see
Appendix N.
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Figure 27.1: The wave-number vector, «;', and the velocity unit vector, o;', are orthogonal (in
physical space) for each wave number n.

27.3 Highest wave number

Define the highest wave number based on mesh resolution ke, = 27/(24A) (see
Section 18.5), where A is the grid spacing. Often the smallest grid spacing near the
wall is too small, and then a slightly larger values may be chosen. The fluctuations
are generated on a grid with equidistant spacing (or on a weakly stretched mesh),
AN = T2.max/N2, AT3 = X3 .maz/N3, where 1 denotes the wall-normal direction
and N> and N3 denote the number of cells in the x5 and x5 direction, respectively. The
fluctuations are set to zero at the wall and are then interpolated to the inlet plane of the
CFD grid (the 2 — x3 plane).

27.4 Smallest wave number

Define the smallest wave number from x1 = k./p, where k. = a97/(55L;), o =
1.453. The turbulent length scale, L;, may be estimated in the same way as in RANS
simulations, i.e. L; o § where ¢ denotes the inlet boundary layer thickness. In [172,
184, 185] it was found that L; ~ 0.19;,, is suitable.

Factor p should be larger than one to make the largest scales larger than those
corresponding to x.. A value p = 5 is suitable.

27.5 Divide the wave number range

Divide the wavenumber space, K.,qa — K1, into N modes, equally large, of size Ax.
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27.6 von Karman spectrum

A modified von Kdrmaén spectrum is chosen, see Eq. 27.4 and Fig. 27.2. The amplitude
4™ of each mode in Eq. 27.3 is then obtained from

" = (E(k)Ar)'?

u? (k/ke)t 2
E(r) = rms e [—2(k/Kn)"] 27.4
(k) = cg e T (n/me)Q]”/ﬁe (27.4)
K = (rirs)/2, oy = c1/4,,-3/4
The coefficient cg is obtained by integrating the energy spectrum over all wavenumbers
to get the turbulent kinetic energy, i.e.

k::/ E(k)dk (27.5)
0
which gives [84]
_ if(l?/()’) N

CE = NERID 1.453 (27.6)
where -

F(z):/ e * e (27.7)

0

27.7 Computing the fluctuations

Having 4", £7, o;' and 9", allows the expression in Eq. 27.3 to be computed, i.e.

S

[

[N}
(1=

4" cos(B")o1

3
Il
N

WS-
l}

(1=
>

" cos(8%)o: (27.8)

3
Il
N

hE

2

vh 4" cos(B8™)o3

Il
i

n
8" k?l’l —l—k/’gmg +kgl’3 —l—’lﬂn
where 4" is computed from Eq. 27.4.
In this way inlet fluctuating velocity fields (v}, v}, v4) are created at the inlet xo —x3
plane.
The code for generating the isotropic fluctuations can be downloaded here
http://www.tfd.chalmers.se/ lada/projects/inlet-boundary-conditions/proright.ht

27.8 Introducing time correlation

A fluctuating velocity field is generated each time step as described above. They are
independent of each other and their time correlation will thus be zero. This is non-
physical. To create correlation in time, new fluctuating velocity fields, V;, V5, Vi, are


http://www.tfd.chalmers.se/~lada/projects/inlet-boundary-conditions/proright.html
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o log(k)

Figure 27.2: Modified von Kdrmén spectrum

computed based on an asymmetric time filter
a 1
Va)m = a(Vy)m—1 + b(v))m (27.9)
a 5

where m denotes the time step number and
a = exp(—At/Tint) (27.10)

where At and T;,; denote the computational time step and the integral time scale,
respectively. The second coefficient is taken as

b=(1-a*°"" (27.11)

which ensures that (V?) = (v{?) ((-) denotes averaging). The time correlation of two
time instants will be equal to
exp(—t/Tint) (27.12)

where { is the time separation and thus Eq. 27.9 is a convenient way to prescribe the
turbulent time scale of the fluctuations. For more detail, see Section 27.8. The inlet
boundary conditions are prescribed as (we assume that the inlet is located at z; = 0
and that the mean velocity is constant in the spanwise direction, x3)

1_)1 (07 xr2,x3, t) = ‘/11n($2) + ’Uiin(IEQ, €3, t)
Vo (0, T2, X3, t) = Vain (.172) + Ué,m ($2, x3,t) (27.13)

)

03(0, 2, 3, 1) = V3,in(22) + 3 4, (T2, T3, 1)

where v} ;, = (V{)m» V54, = (Va)m and v3;,, = (V5)m (see Eq. 27.9). The mean
inlet profiles, Vi in, V2,in, V3,n, are either taken from experimental data, a RANS
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T

Figure 27.3: Auto correlation, B(1) = (vi(t)vi(t — 7))+ (averaged over time, t). ——:
Eq. 27.12; = — : computed from synthetic data, (V1)™, see Eq. 27.9.

solution or from the law of the wall; for example, if V2 ;,, = V3 4, = 0 we can estimate
Vi,in as [186]

$§r ,r;r <5
Viia =14 —305+5In(e3) 5<z5 <30 (27.14)
lin@i)+B a5 >30

where Kk = 0.4 and B = 5.2.

The method to prescribed fluctuating inlet boundary conditions have been used for
channel flow [172], for diffusor flow [180] as well as for the flow over a bump and an
axisymmetric hill [187].

Equation 27.9 introduces a time correlation with an integral time scale Tj,;. In
order to understand Eq. 27.10, Equation 27.9 is written for m = N ...1 where N
denotes number of time steps

Uy = aldy_q + buly
Uy_y = ally_y +buy_y
Uy_y = ally_3 +buy_,
: (27.15)
Uy = aldy + buly
U = all! + bud
U = ald + b,
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With U, = 0 we get

Uy = bu)
Uy = abul + bul,
U = a*buly + abuly + bul (27.16)

Uy = a®buy + a’buby + abuly + bu),
UL = a*bul) + a®buly + a*buly + abuly + bul
which can be written as

szam kg, (27.17)

Let’s show that (U'?) = (u’?). Equation 27.17 gives

m

u?y = Zukuk = 22 > amh, iam*iu; (27.18)
1=1

k=1

Recall that the synthetic fields uj, and w,are independent which means that (uju;) = 0
for k # 4. Hence

h? &

==

m

a2yl = () (1 — a?) Za% (27.19)
k=1

replacing a with b using Eq. 27.11. The requirement is that (1/’?) = (u/?) and hence

(1—a?) Za% (1—a?) ch (27.20)
k=1 k=1

must be satisfied. The sum Y}, ¢* has for large m the value S,, = 1/(1 —¢) =
1/(1 — a?) which shows that the requirement in Eq. 27.20 is satisfied.

The time correlation between many time steps with time step separation m —n =
r > 0 reads

b2 S n— /mir m—k, /
u'u" = )nzla pupkila uj,
, m,ff - (27.21)
b
_ — Z a?(mfk)aru/Z <u/u/>ar
k=1

using Eqs. 27.19 and 27.20. The factor a” is given by the correlation between w),

and uj,_,., see Eq. 27.17. Inserting Eq. 27.10 into Eq. 27.21 we get the normalized

autocorrelation

Uu'u,
(u?)

where £ = rAt. The integral time scale can be computed from the autocorrelation as

(see Eq. 10.11)

Bll(f)norm = = eXp(*f/Tint) (2722)

Timnt = / Br™(#)dt = / exp(—t /Tyt )dt
0 0

= [~Tint exp(—t/Tint)] g = ~Tint(0 — 1) = Tims

(27.23)
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This shows that the one-sided filter in Eq. 27.9 introduces an integral time scale 75,
as prescribed by the definition of a in Eq. 27.10. The integral time scale can be taken
as Tint = Lint/Up using Taylor’s hypothesis, where Uj, and L;,,; denote the inlet bulk
velocity and the integral length scale, respectively.

27.9 Anisotropic Synthetic Turbulent Fluctuations

Isotropic fluctuations are generated above. However, turbulence is generally anisotropic.
The method for generating anisotropic turbulence is presented in [100, 173, 182, 188]
and below it is described in detail.

The method can be summarized by the following steps.

1. A Reynolds stress tensor, <UZ/-’U§>, is taken from DNS data for turbulent channel
flow. Since the generated turbulence is homogeneous, it is sufficient to choose
one location of the DNS data. The Reynolds stresses at y* ~ 16 of the DNS
channel data at Re, = 590 [189] are used. Here (vjv}) — and hence the degree
of anisotropy — is largest. The stress tensor reads

767 —0.662 0
(o) = | —0.662 032 0 (27.24)
0 0 150

2. The principal directions (the eigenvectors, see Fig. 27.4), &', are computed for
the (vjv’) tensor, see Section 27.9.1. The eigenvalues are normalized so that
their sum is equal to three. This ensures that the kinetic energy of the synthetic
fluctuations does not change during transformation.

/
1,150°

3. Isotropic synthetic fluctuations, u
of (ujuj}).

are generated in the principal directions

4. Now make the isotropic fluctuations non-isotropic according to (vjv}). This is
done by multiplying the isotropic synthetic fluctuations in the &; directions by
the square-root of the normalized eigenvalues, V A(*),, ... In Section 27.9.2 this

is done by multiplying the unit vector o™ by VA4, see Eq. 27.28 and
Fig. 27.5. This gives a new field of fluctuations

(u/l)aniso = M(ua)iso
(ué)aniso = \/% (ué)iso (2725)

o)

(ué)aniso = norm (ug)iso

The wavenumber vector, x;, is divided by VA() to ensure that the (u})aniso
velocity field is divergence free, i.e.

: [ 1
okt =\ Aoy o = i =0, (27.26)

see Eq. N.3. Note that there is still no correlation between the (u})gniso fluctua-
tions, which means that the shear stresses are zero (for example, {(u}u})aniso) =
0).
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5. The (u})qaniso fluctuations are transformed to the computational coordinate sys-
tem, z;; these anisotropic fluctuations are denoted (u’i)sym. The transformation
reads

(u/i)synt = Rij (u;')aniso (2727)

where R;; is the transformation matrix which is defined be the eigenvectors, see

Section 27.9.1. The (u})synt fluctuations are now used in Eq. 27.9 replacing

/
Vi.in-
The Reynolds stress tensor of the synthetic anisotropic fluctuations is now iden-

tical to the DNS Reynolds stress tensor, i.e. ((uju})synt) = (vjv})

3 / / /
6. Since the u; ,, ,, are homogeneous, the Reynolds stresses, (U] g1 U} syns)> have

constant values in the inlet plane. One can choose to scale the inlet fluctuations
by a k profile taken from DNS, experiments or a RANS simulation.

The Python/Matlab/Octave code for generating isotropic or anisotropic fluctuations
can be downloaded [190].

27.9.1 Eigenvalues and eigenvectors

The normalized eigenvalues and eigenvectors may conveniently be computed with
Python/Matlab/Octave as

stress=[7.6684 -6.6206e-01 0;
-6.6206e-01 3.1974e-01 O;

0 0 1.4997];

diag_sum=trace (stress) /3
stress=stress/diag_sum ensures that the sum
of the eigenvalues=3

o)
°
o)

°

[R, lambda] = eig(stress)

v_1l_temp=[R(1,1);R(2,1); R(3,1)];
v_2_temp=[R(1,2);R(2,2); R(3,2)];
v_3_temp=[R(1,3);R(2,3); R(3,3)];

lambda_1_temp=lambda(l,1);
lambda_2_temp=lambda (2,2);
lambda_3_temp=lambda (3, 3);

where stress is taken from Eq. 27.24. Python/Matlab/Octave defines the smallest
eigenvalue as the first one and the largest as the last. Here we define the first eigen-
value (streamwise direction) as the largest and the second (wall-normal direction) as
the smallest, i.e.

v1=v3_temp;
v2=vl_temp;
v3=v2_temp;

lambda_l=lambda_3_temp;
lambda_2=lambda_1_temp;
lambda_3=lambda_2_temp;
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Figure 27.4: Eigenvectors &7 and &5. x; and z2 denote streamwise and wall-normal direction,
respectively.

VaDes

x2

€1

Figure 27.5: Eigenvectors multiplied by the eigenvalues. z: and x> denote streamwise and
wall-normal direction, respectively. V(1) and v A(2) define RMS of (4} )aniso and (u5)aniso
respectively.

Make sure that Python/Matlab/Octave has defined the first eigenvector in the first
or the third quadrant, and the second eigenvector in the second or the fourth quadrant,
see Fig. 27.4. If not, change sign on some of the eigenvector components.

% switch sign on 12 and 21 to fix the above requirements
vl_new (2)=-vl_new(2);
v2_new(l)=-v2_new(l);

27.9.2 Synthetic fluctuations in the principal coordinate system

The equation for generating the synthetic fluctuations in the principal coordinate sys-
tem, (U} )qaniso» i similar to Eq. 27.3. The difference is that we now do it in the trans-
formed coordinate system, and hence we have to involve the eigenvector matrix, R;;,
and the eigenvalues, MA@ The equation reads [182, 188]

N
W niso(x*) =2 Z " cos(K* - x* + ™) *"
n=1

[ 1 s
K = Ii:n = WRjili?, o' = O’:n = )\(z)RﬂO’;l

The superscript * denotes the principal coordinates.

(27.28)
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28 Overview of LES, hybrid LES-RANS and URANS
models

IRECT Numerical Simulation (DNS) is the most accurate method available. In

DNS we solve the unsteady, 3D Navier-Stokes equations (see Eq. 2.8) numerically
without any turbulence model. This gives the exact solution of the flow field in time
and space. We can afford to do DNS only for low Reynolds number. The higher the
Reynolds number gets, the finer the grid must be because the smallest turbulent length
and time scales, which we must resolve in DNS, decrease with Re~3/4 and Re~1/2,
respectively, see Eq. 5.16. Hence the cell size in each coordinate direction of our CFD
erid must decrease with Re~3/ and the time step must decrease with Re~'/2. Let’s
take an example. If the Reynolds number increases by a factor of two, the number of
cells increases by

AReY* ARe/* ARe/* ARe/? = AReM/* =21 /4 = 6.7 (28.1)

x-direction y-direction z-direction time

Above we assume that the lengthscales are reduced when the Reynolds numbers
is increased. This implies that we assume that the Reynolds number is increased due
to an increase in velocity or a decrease in viscosity. We can, of course, also consider
the change of Reynolds number by changing the size of the object. For example, it is
affordable to compute the flow around a small car such as those we played with as kids
(for this car of, say, length of 5¢m, the Reynolds number is very small). As we increase
the size of the car we must increase the number of cells (the smallest cells cannot be
enlarged, because the smallest turbulent scales will not increase). Also the time step
cannot be increased, but we must compute longer time (i.e. increase the number of
timesteps) in order to capture the largest time scales (assuming that the velocity of the
small and the large car is the same).

Having realized that DNS is not feasible, we turn to LES, see Section 18. Here,
the smallest scales are modeled, and only the eddies that are larger than the grid are
resolved by the (filtered) Navier-Stokes. With LES, we can make the smallest grid cells
somewhat larger (the cell side, say, 2 — 3 times larger).

However, it is found that LES needs very fine resolution near walls, see Section 21.
To find an approximate solution to this problem we use RANS near the walls and LES
away from the walls. The models which we have looked at are DES (Section 20),
hybrid LES-RANS (Section 21), SAS (Section 22) and PANS (Section 23); see also
Section 25 where PANS and Zonal PANS are discussed.

As stated above, the LES must at high Reynolds number be combined with a
URANS treatment of the near-wall flow region. In the literature, there are different
methods for bridging this problem such as Detached Eddy Simulation (DES) [138,
154, 163] hybrid LES/RANS [191] and Scale-Adapted Simulations (SAS) [192, 193]
(for a review, see [194]). The two first classes of models take the SGS length scale
from the cell size whereas the last (SAS) involves the von Kdrmaén lengthscale.

The DES, hybrid LES/RANS and the SAS models have one thing in common: in
the LES region, the turbulent viscosity is reduced. This is achieved in different ways. In
some models, the turbulent viscosity is reduced indirectly by reducing the dissipation
term in the k£ equation, see Eq. 20.8, as in two-equation DES [195]. In other models,
such as the two-equation XLES model [142] and in the one-equation hybrid LES-
RANS [100], it is accomplished by reducing the length scale in both the expression for

DNS

LES
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the turbulent viscosity as well as for the dissipation term in the k equation, see Eq. 21.2
and Table 21.1.

In the partially averaged Navier-Stokes (PANS) model [144] and the Partially In-
tegrated Transport Model (PITM) [146, 171], the turbulent viscosity is reduced by de-
creasing the destruction term in the dissipation (¢) equation which increases ¢, see
Eq. 23.15. This decreases the turbulent viscosity in two ways: first, the turbulent vis-
cosity is reduced because of the enhancement of ¢ (v; = c#k:2 /e, see Eq. 23.6), and,
second, the turbulent kinetic energy (k) decreases because of the increased dissipation
term, €. In the SAS model based on the k£ — w model, the turbulent viscosity is reduced
by an additional source term, Ps 45, see Eq. 22.5, in the w equation. The source term
is activated by resolved turbulence; in steady flow it is inactive. When the momentum
equations are in turbulence-resolving mode, Ps 45 increases which increases w. This
decreases the turbulent viscosity in two ways: first, directly, because w appears in the
denominator in the expression for the turbulent viscosity, v, and, second, because k is
reduced due to the increased dissipation term 5*kw.

The PANS model and the PITM models are very similar to each other although
their derivations are completely different. The only difference in the models is that
in the PANS model the turbulent diffusion coefficients in the k and e equations are
modified. These two models do not use the filter width, and can hence be classified as
URANS models. On the other hand, a large part of the turbulence spectrum is usually
resolved which is in contrast to standard URANS models. PANS and PITM models
have in [194] been classified as second-generation URANS models, or 2G-URANS
models.

A short description of the models are given here.

DES. A RANS models is used near the walls and LES is used away from the walls.
The interface is usually defined automatic. In the original DES the entire bound-
ary layer is covered by RANS. However, when the grid is refined in streamwise
and spanwise directions, the interface moves closer to the wall. When a large part
of the boundary layer is covered by LES, it is called WM-LES (Wall-Modeled
LES). The LES lengthscale is the filterwidth.

Hybrid LES-RANS. The difference between DES and hybrid LES-RANS is that the
original DES covers the entire boundary layer by RANS whereas hybrid LES-
RANS treats most of the boundary layer in LES mode. Hybrid LES-RANS and
WM-LES can be considered to be the same thing. The LES lengthscale is the
filterwidth.

PANS, PITM. These models are able to operate both in LES and RANS mode. In
LES mode the models do not use the filterwidth as a lengthscale. Hence they are
usually defined as an URANS model (defined below). Since the models usually
aim at resolving a substantial part of the turbulence spectrum, they can be defined
as a second-generation URANS model (a 2G-URANS model [194]).

SAS. This is also a model that can operate both in LES and RANS mode. In unsteady
mode the model does not use the filterwidth as a lengthscale. In unsteady mode
this model usually resolved less turbulence than the other models mentioned
above; hence it can be classified as an URANS model (first generation).

URANS. A RANS model is used in unsteady mode. In unsteady mode the model does
not use the filterwidth as a lengthscale. Unless the flow is prone to go unsteady,

WM-LES
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the results will be steady (i.e. same as RANS). Usually a RANS model developed
for steady flow is used. Only a small part of the turbulence is resolved.

The models listed above can be ranked in terms of accuracy and CPU cost:
1. Hybrid LES-RANS, PANS, PITM, WM-LES. Highest accuracy and CPU cost
2. DES.

3. SAS.
4. URANS. Lowest accuracy and CPU cost
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29 Best practice guidelines (BPG)

In the early days of CFD, different CFD codes used to give different results. Even
if the same grid and the same turbulence model were used, there could be substantial
differences between the results. The reasons to these differences could be that the
turbulence model was not implemented in exactly the same way in the two codes, or
that the discretization scheme in one code was more diffusive than in the other. There
could be small differences in the implementation of the boundary conditions in the two
codes.

Today the situation is much improved. Two different CFD codes usually give the
same results on the same grid. The main reason for this improved situation is because
of workshops and EU projects where academics, engineers from industry and CFD
software vendors regularly meet and discuss different aspects of CFD. Test cases with
mandatory grids, boundary conditions, turbulence models etc are defined and the par-
ticipants in the workshops and EU projects carry out CFD simulations for these test
cases. Then they compare and discuss their results.

29.1 EU projects

Four EU projects in which the author has taken part can be mentioned

LESFOIL: Large Eddy Simulation of Flow Around Airfoils
http://www.tfd.chalmers.se/"lada/projects/lesfoil/proright.html

FLOMANIA: Flow Physics Modelling: An Integrated Approach
http://cfd.mace.manchester.ac.uk/flomania/

DESIDER: Detached Eddy Simulation for Industrial Aerodynamics
http://cfd.mace.manchester.ac.uk/desider

ATAAC: Advanced Turbulence Simulation for Aerodynamic Application Challenges
http://cftd.mace.manchester.ac.uk/ATAAC/WebHome

29.2 Ercoftac workshops

Workshops are organized by Ercoftac (European Research Community On Flow, Turbulence
And Combustion). The Special Interest Group Sigl5 is focused on evaluating turbu-
lence models. The outcome from all workshop are presented

here
http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/index.html

Ercoftac also organizes workshops and courses on Best Practice Guidelines. The
publication Industrial Computational Fluid Dynamics of Single-Phase Flows can be
ordered on

Ercoftac www page
http://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/single-phase_flows_spf/


http://www.tfd.chalmers.se/~lada/projects/lesfoil/proright.html
http://cfd.mace.manchester.ac.uk/flomania/
http://cfd.mace.manchester.ac.uk/desider//
http://cfd.mace.manchester.ac.uk/ATAAC/WebHome
http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/index.html
http://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/single-phase_flows_spf/
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29.3 Ercoftac Classical Database

A Classical Database, which includes some 100 experimental investigations, can be
found at

Ercoftac’s www page
http://www.ercoftac.org/products_and_services/classic_collection_database

294 ERCOFTAC QNET Knowledge Base Wiki

The QNET is also the responsibility of Ercoftac. Here you find descriptions of how
CFD simulations of more than 60 different flows were carried out. The flows are di-
vided into

Application Areas. These are sector disciplines such as Built Environment, Chemical
and Process Engineering, External Aerodynamics, Turbomachinery, Combustion
and Heat Transfer etc. Each Application Area is comprised of Application Chal-
lenges. These are realistic industrial test cases which can be used to judge the
competency and limitations of CFD for a given Application Area.

Underlying Flow Regimes. These are generic, well-studied test cases capturing im-
portant elements of the key flow physics encountered across the Application Ar-
eas.

For more information, visit

ERCOFTAC QNET Knowledge Base Wiki
http://www.ercoftac.org/products_and_services/wiki/


http://www.ercoftac.org/products_and_services/classic_collection_database//
http://www.ercoftac.org/products_and_services/wiki/
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A 31446 Lecture Notes

A.1 Lecture 1

€See Section 1.1, Eulerian, Lagrangian, material derivative

Lagrangian-Eulerian

» Lagrangian approach

e The (fluid) particle is described by its initial position, X;, and time,
t

e In other words we “label” a particle with X; and then follow it.
e The variation of T is expressed as d7'/dt.

» Eulerian approach
e We look a point, x;, and see what happens.

e Hence 7' depends on both z; and ¢

The chain rule gives ar or + dr; OT 0T N oT
[ ] _ 7 _ oL ",
U T o At 0w, ot Vo

T oT | du; OT or . or

_ = — - = JR— Vi ——

dt ot dt Ox; ot T Ow;
material change local change

convective change

d 0
§See Section 1.2, What is the difference between % and %?
d 0
Difference between avs and ﬂ?
dt ot
z
2"
1
x
0 1
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Flow path zz = 1/z1. The filled circle shows the point (z1,z2) = (1,1). W: start (¢t =
In(0.5)); A: end (¢t = In(2)).

xy = exp(t), @y = exp(—t) (A.1)

and hence x5 = 1/x;. The flow is steady (in Eulerian coordinates).

»Equation A.1 gives the velocities

d d
of = =l —ep(t), vf = —f=—ep(—t) (A2
Egs. A.1 and A.2 give
UlE =T, U2E = —X2

Note that v* = vF but vF = vf(¢) and vF = vF (21, x9).

i i
»Time derivatives of the v, velocity:

d L
LR
dvy vy povy  povy

a ot U or, T2 o,

dvy dvy  dvy

:O+l’10—l’2(—1>:l’2

Of course — = == =g, = —1).
@ @ - o ee)
» Consider the point (1, z5) = (1, 1). The velocity at this point does
o E
not change in time; hence % = 0.
»If we however travel with the particle then the v, velocity changes
dvk d
with time, i.e. % = % = 1 (it increases, i.e. it gets less negative

with time).
€See Section B, Introduction to tensor notation

»a: A tensor of zeroth rank (scalar)

i = 2, 17 0
»a;: A tensor of first rank (vector) 7 “ ( )

»a;;: A tensor of second rank (tensor)
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011 012 013
Oij = 021 022 023
031 032 033
Uij = Uji-

What is a tensor?

» A tensor is a physical quantity. It is independent of the coordinate
system. The tensor of rank one (vector) b; below

/

is physically the same expressed in the coordinate system (x1, Z2)

X2

L.

where b; = (1/v/2,1/+/2,0)7 and in the coordinate system (zy/, zo/)

|

\/ "

where by = (1,0, 0)7. The tensor is the same even if its components are
different.

€See Section 1.3, Viscous stress, pressure
»The momentum balance equation derived in the continuum me-
chanics lectures reads

We write it as

p—t ==t pf, (A.3)
-
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011 T
013 fz
A
|~x1

Volume force (per unit volume), f; =
Stress components and stress vector on a (0, —g,0), acting in the middle of the fluid
surface. element.

X2

T

Stress tensor, volume (gravitation) force and stress vector, tgél).

e 0;; denotes the stress tensor. Stress is force per unit area. The
surface stress vector is computed as

(n) _
ti = 0;in;

where n = n; is the normal vector of the surface.
e volume forces, f;

»The stress tensor, o;;, is split into one part which includes pressure, P,
and one which includes viscous stresses (friction)

Uij = —P(SU +Tij

1
where P = ——op.
A constitutive relation can be derived for the stress tensor which reads

2
0 = —Pbij + 2uS;; — gﬂskk%
2
Tij = 2015 — 3 1Skk0ij (A4)
1 [/ 0v; Ov,
S,“ = = - —

»This expression includes the velocity gradients. Before we insert

dv;
Eq. A.4 into Eq. A.3, we will look at the velocity gradient tensor, a—v,
Ly

in some detail.

€See Section 1.4, Strain rate tensor, vorticity
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6v,~ 1 6v,~ 8UZ' 82}]‘ 82}]‘

20v; [0z =0
1 6v,~ 82}]‘ 1 6v,~ (%j
= — — — = S.. Q..
2 (8% + 8I‘Z) + 2 <81L'j &xl) SZ] + “

» The vorticity reads

w=Vxv
ﬁvk
3 1] axj

»The vorticity represents rotation of a fluid particle. Inserting the ex-
pression for S;; and €;; gives
w; = €5k (Skj + Qj) = €k (A.5)

where we used the fact that the product of a symmetric, S;, and an
antisymmetric tensor, €;;, 1S zero.

»Now let’s invert Eq. A.5. We start by multiplying it with €;4,,, so that
EitmWi = EitmEijk$ g (A.6)
® ¢;;; is the permutation tensor.

— It is one if ijk is equal to 123 or any cyclic permutation, i.e.
€123 = €312 = €231 = 1.

— Switch two indices and it is equal to minus one, i.e, €130 =
€913 = €132 = — 1.

— If two indices are equal, then ¢;;; is zero.

e 0;; is the unit or identity tensor. It is one if ijk are equal and zero
otherwise, i.e.

— 011 = 092 = 033 = 1
— 012 = 013 = 021 = 023 = 031 = 032 =0

Using the e-0-identity (see Section C) on the right side of Eq. A.6 gives
Eitm€ijkSUj = (000mk — 0k0m; ) = Qme — Qo = 2

Inserted in Eq. A.6 we get

Q 1 1 1
ml = FEitmWi = ZEmMiWi = — ZEmuil;
Y 5 ¢ 5 ¢ 5 Y
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where we first used cyclic permutation of €,,, then used the fact that
€irm 18 anti-symmetric.

» Actually, it is easier to invert Eq. A.5 component-by-component. For
w3 we get

s = e 2% = e OV 1 e, 0
3 = 3jkaxj = €321 Oy 312 oz,
81}1 81}2 81}2 8'U1
8@ + al‘l <8$‘1 81‘2> 12

€See Section 1.5, Product of a symmetric and antisymmetric tensor
» The product of a symmetric, a;;, and antisymmetric tensor, bj;, is zero

aijbi; = ajibij = —a;ibj;,

where we used
2nd expression a,; = a;; (Symmetric)
last expression b;; = —b;; (antisymmetric)
Indices 7 and j are dummy indices =

a;jbi; = —a;;bi;
This expression says that A = —A which can be only true if A = 0 and
hence a;;b;; = 0.

9See Section 1.6, Deformation, rotation
» Rotation of a fluid particle (w3 > 0, 215 < 0) during time At
Al’l

%A@At — AaAz,
6[E2

AZL’Q

%AaclAt = AaAx,
8:1;1
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e angle rotation per unit time: % ~ da/dt = —0vy /Oxe = Ovg /01y

e if fluid element does not rotate as a solid body, we take the average
da/dt = (Qve/Ox1 — Ovy/0x9) /2.

e Hence, the vorticity ws = Qvy/0xq — v /Dy can be interpreted as
twice the average rotation of the horizontal edge and vertical edge

» Deformation of a fluid particle by shear during time At¢. Here
8’01/81’2 = 8’02/81’1 so that 512 = (81}1/6562 + 8’02/8371)/2 =
8v1 /6:702 > 0.

A(L’l

M N AE = Aada,
8372

B S

Aa

AJ/’Q

902 N At = Aada,
8131

» Deformation of a fluid particle by elongation during time At¢. Here
511 = 8’01/8371 >0
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A.’L’l

—AﬂflAt

AJ/’Q

-

X

€See Section 1.7, Irrotational and rotational flow

»Flows are often classified based on rotation: they are rotational (w; #
0) or irrotational (w; = 0)

€See Section 1.7.1, Ideal vortex line

» Consider the ideal vortex line

N 0P T
@ = — = — = — = 0
o7 Uk Oxy,’ o
Vg ‘
0

Transform vy into Cartesian compo-

nents.
| Tzy
U7 @) P 2t ad)
ovy ' af—a3 ovy T 22 —2?
Ovy  2m(af+a3) Om 2m(af+a3)
Ovy  Ovg
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3n/4, m, 5r/4,37/2 and —7 /6.

€See Section 1.7.2, Shear flow
»Consider shear flow with v; = cx%, vy = 0, see figure below. The
vorticity is computed as

0 8’02 61}1 9
W1 = Wy = W3 = —— — —— = —4CXx>o
’ 61’1 61’2
Hence the flow is rotational
U1 (%1
—_— b C —_—
a
— To —
\Oé
(a1

T3
The fluid particles rotate according to the figure above (rotating in nega-
tive direction).

€See Section 1.8, Eigenvalues and eigenvectors: physical interpretation
»Eigenvalues and and eigenvectors: physical interpretation

0929 v Vi
2 ,
T 021 )
—_—
012
THUH

The fluid particle (i.e. its diagonal)
does not rotate. The locations of the
fluid particle is indicated by black,
filled squares. The diagonals are
shown as black dashed lines. The
fluid particle is shown at 6 = 0, 7 /4,
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e A two-dimensional fluid element.

— Left: in original state;
— right: rotated to principal coordinate directions.
— A1 = o1 and Ay = 099 denote eigenvalues;

— ¥V and V5 denote unit eigenvectors.
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A.2 Lecture 2

§See Section 2.1.1, The continuity equation
»The continuity equation

d ov; . . . i
d—f +p 8; =0 incompressible flow gives 8;

§See Section 2.1.2, The momentum equation
» The momentum equation

0

2
0y = —P0;j + 2uS;; — gMSkk@‘j
dUZ' 8Uji oP 0 2 0vk
- = i == —— | 208 — S50y i

oP 0 2 0 Ovy,
- _ o (ouS.) — 2 2,22k .
ox; + Oz, (2193) 3 0x; (Mﬁxk) +ofi

Note that the stress tensor, o;;, depends only on 5;; (deformation), not
on {2;; (rotation).

» Incompressible flow gives

dUZ' aO'ji oP 0
- = i =—5—+ 45— (2uS5;; i
P~ o, toli=—g o+ o, (2u5:5) + pf.
» Incompressible and constant y give

dvi oP 62 V;

p% N _Oxi +M8x]8xj

§See Section 2.2, The energy equation
» The energy equation

+pfi

du ov; Jq;
v _ G AT
pdt Oj aSL’j 8.’172 ( )
energy change exclllangmlvork exchange of heat
oT
—_—
2
0ij = —Po;; +2uS;; — g/iskkéz‘j
» We have

ov; 1 /0v; Ov; 1 /0v; Ov;
G Qs Si= = i j Q= - i OV
837] J _'_ 7 J 2 (axj + aaj‘l) ’ J 2 (axj axz
8vi

% B 0 (Sij + 84j) = 035y

)
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This gives (See Eq. 2.14)

8%‘ . 2 8vk a’l}i
o-ij—axj = {—P(SU + Q,MSZ] — gu—axk U} 8$‘j
2 8vk 8v,~

2

Insert into Eq. A.7 gives

du ov; 2 0 oT
R 2 P . N

p dt 61’@ + ) MSZ] SZ] 3MSkkS”l + 61’@ (k 61’@ )
AU Rev o Q

» During time, dt, the following happens:

AU: Change of inner energy of the fluid

Rev: Reversible work done by the fluid (compression or expansion)
®: TIrreversible work (dissipation) done by the fluid

Q: Exchange of heat to the fluid

1
» Incompressible flow (low speed, |v;| < gspeed of sound)

ar T
du = ¢,dT, pcp%:q%i- 0 <ka )

® important for lubricant oils
» For gases and “usual” liquids (i.e. not lubricant oils) we get (k is con-
stant), see Eq. 2.17

drT o*T k v

E_a&pi@xi’ @ pCp

§See Section 2.3, Transformation of energy
» k equation (multiply the momentum eq. with v;)
d’UZ‘ 80']‘2‘
Vi—— — U;

—vipfi =0

The first term on the left side can be re-written (Trick 2, see Eq. 8.4)
-d’Ui d(’UiUZ') i %

1
T L T
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(v;v;/2 = v?*/2 = k) so that
dk 0o i
p% Y Ox;
Re-write the stress-velocity term so that (see Eq. 2.22)
dk — Ovioy ov,

Pt~ ow,  ou, + puifi

+ pui f;

» Compare with the equation for inner energy

du  OJv;  Og
p dt L a[L'j aSL’Z

§See Section 2.4, Left side of the transport equations
» Left-hand side (W = v;,u,T"...)

w_ov v
Par =P ot " Py,

ov ov dp ov;

= p = OF g (& )0

—0 '

v v (ap dp %> _0p¥ | Opu,V

o e (L, CP
Por T Par, YU\ T ian, TPar, ) T or T o,

§See Section 3.1, The Rayleigh problem
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»The Rayleigh problem

X2

v The plate moves to the right
T O with speed V; for t > 0.

»The v, velocity at three different

L2 \\\ ts times. t3 >ty > 17.

~~~~~~~

0 0.2 0.4 0.6 TR
U1 / Vo
Simplificatons: vy /0x; = Qv /0x3 = 0 = Jvy/0ry = 0 = vy = 0.
v _ 00
ot 0w}

» Similarity solution: the number of independent variables is reduced by
one, from two (x5 and t) to one (7).

Ty Ou _dvi Oy wpt™¥duy _ 1pdv
oVt Ot dn ot 4Ju dy 2t dy
dvy  dvy On 1 du

Oy dn vy 2/ut dn
821)1 . 0 8’01 . 0 1 @ . 1 i dU1 . i@
02 Oxo \Oxo)  Oxy \2/wt dn ) 2/wtOxo \ dn )  4vt dn?

We get (see Eq. 3.6)

U d2f df
W dr Ty
»Boundary conditions
Ul(l‘g,t:()) :O:>f(77—>00) =0

vl(x2:0,t):V0:>f(n:0):1
v1(zg — 00,t) =0= f(n — 00) =0
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The solution reads (see Eq. 3.11)

x v
fy=1-edln), n=3-%, [=¢ (A.8)
3
25
2
U
n
0.5
% 02 04 06 08 1

f

The velocity, f = v1/Vb, given by Eq. A.8.

»Boundary layer thickness defined by v; = 0.01V; (it would be v; =
0.99V4 in an ordinary boundary layer). The figure above gives (for f =
0.01) n = 1.8 so that

)
=18 = = 0 =3.6Vut
7 2V/vt
Ogir = 10.8cm

Owater = 2.8cm

€See Section 3.2.1, Curved plates
» The inlet part of a channel. P, > P,

"
O\

P

X

§See Section 3.2.2, Flat plates

»Fully developed incompressible flow in a channel. 2D and steady.

8’01 81}2 8’03
= —= = ’[}3 = O.

8.’171 81’1 8373
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8v,~ ov
afL‘Z:O ja—lzzo :>U2201(.T1) = vy =0
» The Navier-Stokes for v; (g; = (0, —g,0))
0 0
o oy du 9P 2 P 0 &v P

= — _— :> _ =
t —H]lﬂxl +%8x2 0x; Tt 2 + Ox3 g M@x% 0x;

The Navier-Stokes for v, gives

1 61’2 n 61’2

oP

= 0= g0~ P9 = P=—pgza+ Calar) = —pgas + plar)
oP 0
= T or, _8—31:1 (p = p(x1) is pressure at lower wall)

» The Navier-Stokes for v; (replacing 0P/dz1 by Op/0x1, see Eq. 3.24)

op 9%y o*vy  Op
O - —_— R :> - =
Ox, i 03 a or:  On
f(x2) f(z1)
v, Op
= = — = const
&r% &xl
Integrate twice gives h dp ( :cg)
V| = ———2T - =
g g e 20 dxy 2 h

§See Section 3.3, Two-dimensional boundary layer flow over flat plate
» 2D boundary layer
ovy oy 0%vq op vy Ovy
U1 8901 T2 8@ Y 8903 ’ 8902 ’ al‘l + 8@
(note that both terms on the left side are retained)
Streamfunction ¥

ov ov

V=, U= —F—

! 8372 ’ 2 8.’171
The continuity equation is automatically satisfied
8’01 8’02 . 82\11 82\1’

=0

8.’171 + 8372 N 81’161’2 B 83728371
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Inserting the streamfunction into the streamwise momentum equation

ov 9’V oV 9*w P

8x2 81‘18l‘2 B al‘l (‘390% - V@x%

Similarity solution: 1, x5 — &; ¥ — g(§).

‘/1,00 1/2 1/2
§= Ty, V=0wVier1)' g

VI,

First we need the derivatives 0§ /01 and 0§ /Oxo

o€ 1<v1,oo)”2g_ 3 g_(vl,ooy/? 3

8$1 B 2 rry T 2.1’1’ 8,1‘2 = , .
ovr 0 1/2) 12, O€
Oy Ox ((Vvlvooxl) g+ (WVier1) ' g P

I (VWi . 1/2 §
— = , — (Wi ‘>
2< o ) g — (VVi,0011) 950

1
= _599”+g”/ -0

This is Blasius solution (from his PhD thesis in 1907). The numerical
solution is given in Table 3.1.
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A.3 Lecture 3

§See Section 4.1, Vorticity and rotation

» Vorticit
y 7'21(33'2 -+ 05A$2)
%
7'12(.131 + 05AZ‘1)
—————————— >
p(z1 — 0.5Ax;) l (w1, 72) T p(z1 + 0.5Ax;)
B d - - -
7'12([E1 —05A[E1) l -
-
Ty 7'21(1)2 — O5ACI)2)
T
Surface forces. d112/0x1 = 0, 0791 /Jxs > 0.
dvi 8P (’9sz~ 8P (%)m
= — — = — — UE i ———— A9
P dt ox; + Ox; ox; pe o0x,, (A-9)

»change in vorticity < change in shear stresses

e irrotational flow <
e potential flow <
e no change in w; (often w; = 0)

» As a first step for deriving the w; transport eq., let’s re-write the left-
side of N-S:

8vi

/I_}A—
J
81‘]‘

1
= Uj(Sij + QZ]) = Uj (Sz — éeijkwk)

Inserting S;; = (0v; /Ox; + Ov;/0x;)/2 and multiplying by two gives

8%‘ . (%i 81}]‘
2%8—% =; <8ZEJ + 81‘1) — &4jkUjWg (AlO)

The second term on the right side can be written as (Trick 2)

o, O LO())
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With Eq. A.10 Navier-Stokes can be written (see Eq. 4.12)

8’02‘ 8%1}2 10P 82
e = . (Al
ot * om Ok = e aagen; T D

no rotation

»Now we will derive the transport eq. for w, = &,,,0v;/0x,. Multiply
the Navier-Stokes equation by ¢,,;0/0x, so that

0
9%v; 0? Qvjwy

"0, | 0w, PR g,

0
P D0z, | P Ow,0x 6xq 2 D,

e Term on line 1: zero because a-sym & sym tensor

0 (A.12)

e Istterm in line 2: zero because a-sym & sym tensor
e last term: zero because g; is constant
Re-write unsteady and viscous terms in Eq. A.12:
. v 0 . ov;\ 0w,y
Motox, ot \ Moz, ) ot
v, 0? Ov; 0w,
=v Epgim— | =V
O0x;0x;0x, Ox;0x; Oz, Ox;0x;

Inserted in Eq. A.12 gives

VEpqi

ow, v, Wr 0w,

=, — Epqi€ijk
ot PATIE Or, 8@83:]

» Transport equation for the vorticity (see Eq. 4.20)
0w, Ow,, vy,

+v =w +v 82%
ot = "Oxy ‘Oz, 00

Underlined term: vortex stretching/tilting term (a source/sink), see
Eq. 4.21

( 81)1 81}1 61}1

Wi e 4 wy— =1
18([’1 + 28372 + 38.’173’
v, 0vy 0vy Vg
kat =4 Wi~ Hwna— +wyo—=,  p=2
oxy, o0x, 0o 03
8’03 i 81)3 V3 3
W1 Wo— W3— =
\ ! 8.’171 2 8372 3 8373 ' b
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Vortex stretching and vortex tilting
» Vortex stretching

—> U

— VU1
T2

L.

T

8’01 aUl [
Assume —— > 0: the term w; —— will increase w;
1 oy

» Vortex tilting/deflection

'Ul(x2>, g—;; >0

X2

L.

ov ov, ...
Assume —> > 0: the term w2—1 will increase w;

8@ axQ

X

§See Section 4.3, The vorticity transport equation in two dimensions
0
»2D flow: v; = (v1,v2,0), w; = (0,0, ws) and Fr 0
I3
o vy, vy,
Now the vortex stretching/tilting term wy,—— = w3 =——

= W3
oxy, Oxs
The 2D w3 equation reads (see Eq. 4.22)

O 15, 0?
w3 F U w3 w3

ot al’k - V@xj&rj

=0




A.3. Lecture 3 282

» Consider fully developed channel flow (see Eq. 4.23)

O*T
heat conduction (0 = k——
Oxs
vorticity diffusion
a
’ oT
¢ = —k ()T
2 A

X1

Temperature: ¢, = 0 = no temperature (increase)
Vorticity: = no vorticity (increase). In the self-similar region
of a boundary layer this is true because dp/dz; = 0; for channel flow

Y2 # 0

§See Section 4.3.1, Boundary layer thickness from the Rayleigh problem
»Rayleigh problem: §(t) = 3.61/vt was presented for the temperature
equation. It can also be used for the vorticity equation.

Vo

X2 ’

1 ¢5

L

Lv v 1 1
Boundary 1 thick X\ — =L/ 5= — \| 55—
oundary layer thickness J o 7 VI 7 x Rer
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A4 Lecture 4
Potential flow

€See Section 4.4, Potential flow
» Define a potential

Then the vorticity is zero

61% 62(13
Wi = €ijk 5

al‘j €Jk8xj8xk

The continuity eq. reads

g Ov 0 (0% _ o0

» Derive the Bernoulli eq. The N-S reads (see Eqs. A.9 and A.11)

(A.14)

dv;  05? e 1 Op e 8wm+
ot ox; -%_ p Ox; O, gi

no rotation

In potential flow, w; = 0. Insert ® (Eq. A.13) and a gravitation potential
(9 = —0X /Ox;)

5, (acp) ol 1op  oXx
+ + +

Integration gives (see Eq. 4.32)

ov 1, p
— 4+ —v°+ =+ X = const
ot 2 P

Replacing X = —gsx3 = gh gives the Bernoulli eq.

€See Section 4.4.2, Complex variables for potential solutions of plane flows
»Complex functions.

The derivative of a complex function, f, by a complex variable, z (f =

u + v and z = x + 1y) is defined only if the derivatives in the real and
imaginary directions are the same, i.e.

af lim f(z0 + Az) — f(20)

% o Az—0 Az
o fwo+ Azyiyo) — f(xo,iye) . f(wo,iyo +iAy) — f(wo,iyo)
= lim = lim - .
Az—0 Az Ay—0 1Ay

(A.15)
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'Ul(x2>, g—;; >0

X2

L.

X1

which means that
of _105 _ 01
or idy Oy
Inserting f = u + v in Eq. A.16 gives
ou .Ov Ou  ,0v Ou  Ov

(A.16)

o or T oy oy oy oy
We get (see Eq. 4.38)
Ju Ov Ou v

dr 9y’ dy  Ox

which are called the Cauchy-Riemann equations.
» A complex function in polar coordinates: z = re? = r(cos + isin )

»Fluid dynamics: define a complex potential f = & + ¢V where U is
the streamfunction (recall the v; = %—‘;’ and vy = —%—i’, see Eq. 3.44). We
want f to be differentiable: hence Eq. A.4 must hold (replace v and v

with ® and W)

ob oV 9d 9T
"= 5= (A.17)

which is satisfied (first relation = vy, second = v,).

® satisfies Laplace eq. (see Eq. A.14). Since ws = 0, this applies also
for ¥

62\1’ 82\1’ 8’02 8’01
Ayt =+
xy 073 Oxry  Oxg

:—w3:0
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Hence, f also satisfies Laplace eq.
We have now defined a complex function, f = ® + ¢V which satisfies
Laplace eq and which has a physical meaning in fluid dynamics.

€See Section 4.4.3, f o< 2"

1. Now we “guess”/dream up a complex function f = & + W

2. then we check if it satisfies the Laplace equation (i.e. the continuity
equation, 4.28 and that the flow is inviscid, ws = 0, Eq. 4.41)

3. then we find out if f corresponds to a meaningful fluid flow situa-
tion

»We guess [ = C12" = C1r"e™ = C1r"(cos(nfd) + isin(nd))

Check that it satisfies Laplace eq. (it does, see Eq. 4.47) V*f =
19 (,,ﬂ) + 1o

r or or r2 962

€See Section 4.4.3.1, Parallel flow

»Parallel flow,n = 1. f = C12 = Voz = Vo (z + iy)

The streamfunction, W, is the imaginary part of f, i.e. ¥ = V, y =
Vaor sin(n#) which gives

ov ov
= — = V007 = —— = 0
i y 2 ox
Y
Voo
"

§See Section 4.4.4, Analytical solutions for a line source
»Line source

f= %lnz: gln(ree) =5 (lnr+ln(69)) = %(lnr+10)
(A.18)
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Check that it satisfies Laplace eq. (it does, see 4.58)

1w
UT_T89_27TT
ov
2}9——5—0
Yy
[

€See Section 4.4.5, Analytical solutions for a vortex line
» Vortex line

T T i T i ro
f= —Z%hlz = —Z%hl (re”) = —ig— (Inr +1n(e?)) = %(—ZlnrJrQ)

Check if it satisfies Laplace eq. (it does, see 4.58)

_1ov _ _ oy _ T
Ur_r@H_ Vo= or  2mr
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€See Section 4.4.6, Analytical solutions for flow around a cylinder
» Doublet: take a line source (rin > 0) a line sink (rin < 0) with a sepa-
ration ¢: let ¢ — 0 which gives

po b Varh

4 z

where 72 = p/(7V,,). Add parallel flow (f = V., z) gives cylinder flow

Vor? Vr? 4 r2 . ,
=— O+VooZ:L.60+VOOT€Z€:VOO Ve 4 ret?
A ret r

f

2
=V (T—O(COSQ —isin®) + r(cos € + isin 9))
r

The streamfunction reads (imaginary part)

2
U=V, (r—r—o) sin 6

r

and we get the velocity components

10U 2 ov 0
'Ur:_a—:Voo (1—TO)COSH7 UGZ_—:_VOO (1_'_:_2) sin 6

r2 or
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Voo | @ \ 9>

€See Section 4.4.7, Analytical solutions for flow around a cylinder with circulation
»Flow around a cylinder with circulation, I'
We have f for a cylinder. Now we add f for a vortex line

2

f=Vy <7;—0(cos'9 —isinf) —|—7’(cos€—|—isin9)> — i;lnz

™

The imaginary part gives the streamfunction

2 r

U=V, (r—r—o) sinf — —1Inr
r 2

We get the velocity components as

100 2 v 0 r
'UT':_a—:Voo ]-_r_o COSQ) ,UG:_a_:_VOO 1+T_0 Sin0+—
r 00 r r? 2
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The velocity at the surface, » = rg, reads

Up,s = 0

vgs = =2V sinf +
o

»Location of the stagnation points, i.e. where vy , = 0. We get

) r . r
2V sin Oy = % = Ostqg = arcsin (47T7’0V00)

Fma:v = 47TVOOT'0.
» The pressure is obtained from Bernoulli equation as (see Eq. 4.73)

2
UG,S

r 2
=1—[—-2sinf +
Vo2o 27TT0VOO

| 4sin?g 4 ATsing < r )2
= 1 —48In

Cp=1-

271roVso B 271roVao
»Integration of C), gives drag F'p = 0 and lift F;, = —pV I
€See Section 4.4.7.1, The Magnus effect

»The Magnus’ effect: three applications
»Table tennis: loop
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Q
A
) e m—— =L _ "
A - 00
Eond ,// ‘~l¢'
L» ] F
T @ L
»Free-kick
Q
~ A
:'.‘
)
-7 ‘~-'
v Fr

. wall

F
/' s
@ goal

» Flettner rotors: the Magus effect = propulsion force of Fi, cos(a)

Q / Vwind

‘/ship T~
i) E ZJ «
L. £y

a5

€See Section 4.4.8, The flow around an airfoil

» Airfoil flow

» The boundary layers, d(x1), and the wake illustrated in red.
»Lift force [}, = —pVo I’
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L.

Z1

Figure A.1: Airfoil. The boundary layers, d(z1), and the wake illustrated in red. z1 = 0 and
x1 = c at leading and trailing edge, respectively.

=

Figure A.2: Airfoil. Streamlines from potential flow. Rear stagnation point at the upper surface
(suction side).

A.5 Lecture 5

€See Section 5, Turbulence

» Turbulence

»v; = U; + v, is irregular and consists of eddies of different size
»increases diffusivity
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P

Figure A.3: Airfoil. Streamlines from potential flow with added circulation. Rear stagnation
point at the trailing edge.

81}1

T turbulent Ty = Max

2

laminar -7 Oy

Tw = ,ua—

T T

e_--.-.;-.;.;-.;-.;-.;.;-.;-.--.- B ]

»occurs at large Reynolds numbers. Pipes: Rep = —— ~ 2300;

v

boundary layers: Re,

Vi ~ 500 000.
v

»is three-dimensional
»is dissipative. Kinetic energy, v,v}/2, in the small (dissipative) eddies
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are transformed into thermal energy (increases temperature).

flow of kinetic energy

IE En
l dissipative scales

intermediate scales

Y

large scales

ov; Ov;

aSUj a.’lfj

All kinetic energy (say 90%) is finally dissipated at the smallest (dissi-
pative) scales.

» Dissipation € = v

» Kinetic energy dissipative at small scales determined by ¢, v

mjs] = [m*fs] [m?/s

1 =2a+2b [m]
—1=—-a—3b, [s

»This gives the Kolmogorov scales (see Eq. 5.5)

3

1/4 1/2
UW = (V€)1/47 677 = (V_) v Tnp = (K)

g 5

» Any periodic function, f, can be expressed as a Fourier series

1

flx) = 500 + i(an cos(knt) + by sin(kpz)), f=v, K,=—

n=1
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a, = %/L f(z) cos(knx)dx

b, = %/i f(x)sin(k,x)dx

Parseval’s formula states that (average over all eddies)

L L o0
/ V2 (x)dr = §a(2) + L Z(ai +b2)
-L n=1

Time-averaging (average of over time instants):

T

V2 = 1 v"dt
2T J_r
» Spectrum for turbulent kinetic energy, k
T
Pt = —yh =
VU] oz,

E(k)

III

E(ky) oca + b2
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k= / E(k)dk = Z E(kn) Ak,
0 0
PF = ! o,
" 0x;
E(x)
: v

~
N

<

III

K
The turbulence spectrum is divided into three regions:

I. Large eddies carry most of the turbulent kinetic energy. They ex-
tract energy from the mean flow.

II. Inertial subrange. Independent of both large eddies (mean flow)
and viscosity.

II1. Dissipation range. Isotropic eddies (Tv;» = c10;;) described by the
Kolmogorov scales.

» Turb. kinetic energy in Region II depends on ¢ and eddy size 1/k.

E = K gb
(m?/s*] = [1/m] [m?/s’]
3=—a+2b, [m]
—2=-3b, [§]
b=2/3,a=—5/3so that

2 _5
3 3

E(k) =const. - €3k
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» This is called Kolmogorov spectrum or —5/3 law

Pk
E(k)

III

K— - -
» Small-scale turbulence is isotropic (see Section 5.3): v = vl = v7.
Not true instantaneously, i.e. v] # v} # vj.

Isotropy: if a coordinate direction is switched (i.e. rotated 180°), nothing
should change. = v]v} in both coordinate directions must be the same.
= vjvh = (Vjvh)1800 = —Vjvh = 0.

»On tensor form: v;v; = const.d;;

2 3 3
Uy Uy UO
~ 2

EK/UKNZ 60

»Relation between largest and smallest scales (Re = vgly/v)

Ex N

% = (ve) Yty = (’/7)3/50)71/4 vo = (volo/v)"" = Re'/*
n

o 3 -1/4 V3£0 -1/4 3 —1/4 3/a
E_ =\ — EO =\ 3 EO =\ =3a = Re
n € Yo s
~1/2 3\ 1/2 1/2
) e (5 ()
n 0 0 0

e This explains why DNS (Direct Numerical Simulation) is too ex-
pensive at high Re numbers: a doubling of Re number =-

23/4 5 9314 5 934 5 o1/2 — 9l/4 ~ 7 (A.19)

x1 dir xo dir x3 dir time

times increase in computational effort
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A.6 Lecture 6

€See Section 6, Turbulent mean flow
»The continuity and the N-S for incompr. flow with const. p
Ov; Ov; dvv;  Op 0%v;

or, O Yot TP ox, " om  Mozon,

Decompose the variables and time average

vi =0 +v, p=p+p
0

v+l Oy N oyl o,
ov;v; 0 = - 0 — _
&L’jj = oz, (0 4+ 0))(0; +0))} = oz, (0:0; + v + O;0] + Vjv))
0 0 - T
= a—x] <v,~vj + 0,95 + vjj/er vévé) = o, + o1,

»The steady RANS (Reynolds-Averaged Navier-Stokes) equations, see
Eq. 6.9

= e i —_— — V-V
ox; P Ox; dx;  Ox; ”&UJ PO
Tij,tot
§See Section 6.1.1, Boundary-layer approximation
»RANS in developing boundary layer flow
b < B ovy < vy
v v, — KL —
2 17 axl 8.’]:2 )
_ 0y _ 0uy op d ov, e
i1 61’1 +pv2 8372 N 8.’171 + 61’2 Ma.’L'Q Py

Ttot

»Left side: each term include one large (v; and 0/0z5) and one small
(U3 and 0/0x) part

§See Section 6.2, Wall region in fully developed channel flow
»RANS in fully developed channel flow

8p 0 8’1_11 — 8p aTtOt
O —— _ !, -
8.’171 + 61’2 (MﬁxQ pvva) 8.’171 + 61’2

f(z1) g(z2)
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Integration from zo = 0 to x5 gives

op p x
Ttot(xZ) - Tw = a—:fle = Ttot = Tw + 8—1‘1x2 = Tw (1 — 72)
: op w
Last equality: P Tw (force balance)
81’1 1)

»lower half of channel

0.1

2000, 1
0.8
1500
4 uezi
1000,
& | 0.4 @J
500}
i 0.2
% 5r o+ o5 s P 0 Y S T — T a—
a) full view b) zoom

— —pVU V[ Ty == (001 /02) [ Top.

»The different wall regions

1074 1073 1072 107! 1
‘ $2/5
— 1
: 1
: outer region !
- 1
§ i
overlap region i
;
: log-law region :
§ i O
. s
=t 2
= inner region =
i
1
buffer region :
1
viscous region :
1
1
1
] z3 =y
1 5 10 30 100 1000 10000

» Wall shear stress (see Eq. 6.21)
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0,
Tw = U
a 8372
»The linear velocity law
0

Oy

T, 1/2 xr

w + 2Ur
— ) Lo

P

zpu3:>u7:(

w

2 2
L Tw _ pup U

w KB

Integration gives (recall that both v and u? are constant), see Eq. 6.23

1 1
v = —ulry +C) = ~ulry, or v =uxf
v v

» The log-law (turbulent region), see Eq. 6.32
Velocity scale: u,; length scale: { o< zo = { = Kxo

6171 . Ur 8171/uT . 1
0Ty Ko INwour/v)  K(xou,/v)
o _ 1

1
—+ +
=——=9 =—lnzg +B
ory  Kxg Lo

24f

1‘ 16 160 10‘00
+
Velocity profiles in fully developed annel flow.
»N.B. U1 centertine/Ur = 24 = good estimate for w, (U1 centertine/Ur

increases weakly with Reynolds number)
Example: channel flow (or boundary layer), x5 = 1 gives

water: zo = vy /u, = 1:1075-1/(1/24) = 2.4-107°m = 2.4-10>mm
air: 7, = vagd /u, =15-175.1/(1/24) =3.6-10~*m = 3.6 - 10~ 'mm

e §/x5 (at x5 = 1) is an estimate of ratio of largest to smallest tur-
bulent length scales (J is boundary layer thickness or channel half
width)
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e estimate of &: u3/§

§See Section 6.3, Reynolds stresses in fully developed channel flow
» Symmetry plane of channel flow 733 1ot = T30 — pU5V5,

T32,tot

X2

L.

[ Ovz 0Ovy\ — ovg  Ovg\
T32_M(6—902+6—xg)_0’ pU3U2——Mt(a—x2+a—x3>—0

because v3 = 0/0z3 = 0 (note that viv} # 0)
» Normal Reynolds stresses

2000

15000
+ ol
3 1000

5001

— PV Ty == pUB Ty ==t pUR T
» Forces on a fluid element

0= 3:61 + 61’2 (MﬁxQ pvva)

300
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200 0.1
o
t5 100 005 3
S

0 0

Shear stresses. == : —pv{ v} /Ty == (001 /0x2) [ Tw.

2000
1800
1600
1400

150

+ -+ 1200
Lo 100 2 1000
800
50 600
400 ; :
f50 00 50 o 50 100 150 200, A 0 1 2
Near the wall Far from the wall
Gradient of shear stresses. ——: —p(OV|vy/0x2)/Tw; = =1 w(0%01/03)/Tw; ===
—(0p/0x1) [ Tw.

» Forces in a boundary layer. The red (dashed line) and the blue (solid
line) fluid particle are located at 25 ~ 400 and 2§ ~ 20, respectively
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WA 25
ovj v} Ma Uy
2 A P 81;2 8&7%
11
"o oy
8331 : | 01'2
4,1‘ :47
- / 77777777777 |
0 = —
0 1 n
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A.7 Lecture 7

§See Section 8.1, Rules for time averaging

»Time averaging
1 (T

= — dt. A.20
7] (A.20)

]

»What is the difference between v/ v} and v} v5? Using A.20 we get

T
vjvh = i/ vyvhdt.
2T | ¢

5 (i f0) 3 )
2T |, 2T |,

(which is zero)
. : —5 2 :
» What is the difference between v72 and v}~ ? Using A.20 we get

whereas

o T
vk = — v2dt.

whereas

(which is zero)

» Show that 7,02 = 5,02, Using A.20 we get
T

R )
Uy = op Vv dt
-T

and since v does not depend on ¢ we can take it out of the integral as

T
V] —— det = @11}12
2T |+

» Show that v; = ;. Using A.20 we get
1 /7

L
or |0

1]

1

and since v does not depend on ¢ we can take it out of the integral as

by Tdt BT — 5
V1 — = V11— =
Yor |, Yor !
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»RANS (see Eq. 6.9)
duv;  dp 0 ( o —)

P aZL‘j _(%ci +8—xj

1,
~ TP

”ax]

§See Section 11.6, The Boussinesq assumption
»The RANS equations read (see Eq. 6.10)

P (%cj N (‘3902 aZL‘j M@x] Y J

The last term, the Reynolds stress, is unknown.

It must be modeled

This is called the closure problem

We need a turbulence model

» Write the diffusion term above for incompressible flow and without
assuming constant viscosity (see Eq. 2.5)

0 ov; 0y —
= — A21
(’lrj {V (8% + 8l‘l) UZU] ( )
We want to replace W by a turbulent viscosity, v;:
0 ov;  0v;
— A22
8$’j {(V+Vt) (8% + 8:16,)} ( )

Identification of Eqgs. A.21 and A.22 gives (see Eq. 11.32)

(O,
g 8.’,13']‘ 8:6@

This equation is not valid upon contraction. Hence (see Eq. 11.33)

672‘ 0v; 1. — 2
Uz/‘ ; = <811L‘) + 82‘]) + géijvllgv]; = —2u;5;; + gémk (A.23)
J i

v: different for different fluids (air, water, ...)

v;: depends on the flow, i.e. v, = vy(x;)

§See Section 8.2, The Exact k Equation
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>k = @ /2 appears in the expression for the turbulence viscosity. The
first step is to derive the k equation. Start by the N-S for v}, multiply by
v and time average

'0x; v o
1 0 0? o'
/ = / xl 1.0
——vl—[p — p| + vv! [v; — U] + )
(2 (2 7
~p "0y o Ox;0x; o Ox; .
v % VI
Using v; = v; + v;-, the left side can be rewritten as
' [(—+ /)(—A+ /)_*f,} I /+ /—A+ 1,1
via Ui + ;) (U; + v;) — ;05| = U’G 0;v; + v;0; + ;U5
I I 11
»Term I is rewritten as
0v;
! ooyl Y ? 1/ ¢
vl (v-v.) = v viv'
PO, N T ij ivj
Ox; Ox; Ox;

»Term 11

, 0 (u15) _ o0 0 [ _ Ok
VUV, — (U, V; = U;V; = Vi— = V;—
’(%cj v cont. eq. J Z@xj Trick 2 ](%cj 2 ]8$]‘

»Term III
/ 1,4/ ]

v{i (va‘) — o [ o} _ 0 (v _ 9 [ vjviv;

Z(?xj v cont. eq. J Z@xj Trick 2 j@xj 2 cont. eq. &pj 2

» First term on the right side (Term IV)

SRITT Y
1% Z@xi cont. eq. P 8I‘Z

» Second term on the right side (Term V)

0%} 0 (o o) V(%Z’- ovj
Ox; " Oxj Oz Trick 2

/

v, = v—
'0r;0x; Tick1 Oz

0 <1 ((’%Z{vg )) vl v 0k vl v

Vﬁ—xj 5 (%cj B V(?xj (%cj - V(’)xjaxj B V(?xj 8l‘j
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» Third term on the right side (Term VI)

1,4/ I’
o', VIV —
K3 3
Lol = Lol =0

(%cj ! aZL‘j

» We finally get (see Eq. 8.14)

ovjk W@T}Z— 0 11}’ n lv’v’v , ok V@vg o]
or; "oz, Ox; |p IR Oz, Oz, Ox;
T T o TI1 v

The terms have the following meaning.

I. Convection.

II. Production, P*. The large turbulent scales extract energy from the
mean flow. It is largest for small wavenumbers. It can be written as
Pk = —Tv}gzj, see Eq. 8.15. Hence only S;; creates turbulence,
not QZ]

III. The two first terms represent turbulent diffusion by pressure-
velocity fluctuations, and velocity fluctuations, respectively. The
last term is viscous diffusion.

IV. Dissipation, <. It is largest for high wavenumbers,

Pk
E(r)

III

Y
» The transport equation for £ in symbolic form reads (see Eq. 8.16)

ck=pPr4DF—¢



A.7. Lecture 7 307

§See Section 8.3, The Exact k Equation: 2D Boundary Layers
»In 2D boundary-layer flow, 0/0zy > 0/0x1, U3 < U1, we get

Ovik | 00k _ 0 0 [l Ay Ok OO0

= —Vjvh————— | —p'v
Oor; 0z Y20n, Oy pp DR 0T Oz ; Ox;

0 16 2b 3‘0 ’ ‘ 160 260 360 460 500
a) T b) n
) )
a) Zoom near the wall; b) Outer region. —: Pk ——: —g: v
—W'p | Oxg; +: —OVhVI! 2/ Dxe; 01 VO k) DT3.
: —— 001
» The production term —v}vg——
8l‘2
Velocity gradient Reynolds shear stress
40 . . . . ; ; ; 0.02
35/
30
25/ -
l’;— 20 1001 3%
15¢
10r
5,
% 0.2 0.4 0.6 0.8 1 0 0.2 04 06 08 1

vy /O3 —vjvy/uf
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A.8 Lecture 8

§See Section 8.6, The transport equation for v;v; /2

»The main source term in k eq is the production term, P*. This means
that k gets energy via P*. From where?

» Answer: from K = ©;0;/2. Let’s derive the transport eq. for K.
Multiply the RANS equations by ©; so that

~ (8@-@-) [ 19p &2, OV
Vi _— = V;

(’lrj ‘ ) p@x, +V.axj8$j._. &rj .
1 II 111 v
Term I:
0
8’02’UJ _ 8’02 i 8_j 17 8’1_12’1_12 817][(
= 0;0; = —U; =
8@ ]837J Or; 2 J Ox; Ox;
Term 11
op . ) op
U; P main source term in, for example, channel flow —vl—p >0
(%ci (‘3901
Term III
Vo, — =v— V;— —v =v —v .
8.’,13']‘ aSL’j 8.’,13']‘ aSL’j aSL’j 8.’,13']‘ 837]‘8.1’]' 8.’,13']‘ aSL’j
0/0;(0;0:/2)
Term IV
a’l}/’U/ avl Z ] +ﬁ8’f}l
Uz (’lrj - (’lrj UZ‘U]‘ 8$‘j '
> K = % v; eq. (see Eq. 8.36)
— ’Ui'U- Z’U. — — —
0z; J 8:5] p 8:132 8@ J Oz 0z; Oz,
= Pk, Sinkl source m.
>k = —vv eq. (see Eq. 8.14)
0v,k —— O0y; 0 [1- L 11— ok (% o]
= —vi! —v —vvlvl — v—o
Oz, " 0x; (’336] iP 27 Oz, ax] Oz,

Pk, source g, sink
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A

0 G

Figure A.4: Transfer of energy between mean kinetic energy (K), turbulent kinetic energy (k)
and internal energy (denoted as an increase in temperature, AT). K = %171-171- and k = %vgvg.

§See Section 11.5, The ¢ equation
»Now we need to model the turbulent viscosity, see Eq. A.23. It is esti-
mated as a turbulent velocity fluctuation times a turbulent length scale

VtOCZ/{L

The velocity scale is taken as k'/2. Recall that we have an estimate for
the dissipation as ¢ oc 43/ L, see Eq. 5.14. This gives £ oc k%2 /e which
gives
/{ZQ
Vy = CP«?

where C), = 0.09.

€See Section 11.7.1, Production terms
» We need modelled & and ¢ eqns. The exact k eq. reads (see Eq. 8.14)

= —U.
. 59 .
Ox; Ox;  Ox;

= — —vvv —v—>»| — v
P ]p 2 Joee 8.’,13']‘ 8.’,13']‘ aSL’j
(A.24)
» Production term needs to be modelled.
— 07 0v;  0v; 2 07v;
k _ v 7 7 (. .
Pr = —UZ{U;- 6{L‘j = U |:(8$‘] + axz) — 55234 8—35] == 2Vt3ij3ij

» Also the diffusion term needs to be modeled. Example: heat flux is
modelled as (see Eq. 11.35)

» The diffusion term in k eq, Eq. A.24, is modelled as
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v Ok 1 ovjuj; 0 < ak)

= — = — | y,—
O &rj 2 &rj 8$‘j Vt@xj

€See Section 11.8, The £ — ¢ model
»Modelled £ equation

ot T Ox; A Oz, o) Ox;

» < equation

Cf = PE+ D — ¢

Use the same source terms as in k£ equation and add turbulent time-scale
e/k to get the right dimensions:

PF 0 = %(cdpk ~ f)
» The final form of the modelled ¢ equation (see Eq. 11.98)

Os Os € 0 v\ Oe
i = Z (e PF— — ) ==
gt UGy, ~ pleal” — st 5 K” i 05) axj]

»Note that we have here omitted the buoyancy terms (they are included
in Egs. 11.97 and 11.98)
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» Summary of the £ — ¢ model.

e The Reynolds stress tensor, @, needs to be modeled, see Eq. 6.10

e We use the Boussinsq assumption, see Eq. 11.33, to replace the
unknown vl’-v;. with the turbulent viscosity, v; (a new unknown).

e We make a model for v; , see Eq. 11.99, which includes £ and

e We formulate modeled equations for k£ (Eq. 11.97) and ¢
(Eq. 11.98)

e Now we have closed Eq. 6.10. The equations we need to solve are

— The time-averaged continuity equation (Eq. 6.9)

— Three time-averaged Navier-Stokes equations (Eq. 6.10)

— Two equations for k£ and € (Eq. 11.97) and ¢ (Eq. 11.98)

— The equation for turbulent viscosity, v, = C,,k*/e (Eq. 11.99)
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A.9 Lecture 9

§See Section 11.14, Wall boundary conditions
»Two options for treating the wall boundary conditions.

e Coarse mesh near the walls. Assume that the logarithmic law ap-
plies. This is called wall functions

e Fine mesh. Modify the turbulence models to account for the vis-
cous effects. This is called Low-Reynolds number models

€See Section 11.14.1, Wall Functions

T wall
P \
&z A

Wall-adjacent cell.
» When using wall-functions, we don’t resolve the boundary layer. The
first cell center (the wall-adjacent) is placed in the log-law region (30 <
x5 < 400) and we assume that the velocity follows the log-law
»The log-law reads (see Eq. 6.32)

0 1 UL

L= —ln( d 2) +B
ur K v

It is re-written as

U1 1 (EUTSL’Q
— =—1In
Ur K v

), E=9.0, B:llnE
K

Friction velocity is computed as (see Eq. 11.144)

’%T)LP

a In(Eu,dxs/v)

Ur

(subscript P denotes the wall-adjacent cell) It is obtained by iteration.
Then 7, = pu? is used a force wall boundary condition.

»B.c. for £ and . In the log-region, the production and dissipation in
the k eq. balance each other (see Fig. 8.3b) which gives (see Eq. 11.145)
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20¢
g
S 10
O
of .
2 P — Production
S_mf S Dissipation
; ---- Diffusion
ool -Convection

0 200 400 600 800 1000 1200
+
)

Boundary along a flat plate. Energy balance in k equation.

a— 2
0=PF—pe=p, <8—U1) — pE. (A.25)
)
In the log-region (see Fig. 6.3b)
S ov
Tw = —pUjvG = “ta_;; (A.26)
Inserting Eq. A.26 into Eq. A.25 gives
2
Ozvivé —5:u—2—5
Vg Vg

which with v, = C,k? /< gives (see Eq. 11.149)
kp=C;"?u2,  C,=0.09

»c.

e Velocity gradient in log-region: when deriving the log-law we as-
sumed (see Eq. 6.27): 00y /0xy >~ u,/(kz2)

e Shear stress in log-region —vjv} ~ u?, see Eq. 6.25 and Fig. 6.3

Eq. A.25 gives (see Eq. 11.150)
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€See Section 11.14.2, Low-Re Number Turbulence Models

»In Low-Re number models we resolve the boundary layer, i.e. we use
a refined grid near the wall. The wall-adjacent cell at 3 < 1. B.c. for
velocity is v; = 0.

However, the turbulence near the wall is not fully turbulent: the viscous
effect is large. We must modify the turbulence model.

»We start by analyzing the turbulence near the wall. Make a Taylor
expansion of the fluctuating velocity, v}, near the wall (also valid for 7;)

V) = ag + a1 + agxs + . ..
vh = by + by + byxd + ... (A.27)
vy = co + C1Ty + Cox3 + ..

At the wall, v] = v}, = v§ = 0 which gives ap = by = ¢o.

Furthermore Ov|/0x; = 0vi/0rs = 0: continuity equation gives
vl /0zo = 0 so that by = 0. Equation A.27 now reads

V] = aimy + a4 ...
v, = boal + ... (A.28)
vy =Ty 4+ Cceri ...

Using Eq. A.28 we can write

P = a3+ ... = O(23)
R =2l + ... = O(x3)
R =213+ ... = O(23)
vjvh = a byl + ... = O(x3)
k = (@ +Aai+... =0z (A.29)
0vy/0xy =01+ ... = O(x9)
oy [O0xy =ai+ ... = O(x9)
Ovl [0xs = 2byzo + . .. = O(zd)
ovs [0y =ai+ ... = O(29)

€See Section 11.14.3, Low-Re k£ — € Models
»Now let’s compare the exact and the modeled % eq. near the wall
The exact k eq. (see Eq. 8.14)
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The modeled k eq. (see Eq. 11.97)
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We used v, = CH? = o) O(zy)

e the exact and the modeled dissipation term behave in the same way

e this is not true for the production term and the turbulent diffusion
term

»To make the modeled production term behave as O(z3), replace C,,
with C,, f,, (damping function) where £, oc O(z;")

This fixes also the modeled turb. diffusion term

»Now we look at the modeled ¢ eq. (see Eq. 11.160)
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where we assumed that the production term P* has been suitable modi-
fied so that P* = O(z3). The only terms that are non-zero when x5 — 0
are the viscous d