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1. Motion, flow 9

T(Xi,t1)

T(x%, t2)

Figure 1.1: The temperature of a fluid particle describedagrangianl(X;,t), or
Eulerian,T'(z;,t), approach.

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative
See also 7], Chapt. 3.2.

Assume a fluid particle is moving along the line in Flgl. We can choose to study
its motion in two ways: Lagrangian or Eulerian.

In the Lagrangian approach we keep track of its original fomsi(X ;) and follow
its path which is described hy;(X;,t). For example, at time; the temperature of
the particle isT'(X;, t1), and at time, its temperature i§'(X;, t2), see Figl.1 This
approach is not used for fluids because it is very tricky torsefind follow a fluid
particle. It is however used when simulating movement ofigles in fluids (for ex-
ample soot particles in gasoline-air mixtures in combumstipplications). The speed
of the particle is then expressed as a function of time angasstion at time zero, i.e.
v; = UZ(XZ,t)

In the Eulerian approach we pick a position, eag, and watch the particle pass
by. This approach is used for fluids. The temperature of thd,flll, for example, is
expressed as a function of the position, Te= T'(z;), see Figl.1 It may be that the
temperature at position;, for example, varies in time, and therl” = T'(z;, t).

Now we want to express how the temperature of a fluid partieléeg. In the
Lagrangian approach we first pick the particle (this givesstiarting position,X;).
Once we have chosen a patrticle its starting position is fiaed|, temperature varies
only with time, i.e.T'(t) and the temperature gradient can be wrid@ty dt.

In the Eulerian approach it is a little bit more difficult. Weedooking for the
temperature gradient{T’/dt, but since we are looking at fixed points in space we
need to express the temperature as a function of both timepexck. From classical
mechanics, we know that the velocity of a fluid particle is timee derivative of its
space location, i.eu; = dx;/dt. The chain-rule now gives

dr _or  dz; 0T _ 0T oT

@ ot on, ot Vow, 1

Note that we have to use partial derivativeBrsince it is a function of more than one
(independent) variable. The first term on the right side é&ldlcal rate of change by local rate
this we mean that it describes the variatio¥oh timeat positionz;. The second term of change
on the right side is called thenvective rate of changewhich means that it describesconv. rate

of change
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012

011

€2

T1

Figure 1.2: Definition of stress components on a surface.

the variation ofl" in spacewhen is passes the point. The left side in Eql.1is called

thematerial derivative and is in this text denoted b§l"/dt. Material
Equationl.1can be illustrated as follows. Put your finger out in the blogwvind. derivative

The temperature gradient you're finger experiencegligdt. Imagine that you're a

fluid particle and that you ride on a bike. The temperatureligrat you experience is

the material derivative]T/dt.

Exercise 1 Write out Eq.1.1, term-by-term.

1.2 Viscous stress, pressure
See also 7], Chapts. 6.3 and 8.1.

We have in Part | ] derived the balance equation for linear momentum which
reads

‘Pf)i — 0jij — Pfi 20‘ (1.2)
Switch notation for the material derivative and derivasig® that
d’Ui 8in
= i 1.3
P ot = B, +pf (1.3)

where the first and the second term on the right side represmdpectively, the net
force due to surface and volume forces;(denotes the stress tensor). Stress is force
per unit area. The first term includes the viscous stres®tens. As you have learnt
earlier, the first index relates to the surface at which thesstacts and the second
index is related to the stress component. For example, omfaceuwhose normal is
n; = (1,0, 0) act the three stress componemis, 012 ando 3, see Figl.2

In the present notation we denote the velocity vectonvby: v; = (v1,v2,v3)
and the coordinate by = x; = (x1,22,23). In the literature, you may find other
notations of the velocity vector such as= (u1, us, us3). If no tensor notation is used
the velocity vector is usually denoted @s v, w) and the coordinates &s, y, z).

The diagonal components of; represent normal stresses and the off-diagonal
components of;; represent the shear stresses. In Pa8] ypu learnt that the pressure
is defined as minus the sum of the normal stress, i.e.

p=—0/3 (1.4)
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The pressurey, acts as a normal stress. In general, pressure is a therraoudyprop-
erty, p;, which can be obtained — for example — from the ideal gas lawthat case the
thermodynamics pressung, and the mechanical pressupemay not be the same but
Eq.1.4is nevertheless used. Thiscousstress tensor;;, is obtained by subtracting
the tracegy, /3 = —p, fromo,;; the stress tensor can then be written as

0ij = —poij + Tij (1.5)

7;; is the deviator ofr;;. The expression for the viscous stress tensor is found i2 Bqg.
at p.19. The minus-sign in front gp appears because the pressure iattsthe surface.
When there’s no movement, the viscous stresses are zerb@mdftcourse the normal
stresses are the same as the pressure. In general, howeveormal stresses are the
sum of the pressure and the viscous stresses, i.e.

011 = —p+T11, 022 = —p+Taa, 033=—P+ T33, (1.6)

Exercise 2 Consider Fig.1.2 Show howrs, 02, 023 act on a surface with normal
vectorn; = (0, 1,0). Show also how's;, 032, 033 act on a surface with normal vector
n; = (05 07 1)

Exercise 3 Write out Eq.1.50n matrix form.

1.3 Strain rate tensor, vorticity
See also 7], Chapt. 3.5.3, 3.6.

The velocity gradient tensor can be split into two parts as

8’Ui 1 8’Ui 8’Ui 8’Uj (’)vj

ij 2 8:1:]- + ij IaIEi a$il

200, /0x; =0 (17)
1 8’Ui an 1 81)1- (’)vj
— = - _ =S+ Qs
where
S;; is asymmetridensor called thetrain-rate tensor Strain-rate
tensor

);; is aanti-symmetridensor called theorticity tensor vorticity ten-

The vorticity tensor is related to the familigorticity vector which is the curl of SOf
the velocity vector, i.ew = V X v, or in tensor notation

Oy,
Ww; = eijka_:zzk- (18)
J
If we set, for example, = 3 we get
w3 = (’)vg/(’)xl — (’)vl/(’)xQ. (19)

The vorticity represents rotation of a fluid particle. Ingsy Eg.1.7 into Eq.1.8
gives
wi = €k (Skj + Qi) = €6 (1.10)



1.3. Strain rate tensor, vorticity 12

sincee;;;.Sk; = 0 because the product of a symmetric tensty; § and a anti-symmetric
tensor €;;1) is zero. Let us show this far= 1 by writing out the full equation. Recall
thatS;; = Sj; (i.e. S12 = Sa1, S13 = S31, S23 = S32) ande;jr, = —eip; = €1 €1C
(i-e- €123 = —€132 = €231 ---,€113 = €221 = ...€331 = 0)
€16k = €111511 + €112521 + €113531

+ €121512 + €122522 + £123.532

+ €131513 + €132523 + €133533

=0-511+0-S9+0-53 (1.11)

4+0-S124+0-S532+1-S532

4+0-S13—1-823+0-S533

= S33 — 823 =0

Now les us invert Eql.10 We start by multiplying it withe;4,,, so that
Eitmwi = Eitm€ijk Uk (1.12)
Thee-0-identity gives (see Tabla.1 at p.A.1)
Citm€ijk e = (0050mhk — 00k0my)Qkj = Qme — Qe = 200 (1.13)

This can easily be proved by writing all the components, ségeR\. 1 at p.A.1. Hence
we get with Eq1.8

1 1 1
Qe = §€iemwi = §5€miwi = *§€mewi (1.14)

or, switching indices
1
Qij = — 5 ik Wk (1.15)

A much easier way to go from EG.10to Eq.1.15is to write out the components of
Eq.1.1Q0 Herewe do it for = 1

w1 = €1238232 + €132€223 = 3y — Qg = =203 (1.16)

and we get
1
Qoz = —§w1 (2.17)
which indeed is identical to E4..15

Exercise 4 Write out the second and third component of the vorticitytaregiven in
Eq.1.8(i.e. ws andws).

Exercise 5 Complete the proof of E4..11for : = 2 andi = 3.

Exercise 6 Write out Eq.1.16also fori = 2 andi = 3 and find an expression fét;,
and;3 (cf. Eq.1.17). Show that you get the same result as in Eq5

Exercise 7 In Eq.1.17we proved the relation betweél; andw; for the off-diagonal
components. What about the diagonal component@;¢? What do you get from
Eq.1.7?
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Exercise 8 From you course in linear algebra, you should remember hoeotapute
a vector product using Sarrus’ rule. Use it to compute thewegroduct
(S3] éQ ég
— - | 2 B 9
w = v XV = oz Jx2 Ooxs
V1 V2 (R}

Verify that this agrees with the expression in tensor notatn Eq.1.8

1.4 Product of a symmetric and antisymmetric tensor

In this ssction we show the proof that the product of a symimaind antisymmetric
tensor is zero. First, we have the defintions:

e Atensora;; is symmetric ifa;; = a;i;
e Atensorb;; is antisymmetric ih;; = —b;;.

It follows that for an antisymmetric tensor all diagonal qoonents must be zero;
for examplep,; = —by; can only be satisfied if;; = 0.

The (inner) product of a symmetric and antisymmetric tensatways zero. This
can be shown as follows

aijbij = ajibij = *az‘jbji,
where we first used the fact thaf; = a;; (Symmetric), and then that; = —bj;
(antisymmetric). Since the indicésindj are both dummy indices we can interchange
them, so that
aijbij = —a;ibi; = —aijbiy,

and thus the product must be zero.

This can of course also be shown be writing ayb;; on component form, i.e.

ai;bij = a11b11 + a12b12 + a13b13 + ... + aszabsz + azzbzz =0

1.5 Deformation, rotation
See also 7], Chapt. 3.3.

The velocity gradient can, as shown above, be divided intogarts:S;; and(2;;.
We have shown that the latter is connectebtation of a fluid particle. During rotation rotation
the fluid particle is not deformed. This movement can betfitated by Fig1.3.

It is assumed that the fluid particle is rotated the amgtiuring the timeAt¢. The
vorticity during this rotation isvs = vy /dx1 — Ov1/dxe = —2812. The vorticityws
should be interpreted as twice the average rotation of thizdwtal edge Qv /0x1)
and vertical edge<{dv, /0x3).

Next let us have a look at the deformation caused gy It can be divided into two
parts, namely shear and elongation (also called extensiditadation). The deforma-
tion due to shear is caused by the off-diagonal terms; pfIn Fig. 1.4, a pure shear de-
formation byS12 = (Ov1/0xo + Ova/0x1)/2 is shown. The deformation due to elon-
gation is caused by the diagonal termsSpf. Elongation caused b§y1 = dv1/9x is
illustrated in Fig.1.5.

In general, a fluid particle experiences a combination cdtioh, deformation and
elongation as indeed is given by Eq7.
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Figure 1.3: Rotation of a fluid particle during timkt. Heredv, /0xo = —0ve/0x1
so that—Q5 = w3/2 = 8’1}2/8,%1 > 0.

Al‘l
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Figure 1.4: Deformation of a fluid particle by shear duringéiAt. Heredv, /0xo =
81)2/81'1 so thatS, = 81)1/81‘2 > 0.

Exercise 9 Consider Fig.1.3 Show and formulate the rotation hy.

Exercise 10 Consider Fig.1.4 Show and formulate the deformation $ys;.
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Figure 1.5: Deformation of a fluid particle by elongationidgrtime At¢.
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Figure 1.6: The surface, is enclosing by the liné. The vectort;, denotes the unit
tangential vector of the enclosing ling,

Exercise 11 Consider Fig.1.5. Show and formulate the elongation Bys.

1.6 Irrotational and rotational flow

In the previous subsection we introduced different typesmo¥ement of a fluid parti-
cle. One type of movement was rotation, see Ei§. Flows are often classified based
on rotation: they areotational (w; # 0) or irrotational (w; = 0); the latter type is also
called inviscid flow or potential flow. We'll talk more aboutat later on. In this sub-
section we will give examples of one irrotational and onational flow. In potential
flow, there exists a potentia®;, from which the velocity components can be obtained
as

0D

= (1.18)

U,
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Before we talk about the ideal vortex line in the next segtiva need to introduce
the conceptirculation. Consider a closed line on a surface in the— x5 plane, see
Fig. 1.6. When the velocity is integrated along this line and pragdatnto the line we
obtain the circulation

r= j{vmtmdf (1.19)
Using Stokes’s theorem we can relate the circulation to tréoity as
0
= / Umtmdl = / Eijt et dS = / wsdS (1.20)
[ S Ox; s

wheren; = (0,0, 1) is the unit normal vector of the surface Equationl.20reads in
vector notation

F:/V'tCM:/(VXV)'HdS:/wgdS (1.22)
14 s s

The circulation is useful in aeronautics and windpower eagring where the lift
of an airfoil or a rotorblade is expressed in the circulationa 2D section. The lift
force is computed as

L=pVTl (1.22)

whereV is the velocity around the airfoil (for a rotorblade it is thelative velocity,
since the rotorblade is rotating). In a recent MSc thesigegtpan inviscid simula-
tion method (based on the circulation and vorticity soureess used to compute the
aerodynamic loads for windturbine4||

Exercise 12 In potential floww; = €;;,0vi/0z; = 0. Multiply Eq.1.18by ¢, ;;, and
derivate with respect tey, (i.e. take the curl of) and show that the right side becomes
zero as it should, i.es;,0?® / (x,0z;) = 0.

1.6.1 Ideal vortex line
The ideal vortex line is an irrotational (potential) flow whehe fluid moves along

circular paths, see Fid..7. The velocity field in polar coordinates reads

vg==—, v=0 (1.23)

- b
2rr

wherel is the circulation. Its potential reads

o L0 (1.24)
2T
The velocity,ug, is then obtained as
109
vo = r 00

To transform Eq.1.23into Cartesian velocity components, consider Fig. The
Cartesian velocity vectors are expressed as
. €To T2
v = —vgsin(f) = —vg— = —vg—— 55—~
L= meesin) = e =
X1 X1

- 0) = vt — T
vy = vy cos(f) = vy = @2+ )1

(1.25)
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Figure 1.7: Ideal vortex. The fluid particle (i.e. its diaghnsee Figl.3) does not
rotate.

Inserting Eq.1.25into Eq.1.23we get
FIEQ F$1

- = — 1.26
@i+l 2T e (1.26)

v =
To verify that this flow is a potential flow, we need to show thia vorticity, w; =
4560V /O IS zero. Since it is a two-dimensional flows(= 0/0z3 = 0), w1 =
we = 0, we only need to computes; = Jvs/0x1 — Ovy /Ox2. The velocity derivatives
are obtained as

T 2 _ .2 T 2 _ .2
On _ I wi—a; el Ov _ T w3—ay i (1.27)
vy 2 (zf+a3)" 0T 27 (af 4 a3)
and we get
r 1
2(x§ —2? 42t —23)=0 (1.28)

w3 =——"""75
27 (aF + 23)
which shows that the flow is indeed a potential flow, irotational (w; = 0). Note
that the deformation is not zero, i.e.

2
S12 = = <8”1 + ‘%2> - LB (1.29)

9o\, T o) T o- 2
2 \0xa Ox1 27r($%+$§)

Hence a fluid particle in an ideal vortex does deform but itdoet rotate (i.e. its
diagonal does not rotate, see Flgy).

It may be little confusing that the flow path formsartexbut the flow itself has no
vorticity. Thus one must be very careful when using the words “vortexd”&orticity”. vortex vs.
By vortex we usually mean a recirculation region of the meaw.flThat the flow has vorticity
no vorticity (i.e. no rotation) means that a fluid particlevas as illustrated in FidL.7.

As a fluid particle moves from positianto b — on its counter-clockwise-rotating path
— the particle itself is not rotating. This is true for the viladlow field, except at the
center where the fluid particle does rotate. This is a sirgodént as is seen from
Eq.1.23for whichws — oc.

Note that generally a vortex has vorticity, see Sectich The ideal vortex is a very
special flow case.

1.6.2 Shear flow
Another example — which is rotational — is a shear flow in which
vy =cra, vy =0 (1.30)
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Figure 1.8: Transformation afy into Cartesian components.
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Figure 1.9: A shear flow. The fluid particle rotates.= cx3.

with ¢,z > 0, see Fig1.9. The vorticity vector for this flow reads

w1 =wy =0, w3= % — % = —2cry (1.32)
8$1 8$2
When the fluid particle is moving from positian) via b to positionc it is indeed
rotating. It is rotating in clockwise direction. Note thaetpositive rotating direction
is defined as the counter-clockwise direction, indicatedvby Fig. 1.9, This is why
the vorticity,ws, is negative £ —2cux-).

1.7 Eigenvalues and and eigenvectors: physical interpretian
See also 7], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see EigjQ In the left figure
it is oriented along the; — x5 coordinate system. On the surfaces act normal stresses
(011, 022) and shear stresseas,, 021). The stresses form a tensey;. Any tensor has
eigenvectors and eigenvalues (also called principal veetiod principal values). Since
o;; IS symmetric, the eigenvalues are real (i.e. not imaginafyje eigenvalues are
obtained from the characteristic equation, s@g Chapt. 2.5.5 or Eql3.5at p.107.
When the eigenvalues have been obtained, the eigenveatotseccomputed. Given
the eigenvectors, the fluid element is rotatedegrees so that its edges are aligned with
the eigenvectors;; = 1. and¥s = I/, see right part of Figl.10 Note that the the



2. Governing flow equations 19

023 &y Vi
T 021
—_—
012
THUH
T2

Figure 1.10: A two-dimensional fluid element. Left: in orgi state; right: rotated to
principal coordinate directions\; and ), denote eigenvalue§; andv., denote unit
eigenvectors.

sign of the eigenvectors is not defined, which means thatigeneectors can equally
well be chosen as v, and/or—¥5. In the principal coordinates;, — x4/ (right part
of Fig. 1.10, there are no shear stresses on the surfaces of the fluicceterihere
are only normal stresses. This is the very definition of eigetors. Furthermore, the
eigenvalues are the normal stresses in the principal coates, i.e.\; = 01/1» and
)\2 = 09/9/.

2 Governing flow equations

See also 7], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation
2.1.1 The continuity equation

The first equation is the continuity equation (the balanceaéiqn for mass) which

reads B]
e

Change of notation gives
@ 81)1'

= 2.2
dt p(’)xi 0 ( )
For incompressible flowy= const) we get
0v;
L = 2.
oz, ~° (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have foreaithe constitutive law
for Newtonian viscous fluids3]

2
0ij = —Pdij + 2055 — S 1Skkij (2.4)
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Inserting Eq2.4into the balance equations, Eg3 we get

tpfi=—g+ 5 <2u5u = 3" %0, 5”) +rfi (2.9)

? J

d’Ui _ 8[) (97']'1'
P dt N 8,%1' (’)xj

whereu denotes the dynamic viscosity. This is tavier-Stokesquations (sometimes
the continuity equation is also included in the name “Na@tskes”). It is also called

thetransport equation for momentunif the viscosity,u, is constant it can be moved
outside the derivative. Furthermore, if the flow is incongsible the second term in
the parenthesis on the right side is zero because of thentotytequation. If these two

requirements are satisfied we can also re-write the first tetime parenthesis as

0 0 ( 8’Ui (’)vj) 82%

8xj ( IUS”) Malﬂj 8:17]' + 8% luaxjalrj

(2.6)
because of the continuity equation. Equatibiican now — for constant and incom-
pressible flow — be written

dv;  Op n R
p dt B 8:171 luaxjalﬂj

+pfi (2.7)

In inviscid (potential) flow, there are no viscous (frictjdiorces. In this case, the

Navier-Stokes equation reduces to tder equations Euler
equations
d’l}i ap
= —— i 2.8
P oz, T pf (2.8)

Exercise 13 Formulate the Navier-Stokes equation for incompressible thut non-
constant viscosity.

2.2 The energy equation
See also 7], Chapts. 6.4 and 8.1.

We have in Part 13] derived the energy equation which reads

‘ pu — Ui,jgji =+ qi,i = pz (29)

wherewu denotes internal energyy; denotes the conductive heat flux andhe net
radiative heat source. The latter can also be seen as a vggter; for simplicity, we
neglect the radiation from here on. Change of notation gives

du _ v Ogi
pdt B ﬂaxj 8:171

(2.10)

In Part | [3] we formulated the constitutive law for the heat flux vectéoqrier's
law)

oT
D= —k 211
q oz, (2.11)
Inserting the constitutive laws, Eggd4and2.1], into Eq.2.10gives
du ov; 2 0 oT
PE —Pazi +l2,usz'j5¢j - guSkkSiil+a_llii (ka_:z:l) (2.12)

P
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where we have use$};;0v; /0z; = S;;(Si; + Qi;) = S;;S:; because the product of a
symmetric tensory;;, and an anti-symmetric tensdd,;, is zero. Two of the viscous
terms (denoted byp) represent irreversible viscous heating (i.e. transfdiomaof
kinetic energy into thermal energy); these terms are inguarat high-speed flow(for
example re-entry from outer space) and for highly viscousdl@ubricants). The first
term on the right side represents reversible heating anlingpdue to compression and
expansion of the fluid. Equatidh12is thetransport equation for (internal) energy,

Now we assume that the flow is incompressible (i.e. the vlatiould be smaller
than approximately /3 of the speed of sound) for which

du = cpdT (2.13)
wherec, is the heat capacity (see Part3] o that Eq2.12gives ¢, is assumed to be
constant)

dTr 0 orT
Pep g = P+ oz, <k 8$i> (2.14)

The dissipation term is simplified ® = 2..5,;.5;; becauses;; = dv;/0z; = 0. If we
furthermore assume that the heat conductivity coefficieobnstant and that the fluid
is a gas or a common liquid (i.e. not an lubricant oil), we get

dr o°T
it~ 01,0 (2.19)
wherea = k/(pc,) is thethermal diffusivity thermal
y diffusivity
Pr== (2.16)
«

is defined wherer = /p is the kinematic viscosity. The physical meaning of the
Prandtl number is the ratio of how well the fluid diffuses martugn to the how well it
diffuses internal energy (i.e. temperature).

The dissipation termb, is neglected in ER.15because one of two assumtions are
valid:

1. The fluid is a gas with low velocity (lower than'3 of the speed of sound); this
assumption was made when we assumed that the fluid is incesiiple

2. The fluid is a common liquid (i.e. not an lubricant oil). lmbkicant oils the
viscous heating (i.e. the dissipatiaby is large. One example is the oil flow in a
gearbox in a car where the temperature usually is morethatC' higher when
the car is running compared to when it is idle.

Exercise 14 Write out and simplify the dissipation terdd, in Eq.2.12 The first term
is positive and the second term is negative; are you sure®hat0?

2.3 Transformation of energy

Now we will derive the equation for the kinetic energy= v;v; /2. Multiply Eq. 1.3
d’l}i 0ji

i— — U; —vipfi = 2.17

PY; dt U 8:17]' vipfi=0 ( )

IHigh-speed flows relevant for aeronautics will be treateddtail in the course “Compressible flow” in
the MSc programme.
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The first term on the left side can be re-written
.d’Ui _1 d(vivi) o dk

= =p— 2.1
P =2l a - (2.18)
(v;v;/2 = k) so that
dk 80'3‘1'
— =y i fi 2.1
pdt Vi 8:17]' +pvzfz ( 9)
Re-write the stress-velocity term so that
dk 0 0 i 0 i
= Lt puif; (2.20)

"% = "oz, 70w,
This is thetransport equation for kinetic energy, Adding Eq.2.20to Eq.2.10gives

d(u + k) 80']'1'1)1' aqi

= — i fi 2.21
P dt 8acj 8,%1' + pY f ( )
This is an equation for the sum of internal and kinetic engtgy k. This is the
transport equation for total energy, + k.
Let us take a closer look at E¢®.1Q 2.20and2.21 First we separate the term

0;0v;/0z; in Egs.2.10and2.20into work related to the pressure and viscous stresses
respectively (see E4..5), i.e.

81}1- avi 8%
e = —pe— T 2.22
% 8acj p@xi +Tj (’)xj ( )
a b=%o

The following things should be noted.

e The physical meaning of theeterm in Eq.2.22— which include the pressurg,
—is heating/cooling by compression/expansion. This isvargble process, i.e.
no loss of energy but only transformation of energy.

e The physical meaning of tHeterm in Eq.2.22— which include the viscous stress
tensor,r;; — is a dissipation, which means that kinetic energy is tramséd to
thermal energy. It is denoted, see Eq2.12 and is called viscous dissipation.
It is always positive and represents irreversible heating.

e The dissipation®, appears as a sink term in the equation for the kinetic energy
k (Eg.2.20 and it appears a source term in the equation for the intemedgyu
(Eq.2.10. The transformation of kinetic energy into internal enetakes place
through this source term.

e ® does not appear in the equation for the total energy (Eq.2.21); this makes
sense sinc@® represents a energy transfer betweesnd k. and does not affect
their sumu + k.

Dissipation is very important in turbulence where transfeenergy takes place at
several levels. First energy is transferred from the meam ftothe turbulent fluctua-
tions. The physical process is called production of turbulénetic energy. Then we
have transformation of kinetic energy from turbulence kinenergy to thermal en-
ergy; this is turbulence dissipation (or heating). At thenedime we have the usual
viscous dissipation from the mean flow to thermal energyttistis much smaller than
that from the turbulence kinetic energy. For more detai, sectior2.4 in [5]2.

2can be downloaded from http://iwww.tfd.chalmers.se/"lada
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2.4 Left side of the transport equations

So far, the left side in transport equations have been fatadlusing the material
derivative,d/dt. Let ¥ denote a transported quantity (i.&. = v;,u, T ...); the left
side of the equation for momentum, thermal energy, totalgnéemperature etc reads

dv ov ov

— = p— — 2.2
Par ~ ot +pv]axj (2.23)

This is often called theon-conservativéorm. Using the continuity equation, ER.2, non-

it can be re-written as conser-
vative
ﬂ — a_\Ij + U}@_‘I’ + \\/) @ + % —
Par = "ot " oa; it " "oz, )
=0 (2.24)
ov ov op op 0v;
- Pl /2 7 -
Por Y Paa, T (@”Jazj ey

The two underlined terms will form a time derivative termdathe other three terms
can be collected into a convective term, i.e.

d¥  0p¥  Opv; ¥
Pat = "ot " oy (2.25)
This is called theconservativdorm. When solving the Navier-Stokes equations ngonser-
merically using finite volume methods, the left side in trenBport equation is alwaysvative
written in the form of Eq2.25 in this way we ensure that the transported quantity is
conserved The results may be inaccurate due to too coarse a numeridalbgit no
mass, momentum, energy etc is lost (provided a transposgt@gqufor the quantity is
solved): “what comes in goes out”.

2.5 Material particle vs. control volume (Reynolds Transpat The-
orem)

See also 7], Chapt. 5.2.

In Part I [3] we initially derived all balance equations (mass, momenand en-
ergy) for a collection ofnaterial particles The conservation of mas$/dt [ pdV = 0,
Newton’s second lawj/dt [ pv; = F; etc were derived for a collection of particles in
the volumeV,,,,¢, whereV,,,, is a volume that includes the same fluid particles all the
time. This means that the volumig,,.., must be moving and it may expand or contract
)if the density is hon-constant), otherwise particles wlanbve across its boundaries.
The equations we have looked at so far (the continuity eqnatB, the Navier-Stokes
equation2.7, the energy equatior’is12and2.20 are all given for a fixed control vol-
ume. How come? The answer is the Reynolds transport theavbioh converts the
equations from being valid for a moving volume with a collent V,,.,, to being valid
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Figure 3.1: The plate moves to the right with spégdor ¢ > 0.

for a fixed volume ). The Reynolds transport theorem reads

— ddV = — +d d
dﬁ Vpart V /V < dﬁ * 5$1> V
oo oo ov; o® I ®
_ o= ) i — = ¢ 2.26
/\/<5t+vza$i+¢5$i>dv /v<(97ij 5$i)dv (220

o
= —dVJr/vini(I)dS
/v ot 5

whereV denotes a fixed non-deformable volume in space. The diveegireorem
was used to obtain the last line afdlenotes the bounding surface of voluiiie The
last term on the last line represents the net flowbadcross the fixed non-deformable
volume,V. & in the equation above can pg€mass) pv; (momentum) opu (energy).
This equation applies tanyvolume ateveryinstant and the restriction to a collection
of a material particles is no longer necessary. Hence, id fludchanics the transport
equations (Eq.2, 2.5, 2.1Q ...) are valid both for a material collection of particles
as well as for avolume the latter is usually fixed (this is not necessary).

3 Exact solutions to the Navier-Stokes equation: two
examples

3.1 The Rayleigh problem

Imagine the sudden motion of an infinitely long flat plate. fore greater than zero
the plate is moving with the speé{, see Fig3.1

Because the plate is infinitely long, there is ap dependency. Hence the flow
depends only orxs andt, i.e. vy = vi(xa,t) andp = p(z2,t). Furthermore,
vy /0x1 = Ovs/Ox3 = 0 so that the continuity equation givéss/0x2 = 0. At
the lower boundarys«, = 0) and at the upper boundary{ — o) the velocity com-
ponentv; = 0, which means that, = 0 in the entire domain. So, EQ.7 gives (no
body forces, i.ef; = 0) for thewv; velocity component

on _ O
P ot

= 3.1
We will find that the diffusion process depends on the kinémascosity,v = 1/p,
rather than the dynamic ong, The boundary conditions for E§.1are

v1(22,6=0)=0, wvi(x2=0,t)=Vy, wv1(z2— 00,t)=0 (3.2

The solution to Eq3.1is shown in Fig.3.2 For increasing timet§ > to > t1), the
moving plate affects the fluid further and further away frdre plate.
It turns out that the solution to E§-1is asimilarity solution this means that the similarity
solution
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Figure 3.2: Thes velocity at three different timess > to > ;.

number of independent variables is reduced by one, in tlsis fram two {2 andt) to
one (). The similarity variabley, is related tor, andt as

LS Wo

If the solution of Eq3.1depends only oR, it means that the solution for a given fluid
will be the same (“similar”) for many (infinite) values af, and¢ as long as the ratio
x5 /+/vt is constant. Now we need to transform the derivatives inEfjfrom 9/t
andd/ozx, to d/dn so that it becomes a function gfonly. We get

(3.3)

Ovi  dvi On xot™3/2 duy 17 dv;
ot dnp ot Ay dyp 2t dy
Ouvi _dvi On 1 du
dry  dn Ory  2/ut dn

o _ 0 (ou)_ 0 (1 du\_ 1 0 (dw)_ 1w
0x3 © Oxy \Oxo ) Oxo \ 2wt dn ) 2wt Oxo \ dn )  4ut dn?

(3.4)
He introduce a non-dimensional velocity
(%1
= — 3-5
I=v (35)
Inserting Eqs3.4and3.5in Eq.3.1gives
d*f d
— 42— = 3.6
e + 27 an 0 (3.6)

We have now successfully transformed Bdland reduced the number of independent
variables from two to one. Now let us find out if the boundargditions, Eq.3.2, also
can be transformed in a physically meaningful way; we get

(22,0 =0)=0= f(n > 00)=0
vi(ze =0,t) =Vp = f(n=0)=1 (3.7)
vi(x2 = 00,t) =0= f(n —>00)=0
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Figure 3.3: The velocityf = v;/Vp, given by Eq3.11

Since we managed to transform both the equation3Egjand the boundary conditions
(Eg.3.7) we conclude that the transformation is suitable.
Now let us solve EgB.6. Integration once gives

Z—{; = O exp(—1?) (3.8)
Integration a second time gives
n
f= Cl/ exp(—n"?)dn’ + Cy (3.9
0

The integral above is the error function

erf(n) = % /077 exp(—n?) (3.10)

At the limits, the error function takes the valueésindl, i.e. erf0) = 0 and erfn —
oo) = 1. Taking into account the boundary conditions, Bd, the final solution to
Eqg.3.9is (with Cy, = 1 andC; = —2//7)

() =1 erf(y) (3.11)

The solution is presented in Fi§.3 Compare this figure with Fig3.2 at p.25; all
graphs in that figure collapse into one graph in B To compute the velocity;,
we pick a timet and insertzy andt in Eq.3.3. Thenf is obtained from Eg3.11and
the velocity,v;, is computed from Eg3.5. This is how the graphs in Fig.2 were
obtained.
From the velocity profile we can get the shear stress as
oy _ pwVo df — pWo

2
Tol = p— = - = exp (—
2t 'uﬁxg 2/t dn VTt P ( K )

where we used = u/p. Figure3.4below presents the shear stresg, The solid line
is obtained from Eg3.12and circles are obtained by evaluating the derivatdyédn,
numerically using central differencég; 1 — f;—1)/(n;+1 — nj—-1)-

As can be seen from Fi@.4, the magnitude of the shear stress increases for de-
creasing; and it is largest at the walt,, = —pVy//wt

(3.12)
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Figure 3.4: The shear stress for water £ 10~%) obtained from Eq3.12 at time

t = 100 000.

The vorticity,ws, across the boundary layer is computed from its definitian {£31)

8’1}1 VO df VO 9
= o T aduidn meXp( ) (3.13)
From Fig.3.2at p.25it is seen that for large times, the moving plate is felt farth
and further out in the flow, i.e. the thickness of the boundayegr, s, increases. Often
the boundary layer thickness is defined by the position wiieréocal velocityp; (x2),
reaches 99% of the freestream velocity. In our case, thiesponds to the point where

v1 = 0.01V4. From Fig.3.3and Eq.3.11we find that this occurs at

n=18= = 0 = 3.6Vt (3.14)

0
2V/vt
It can be seen that the boundary layer thickness increagesd. Equation3.14can
also be used to estimate ttigfusion length After, say,10 minutes the diffusion length diffusion
for air and water, respectively, are length

Oair = 10.8cm

3.15
Owater = 2.8cm ( )

As mentioned in the beginning of this section, note that tiffesion length is deter-
mined by the kinematic viscosity, = p/p rather than by dynamic ong,

The diffusion length can also be used to estimate the thgkioé a developing
boundary layer, see Sectidn3.1

Exercise 15 Consider the graphs in Fig3.3. Create this graph with Matlab.

Exercise 16 Consider the graphs in Fig8.2 Note that no scale is used on the axis
and that no numbers are given far, ¢, andts. Create this graph with Matlab for both
air and engine oil. Choose suitable valuestent, andts.

Exercise 17 Repeat the exercise above for the shear stresssee Fig.3.4

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensiohahoel, see Fidg3.5, with
constant physical properties (i.e.= const).
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Figure 3.5: Flow in a horizontal channel. The inlet part &f thannel is shown.

RARES

Figure 3.6: Flow in a channel bend.

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the e#jyonear the walls is larger
than in the center, see Fig.5 The reason is that the flow (with velocity) following
the curved wall must change its direction. The physical agdrich accomplish this
is the pressure gradient which forces the flow to follow thdl @ closely as possible
(if the wall is not sufficiently curved a separation will tagkace). Hence the pressure
in the center of the channdP;, is higher than the pressure near the wA]l, It is thus
easier (i.e. less opposing pressure) for the fluid to entecltannel near the walls than
in the center. This explains the high velocity near the walls

The same phenomenon occurs in a channel bend, se&.BigThe flow V' ap-
proaches the bend and the flow feels that it is approachinga@theough an increased
pressure. The pressure near the outer wal),must be higher than that near the inner
wall, P;, in order to force the flow to turn. Hence, it is easier for ttmwflto sneak
along the inner wall where the opposing pressure is sméikan hear the outer wall:
the result is a higher velocity near the inner wall than nbarduter wall. In a three-
dimensional duct or in a pipe, the pressure differeRge- P; creates secondary flow
downstream the bend (i.e. a swirling motion in the— z3 plane).

3.2.2 Flatplates

The flow in the inlet section (Fig.5) is two dimensional. Near the inlet the velocity is
largest near the wall and further downstream the velocitgtiarded near the walls due
to the large viscous shear stresses there. The flow is aateden the center because
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the mass flow at eachy must be constant because of continuity. The acceleratidn an
retardation of the flow in the inlet region is “paid for ” by agasure loss which is rather
high in the inlet region; if a separation occurs because affshorners at the inlet, the
pressure loss will be even higher. For largethe flow will be fully developed; the
region until this occurs is called ttentrance regionand the entrance length can, for
moderately disturbed inflow, be estimated @is [

T1,e VDh
—— =0.016R = 0.016
Dh €D 1%

(3.16)

whereV denotes the bulk (i.e. the mean) velocity, abg = 4A4/S, where Dy,
A and S, denote the hydraulic diameter, the cross-sectional ardatla perimeter,
respectively. For flow between two plates we @t = 2h.

Let us find the governing equations for the fully developeavflegion; in this
region the flow does not change with respect to the streamedsedinate,z; (i.e.
Ov1/0x1 = Ovy/Ox1 = 0). Since the flow is two-dimensional, it does not depend
on the third coordinate directiony (i.e. 9/dx3), and the velocity in this direction is
zero, i.e.vs = 0. Taking these restrictions into account the continuityatun can be
simplified as (see EQ.3)

81}2

— =0 3.17

02, (3.17)
Integration gives» = C; and since; = 0 at the walls, it means that

va =0 (3.18)

across the entire channel (recall that we are dealing wélptrt of the channel where
the flow is fully developed,; in the inlet sectien # 0, see Fig3.5).

Now let us turn our attention to the momentum equationforThis is the vertical
direction (5 is positive upwards, see Fi§.5. The gravity acts in the negative
direction, i.e. f; = (0, —pg,0). The momentum equation can be written (see Eg.
at p.20)

d’UQ 81)2 (91)2 ap 8202
— = —= — = - 3.19
Prar =P 0x1 v 0z 0xo H x3 g ( )
Sincev, = 0 we get
0
5= =g (3.20)
)
Integration gives
p=—pgxs + Ci(x1) (3.21)

where the integration “constant’; may be a function af; but not ofz,. If we denote
the pressure at the lower wall (i.e..&at = 0) asP we get

p=—pgze + P(x1) (3.22)

Hence the pressurg, decreases with vertical height. This agrees with our egpee

that the pressure decreases at high altitudes in the atrasphd increases the deeper

we dive into the sea. Usually theydrostatic pressureP, is used in incompressiblehydrostatic
flow. This pressure is zero when the flowsigtic, i.e. when the velocity field is zero. pressure
However, when you want thghysicalpressure, thegxz, as well as the surrounding
atmospheric pressure must be added.
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We can now formulate the momentum equation in the streaniisetion

dv; ovy ovy dP 0?v;
P =PIt P = o

— — 2
0x1 0xo dxry o 8:17% (3.23)

wherep was replaced by’ using Eq.3.22 Sincevy, = dv1/0z1 = 0 the left side is

Zero so )
0 U1 dP
L 3.24
H 03 dxq ( )
Since the left side is a function af, and the right side is a function af;, we conclude
that they both are equal to a constant. The veloeityis zero at the walls, i.e.

V1 (0) =1 (h) =0 (325)

whereh denotes the height of the channel, see E8. Integrating Eq3.24twice and
using Eg.3.25gives
h dP T2
— 1—-== 2
2u dxy 2 ( ) (3.26)

v = A
The minus sign on the right side appears because the pregsdient is decreasing
for increasingxy; the pressure igriving the flow. The negative pressure gradient is
constant (see E®.24 and can be written asdP/dx; = AP/L.

The velocity takes its maximum in the center, i.e. far= h/2, and reads

h AP h 1 h? AP
V1, max = ZTE <1 - §> = @T (3.27)
We often write Eq3.260n the form
V1 - 4$2 i)
V1 maz B ( h ) (3.28)

The mean velocity (often called the bulk velocity) is ob&drby integrating Eg3.28
across the channel, i.e.

h
V1, mean = vlT/ 4xo (1 — %) dre = gvl,maz (3.29)
0

The velocity profile is shown in Fig8.7

Since we know the velocity profile, we can compute the walbststress. Equa-

tion 3.26gives
ovy hdP hAP
Tw =My~ = —5 5. =5 1
al’g 2 d:ljl 2 L
Actually, this result could have been obtained by simplyirtgla force balance of a
slice of the flow far downstream.

(3.30)

3.2.3 Force balance

To formulate a force balance in the direction, we start with Eql.3which reads for
1 =1

d’Ul o 6aj1

p dt - 8:1:]-

(3.31)
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Figure 3.7: The velocity profile in fully developed channeli] Eq.3.28

The left hand side is zero since the flow is fully developedcEs act on a volume and
its bounding surface. Hence we integrate B@1 over the volume of a slice (length
L), see Fig3.8
0= / 9951 s (3.32)
v O0z;
Recall that this is the form on which we originally derive@ ttthe momentum balance
(Newton’s second law) in Part I3] Now use Gauss divergence theorem

O/V%‘;j?dv/saﬂnjds (3.33)
J

The bounding surface consists in our case of four surfacese(l upper, left and right)
so that

0 :/ ajlnde—i—/
Steft S.

The normal vector on the lower, upper, left and right@aye,..cr = (0, —1,0), ni upper =
(0,1,0), 7 1ese = (—1,0,0), n4righe = (1,0,0). Inserting the normal vectors and us-
ing Eg.1.5give

ajlnde—i—/

Stower

Ujlnjds‘f'/ Ujlnde (334)

right SuppeT

0:—/ (—p+T11)dS+/ (—p+T11)dS— Tglds-i-/ To1dS
Slert Sright Slower Supper
(3.35)
711 = 0 becausév, /0z; = 0 (fully developed flow). The shear stress at the upper and
lower surfaces have opposite sign becatyse= 1(9v1/0z2)iower = —(0V1/0T2) upper-

Using this and Eg3.22give (the gravitation term on the left and right surface esc
and P andr,, are constants and can thus be taken out in front of the irtiegja

0=PWh— P,Wh— 27, LW (3.36)

wherelV is the width (inz3 direction) of the two plates (for convenience we Hét=
1). With AP = P, — P, we get Eq3.3Q
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Figure 3.8: Force balance of the flow between two plates.

3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic eggEgy.2.2Q0 Let us integrate
this equation in the same way as we did for the force balanice |&ft side of Eq2.20
is zero because we assume that the flow is fully developeagui.1.5gives

0v;oj; dv;
0= Oz B Jﬂaxj Jr._npvlfl
=0
_ _Oup n Qi +p6ij% B Tﬁ% (3.37)
Oz, Ox; 0z Ox;
P

On the first linev; f; = v1f1 + vofo = 0 because, = f; = 0. The third term on
the second lingd;;0v;/0x; = pdv;/Ox; = 0 because of continuity. The last term
corresponds to the viscous dissipation tefim(j.e. loss due to friction), see E§.22
(termb). Now we integrate the equation over a volume

0 :/ _ 0Py 0T g gy (3.38)
1% 8xj axj

Gauss divergence theorem on the two first terms gives

0= / (=pvj + Tjivi)n;dS — / odV (3.39)
S \%4

whereS is the surface bounding the volume. The unit normal vectdeisoted byh;
which pointsout from the volume. For example, on the right surface in Bgit is
n; = (1,0,0) and on the lower surface it is; = (0,—1,0). Now we apply Eq3.39
to the fluid enclosed by the flat plates in F§8 The second term is zero on all
four surfaces and the first term is zero on the lower and uppéaces (see Exercises
below). We replace the pressyrevith P using Eq.3.22s0 that

/ (7Pl)1 + pgzgvl)nldS = 7(P2 - Pl)/ vlnldS
Sleft&Sright Sleft&Sright

= APUl,mean Wh
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To1 (.’L‘Q + 05A.’L‘2)

H
T12(.%‘1 + 05A$1) EEE— -
p(x1 — 0.5Axq) (21, 22) p(z1 + 0.5Azq)
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)

x

Figure 4.1: Surface forces in the direction acting on a fluid particle (assuming =
Too = 0) v = cx% anduvy = 0. 87’12/81'1 =0, 87’21/81'2 > 0.

becausegxanivy; on the left and right surfaces cancel3;can be taken out of the
integral as it does not depend op. Finally we get

1
AP= — —— ddV 3.40
Whvl,mean /V ( )

Exercise 18 For the fully developed flow, compute the vorticity, using the exact
solution (Eq.3.28.

Exercise 19 Show that the first and second terms in BE@9are zero on the upper and
the lower surfaces in Fig3.8

Exercise 20 Show that the second term in E2}39is zero also on the left and right
surfaces Fig3.8.

Exercise 21 Using the exact solution, compute the dissipatidnfor the fully devel-
oped flow.

Exercise 22 From the dissipation, compute the pressure drop. Is it theesas that
obtained from the force balance (if not, find the error; it shbbe!).

4 \orticity equation and potential flow

4.1 Vorticity and rotation

Vorticity, w;, was introduced in EdL.8at p.11. As shown in Figl.3at p.14, vorticity
is connected to rotation of a fluid particle. Figutel shows the surface forces in the
1 momentum equation acting on a fluid particle in a shear floveKirg at Fig.4.1it
is obvious that only the shear stresses are able to rotaftuttigoarticle; the pressure
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acts through the center of the fluid particle and is thus nigt thaffect rotation of the
fluid particle.

Let us have a look at the momentum equations in order to shatilile viscous
terms indeed can be formulated with the vorticity vectar, In incompressible flow
the viscous terms read (see ERsl, 2.5and2.6)

aTji o 62%

= 4.1
8xj 'uaxjalrj ( )

The right side can be re-written using the tensor identity

8201' o (921)j (921)j 821)1' o (921)j . . (921)k
Ox;0x;  Ow;0x; Ox;0x; Ox;0x;)  Ox;0r; Emmgmjkaxjaxn
(4.2)
Let's verify that
82Uj 9%v; 9%y,

(8!17](9$1 8!17j(9$j) c Emik axjaxn ( )

Use thes — §-identity (see Tablé\.1 at p. 38
9%y, 0%vy, 9%y, 9%v;
EinmEmjk O0x 0y (930 £0nj) 0z;j0r,  Ox;0xp Ox;0x; (4.4)

The first term on the right side is zero because of continuity hence we find that
Eq.4.2can indeed be written as

8201' (921)j (921)k

O0x;0x;  Ox;0x; Einme jkaxjﬁxn (4.5)
At the right side we recognize the vorticity,,, = ,,,jx0v,/0x;, S0 that
(92%- 82’0]' awm
= —&inm 5 4.6
Ox;0x;  Ox;0x; c Oz, (4.6)
where the first on the right side is zero because of continsdtyhat
0%v; Owm,
= —&%inm 43 4.7
a$j8117j c axn ( )
In vector notation the identity Ed..6reads
ViAv=V(V V)= VxVxv=-Vxw (4.8)
Using Eq.4.7, Eq.4.1reads
aTji &um
= Ui — 4.

Thus, there is a one-to-one relation between the viscoosded vorticity: no viscous
terms means no vorticity and vice versa. An imbalance insbigasses (left side of
Eq. 4.9 causes a change in vorticity, i.e. generates vorticityhfriside of Eq4.9).
Hence, inviscid flow (i.e. friction-less flow) has no rotatio(The exception is when
vorticity is transportednto an inviscid region, but also in that case no vorticity is
generated or destroyed: it stays constant, unaffectedisdid flow is often called
irrotational flow (i.e. no rotation) opotentialflow. The vorticity is always created atpotential
boundariessee Sectiod.3.1

The main points that we have learnt in this section are:
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1. The viscous terms are responsible for creating vortititis means that the vor-
ticity can’t be created or destroyed in inviscid (frictidess) flow

2. The viscous terms in the momentum equations can be exjprass;; consider-
ing Item 1 this was to be expected.

Exercise 23 Prove the first equality of Ed.7 using thes-§-identity.

Exercise 24 Write out Eq4.9for i = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We haware that physically
it means rotation of a fluid particle and that it is only thecaas terms that can cause
rotation of a fluid particle. The terms inviscid, irrotat@rand potential flow all denote
frictionless flomwhich is equivalent to zero vorticity. There is a small difface be- friction-
tween the three terms because there may be vorticity indi/ftow that is convected less
into the flow at the inlet(s); but also in this case the votyics not affected once it has
entered the inviscid flow region. However, mostly no didiiore is made between the
three terms.

In this section we will derive the transport equation forti@ty in incompressible
flow. As usual we start with the Navier-Stokes equation, Eq.at p20. First, we
re-write the convective term of the incompressible momemégjuation (Eq2.7) as

81)1'

Vi ——
J
8acj

1
= v; (S + Qi) = v <Si' - ifijkwk> (4.10)

where Eqg.1.150n p. 12 was used. Inserting,; = (dv;/0x; + Jv;/0x;)/2 and
multiplying by two gives

8’Ui ( 81)1- (’)vj
vy

90, 2V T 4.11
Vs 8117]' 8117]' axz) EijkVjWk ( )
The second term on the right side can be written as

81)]' - lﬁ(vjvj) 8k

_ = = = 4.12
Y (’)xl 2 (’)xl (’)xl ( )
wherek = v;v; /2. Equatiord.11can now be written as
8’Ui ok
Vj 8$j = 8_1171 —sijkv?wk (4.13)
] rotation
no rotation

The last term on the right side is the vector product@ndw, i.e. v x w.

The trick we have achieved is to split the convective terr iohe term without
rotation (first term on the right side of E4.13 and one term including rotation (second
term on the right side). Inserting E4.13into the incompressible momentum equation
(Eg.2.7) yields

ov; ok 1 dp 9%v;
2 viwE = —— — 4 4.14
TR Tl ol A el v, e (4.14)
e rotation

no rotation
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The volume source is in most engineering flows representethdygravity which is
conservativaneaning that it is uniquely determined by the position (iis tase the
vertical position). Hence it can be expressed as a potehtiale write

fi=gi=—yg o2, (4.15)

The negative sign appears because height is defined pagitivaerds and the direction
of gravity is downwards.

Since the vorticity vector is defined by the cross prodygiov;/0x, (V x v in
vector notation, see Exercig, we start by applying the operatey,;0/0z, to the
Navier-Stokes equation (E4.14 so that

. 0%v; e 0%k e Ovjwy,
par O0tox, par O0x;0x, pgicijh O0xq
) ) (4.16)
1 0% 03v; 0°h

= —€pgi— 5= T VéEpgi — Epgi
P p Oz,0, P 9w ;0x;02, P 0,0,

where the body force in Edt.16was re-written using Ec.15 We know that;;; is
anti-symmetric in all indices, and hence the second terninenll and the first and the
last term on line 2 are all zero (product of a symmetric andrairsymmetric tensor).
The last term on line 1 is re-written using the identity (see Tablé\.1 at p.A.1)

_ Oyjw o LOvjwk - Oupwy Qugwp
EPQlEZ]k 8:17(] - (617]61116 51?]6611]) azq - axk azq (4 17)
S L SN L '
P 8:1:k k 8$k 1 817q P 8$q
Using the definition ofu; we find that its divergence
Ow; 0 Ovg, 0%vy,
=— (giin— ) = ciip——mn = 4.18
(’)xi (’)xl < gk 8,%]) ¢ jk(’)xjaxi 0 ( )

is zero (product of a symmetric and an anti-symmetric tensdsing the continuity
equation Qv,/0z, = 0) and Eq4.18 Eq.4.17can be written

Ovjwr, 0y Owy,
Epaiisk 0z =Wk oxy, Uk Oz (4.19)
The second term on line 2 in E4.16can be written as
O3v; 0?2 ov; 82wp
VP Gy 0,01, | Ox;0u; (Em 8:17q) ¥ 0a;0u; (4.20)
Inserting Eqs4.19and4.20into Eq.4.16gives finally
doy _ Owp Oy Ovy Oy (4.21)

@ ot oz “om. Von00,

We recognize the usual unsteady term, the convective tenttaa diffusive term.
Furthermore, we have got rid of the pressure gradient tefmat Makes sense, because
as mentioned in connection to Fid.1, the pressure cannot affect the rotation (i.e. the
vorticity) of a fluid particle since the pressure acts throitg center. Equatio.21has
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Figure 4.2: Vortex stretching. Dashed lines denote fluicnelet before stretching.
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Figure 4.3: Vortex tilting.

a new term on the right-hand side which represents amplificaind rotation/tilting of
the vorticity lines. If we write it term-by-term it reads

ov ov ov
w1—1 +w2—1—|—w3—1, =1
B o G G
LN S L S (4.22)
Tk 0z Oxo Oxs
wlﬁ +wo Ovs + wg% =3
8:171 83:2 8353’ B

The diagonal terms in this matrix represeatrtex stretching Imagine a slender, Vortex
cylindrical fluid particle with vorticityw; and introduce a cylindrical coordinate systermstretching
with the x;-axis as the cylinder axis ang as the radial coordinate (see F§2) so
thatw; = (w1,0,0). We assume that a positige; /0z, is acting on the fluid cylinder;
it will act as a source and increase and it will stretch the cylinder. The volume of the
fluid element must stay constant during the stretching (tisernpressible continuity
equation), which means that the radius of the cylinder wéitrease. Hence vortex
stretching will either make a fluid element longer and thir(ias in the example above)
or shorter and thicker (whetw, /0x; < 0).

The off-diagonal terms in Egl.22represenvortex tilting Again, take a slender Vortex
fluid particle, but this time with its axis aligned with the axis, see Fig4.3 The tilting
velocity gradientdv, /0zo will tilt the fluid particle so that it rotates in clock-wise
direction. The second termydv; /0x4 in line one in Eq4.22gives a contribution to
w1. This means that vorticity in the, direction creates vorticity in the; direction..

Vortex stretching and tilting are physical phenomena whictin three dimensions:
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fluid which initially is two dimensional becomes quickly #& dimensional through
these phenomena. Vorticity is useful when explaining whipilence must be three-
dimensional, see Secti&n4

4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no iefhice in two dimensions; in
this case the vortex stretching/tilting term vanishes beeahe vorticity vector is or-
thogonal to the velocity vector (for a 2D flow the velocity W@treadsy; = (v1, v2, 0)
and the vorticity vector reads; = (0, 0, ws) so that the vectar,dv,/dz, = 0). Thus
in two dimensions the vorticity equation reads

dW3 82W3

dat V@xaaxa (4.23)

(Greek indices are used to indicate that they take values2). This equation is
exactly the same as the transport equation for temperatineompressible flow, see
Eq.2.15 This means that vorticity diffuses in the same way as teatpeg does. In
fully developed channel flow, for example, the vorticity ahd temperature equations
reduce to

82(4)3
0= V—ax% (4.24a)
0T
=k— 4.24b
0 0x3 ( )

For the temperature equation the heat flux is givengby= —97'/0x5; with a hot
lower wall and a cold upper wall (constant wall temperatyties heat flux is constant
and goes from the lower wall to the upper wall. We have the ssitoation for the
vorticity. Its gradient, i.e. the vorticity fluxy, = —0ws/0dx4, is constant across the
channel. You have plotted this quantity in TME225 Assigntrien

If wall-normal temperature derivativ@l’ /0xz2 = 0 at both walls &diabaticwalls),
the heat flux is zero at the walls and the temperature will beaktp an arbitrary
constant in the entire domain. It is only when the wall-ndrteenperature derivative
at the walls are non-zero that a temperature field is creatdteidomain. The same is
true forws: if dws/0x = 0 at the walls, the flow will not include any vorticity. Hence,
vorticity is — in the same way as temperature — generateceavils.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section3.1 we studied the Rayleigh problem (unsteady diffusion). Thifision
time, ¢, or the diffusion lengthg, in Eg.3.14can now be used to estimate the thickness
of a developing boundary layer.

In a boundary layer the streamwise pressure gradient is Zéie means that

821)1
p——s| =0
81:% wall
because, at the wall, the only non-zero terms in the Naviekes equation are the
streamwise pressure gradient and the wall-normal diffusgsm (see, for example,

Eqgs.2.7and3.23. Hence, the flux of vorticityy, = —0ws/dx2 = 0, along the wall
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Figure 4.4: Boundary layer. The boundary layer thicknéssjcreases for increasing
streamwise distance from leading edge & 0).

which means that no vorticity is created along the bounddmg. vorticity in a develop-
ing boundary layer is created at the leading edge of the fitatie that in channel flow,
vorticity is indeed created along the walls because in thi®dhe streamwise pressure
gradient is not zero). The vorticity generated at the legdidge is transported along
the wall by convection and and the same time it is transpdiyediffusion away from
the wall.

Below we will estimate the boundary layer thickness usirgggkpression derived
for the Rayleigh problem. In a boundary layer there is vittiand outside the bound-
ary layer it is zero. Hence, if we can estimate how far from wedl the vorticity
diffuses, this gives us an estimation of the boundary layiekhess.

Consider the boundary layer in Fig.4 At the end of the plate the boundary
thickness isf(L). The time it takes for a fluid particle to travel from the leagliedge
of the plate tac = L is L/V;. During this time vorticity will be transported by diffusio
in the z5 direction the lengtld according Eq3.14 If we assume that the fluid is air
with the speed/, = 3m/s and that the length of the plate = 2m we get from
Eq.3.14thaté(L) = 1.2¢cm.

Exercise 25 Note that the estimate above is not quite accurate becaube iRayleigh
problem we assumed that the convective terms are zero, bui@veloping boundary
layer, as in Fig.4.4, they are not¢s # 0 anddv; /0x; # 0). The proper way to solve
the problem is to use Blasius solution (you have probablsnliegbout this in your first
fluid mechanics course; if not, you should go and find out)siB&solution gives

é ) VWL
O~ 2 Rep=22% 4.25
L R62/27 €r, v ( )

Compute what (L) you get from Eg4.25

Exercise 26 Assume that we have a developing flow in a pipe (radiusr between
two flat plates (separation distanég. We want to find out how long distance it takes
for the the boundary layers to merge. Equati®i4can be used witlh = R or h.
Make a comparison with this and Eg..16
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5 Turbulence

5.1 Introduction

Almost all fluid flow which we encounter in daily life is turberit. Typical examples
are flow around (as well as) cars, aeroplanes and buildings. The boundary layers
and the wakes around and after bluff bodies such as carglaaes and buildings are
turbulent. Also the flow and combustion in engines, both Bt engines and gas
turbines and combustors, are highly turbulent. Air moveta@mrooms are turbulent,

at least along the walls where wall-jets are formed. Hendeenwe compute fluid
flow it will most likely be turbulent.

In turbulent flow we usually divide the velocities in one tiaeeraged part;,
which is independent of time (when the mean flow is steadyd,care fluctuating part
v} so thatv; = v; + v}.

There is no definition on turbulent flow, but it has a number ldracteristic fea-
tures (see Pop&Tand Tennekes & Lumleyqd]) such as:

. Irregularity . Turbulent flow is irregular, random and chaotic. The flow sists
of a spectrum of different scales (eddy sizes). We do not hayeexact definition of
anturbulent eddybut we suppose that it exists in a certain region in spaca éartain turbulent
time and that it is subsequently destroyed (by the cascamegs or by dissipation, seeeddy
below). It has a characteristic velocity and length (callecklocity and length scale).
The region covered by a large eddy may well enclose also snedidies. The largest
eddies are of the order of the flow geometry (i.e. boundargidyickness, jet width,
etc). At the other end of the spectra we have the smallesésadiich are dissipated by
viscous forces (stresses) into thermal energy resultirgtémperature increase. Even
though turbulence is chaotic it is deterministic and is dbsd by the Navier-Stokes
equations.

II. Diffusivity . Inturbulent flow the diffusivity increases. The turbulenncreases
the exchange of momentum in e.g. boundary layers, and reducdelays thereby
separation at bluff bodies such as cylinders, airfoils aard.cThe increased diffusivity
also increases the resistance (wall friction) and heasteann internal flows such as
in channels and pipes.

lll. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.
For example, the transition to turbulent flow in pipes ocahet Rep ~ 2300, and in
boundary layers aRe,. ~ 500 000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.
However, when the equations are time averaged, we canliefibtv as two-dimensional
(if the geometry is two-dimensional).

V. Dissipation. Turbulent flow is dissipative, which means that kinetic rggen
the small (dissipative) eddies are transformed into théemargy. The small eddies
receive the kinetic energy from slightly larger eddies. Shghtly larger eddies receive
their energy from even larger eddies and so on. The largeségs@xtract their energy
from the mean flow. This process of transferring energy frow flargest turbulent
scales (eddies) to the smallest is calleddhscade process cascade

VI. Continuum . Even though we have small turbulent scales in the flow they girocess
much larger than the molecular scale and we can treat the #awcantinuum.
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flow of kinetic energy

. ..../

large scales intermediate scales dissipative scales

Y

Figure 5.1: Cascade process with a spectrum of eddies. Tdrgyenontaining eddies
are denoted byy; ¢; and/; denotes the size of the eddies in the inertial subrange such
thatl, < ¢1 < £p; ¢, is the size of the dissipative eddies.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (thediary layer thickness,
for example), with length scal& and velocity scaley. These scales extract kinetic
energy from the mean flow which has a time scale comparablettatge scales, i.e.
L = 0(15") = O(uo o) 5.1)
)
The kinetic energy of the large scales is lost to slightly kenacales with which the
large scales interact. Through thascade procesthe kinetic energy is in this way
transferred from the largest scale to the smallest scaldsthédsmallest scales the
frictional forces (viscous stresses) become large anditietik energy is transformed
(dissipated) into thermal energy.

The dissipation is denoted kywhich is energy per unit time and unit mags=£
[m?/s3]). The dissipation is proportional to the kinematic vistpst, times the fluc-
tuating velocity gradient up to the power of two (see Sec8di). The friction forces
exist of course at all scales, but they are largest at thelestaddies. Thus it is not
quite true that eddies, which receive their kinetic enemgyT slightly larger scales,
give away all of that to the slightly smaller scales. Thisnsidealized picture; in re-
ality a small fraction is dissipated. However it is assuntest most of the energy (say
90%) that goes into the large scales is finally dissipatethatstallest (dissipative)
scales.

The smallest scales where dissipation occurs are calledofraogorov scales
whose velocity scale is denoted by, length scale by, and time scale by,,. We
assume that these scales are determined by viscosiyd dissipations. The argu-
ment is as follows.
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viscosity: Since the kinetic energy is destroyed by viscous forcesihtaral to assume
that viscosity plays a part in determining these scalesjatger viscosity, the
larger scales.

dissipation: The amount of energy that is to be dissipatesd.i¥he more energy that
is to be transformed from kinetic energy to thermal enelfyyJarger the velocity
gradients must be.

Having assumed that the dissipative scales are determjnéddosity and dissipation,
we can express,, £, andr, in v ande using dimensional analysis. We write

vy = v el
[m/s] [m?/s]  [m?/s°]

where below each variable its dimensions are given. Themsinas of the left and the
right side must be the same. We get two equations, one forsjeté

(5.2)

1 =2a+ 20, (5.3)
and one for seconds]
—1=—a—3b, (5.4)

which givea = b = 1/4. In the same way we obtain the expressions/fpandr,, so
that

1/4
oy = (ve)'/", n=<”—3> = (2)" (5.5)

9 9

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are contpbos@ wide range of
scales. We can think of them as eddies, see%:ij.It turns out that it is often conve-
nient to use Fourier series to analyze turbulence. In géreerg periodic functionyf,
with a period of2L (i.e. f(z) = f(x +2L)), can be expressed as a Fourier series, i.e.

flx)= %ao + Z(an cos(knx) + by, sin(knx)) (5.6)
n=1

wherez is a spatial coordinate and, = nx/L. Variablex,, is called the wavenumber.
The Fourier coeffients are given by

ap, = %/_LL f(z) cos(knx)dx

by, = %/_LL f(z) sin(kpx)dz

Parseval’s formula states that

L

L o)
/_L fA(z)dz = §a§ + L;(ai +02) (5.7)
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K

Figure 5.2: Spectrum for turbulent kinetic energy, |I: Range for the large, energy
containing eddies. IlI: the inertial subrange. Ill: Rangedimall, isotropic scales.

For readers not familiar to Fourier series, a brief intratitueis given in SectiorC. Let
now f be a fluctuating velocity component, say. The left side of Eq5.7 expresses
v{2 in physical space (vsx) and the right side)/> in wavenumber space (vss,,).
The reader who is not familiar to the term “wavenumber”, iskbly more familiar to
“frequency”. In that case, expregsn Eq.5.6as a series itimerather than irspace
In this case the left side of E§.7 expresses;? as a function of time and the right side
expresses]? as a function of frequency.

The turbulent scales are distributed over a range of scatéshvextends from the
largest scales which interact with the mean flow to the sreedleales where dissipation
occurs, see Figh.1 Now let us think about how the kinetic energy of the eddietega
with eddy size. Intuitively we assume that large eddies ferge fluctuating velocities
which implies large kinetic energy;v;/2. It is now convenient to study the kinetic
energy of each eddy in wavenumber space. In wavenumber gpaeaergy of eddies
can be expressed as

E(k)dk (5.8)

where Eq5.8expresses the contribution from the scales with wavenuindsveen:
andx + dx to the turbulent kinetic energy. The energyF(x), corresponds tg? (k)

in Eq.5.7. The dimension of wavenumber is one over length; thus we Ik DOf
wavenumber as proportional to the inverse of an eddy’s diameex « 1/d. The
total turbulent kinetic energy is obtained by integratingiothe whole wavenumber
space i.e.

k :/0 E()ds = LS () (5.9)

Think of this equation as a way to compute the kinetic enerngyiist sorting them
by size (i.e. wavenumber), then computing the kinetic epefgeach eddy size (i.e.
E(r)dr), and finally summing the kinetic energy of all eddy sizes.(tarrying out the
integration).
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The kinetic energy is the sum of the kinetic energy of thedlhactuating velocity
components, i.e.

[
k=3 (B +0F +0F) = 5070 (5.10)

The spectrum of7 is shown in Fig5.2 We find region I, Il and IIl which corre-
spond to:

In this region we have the large eddies which carry moshefénergy. These
eddies interact with the mean flow and extract energy fromnikean flow. This
energy transfer takes places via the production té?f jn the transport equation
for turbulent kinetic energy, see E§.14 The energy of the largest eddies is
transferred to slightly smaller scales. The eddies’ vé&yoand length scales are
vo and/y, respectively.

Dissipation range. The eddies are small and isotropid & is here that the
dissipation occurs. The energy transfer from turbulenekimenergy to thermal
energy (increased temperature) is governed by the transport equation for
turbulent kinetic energy, see E8.14 The scales of the eddies are described by
the Kolmogorov scales (see Ef|5)

. Inertial subrange. The existence of this region recuiihat the Reynolds number

is high (fully turbulent flow). The eddies in this region repent the mid-region.
This region is a “transport region” (in wavenumber spac$ irethe cascade pro-
cess. The “transport” in wavenumber space is cadipectral transfer Energy spectral
per time unit,P* = ¢, is coming from the large eddies at the lower part of thisansfer
range and is given off to the dissipation range at the higlaetr (mote that the
relation P* = {dissipation at small scalgssee Fig5.2, is given by the concept
of the cascade process). Since the cascade concept astatrabsttrbulent ki-
netic energy is transferred from large to small eddies, iansthan the number
of small eddies must be much larger than that of large eddesy,.k, is con-
stant (V.. andk, = vj, v}, ;/2 denote the number of eddies and kinetic energy
eddies of sizd /x, respectively). The eddies in this region are independént o
both the large, energy-containing eddies and the eddid¢eidissipation range.
One can argue that the eddies in this region should be clesizzed by the spec-
tral transfer of energy=) and the size of the eddiggx. Dimensional analysis
gives
— Ka b

E €
(m?/s?] = [1/m] [m?/s%
We get two equations, one for meténs]

(5.11)

3= —a+2b,
and one for seconds]
—2 = —3b,
so thath = 2/3 anda = —5/3. Inserted in Eq5.11we get
5
-3

E(k) = consts3 i

This is a very important law (Kolmogorov spectrum law or th&/3 law) which
states that, if the flow is fully turbulent (high Reynolds ruen), the energy
spectra should exhibit a5/3-decay in the inertial region (region Il, Fi§.2).
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Above we state that the small eddies aw®tropic This means that — in average
— the eddies have no preferred direction, i.e. the fluctnatio all directions are the
same so that}> = v> = v{2. Note that is not true instantaneously, i.e. in general
v} # vh # vh. Furthermore, isotropic turbulence implies that if a caoade direction isotropic
is switched, nothing should be changed. For example ifctheoordinate direction is turbulence
rotated180° the v} v} should remain the same, i.ejv, = —v{v}. This is possible
only if vjv, = 0. Hence, all shear stresses are zero in isotropic turbulebsing
our knowledge in tensor notation, we know that an isotropitsbr can be written as
constd;;. Hence, the Reynolds stress tensor for small scales canitterwasv;v’; =
constd;; which, again, shows us that the shear stresses are zerdripigaurbulence.

As discussed on pL1, the concept of the cascade process assumes that the energy
extracted by the large turbulent eddies is transferred Ioylme@ar interactions through
the inertial range to the dissipative range where the kinetiergy is transformed to
thermal energy (increased temperature). The spectradfeanate of kinetic energy
from eddies of sizd /« to slightly smaller eddies can be estimated as follows. An
eddy loses its kinetic energy during one revolution. Theekimenergy of the eddy is
proportional tov2 and the time for one revolution is proportionaldg/v,.. Hence, the
energy spectral transfer rate,, for a an eddy of length scale'x can be estimated as

(see Fig5.2
Ve \ _ (R
EKO(&/U,{) O<f,€> (5.12)

The kinetic energy is transferred to smaller and smallefesddntil it is dissipated at
the dissipative scales. In the inertial subrange, the ciesoecess assumes that= .
Applying Eq.5.12for the large energy-containing eddies gives

gg=0 i =0 ﬁ =g, =¢ (5.13)
o= 60/1}0 o fo R '

The dissipation at small scales (large wavenumbers) isméted by how much energy
that enters the cascade process at the large scales (smmaliuvabers). We can now
estimate the ratio between the large eddies (withnd/,) to the Kolmogorov eddies
(v, and{,). Equations.5and5.13give

Vo
Un

l L3\ /4 30, —1/4 U3\ /4
— = — V= — lo = [ —— =R 3/4
0 <> 0 <> 0 (vs’fa) ‘ (.14

Ty v vl o v
where Re = wolp/v. We find that the ratio of the velocity, length and time scales
of the energy-containing eddies to the Kolmogorov eddieseimses with increasing
Reynolds number. This means that the eddy range (wavenurabge) of the in-
termediate region, (region I, the inertial region), ineses with increasing Reynolds
number. Hence, the larger the Reynolds number, the largawvtvenumber range of

the intermediate range where the eddies are independewtiotibe large scales and
the viscosity.

_ —1/4
= (ve) Y4y = (vvi /o) Y vg = (Uofo/u)1/4 = Rel/4
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Figure 5.3: Family tree of turbulent eddies (see also Tahle Five generations. The
large original eddy, with axis aligned in the direction, is1%! generation. Adapted
from [9]

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradiersgsah essential ingredient to
create and maintain turbulence. Disturbances are amplifjethteraction between
the vorticity vector and the velocity gradients; the dibamces are turned into chaotic,
three-dimensional, random fluctuations, i.e. into turbake Two idealized phenomena
in this interaction process can be identified: vortex strietg and vortex tilting.

The equation for the instantaneous vorticity & g; + ¢;) reads (see Edt.21)

8wi + 8wi avi + 82wi

- L — v

815 vi 8117]' Wi 8:1:]- 8xj8:1:]—
8vk

Wi = €ijk o

8acj

(5.15)

As we learnt in Sectiod.2this equation is not an ordinary convection-diffusion equa

tion: it has an additional term on the right side which représ amplification and
rotation/tilting of the vorticity lines (the first term ongit side). The = j compo-

nents of this term represent (see BR2) vortex stretching A positive vy /0, will  Vortex
stretch the cylinder, see Fig.2 and from the requirement that the volume must netretching
change (incompressible continuity equation) we find that#dius of the cylinder will

decrease. We have neglected the viscosity since viscolusidifi at high Reynolds

number is much smaller than the turbulent one and since wisdissipation occurs at

small scales (see g1). Thus we can assume that there are no viscous stresseg actin
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generation | x; | x2 | X3
15% 11 0[]0
ond 0|11
3rd 21111
4th 2|1 3] 3
Gth 6| 5|5
6th 10| 11| 11
7th 2212121

Table 5.1: Number of eddies at each generation with theg abigned in ther;, x5 or
x3 direction, see Figh.3

on the cylindrical fluid element surface which means thatthgular momentum
r?w; = const. (5.16)

remains constant as the radius of the fluid element decredkse that also the cir-
culation,I" — which is the integral of the tangential velocity round therimeter — is
constant. EquatioB.16shows that the vorticity increases if the radius decreamas (
vice versa). As was mentioned above, the continuity eqnatfmws that stretching
results in a decrease of the radius of a slender fluid elemahiaa increase of the
vorticity component (i.e. the tangential velocity compot)aligned with the element.
Hence an extension of a fluid element in one direction direction) decreases the
length scales and increases the velocity scales in the ttloecoordinate directions
(z2 andz3). The increased’, andv} velocity components will in next stage stretch
smaller fluid elements aligned in these two directions andrso At each stage, the
length scale of the eddies — whose velocity scale are inedeaslecreases. Figube3
illustrates how a large eddy whose axis is oriented inathexis in a few generations
creates — through vortex stretching — smaller and smalldiesdvith larger and larger
velocity gradients. Here a generation is related to a wawdrar in the energy spec-
trum (Fig.5.2); young generations correspond to high wavenumbers. Tladlenthe
eddies, the less the original orientation of the large eddgéalled. In other words, the
small eddies “don’t remember” the characteristics of tleiginal ancestor. The small
eddies have no preferred direction. They is@ropic The creation of multiple eddies
by vortex stretching from one original eddies is illustdhbe Fig.5.3and Tableés.1The
large original eddy (%t generation) is aligned in the, direction. It creates eddies in
the z, andzs direction "¢ generation), which in turn each create new eddies in the
x1 andzs (3"¢ generation) and so on. For each generation the eddies benoneeand
more isotropic as they get smaller.

The: #£ j components in the first term on the right side in E@2representortex Vortex
tilting. Again, take a slender fluid element, now with its axis alimath thez, axis, tilting
Fig.4.2 The velocity gradienfv; /0x5 will tilt the fluid element so that it rotates in the
clock-wise direction. As a result, the second tespdv; /0z4 in line one in Eq4.22
gives a contribution tas;. This shows how vorticity in one direction is transferred to
the other two directions through vortex tilting.

Vortex stretching and vortex tilting qualitatively exptahow interaction between
vorticity and velocity gradient create vorticity in all g coordinate directions from
a disturbance which initially was well defined in one cooadendirection. Once this
process has started it continues, because vorticity gesteby vortex stretching and
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vortex tilting interacts with the velocity field and createsther vorticity and so on.
The vorticity and velocity field becomes chaotic and randdarbulence has been
created. The turbulence is also maintained by these presess

From the discussion above we can now understand why turbeil@ways must be
three-dimensional (Item IV on pl0). If the instantaneous flow is two-dimensional
(r1 — =2 plane) we find that the vortex-stretching/tilting term ore thight side of
Eq.5.15vanishes because the vorticity vector and the velocityoremte orthogonal.
The only non-zero component of vorticity vectoris because

_ s v
wro= 8,%278173:
by = 0w

8$3 (’)xl

Sincevs = 0, we getw,;dv;/dz; = 0.

6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

When the flow is turbulent it is preferable to decompose tetaimaneous variables (for
example the velocity components and the pressure) into a wedae and a fluctuating
value, i.e.

— /
WS (6.1)
p=p+p

where the bar;, denotes the time averaged value. One reason why we decertifos
variables is that when we measure flow quantities we are lysimarested in their
mean values rather than their time histories. Another reasahat when we want
to solve the Navier-Stokes equation numerically it woulduiee a very fine grid to
resolve all turbulent scales and it would also require a fas®lution in time (turbulent
flow is always unsteady).

The continuity equation and the Navier-Stokes equatiorirfoompressible flow
with constant viscosity read

8’Ui
_ 6.2
oz, 0 (6.2)
(91)1' 81)in ap 821)1'
_ 6.3
"ot o, oz M or,00, (6-3)

The gravitation term;—pg;, has been omitted which means that this the hy-
drostaticpressure (i.e. when; = 0, thenp = 0, see p29). Inserting Eq.6.1into
the continuity equationg(2) and the Navier-Stokes equatiof§ we obtain thetime
averagedcontinuity equation and Navier-Stokes equation

ov;
= 6.4
oz, 0 (6.4)
a’ljif)j . ap 0 0v; ——
p 8:17]' B 83:1 + 8:17]' (M 8:17]' pvivj (65)
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It is assumed that the mean flow is steady. This equation iditteaveraged
Navier-Stokes equation and it is often called Reynolds equatiorA new termpv;v;  Reynolds
appears on the right side of E.5 which is called theReynolds stress tensoifhe equations
tensor is symmetric (for exampkg v}, = viv}). It represents correlations between
fluctuating velocities. It is an additional stress term duéurbulence (fluctuating ve-
locities) and it is unknown. We need a model g, to close the equation system in
Eq.6.5 This is called thelosure problemthe number of unknowns (ten: three velocelosure
ity components, pressure, six stresses) is larger thanuimbar of equations (four: the problem
continuity equation and three components of the Navieké&t@quations).

The continuity equation applies both for the instantanealscity, v; (Eq. 6.2),
and for the time-averaged velocity, (Eq.6.4); hence it applies also for the fluctuating
velocity, v}, i.e.

ol
8:1:1- =0 (6.6)

6.1.1 Boundary-layer approximation

For steady §/0t = 0), two-dimensional®; = 9/dx3 = 0) boundary-layer type of
flow (i.e. boundary layers along a flat plate, channel flowegdipw, jet and wake flow,
etc.) where

-~ 0N 0v
— K — 6.7
Uy L U1, 921 <<8:172, (6.7)
First we re-write the left side of E@.5using the continuity equation
00;0; _ 0y, _ 0v; _ 0y,
= pU; — i = pUj— 6.8
p 8:17]' PYj 8xj + pY 8:17]' PY; 8:17]' ( )
=0
Using Eq.6.8 Eqg.6.5can be written
_ 01y _ 0y p 0 dvy 7
— — = —— 4+ — = 6.9
PO 8$1 * P2 8$2 8$1 * al’g M&rg P2 ( )

x1 andzs denote the streamwise and wall-normal coordinate, reisgdgtsee Fig6.1
Note that the two terms on the left side are of the same ordeguse they both include
the product of one larges( or 9/0x5) and one smalli; or 9/dx) part.

In addition to the viscous shear streg®, /dx2, an additionaturbulentone —a shear
Reynolds shear stress — appears on the right side o6.BqThe total shear stress isstress
thus 55

Ttot = Na—z; — pvivy (6.10)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velogitsdient is largest as
the velocity drops down to zero at the wall over a very shastatice. One important
guantity is the wall shear stress which is defined as
P
Tw = ,uﬂ (6.11)
al’g w
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Figure 6.1: Flow between two infinite parallel plates. Thethi(i.e. length in thers
direction) of the platesZ,..., is much larger that the separation between the plates,
i.e. Zyaz > 0.

From the wall shear stress, we can defirveadl friction velocity, u.., as wall
friction
70\ /2 velocity
P

In order to take a closer look at the near-wall region, letaggin, consider fully
developed channel flow between two infinite plates, see@:1. In fully developed
channel flow, the streamwise derivative of the streamwisecity component is zero
(this is the definition of fully developed flow), i.edv;/0x; = 0. The continuity
equation gives now, = 0, see Eg3.18at p.29. The first term on the left side of
Eq.6.9is zero because we have fully developed fléw,(/0z1 = 0) and the last term
is zero because; = 0. The streamwise momentum equation, B, can now be

written 95 5 .
p U1 77
e e 6.13
St o (et = i) (6.13)
We know that the first term is a function only of and the two terms in parenthesis

are functions ofr, only; hence they must be constant (see Eg4and text related to
this equation), i.e.

Ip
——L — _constant
Oy (6.14)
2 N% — pulvl ) = Oiot _ constant .
8x2 8x2 172 83:2

where the total stress;,, is given by Eq6.10 Integrating Eq6.13from 22 = 0 to
€2

Ttot (T2) — T = ;—img = Tiot = Tw + (;9—;;1562 = Ty (1 - %) (6.15)
At the last step we used the fact that the pressure gradidandes the wall shear
stresses, i.e-9p/dx1 = 7, /0, see Eq3.30(note thath = 2§) and Eq.6.31
The wall region can be divided into one outer and one innebregee Fig6.2
The inner region includes the viscous region (dominatechbyiscous diffusion) and
the logarithmic region (dominated by turbulent diffusipte logarithmic region is
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Figure 6.2: The wall region (adapted from Ch.7 if])[for Re, = 10000. ¢ denotes
half width of the channel, see Fif.1landz] = xou, /v denotes the normalized wall
distance.

sometimes called thimertial region, because the turbulent stresses stem from the in-
ertial (i.e. the non-linear convection) term. The buffegiom acts as a transition re-
gion between these two regions where viscous diffusionrefstiwise momentum is
gradually replaced by turbulent diffusion. In the innericeg the total shear stress is
approximately constant and equal to the wall shear strgssee Fig6.3. Note that the
total shear stress is constant only close to the wall &igb); further away from the
wall it decreases (in fully developed channel flow it decesdmearly with the distance
from the wall, see Eg6.15and Fig.6.3a). The Reynolds shear stress vanishes at the
wall because = v, = 0, and the viscous shear stress attains its wall-stress value
Tw = pu?. As we go away from the wall the viscous stress decreasesartdroulent
one increases and af ~ 11 they are approximately equal. In the logarithmic layer
the viscous stress is negligible compared to the Reynaldssst

At the wall, the velocity gradient is directly related to tivall shear stress, i.e. (see
Eq.6.11and6.12

v 1
on = Tw _ Buz = —u? (6.16)

7 T
Integration gives (recall that bothandu? are constant)

1

_ 2

U = —uixre +Ch
v

Since the velocityy, is zero at the wall, the integration constéaht= 0 so that

O _ Urt (6.17)
Ur v
Equation6.17is expressed itnner scaling(or wall scaling) which means that and
xo are normalized with quantities related to the wall, i.e.ftiztion velocity stemming
from the wall shear stress and the viscosity (here we regmabsity as a quantity
related to the wall, since the flow is dominated by viscosi@ften the plus-sign ¢ )
is used to denote inner scaling and equation@&#j7can then be written

o = af (6.18)
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Figure 6.3: Reynolds shear stresg:. = 2000. a) lower half of the channel; b) zoom
near the wall. DNS datdlD, 11]. — : —pvj v} /Ty - - - (001 /0x2) [/ Tw.
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Figure 6.4: Velocity profiles in fully developed channel floRe.. = 2000. — : DNS
data 10, 11]; ---: 1 /u, = (Inx3)/0.41 +5.2;---: 01 Ju, = 3.

Further away from the wall &0 < =7 < 3000 (or 0.003 < 22/6 < 0.3), we
encounter théog-law region see Fig.6.2 In this region the flow is assumed to be
independent of viscosity. The Reynolds shear stiegsy,, is in the regionr] < 200
(i.e. xz2/6 < 0.1) fairly constant and approximately equalitp, see Fig6.30. Hence
the friction velocity,u., is a suitable velocity scale in the inner logarithmic regit
is used in the entire region.

What about the length scale? Near the wall, an eddy cannatrgerlthan the
distance to the wall and it is the distance to the wall thad s&t upper limit on the
eddy-size. Hence it seems reasonable to take the wall destas the characteristic
length scale; a constant is added so that

= Kxo (6.19)
The velocity gradient can be estimated as

9o ,
o _ U (6.20)
O0ry Ko
based on the velocity scale,, and the length scaler.. Another way of deriving the
expression in Eg6.20is to use the Boussinesq assumption (seelE®7) in which a
turbulent Reynolds stress is assumed to be equal to the girbdtween the turbulent
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Figure 6.5: Symmetry plane of channel flow.

3

viscosity and the velocity gradient as
o0vy
8:1:2

(6.21)

I —
—V1Vy = V¢

The turbulent viscosityy,, represents the turbulence and has the same dimensign as
i.e. [m?/s]. Hencev; can be expressed as a product of a turbulent velocity scdle an
turbulent length scale, and in the log-law region that gives

Vi = U KT (6.22)
so that Eq6.21gives (inserting-v| v = u2)

u? = nuTxQ% = 901 = (6.23)
0xo 0xa KXo

In non-dimensional form Eq$.20and6.23read

-
gv; _ 1 (6.24)

+ +
Ox3  Kxy

Integration gives now

1
v =—In(z3)+B or
U1 T ToU (625)
— = —1n( T) + B
Ur K v

where B is an integration constant. From E§25we can define th&iscous length
scale ¢, as
o) = 2a/l, = b, = — (6.26)
Ur

Equation6.25is the logarithmic law due to von KarmanJ). The constants, is called log-law
the von Karméan constant. The constants in the log-law swally set tax = 0.41 and
B =5.2.

As can be seen in Fig.2 the log-law applies forr; < 3000 (z2/8 < 0.3).
Figure 6.4 — where the Reynolds number is lower than in Fég2 — show that the
log-law fit the DNS up tar] < 500 (22/3 < 0.25).

~
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In the outer region of the boundary layer, the relevant lersgile is the boundary
layer thickness. The resulting velocity law is tiiefect law

et en () o

wherec denotes centerline.

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensionaltg = 0 andd/dxz5 = 0). Consider thexy — x5 plane,
see Fig6.5 Since nothing changes in thg direction, the viscous shear stress

. 073 0o .
T32 = M (axQ + ax3) = 0 (628)

becauses = 0v,/0x3 = 0. The turbulent part shear stresgp4, can be expressed
using the Boussinesqg assumption (seelBqR7)

— ov ov
—pubhvh = iy (a—zz + 8—;)2) =0 (6.29)

and it is also zero since; = 9vy/0x3 = 0. With the same argumentjv; = 0.
However note that? = v3 # 0. The reason is that although tlime-averagedlow

is two-dimensional (i.e.v3 = 0), the instantaneous turbulent flow is always three-
dimensional and unsteady. Hengg# 0 andv} # 0 so thatv}? # 0. Consider, for
example, the time serieg = v; = (—0.25,0.125,0.125, —0.2,0.2). This gives

3 = (—0.25 4 0.125 + 0.125 — 0.2 4+ 0.2) /5 = 0
but
v =02 = [(=0.25)% + 0.125 + 0.125% + (—0.2)% + 0.22] /5 = 0.03475 # 0.

Figure 6.3 presents the Reynolds and viscous shear stresses for filyiaped
flow. As can be seen, the viscous shear stress is negligibepéxery near the wall. It
is equal to one near the wall and decreases rapidly for isargavall distance. On the
other hand, the Reynolds shear stress is zero at the wal{seche fluctuating veloc-
ities are zero at the wall) and increases for increasing diatance. The intersection
of the two shear stresses takes placejat- 11.

Looking at Eq.6.13we find that it is not really the shear stress that is intemgsti
but its gradient. The gradient of the shear stres8(pv|v})/dz2 and pd*v, /0x3
represent, together with the pressure gradiedtp/dx1, theforcesacting on the fluid.
Figure6.6 presents the forces. Start by looking at Fegh which shows the forces in
the region away from the wall. The pressure gradient is @nstnd equal to one: this
is the forcedriving the flow. This agrees — fortunately — with our intuition. Wenca
imagine that the fluid (air, for example) is driven by a fan. oftmer way to describe
the behaviour of the pressure is to say that there is a presisap. The pressure must
decrease in the streamwise direction so that the pressadiegt term,—90p/dx1, in
Eq. 6.13takes a positive value which pushes the flow in thedirection. The force
that balances the pressure gradient is the gradient of thiedRés shear stress. This is
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Figure 6.6: Fully developed channel flouRe, = 2000. Forces in they; equation,
see Eq6.13 a) near the lower wall of the channel; b) lower half of the o ex-
cluding the near-wall region. DNS dataQ 11]. — : —p(9v|vh/0x2)/Tuw; -~
w(0%01/023) /T -~ —(0p/0x1) | Two-

the forceopposinghe movement of the fluid. This opposing force has its origitha
walls due to the viscous wall force (viscous shear stressiptied by area).

Now let’s have a look at the forces in the wall region, see Eifa. Here the forces
are two orders of magnitude larger than in Fegdb but they act over a very thin region
(x5 < 40 orzp/6 < 0.02). In this region the shear stress gradient terndrising
the flow and the opposing force is the viscous force. We caroofse make a force
balance for a section of the channel, as we did for laminar, fime Eq3.36at p.31
and Fig.3.8at p.32which reads

0= ﬁlZm,u.Qé - ﬁme,u.Qé - QTwLZma;v (630)
wherelL is the length of the section. We get

Ap o _ Tw
T~ 0 (6.31)
As can be seen the pressure drop is directly related to tHestedr stress. In turbulent
flow the velocity profile in the center region is much flatteahin laminar flow (cf.
Fig. 6.4 and Fig.3.7 at p.31). This makes the velocity gradient near the wall (and
the wall shear stress,,) much larger in turbulent flow than in laminar flow: E§.31
shows why the pressure drop is larger in the former case coedpa the latter; or —
in other words — why a larger fan is required to push the flowuitbtilent flow than in
laminar flow. o o

Figure 6.7 presents the normal Reynolds stresseg?, pv? and pvf?. As can
be seen, the streamwise stress is largest and the wall-hetrass is smallest. The
former is largest because the mean flow is in this directiom|atter is smallest because
the turbulent fluctuations are dampened by the wall. Theuterti kinetic energy,

k = v/v}/2, is also included. Note that this is smaller thgh

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel lvhat is the differ-
ence between that flow and a boundary layer flow? First, in athary layer flow the
convective terms are not zero (or negligible), i.e. the $idie of Eq.6.9is not zero.
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Figure 6.8: Velocity profiles in a boundary layer along a flat@.— : DNS data 1 3];
i Ogfur = (Inad)/0.41 4+ 5.2; -~ Vg /u, = 7.

The flow in a boundary layer is continuously developing,it®thicknessy, increases
continuously for increasing;. The flow in a boundary layer is described by B®.
Second, in a boundary layer flow the wall shear stress is rietmiéned by the pressure
drop; the convective terms must also be taken into accounitd;Tthe outer part of the
boundary layer is highly intermittent, consisting of tuldmt/non-turbulent motion.

However, the inner region of a boundary layes (6 < 0.1) is principally the same
as for the fully developed channel flow, see Fd3: the linear and the log-law regions
are very similar for the two flows. However, in boundary layemw the log-law is
valid only up to approximately,/d ~ 0.1 (compared to approximately, /6 ~ 0.3 in
channel flow)

7 Probability density functions

Some statistical information is obtained by forming the maad second moments, for

examplev and@, as was done in Sectidh Theroot-mean-squaréRMS) can be root-mean-
defined from the second moment as square

Drms = (ﬁ)w (7.1) e

The RMS is the same as tB@andard deviatiomvhich is equal to the square-root of thestandard
deviation



7. Probability density functions 57

10| 09 |, “ NI ‘“
Sl bl L

it L

10 12 14 16 18 20 ) 12 14 16 18 20 o 12 14 16 18 20

t t t
(a) Point L.vyms = 2.15. (b) Point 2.vymps = 0.23. (c) Point 3.vpms = 1.44.
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Figure 7.2: Probability density functions av time histsrie Fig. 7.1 Vertical red
lines show+wv,.,,s. The skewnessy, and the flathesd;, are given for the three time
histories.

variance In order to extract more information, probability dendityction is a useful
statistical tool to analyze turbulence. From the velocignals we can compute thevariance
probability densities (sometimes callbstogram3. With a probability densityf,, of

thewv velocity, the mean velocity is computed as

b= /Oo vfo(v)dv (7.2)

— 00

Normalize the probability functions, so that

/_00 fo(v)dv =1 (7.3)

Here we integrate ovar. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time average,[Eq6.1at p.48),
ie.
T

’U:ﬁ r

vdt (7.4)
whereT' is “sufficiently” large.

Consider the probability density functions of the fluctoa. The second moment
corresponds to the variance of the fluctuations (or the sqoithe RMS, see E@..1),
ie.

V2 = / V2 for (V) dv'

— 00
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As in Eq.7.4, v'2 is usually computed by integrating in time, i.e.
1 T

2T ) r

V2 =

v (t)dt

A probability density function is symmetric if positive vads are as frequent and
large as the negative values. Figutd presents the time history of thé history at
three different points in a flow (note that = 0). The red horizontal lines indicate the
RMS value ofv’. The resulting probability densities functions are showifrig. 7.2
The red vertical lines show plus and minus RMSvbf Let us analyze the data at the
three points.

Point 1. The time history of the velocity fluctuation (Fig.1a) shows that there ex-
ists large positive values but no large negative values. pidsitive values are
often larger thant-v,.,,s (the peak is actually close ®v,.,,s) but the negative
values are seldom smaller than,.,,,. This indicates that the distribution of
is skewed towards the positive side. This is confirmed in thé& Histribution,
see Fig.7.2a.

Point 2. The fluctuations at this point are much smaller and the pesithlues are as
large the negative values; this means that the PDF shoulghbeastric which is
confirmed in Fig.7.2b. The extreme values ef are approximatelyt1.5v,,s,
see Figs7.1b and7.2b.

Point 3. At this point the time history (Figr.1c) shows that the fluctuations are clus-
tered around zero and much values are within.,,,;. The time history shows
that the positive and the negative values have the same tudgniThe PDF
function in Fig.7.2c confirms that there are many value around zero, that the ex-
treme value are small and that positive and negative valgesqually frequent
(i.e. the PDF is symmetric).

In Fig. 7.2we can judge whether the PDF is symmetric, but instead okilugy’ at

the probability density functions, we should use a definibbthe degree of symmetry,
which is theskewnesslt is defined as skewness

V'3 = / V" for (V) dv'

and is commonly normalized by}, ., so that the skewness,, of v’ is defined as

I 1 T
Sy = / V" for (V) dv' = / V" (t)dt
! Ugms —o00 ! 2’U;’nlsT‘ -T
Note thatf must be normalized (see Eg.3).

There is yet another statistical quantity which sometinseased for describing
turbulent fluctuations, namely tHkatness The variance (the square of RMS) tells us flatness
how large the fluctuations are in average, but it does notutelif the time history
includes few very large fluctuations or if all are rather edsv,.,,s. The flatness gives

this information, and it is defined computed frafi and normalized by?, ., i.e.

Jo— /OO 0" for (v)dv

4
Urms J—co
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The fluctuations at Point 1 (see Figl1a) includes some samples which are very large
and hence its flatness is large (see caption in Fign), whereas the fluctuation for
Point 3 all mostly clustered withig-2v,.,,,s giving a small flatness, see Fig-1c and
the caption in Fig7.2c. For a Gaussian distribution

) = o (- )

2
Urms 207 s

for which F' = 3.

8 Transport equations for kinetic energy

In this section and Sectidhwe will derive various transport equations. There are two
tricks which often will be used. Both tricks simply use th@guct rule for derivative
backwards.

Trick 1: Using the product rule we get

0A;B; 0B; 0A;
_— = Ai —] B 81
8$k 8$k + J 8$k ( )
This expression can be re-written as
0B; 0A;B; 0A;
i— = —Bj— 8.2
and then we call it the “product rule backwards”.
Trick 2: Using the product rule we get
1044, 1 0A; 0A; 0A;
= =— A4 A; =A; 8.3
2 8acj 2 ( (’)xj + (’)xj ) (’)xj ( )
This trick is usually used backwards, i.e.
04; 10A;A;
im— = o — 8.4
8xj 2 ij ( )

8.1 The Exactk Equation

The equation for turbulentkinetic energy= 4v/v/, is derived from the Navier-Stokes
equation. Again, we assume incompressible flow (constamityg and constant vis-
cosity (cf. Eq.6.3). We subtract Eg6.5from Eq.6.3and divide by density, multiply

by v; and time average which gives

vl oy = 00y) =
— (8.5)

1/a[p ] + v 02 : 7]+8v;v§-/

— =" — v i — U; 8

pvlﬁxi p U18$ja$j v v ij Yi

Usingv; = v; + v, the left side can be rewritten as

/ a P '\ (5 / 3.7 — 75.09/ !5 1ay/ 86
Uia—zj [(©; +v)(v; + V%) — v;7;] = Uia—zj [vivj + Vv + Uivj}. (8.6)



8.1. The Exack Equation 60

Using the continuity equatiodi’; /0x; = 0 (see Eq6.6), the first term is rewritten as

0 —— 00;
' (u:0") = vl L
v; oz, (vlvj) V;U; Dz, (8.7)

For the second term in E§.6we start usingv; /0z; = 0

0 _ 0l
Uia—xj (vivj) = vjv; oz, (8.8)

Next, we use€Trick 2

ov! 0 (1 0 a
J J J

J

The third term in Eq8.6can be written as (replagg by v; and use the same technique
asin Eq8.9

P (U;U;v;) (8.10)

The first term on the right side of E§.5is re-written using the continuity equation
as

1, ap’ 1 0p'v!
_ S i 8.11
0"0a  p 0w, (610
The second term on the right side of Bg5 can be written
0%v! o [ ov o) o’
! L=y — Lol | — Lt 8.12
Wlaxj&z:j l/alﬂj (8:17]',01) Va:rj axj ( )

applying Trick 1 (if we apply the product rule on the first term on the right safe
Eq.8.12we get the left side and the second term on the right side)tHeofirst term
in Eq.8.12we use the same trick as in B9 so that

, 0 (Ovi N, 0 (L(ov . Ovi \Y_
8acj 8acj i (’)xj 2 (’)xj i 8acj i -
o (1 [ov) 1 0%v) 9%k
v— | = =Vv= =v
ij 2 ij 2 8xj8:1:]— 8:1:]-8xj
The last term on the right side of E§.5is zero because it is time averaging of a

fluctuation, i.e.ab’ = ab’ = 0. Now we can assemble the transport equation for the
turbulent kinetic energy. Equatiols7, 8.9, 8.11, 8.12and8.13give

(8.13)

0v;k —0v; 0 [15— 15— Ok ov;, v}

— _ | =Y ot —v—| — r 8.14
Oz "0z  Oxj pUJp + 93 Va:rj V@xj Oz ( )
—_ — — e

The terms in Eg8.14have the following meaning.

|. Convection.
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E(k)

Kk + dk

dr

Figure 8.1: Zoom of the energy spectrum for a wavenumbetdaotia Region Il or IlI,
see Fig5.2

Il. Production, P*. The large turbulent scales extract energy from the mean flow
This term (including the minus sign) is almost always puwsitilt is largest for
the energy-containing eddies, i.e. for small wavenumisers Fig5.2

lll. The two first terms represeturbulent diffusion by pressure-velocity fluctua-
tions, and velocity fluctuations, respectively. The lasttés viscous diffusion.

IV. Dissipation, . This term is responsible for transformation of kinetic e
at small scales to thermal energy. The term (excluding theumsign) is al-
ways positive (it consists of velocity gradients squardtl)s largest for large
wavenumbers, see Fi§.2

The transport equation fdr can also be written in a simplified easy-to-read sym-

bolic form as
ck=pPF4+DF—¢ (8.15)

whereC*, P*, D* ande correspond to terms I-IV in E@.14

Above, it is stated that the production takes place at thgel@nergy-containing
eddies, i.e. we assume that the large eddies contribute mocé to the production
term more than the small eddies. There are two argumenthifor t

1. The Reynolds stresses (which appeaPf) are larger for large eddies than for
small eddies

2. In order to extract energy from the mean flow, the time scélthe eddy and
the mean velocity gradienfz; /0x;, must be of the same magnitude. This re-
guirement is best satisfied by the large scales. Actuallthéncascade process
we argue that the smaller the eddies, the less they remeh#eharacteristic of
mean flow gradient (i.e. its magnitude, direction, time set)

In the cascade process (see Sectid) we assume that the viscous dissipatign,
takes places at the smallest scales. How do we know that tjogitpaf the dissipation
takes place at the smallest scales? First, let us investigat the time scale varies with
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eddy size. Consider the inertial subrange. The energy shiansferred in spectral
space,, is equal to the viscous dissipatiofl, How large ise at wavenumbek
(denoted by:(x))? Recall that the viscous dissipatianjs expressed as the viscosity
times the square of the velocity gradient, see &44 The velocity gradient for an
eddy characterized by velocity, and lengthscalé, can be estimated as

ov Ve 1/2
<%>,{ x 0. x (Ui) K (8.16)

sincel,; < k~1. Now we know that the energy spectrum o v2 /, follows the—5/3
law in the inertial region which gives

1/2
<@> x (m_2/3) ko kY3 o 123 (8.17)
ox ),
Thus the viscous dissipation at wavenumkean be estimated as

O0\* s 8.18
E(K)O((%)NO(K , (8.18)
i.e. £(x) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy in spectral sifieeethe cascade pro-
cess) can also be used for estimating the velocity gradfeart eddy. The cascade pro-
cess assumes that this energy transfer is the same for edgh.ec,, = ¢ = u? /{,, =
2 /713 = (%/73, see Eq5.12 For a given spectrum, we find frofd /72 = (3 /7 that
for decreasing eddy size (decreasiny, the time scaler,, also decreases, i.e.

0.\ 2/3
T = (i) To (8.19)
wherery and/, are constants (we have chosen a spectrum). Hence
v -1 —2/3 2/3
9) — T & 0.9 o k72, (8.20)
€ K

which is the same as E§.17.

As a final note, it may be useful to look at the difference betwéhe spectral
transfer dissipation,;, and the “true” viscous dissipation; the former is the energy
transferred from eddy to eddy per unit time, and the lattehésenergy transformed
per unit time to internal energy for the entire spectrum (odag mainly at the small,
dissipative scales), see Fi§.2 Now consider Fig8.1 which shows a zoom of the
energy spectrum. We assume that no mean flow energy produmtiurs between
k andk + dk, i.e. the region may be in the5/3 region or in the dissipation region.
Turbulent kinetic energy enters at the left end of the figurerate ofc,, and leaves at a
rate ofe,. 14, . If kK @andx + dk are located in the inertial region (i.e. thes /3 region),
then the usual assumption is that~ ¢, 4, and that there is no viscous dissipation to
internal energy, i.es(x) ~ 0. If there is viscous dissipation at wavenumbgwhich
indeed is the case if the zoomed region is located in thepdiise region), thes (k)
is simply obtained through an energy balance, i.e.

£(K) = Extdr — €k (8.21)



8.2. The Exack Equation: 2D Boundary Layers 63

0.04

0.03f
0.02}
0.01f
-001f  _L.eemmTTT

—-0.02r

-0.03f /

0 10 20 30 40 : ' 100 200 300 400 500
a) b)
X I x T
2 2
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8.2 The Exactk Equation: 2D Boundary Layers

In 2D boundary-layer flow, for whicl®/0zy > 9/0xz; andvy, < o1, the exactk
equation reads

duk | Ok ——

n 00y
= v
Oxy 0xs 1202,

11— ok 81; v} (8.22)
p 5+ vgvv -V —

83@2 0xa 81:3 830]

Note that the dissipation includes all derivatives. Thibégsause the dissipation term
is at its largest for small, isotropic scales for which alfidatives are of the same order
and hence the usual boundary-layer approximadipbz; < 9/0xz, does not apply
for these scales.

Figure8.2presents the terms in E§.22for fully developed channel flow. The left
side is — since the flow is fully developed — zero. In the ousgjion (Fig.8.2b) all
terms are negligible except the production term and thegditisn term which balance
each other. Closer to the wall (Fi§.2a) the other terms do also play a role. Note that
the production and the dissipation terms close to the walha&o orders of magnitude
larger than in the logarithmic region (Fi§.20). At the wall the turbulent fluctuations
are zero which means that the production term is zero. Sheedgion near the wall
is dominated by viscosity the turbulent diffusion terms dogressure and velocity
are also small. The dissipation term and the viscous ddfugérm attain their largest
value at the wall and they much be equal to each other sinoghat terms are zero or
negligible.

The turbulence kinetic energy is produced by its main sotera, the production
term, P¥ = —v/ 0,07, /0x». The velocity gradient is largest at the wall (see Figa)
where the shear stress is zero (see 8igb)); the former decreases and the magnitude
of the latter increases with wall distance and their prodaiots its maximum at; ~
11. SinceP* is largest here so is al¢g see Fig6.7. k is transported in the, direction
by viscous and turbulent diffusion and it is destroyed (ligsipated) by.
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Figure 8.3: Channel flow ake,. = 2000. DNS data 10, 11].

8.3 Spatial vs. spectral energy transfer

In Section5.3 we discussedpectraltransfer of turbulent kinetic energy from large
eddies to small eddies (which also applies to transport @Rbynolds stresses). In
Section8.1 we derived the equation fapatial transport of turbulent kinetic energy.
How are the spectral transfer and the spatial transporte@®a The reason that we

in Section5.3 only talked about spectral transfer was that we assumed gensous
turbulence in which the spatial derivatives of time-avedgurbulent quantities arehomogeneous
zero, for examplé@v;?/0z; = 0, 0k/0z; = 0 etc. (Note that the derivatives of theturbulence
instantaneouturbulent fluctuations are non-zero even in homogeneobsiemce, i.e.

Ovy /0x; # 0; the instantaneous flow field in turbulent flow is — as we memgat

the very beginning at pt0—alwaysthree-dimensional and unsteady). In homogeneous
turbulence the spatial transport terms (i.e. the convedtéivm, terni, and the diffusion
terms, termlll in Eq. 8.14 are zero. Hence, in homogeneous turbulence there is no
time-averaged spatial transport. However, thespisctral transfeof turbulent kinetic
energy which takes place in wavenumber space, from largeegedd small eddies.
The production term (terrl in Eq. 8.14 corresponds to the process in which large
energy-containing eddies extract energy from the mean fléWe dissipation term
(term1V in Eq. 8.14) corresponds to transformation of the turbulent kinetiergy at

the small eddies to thermal energy. However, real flows arg@lyraver homogeneous.
Some flows may have one or two homogeneous directions. Gamdar example,
fully developed channel turbulent flow. If the channel walte very long and wide
compared to the distance between the walds,then the turbulence (and the flow) is
homogeneous in the streamwise direction and the spanwisetion, i.e.0v, /0x; =

0, Ov?2/0x1 = 0 Ov/? /x5 = 0 etc.

In non-homogeneous turbulence, the cascade process ialitbt@onsider a large,
turbulent eddy at a position' (see Fig.6.1) in fully developed channel flow. The
instantaneous turbulent kinetic energy, = v, v, ;/2, of this eddy may either be
transferred in wavenumber space or transported in phy&@palial) space, or both. It
may first be transported in physical space towards the geardrthere lose its kinetic
energy to smaller eddies. This should be kept in mind wharkihg in terms of the
cascade process. Large eddies which extract their enaygytfre mean flow may not
give their energy to the slightly smaller eddies as assumédgs.5.2and5.1, butk,
may first be transported in physical space and then tramsfénrspectral space.
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In the inertial range (Region 1), however, the cascade @seds still a good ap-
proximation even in non-homogeneous turbulence. The reisthat the transfer of
turbulent kinetic energy,., from eddy-to-eddy occurs at a much faster rate than the
spatial transport by convection and diffusion. In other@githe time scale of the cas-
cade process is much smaller than that of convection anakitiffi which have no time
to transport,, in space before it is passed on to a smaller eddy by the capradess.
We say that the turbulence at these scaleslisdal equilibrium local
In summary, care should be taken in non-homogeneous turteleegarding the equilibrium
validity of the cascade process for the large scales (Rdyion

8.4 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the productiommes to increasé;, i.e. if we
integrate the production term over the entire dom&inwe get

/ PpdV >0 (8.23)
1%

Similarly, the net effect of the dissipation term is a negationtribution, i.e.

/ —edV <0 (8.24)
14
What about theéransportterms, i.e. convection and diffusion? Integration of tha-co
vection term ovel/ gives, using Gauss divergence law
" (’)T}jk
v Oz,

dV:/ vkn;dS (8.25)
S

whereS is the bounding surface df. This shows that the net effect of the convection
term occurs only at the boundaries. Inside the domain, theemion merely transports
k with out adding or subtracting anything ko the convection acts as a source term in
part of the domain, but in the remaining part of the domaircisas an equally large
sink term. Similarly for the diffusion term, we get

(8.26)

The only net contribution occurs at the boundaries. Hengs, &25and8.26 show
that the transport terms only — as the word impliesansportsk without giving any
net effect except at the boundaries. Mathematically thexseg are calledivergence

terms i.e. they can both be written as the divergence of a vedjor divergence
oA terms
= 8.27
n. (8.27)

whereA; for the convection and the diffusion term reads

vk convection term

= —_ 1— e
4 — (—v’-vgv; + —pv — u%) diffusion term (8.28)
p z;
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Figure 8.4: Channel flow aRe, = 2000. Comparison of mean and fluctuating
dissipation terms. Both terms are normalized«ddy'». DNS data 10, 11]. —:
y(8@1/8x2)2; ---.E&.

8.5 The transport equation for v;v;/2

The equation folX = v,7;/2 is derived in the same way as that fgv] /2. Multiply
the time-averaged Navier-Stokes equations,@&%5.by o; so that

_ 00,75 1_0p s 0%v;  Ovjj
Vi—— = —— V3 — vu; — V; .
81']' P 83:1 81']'81']' 81']'
Using the continuity equation affdlick 2 the term on the left side can be rewritten as
_ 00,0, __ 0y 1_ Ov;v; 0v; K (8.30)
(% =VjVi=— = ZUj = .
ij J 8:rj 2 J ij 8:rj
Using the continuity equation, the first term on the righesid Eq.8.29can be written
as

(8.29)

_Op  Ovp

i 8,%1' T 8,%1' '

The viscous term in EB.29is rewritten in the same way as the viscous term in Sec-
tion 8.1, see Eqs8.12and8.13 i.e.

0%v; OK ov; O,

(8.31)

v; — — ) 8.32
ve 8$jal’j V@xjaxj V(’)xj 8acj ( )
Equations3.30 8.31and8.32inserted in Eq8.29gives
. 2 5D 5: Ovs A
0v; K _ 0°K B lavlp B V@UZ 07v; 5 UZUJ. (8.33)
8xj a$jal'j P 8% 81']' axj 81']'
The last term is rewritten usinfrick 1 as
i vl g,
—h—L = — £ lt —. .34
! 8:16]- 8xj ¢ H’?xj (83 )

Note that this term differs to the corresponding term in &G4by a factor of two since
“Trick 2” cannot be used becausg+# v;. Inserted in Eq8.33gives (cf. Eq8.14

Ok 2 O (L p v — v 2K, 20 O
0x; oz, 0m; \p LTS T e ) T o, o, (8.35)

— Pk, sink Emean, SINK
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® 0

Figure 8.5: Transfer of energy between mean kinetic enefgy, (urbulent kinetic
energy &) and internal energy (denoted as an increase in temperalfeg K =

15 5. _ 177
50;0; andk = Svjvj.

On the left side we have the usual convective term. On the sigle we find:

¢ loss of energy t& due to the production term

diffusion by pressure-velocity interaction

diffusion by velocity-stress interaction

e viscous diffusion

viscous dissipations,,;cqn

Note that the first term in E@.35is the same as the first term in Bg}14 but with
opposite sign: here we clearly can see that the main sourceitehe k£ equation (the
production term) appears as a sink term in fiequation.

Inthe K equation the dissipation term and the negative production {represent-
ing loss of kinetic energy to thiefield) read

_ 0 8.36
V(’)xj 8acj Ulvj 8$j7 ( )
and in thek equation the production and the dissipation terms read
— 0v; 81} o}
—vl’; - 8.37
t I 0z 830] 8J:j ( )

The gradient of the time-averaged velocity fiedg, is much smoother than that of the
fluctuating velocity fieldp.. In fully turbulent flow, the dissipation by the fluctuations
g, is much larger than the dissipation by the mean flow (lef¢ @itlEQ.8.36. This is
seen in Fig8.4. The energy flow from the mean flow to internal energy is ilatd in
Fig. 8.5. The major part of the energy flow goes fraihto £ and then to dissipation.

In the viscous-dominated region, the mean dissipatigidv, /dx2)?, is much
larger thans. At the wall, the mean dissipation takes the value= 1,/2000 (nor-
malized byu? /v).
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9 Transport equations for Reynolds stresses

In Section8 we derived transport equations for kinetic turbulent eggkgwhich is the
trace of the Reynolds stress tens¢w’: divided by two, i.e.k = vjv;/2. This means

thatk is equal to twice the sum of the diagonal component?d]f, i.e.k=0.5(v2+

vi2+vf?). Here we will now derive the transport equation for the Rdgiaatress tensor.
This is an unknown in the time-averaged Navier-Stokes éopstEq.6.5 which must
be known before Eg6.5 can be solved. The most accurate way to fuj—dg is, of
course, to solve a transport equation for it. This is comjputally expensive since
we then need to solve six additional transport equatiorea(rthatv;v’; is symmetric,
ie. vjv) = vju] etc.) Often, some simplifications are introduced, in which,
is modelledby expressing it in a turbulent viscosity and a velocity geatdl Two-
equations models are commonly used in these simplified mpaelransport equation
for vjv’ is solved. This is the subject durbulence Modellingvhich you will learn
about in other courses in the MSc programme.

Now let's start to derive the transport equationdw’. This approach is very simi-
lar to that we used when deriving tkeequation in SectioB.1 Steady, incompressible
flow with constant density and viscosity is assumed. SubEgds.5from Eq.6.3and
divide by density, multiply by and time average and we obtain

Vo Ry [vive — U; k] =

1,0 92 ovlv,
8 ]8$ka:17k 8$k J

9.1)

Equation6.5is written with the index as free index, i.ei = 1,2 or 3 so that the
equation is an equation fer, vo or vs. Now write Eq.6.5as an equation fos; and
multiply this equation by;. We get

Uia—xk [vjvr — U;0k] =

178 920 / (91/»112 (92)
I _ J !
pvl p v Zazkﬁxk + oz, Yi

It may be noted that E®.2is conveniently obtained from E§.1by simply switching
indicesi andj. Adding Egs9.1and9.2together gives

_ 0 _

v’ Bar [vlvk U; Uk + 18 [vjor, — 0;T] =
1 0 1 0p

p 83@ J o,

o e 5:3)
! ! K3
+Vvi 8$ka:17k + l/vj 8:Ekaxk
G, o,

V.
8$k ¢ 8$k

Note that each line in the equationdgmmetric if you switch indicesi andj in any
of the terms nothing changes. This is important since theaesfv’; is symmetric.
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Furthermore, you can check that the equation is correctrdoapto the tensor notation

rules. Indices and; appear once in each term (not more and not less) and in (e

dummy index) appears exactly twice in each term (implyingsiation). Note that it

is correct to use any other index tharn some terms (but you must not usandj).

You could, for example, replade with m in the first term and withy in the second

term; it is permissible, but usually we use the same dummgnniad every term.
Usingv; = @; + v}, the first line can be rewritten as

U0y, + ViU + v}vﬂ (9.4)

0
[0, + 010+ ofv}] + vl |

/
v —
Ja:rk

Using the continuity equation the first terms in the two greape rewritten as

——0v;  ——00;
i ? 70,/ J
Vi, R + ”ivka—xk (9.5)
We merge the second terms in the two groups in%E4j.
— T a5 — —
, QUi v Ov; 0k = UV Ov; + @kvf%
J 8:1:k ¢ 8$k ]8$k Za:rk
- _ (9.6)
_ Ouvl Qi
Ok 8:ck N al’k

The continuity equation was used twice (to get the right sidehe first line and to

get the final expression) and the the product rule was usdduzads to get the second
line. Re-writing also the third terms in the two groups in Bglin the same way, the
second and the third terms in Ej4 can be written

oyl 0y

ovivio,  Oviviv
7] 177k
9.7
al’k + al’k ( )
The second line in E.3is also re-written usingrick 1
10— 10— 1 00 1 0u
S ) =L 4= 9.8
pox; P pox, P " o oz, " o’ o, ©8)

It will later turn out that it is convenient to express all datives as)/dx. Therefore
we re-write the derivative in the two first terms as

0 0 0 0
9z, 6jk87k anda—zi = 6ik87k (9.9)
so that
10 — 10— 1 ,0v, 1 0Ov
—0jk—m—0p — O —m—ip + —p - + —p =L 9.10
3 g VP ko D P + LS + P o, (9.10)

The third line in Eq9.3is also re-written usingrick 1

b O (2 4, 0 (O _y, 00 0Y
Oy, Ui&’rk Oy, Ujaxk Oxy, Oz,
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Trick 1 is used — again — to merge the two first terms so that the thmediti Eq.9.3

reads
0 8 I , avg Y 81)
Va—xk 8$k + Uj 8$k 8$k 817k

vl Cov, 0N, gl 0]
9 <U1Uj)_2yavl v 5, 001 0%

(9.11)

- V@xx 8:17k B

8$k 8:1:k &Ekaxk 8$k 817k

We can now put everything together. Put the first term in €@.on the left side and
the second term on the right side together with Eg5.9.10and9.11so that

S (0) = s~V o
1 II
7i < / /,U/ + 5 k,up/+ _5kv/p/l/8v7{/u.;>
O F s R Dy, (9.12)

1 (ov, O o} Ov;
+ p 8:17] + 8:171 8xk 8:17k
v v

Note that the manipulation in E§Q.9 allows the diffusion (term Ill) to be written on a
more compact form. After a derivation, it is always usefuth@ck that the equation is
correct according to the tensor notation rules.

e Every term — or group of terms — should include the free inslicendj (only
once);

e Everyterm — or group of terms — should be symmetri¢ &ndy;

e A dummy index (in this case indé®X must appear exactly twice (=summation)
in every term

Equation9.12can also be written in a simplified easy-to-read symboliofas
Cij = Pij + Dij + Hij — Eij (913)

wherell,; denotes the pressure-strain term

o ]i/ 81); 81)5
IL;; = P (8$j + Bz, (9.14)

Equation9.12is the (exact) transport equation of the Reynolds stn§79§, Itis called

the theReynolds stress equationSince it is an equation for a second-order tensdreynolds
it consists of nine equations, but since it is symmetric wky oreed to consider six stress

of them. Compare E.12with the equation for turbulent kinetic energy, BRj14 equations
An alternative — and maybe easier — way to derive &4is to first derive Eq9.12

and then take the trace (setting= j) and dividing by two. In both thé& and the

v;v; equations there is a convection term (1), a production tdijng diffusion term

ll) and a dissipation term (1V). In the/v’ equation there is a fifth term (V), see
]
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Figure 9.1: Channel flow aRe, = 2000. Terms in thev_’l2 equation scaled by? /v.
a) Zoom near the wall; b) Outer region. DNS dat8,[11]. —: Pi1;---: —€11;---:

Iy1; +: —0(vhvl?) /Oxa; o vO*V? | O23.

Eq.9.14 which is called the pressure strain term. The physical rimggof this term is pressure
to redistribute energy between the normal stress compsifiémte transform Eq9.12 strain

to the principal coordinates afv; there are no shear stresses, only normal stresses).
The average of the normal stresses/fs = v/v]/3. For a normal stress that is larger
thanv’2 , the pressure-strain term is negative and vice-versaoftés called th&kobin

Hoodterm because it — as Robin Hood — “takes from the rich and divéise poor”. Robin Hood
Note that the trace of the pressure-strain term is zero, i.e.

1 ov, o]
;= —p [ == i) =0 9.15
p (8:171- + 8:1:1-) ( )
because of the continuity equation and this is the reasorthityerm does not appear
in the k£ equation.

For 2D boundary layer flow, E®.12reads

0, —— 0y —— 0T
By P1VIV) g (20f)) = —vjup e — v
0 [(———F 1. — 1_ — ovjv;
s <U§U§'U§ + ;53'2”21?’ + ;5121)}1?’ Y o (9.16)
/ /
Pl (2 0 Ly, 0u 0
p dr;  Ox; oxy, Oxp

Now let’s look at this equation for fully developed channeWlfor which
Uy =03=0
o) a() (9.17)
(’)xl o 8$3 N
The second line shows that it is the streamwise and spanweisative that operate on
time-averagedjuantities that are zero, not those that operate on instaates quanti-
ties such as im;; andIl;;.
The production term in ER.16reads

— 07 —— 00,
Pij = —vju pr vz’-véa—x; (9.18)
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Forthev (i = j = 1), v2 (i = j = 2), v (i = j = 3) andvjv} (i = 1,5 = 2)
equations we get

—— 07
Py = ~20 o (9.19a)
o
Py = —2v2véa—:; =0 (9.19D)
— 03
P33 = —QUé’Uéa—xQ =0 (919C)
——0v o —5 00
Py = —vévéa—zl - Uivéa—:f = _%28—::1 (9.19d)
2 2 2

using Eq9.17.

Figure9.1 presents the terms in thé?> equation (Eq9.16with i = j = 1). As
we saw for thek equation, the production tern¥y;, reaches its maximum at ~ 11
where alsov}? takes its maximum (Fig6.7). The pressure-strain terril;;, and the
dissipation term act as sink terms. In the outer region (#itj) the production term
balances the pressure-strain term and the dissipation term

The terms in the wall-normal stress equatiofi, are shown in Fig9.2 Here we
find — as expected — that the pressure-strain téfga, acts as the main source term.
As mentioned previouslyl>; — the “Robin Hood” term — takes from the “richy}
equation and gives to the “poot’? equation energy becaus¢ is large andv? is
small.

Figure9.3 presents the terms in t@ equation. The production term — which
should be a source term — is here negative. Indeed it shouldRbeall thatv] v} is
here negative and hence its source must be negative; ogrr#tle other way around:
@ is negative because its production tetRly = —v520v; /0z2, is negative since
0v1/0xz2 > 0. Note that in the upper half of the chaniih /0z2 < 0 and henceP;,
andv] v}, are positive. Furthermore, note that the dissipatiqn, is zero. This is be-
cause dissipation takes place at the smallest scales andrthiesotropic. That implies
there is no correlation between two fluctuating velocity poments, e.gvjv5 = 0 (in
general, fori # j, the stresses;v; in isotropic turbulence are zero). Hence, also their
gradients are zero so that

€12 = 2W——==0 (920)

However, very close to the walk; < 10, 12 # 0 because here the wall affects
the dissipative scales making them non-isotropig;is positive sincevjv; < 0, see
Fig.9.3

If you want to learn more how to derive transport equationsidfulent quantities,
see [L4] which can be downloadéukre

http://www.tfd.chalmers.se/"lada/allpapers.html

9.1 Reynolds shear stress vs. the velocity gradient

In boundary-layer type of flow, the Reynolds shear stressthadselocity gradient
071 /0x2 have nearly always opposite signs. For channel flow, for @tantq.9.19
shows thaf, » is negative (and hence alspws) in the lower half becauses, /02 > 0
and it is positive in the upper half becauge /dz2 < 0. This can also be shown by
physical argumentation. Consider the flow in a boundaryrlagee Fig9.4. A fluid
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Figure 9.2: Channel flow aRe, = 2000. Terms in thev_’22 equation scaled by? /v.
a) Zoom near the wall; b) Outer region. DNS dai#®,[11]. — : Pay; ---: —&92;
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Figure 9.3: Channel flow ake, = 2000. Terms in thev| v}, equation scaled by? /v.
a) Zoom near the wall; b) Outer region. DNS dai®,[11]. — : Pio; ---: —&19;
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particle is moving downwards (particle drawn with soliddjrfromzs g t0 25 4 with
(the turbulent fluctuating) velocity,. At its new location the); velocity is in average
smaller than at its old, i.et1(z2 4) < 71(z2,5). This means that when the particle
at x2 p (which has streamwise velocity (z2,5)) comes down tars 4 (where the
streamwise velocity i$1 (z2,4)) it has an excess of streamwise velocity compared to
its new environment at,_4. Thus the streamwise fluctuation is positive, iv¢.> 0
and the correlation betweer) andv), is in average negative v, < 0).

If we look at the other particle (dashed line in Fiy4) we reach the same con-
clusion. The particle is moving upwards,(> 0), and it is bringing a deficit in;
so thatv; < 0. Thus, againpjv, < 0. If we study this flow for a long time and
average over time we gefv), < 0. If we change the sign of the velocity gradient so
thatdv, /0z2 < 0 we will find that the sign ob} v}, also changes.

In cases where the shear stress and the velocity gradieatthavsame sign (for
example, in a wall jet) the reason is that the other termsgllysthe transport terms)
are more important than the production term.
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Figure 9.4: Sign of the Reynolds shear stregs| v} in a boundary layer.
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Figure 10.1: Two-point correlation.

10 Correlations

10.1 Two-point correlations

Two-point correlations are useful when describing someatdtaristics of the turbu-
lence. Pick two points along the axis, sayr;' andz{’, and sample the fluctuating
velocity, in, for example, the;; direction. We can then form the correlation df at
these two points as

Bu(at,27) = v (e )} (f) (10.1)

Often, itis expressed as

Bui (a1, &1) = o) (a)v] (zf + 1) (10.2)

<

wherei; = x{ — 24! is the separation distance between peirdndC.

It is obvious that if we move pointl andC closer to each othei3,; increases;
when the two points are moved so close that they merge, Bien= v/2(z{). If,
on the other hand, we move poifitfurther and further away from poid, then By,
will go to zero. Furthermore, we expect that the two-pointretation function will be
related to the largest eddies. It is convenient to normdbizeso that it varies between
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(b) Large integral length scale

Figure 10.2: Schematic relation between the two-pointetation, the largest eddies
(thick lines) and the integral length scale,,;.
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—1 and+1. The normalized two-point correlation reads

1
Brerm (p4 3q) = — ! (zM! (2 + 34 (10.3)
11 ( 1 ) Ul,rms(xf)vl,rms(xf‘i’zl) 1( 1) 1( 1 )

where subscriptms denotes root-mean-square, which for for example, is defined
as

i (@)” ’ (10.4)

RMS is the same astandard deviatiorfMatlab commandtd ) which is the square-
root of thevariance(Matlab commandar ).

Consider a flow where the largest eddies have an eddy scafglflscale) of;,,:,
see Figl10.2 We expect that the two point correlatiaB,;, approaches zero for sepa-
ration distancer{ —z{'| > L;,; because for separation distances larger thgn-z2|
there is no correlation betweeh(x4) andv} (z§'). Hence, flows with large eddies will
have a two-point correlation function which decreases slavith separation distance.
For flows with small eddies, the two-point correlatidsy,; , decreases rapidly with; .

If the flow is homogeneous (se&p) in thex; direction, the two-point correlation
does not depend on the locationugf, i.e. it is only dependent on the separation of the
two points,i; .

From the two-point correlation3; 1, an integral length scald,;,,; which is defined integral

as the integral oB;; over the separation distance, i.e. length scale
.00 .
Bii(z1,21) .
0 vl,rmsvl,rms

If the flow is homogeneous in theg direction thenl,;,,; does not depend an .

10.2 Auto correlation

Auto correlation is a “two-point correlation” in time, i.¢he correlation of a turbulent
fluctuation with a separation in time. If we again choosedthductuation, the auto
correlation reads

B (t4,1) = v} (tA)) (tA + 1) (10.6)

wheret = t¢ — t4, is the time separation distance between titnendC. If the mean
flow is steady, the “time direction” is homogeneous dhd is independent on; in
this case the auto-correlation depends only on time separati.e.

B (t) = v, (t)v)(t +1) (10.7)

where any value can be used. The normalized auto-correlation reads

B () = 1 oh () (t+ 1) (10.8)

vl,rms

In analogy to the integral length scale,,;, theintegral time scaleT;,,;, is defined integral
as (assuming steady flow) time scale

T = [ B0 (10.9)
0
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations
11.1.1 Flow equations

For incompressible turbulent flow, all variables are didideto a mean part (time av-
eraged) and fluctuating part. For the velocity vector thisngethaty; is divided into
a mean part; and a fluctuating part; so thatv; = v; + v;. Time average and we get
(see Eg6.4at. p.498):

op 0
— 4+ —(pv;) = 11.1
opv; 9, op v, Oy 5
— (pv;0;) = —— — = —B(0 —0p)g; 11.2
(note that? denotes temperature) whefe = —3(0 — 6p)g; and the turbulent stress
tensor (also calle®eynolds stress tengads written as: Reynolds
= stress
i = PUiYj tensor

The pressures, denotes the hydro-static pressure, see3E2R, which means that when
the flow is still (i.e.7; = 0), then the pressure is zero (ig= 0).

The body forcef; — which was omitted for convenience in Ej4— has here been
re-introduced. The body force in Ef§j1.2is due to buoyancy, i.e. density differences.
The basic form of the buoyancy forcefis= pg; whereg; denotes gravitational accel-
eration. Since the pressumg,is defined as the hydro-static pressure we must rewrite
the buoyancy source as

fi=(p—po)gi (11.3)
so thatp = 0 whenw; = 0 (note that the true pressure decreases upwarggAs
whereAh denotes change in height). If we let density depend on presswd temper-
ature, differentiation gives

_ (% o
dp = (89)pd9+(8p)9dp (11.4)

Our flow is incompressible, which means that the density doédepend on pressure,
i.e. dp/0p = 0; it may, however, depend on temperature and mixture cortiposi
Hence the last term in Eq1.4is zero and we introduce the volumetric thermal expan-
sion, 3, so that

dp = —pofdf = p — po = —Bpo(6 — o)

1 (o (11.5)
o= Po (39)p

whereg is a physical property which is tabulated in physical harakso For a perfekt
gas itis simplys = 6~ (with 6 in degrees Kelvin). Now we can re-write the buoyancy
source as

pfi=(p—po)gi = —poB(0 — 00)g: (11.6)
which is the last term in EdL1.2 Consider the case wheig is vertically upwards.
Theng; = (0,0, —g) and a large temperature in Ebl.6results in a force vertically
upwards, which agrees well with our intuition.
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11.1.2 Temperature equation

The instantaneous temperatufe,is also decomposed into a mean and a fluctuating
component a® = 6 + ¢’. The transport equation fdt reads (see EQR.15where
temperature was denoted %Y

00  ov;0 %0
- = 11.7
ot " om Omi0x; (L.7)
Introducingd = 0 + ¢’ we get
i and 25 wr
00 0vi0 00 B ov.0 (11.8)

ot T 0w, “omion, o

The last term on the right side is an additional term whosesjaay meaning is turbulent
heat flux vector. This is similar to the Reynolds stress teonsathe right side of the
time-averaged momentum equation, E#.2 The total heat flux vector — viscous plus
turbulent — in Eq11.8reads (cf. Eg2.1])

o0

Gistot = @i + Qi pury = —a5— — v;0’ (11.9)

11.2 The exactjv}; equation

Now we want to solve the time-averaged continuity equatien £ 1.1 and the three

momentum equations (Efj1.2). Unfortunately there are ten unknowns; the four usual

ones {;, p) plus six turbulent stresses;v;. We mustclosethis equation system; it is

called theclosure problemWe must find some new equations for the turbulent stresselesure

We need a turbulence model. problem
The most comprehensive turbulence model is to derive exasport equations

for the turbulent stresses. An exact equation for the Raigsiresses can be derived

from the Navies-Stokes equation. It is emphasized thattisition is exact; or, rather,

as exact as the Navier-Stokes equations. The derivatimw®the steps below.

¢ Set up the momentum equation for the instantaneous velocity v; + v, —
Eq. (A)

e Time average— equation fors;, Eq. (B)
e Subtract Eq. (B) from Eq. (A}> equation for}, Eq. (C)
e Do the same procedure foy — equation for’, Eq. (D)

e Multiply Eq. (C) withv} and Eq. (D) withv}, time average and add them together
— equation for;v’

In Section9 at p.68these steps are given in some detail. More details can also be
found in [14] (set the SGS tensor to zero, i#; = 0).
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The finalvjv;-equation (Reynolds Stress equation) reads (se® &d).

81}1’-1);- Lo vgvg- _ 7/_1)/% B /_—v/@@- p_’ % N 81);-
ot ) oxy, o ik Oy, J k@xkl p \Oz; Ox;
Cij ]Dij Hij
9 Tl pl’% p'v; 821}1/'1)/‘
N D) 5 i J
ool R et Bt I veay v (11.10)
Dijt Dijuv
— - 81)/, 81}3
lfglﬂv;ﬂ’ — gjﬂvl’ﬂ’l— 21/8—1326—36}C
i T
ij

whereD;;, and D;;, denote turbulent and viscous diffusion, respectively. dial
diffusion readsD;; = D;;+ + D;;,. This is analogous to the momentum equation
where we have gradients of viscous and turbulent stressiehwbrrespond to viscous
and turbulent diffusion. Equatiohl.10can symbolically be written

Cij = Pij + ILij + Dyj + Gij — €ij
where
C;; Convection
P;; Production
I1;; Pressure-strain
D;; Diffusion
G;; Buoyancy production

e;; Dissipation

11.3 The exact/¢ equation

If temperature variations occurs we must solve for the meamperature field, see
Eq.11.8 To obtain the equation for the fluctuating temperaturetrsicbEq.11.8from
Eq.11.7

00 9 9% oo

"0+ 0,0 9 = oo—m— 11.11
v 0 + 0" + v3,0") O‘azkaxk . ( )

ot oz

To get the equation for the fluctuating velocity, subtract the equation for the mean
velocity 7; (Eq.11.2 from the equation for the instantaneous velocity(Eq. 6.3) so
that

i 9 1 op' 0%v; | Ovjuj

ot + a—J}k(U;C,Di + T)kvz’- + ’U;CUZ/-) =

_Z — .60 (11.12
p Ox; V@xkﬁxk oxy, 98" ( )
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Multiply Eq. 11.11with v; and multiply Eq.11.12with ¢’, add them together and
time average

™
8229 + vj aik (0,0 + 00" + v},0") + 0’ aak (v}, + v} + vjv},)
0oy 520’ 920! (11.13)
! / _ 707
am T anan T ouran 907

The Reynolds stress term in Efl.12multiplied by ¢’ and time averaged is zero, i.e.

ol A,
v g = i .7 9/ —
The first term in the two parentheses on line 1 in Ef.13are combined into two
production terms (using the continuity equation; /0x; = 0)
ov
o v —— 11.14
Uk 8 8:ck ( )
The second term in the two parenthesis on the first line oflEEdl3are re-written using
the continuity equation

,U/

, 000" ovpv, o0’ o’
0’ L= 0 —= 11.15
Yi 83: + 8xk Uk ( 8:17k + axk) ( )
Now the two terms can be merged (product rule backwards)
oule’  Ouule’
= — 11.16
U 8:ck 8:ck ( )

where we used the continuity equation to obtain the righ¢.si@he last two terms
in Eq. 11.13are re-cast into turbulent diffusion terms using the sanoegaure as in
Egs.11.15and11.16
ovju, 0’
8:17k
The viscos diffusion terms on the right side are re-writteimg the product rule back-
wards (Trick 1, see [b9)

(11.17)

o 09 (00 o (007 _ 00 o
i(’)xkaxk - iawk 8:ck 8:ck iawk al’k 8:ck
(11.18)
0% o [ o 0 ov! 89’ 8vk
vo’ = vl — L) =p— | /=

Inserting Eqs11.14 11.16 11.17and 11.18into Eq. 11.13gives the transport
equation for the heat flux vectof6’

L R e kL ey XL ST
ot 8xkvkvi 7. vivk@xk 8:17k pale Oxy

Pig ;e Dot
9 /o0 5 [ ou o000
- / N _ 9/2
"o (”laxk> Y o ( axk) ) G axk.ga_ﬁ.

Dig,v €ig

! .10
v, v;0

(11.19)
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whereP;y, I1;y and D, ; denote the production, scramble and turbulent diffusiomte
respectively. The production term include one term with tinean velocity gradient
and one term with the mean temperature gradient. On thet@sti;q ., ;9 andG,g
denote viscous diffusion, dissipation and buoyancy tepapectively. The unknown
terms —I1,9, D;g , €49, Gip — have to be modelled as usual; this is out of the scope of
the present course but the interested reader is referreldbfo [

It can be noted that there is no usual viscous diffusion terriq.11.19 The
reason is that the viscous diffusion coefficients are diffielin thev; equation and
the # equation ¢ in the former case and in the latter). However, itv ~ « (which
corresponds to a Prandtl number of unity, i.Br = v/a ~ 1, see Eq2.16), the
diffusion term in Eq11.19assumes the familiar form

NN PLIANPR N P
_J o ,aof 9 (g9 0*vj0’
= al’k Yi al’k al’k al’k N Val’kawk

11.4 Thek equation

The turbulent kinetic energy is the sum of all normal Reysdtiesses, i.e.

(11.20)

1 — 1
k= 5 (v'f + vl + v:’f) = 51}21}2

By taking the trace (setting indicés= ;) of the equation fop;v} and dividing by two
we get the equation for the turbulent kinetic energy:

ot 7ox; VI 0x 8J:j 830]
Ck Pk 3
(11.21)
a / p/ 1 Loy 82 o1
DF Db

where — as in the;v’; equation -D¥ and D¥ denotes turbulent and viscous diffusion,
respectively. The total diffusion read3* = DF + DX. Equationl1.21can symboli-

cally be written:
ct=pPr4+DF+GF—¢ (11.22)

11.5 Thee equation

Two quantities are usually used in eddy-viscosity modeloress the turbulent vis-
cosity. In thek — € model,k ande are used. The turbulent viscosity is then computed
as )
k
C -
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whereC,, = 0.09. An exact equation for the transport equation for the dessim

v} O]
e=v——t
8xj 8:17]'

can be derived (see, e.glq), but it is very complicated and in the end many terms
are found negligible. It is much easier to look at thequation, Eq11.22 and to setup

a similar equation foe. The transport equation should include a convective térf,

a diffusion term,D¢, a production termpP*, a production term due to buoyandy?,
and a destruction tern¥©, i.e.

C° = P° 4+ D + G° — IF (11.23)

The production and destruction tern?? ande, in the k equation are used to formu-
late the corresponding terms in theequation. The terms in thie equation have the
dimensiondk /0t = [m? /s3] whereas the terms in theequation have the dimension
dz/0t = [m?/s%]. Hence, we must multiply°* ande by a quantity which has the
dimension1/s]. One quantity with this dimension is the mean velocity geatlivhich
might be relevant for the production term, but not for thetdegion. A better choice
should bes /k = [1/s]. Hence, we get

PS4 G- U = % (a1 P* + ca1G* — cooe) (11.24)

where we have added new unknown coefficients in front of eah.t The turbulent
diffusion term is expressed in the same way as that irktequation (see EdqL1.33
but with its own turbulent Prandtl number, (see Eq11.30, i.e.

c_ 0 v\ O
Df = o, Ku+ Us) axj] (11.25)

The final form of thes transport equation reads

Oe Oe € 0 v, Oe
b = —(ce P* + ca G* — c. — —L) = 11.2
8t+UJ8:17]- k(cl teal 025)+8:17j {(V—FJE) 8:17]} ( 6)

Note that this is anodelledequation since we have modelled the production, destruc-

tion and turbulent diffusion terms.

11.6 The Boussinesg assumption

In the Boussinesq assumption an eddy (i.ewrbulen) viscosity is introduced to model
the unknown Reynolds stresses in Ef.2 The stresses are modelled as

U; ; = — 4 <§;); + gij) + %(SUI{? = _2Vt§ij + géijk (1127)
The last term is added to make the equation valid also whercibitracted (i.e taking
the trace); after contraction both left and right side araadas they must be) and
equal tovjv; = 2k. When Eq.11.27is included in Eq.l1.2we replace six turbulent
stresses with one new unknown (the turbulent viscosjy, This is of course a drastic
simplification.
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If the mean temperature equation is solved for we need antiequar the heat
flux vector,v;6’. One option is to solve its transport equation, Ef.19 If an eddy-
viscosity model (i.e. Eql1.27 is used for the Reynolds stresses, an eddy-viscosity
model is commonly used also for the heat flux vector. The Boasg assumption
reads

00
8%—
where a; denotes the turbulent thermal diffusivity. It is usuallytaibed from the
turbulent viscosity as

(11.28)

N _—
v = —ay

Vvt

(11.29)

ap =
of

whereoy is the turbulent Prandtl number; it is an empirical constahich is usually
set t00.7 < gg9 < 0.9. The physical meaning of the turbulent Prandtl number,
is analogous to the physical meaning of the usual Prandtlbeunsee Eq2.16 it
defines how efficient the turbulence transports (by diffasimomentum compared to
how efficient it transports thermal energy, i.e.
Vt

g9 = (11.30)

673
It is important to recognize that the viscosity)( the Prandtl numberKr), the
thermal diffusivity () arephysicalparameters which depend on the fluid (e.g. water
or air) and its conditions (e.g. temperature). However ttinbulent viscosity ¥;), the
turbulent thermal diffusivity 4;) and the turbulent Prandtl number,{ depend on the
flow (e.g. mean flow gradients and turbulence).

11.7 Modelling assumptions

Now we will compare the modelling assumptions for the unknderms in thev;v;,

v}0, k ands equations and formulate modelling assumptions for the ieimgiterms in
the Reynolds stress equation. This will give us tleyRolds Sress Model [RSM] (also
called the_Rynolds_$ess underline fansport_Mbdel [RSTM]) where a (modelled)
transport equation is solved for each stress. Later on, Wentrioduce a simplified
algebraianodel, which is called the l§ebraic $ress Model [ASM] (this model is also
called Algebraic Reynolds $ress Model, ARSM)

Summary of physical meaning:

P;;, Pig and P* are production terms af/v’, v/6" andk

Gij, Gig andG* are production terms ojgvg., v;6" andk due to buoyancy

Dijt, Dig s, Df are the turbulent diffusion terms 0I7f§- v;0" andk

I1;4 is the pressure-scramble termsuf”

I1;; is the pressure-strain correlation term, which promotesadpy of the tur-
bulence
€ij, €ip ande are dissipation ot} W andk, respectively. The dissipation

1770
takes place at the small-scale turbulence.
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11.7.1 Production terms

In RSM and ASM the production terms are computed exactly

—— 0v; 0v;

P“:_U/_U/’_J — vl Pk:—P":—U/-U/- L

! ik Ay, Ik Ay, 2" "I Oz
— 07;

5 (11.31)
Py =— T —— — o
o Ui al’k Uk al’k

The k is usually not solved for in RSM but a length-scale equatien (€ or w) is
always part of an RSM and that equation includiés

In the £ — ¢ model, the Reynolds stresses in the production term are etadp
using the Boussinesqg assumption, which gives

B
wwzw(%ﬂﬁm)—ﬁw

0v; 0v;\ 07; _
Pk = UVt (8:17] + asz) axj = 2Vt8ij8ij (1132)

. 1 0v; " 8’173'
% =9\ 0z, " 0,
11.7.2 Diffusion terms

The diffusion terms in thé ands-equations in thé& — ¢ model are modelled using the
standard gradient hypothesis which reads

7-l(o2) 2]
K Ok / O (11.33)
pr— 2 ()0

_8:17]- oe ) 0x;

The gradient hypothesis simply assumes that turbulentgigh acts as to even out
all inhomogeneities. In other words, it assumes that thieutent diffusion termD¥,
transportsc from regions where: is large to regions wherk is small. The turbulent
diffusion flux of k is expressed as

V¢ 8]{3

1
i, = v = ~5 B (11.34)
J

Only the triple correlations are included since the pressliffusion usually is negli-
gible (see Fig8.2at p.63). Taking the divergence of Eq.1.34(including the minus
sign in Eq.11.27) gives the turbulent diffusion term in E41.33

Solving the equations for the Reynolds stressTpra‘,, opens possibilities for a more
advanced model of the turbulent diffusion terms. EquafidrB4assumes that if the
gradientis zero irx; direction, then there is no diffusion flux in that directighmore
general gradient hypothesis can be formulated withoutithi¢ation, e.g.

d?.,t,G o' U}U}ca—xk (11.35)

which is called the general gradient diffusion hypothe€®&DH). It was derived in
[17] from the transport equation of the triple correlatidn;v;. In GGDH the turbulent
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flux d¥ , , for example, is computed as

—— 0k  —— 0k —— Ok
di 4. Uivia—xl + Uivéa—m + Uivéa—zg
Hence, even ibk/0xz; = 0 the diffusion fluxd’f_’tyG may be non-zero. A quantity of

dimension|s| must be added to get the correct dimension, and as it Eg4we take
k/e so that

(11.36)

k———+ Ok
a5, o= - (11.37)
The diffusion term,D¥, in the k equation is obtained by taking the divergence of this
equation
ady 9 k—r Ok
DF = TG — (¢ DT 11,
¢ Ox; Ox; kg Vil Oy, (11.38)

This diffusion model may be used when thequation is solved in an RSM or an ASM.
The corresponding diffusion terms for thendv;v’ equations read

0 — k O¢
D; = 7] <c€ vy, ——)

5] € 0wy,
9 1 ol (11.39)
D+ Cl VUL, — tJ
’ Oxy, 0T

Equationl1.39often causes numerical problems. A more stable alternaticemodel
the diffusion terms as ift1.33which for vv’; reads

ol
Dy = =2 <ﬁ—”> (11.40)

0Tm \ 0k 0T,

11.7.3 Dissipation termg;;

The dissipation term;; (see Eql11.10 is active for the small-scale turbulence. Be-
cause of the cascade process and vortex stretching (seesRgad5.3) the small-
scale turbulence is isotropic. This means that the veldtituations of the small-
scale turbulence have no preferred direction, sepThis gives:

12 __ 02 02
1. v =05 = vy

2. All shear stresses are zero because the fluctuations inliffesent coordinate
directions are not correlated.

What applies for the small-scale fluctuations (Iltems 1 arab@ye) must also apply
to the gradients of the fluctuations, i.e.
0V 0V _ 0 vl _ v 0vf
o’ 57)5- )
——=0 if i#j
al’k 8:ck ! 7& J
The relations in Eqll.41are conveniently expressed in tensor notation as

(11.41)

2
Eij = gé‘(gij (1142)

where the facto2/3 is included so that = %sii is satisfied, see Eq$1.10and11.21
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T2

Z1

Figure 11.1: Physical illustration of the pressure-sttaim.

11.7.4 Slow pressure-strain term

The pressure-strain terni];;, makes a large contribution to thg—v} equation. In
Section9 it was shown that for channel flow it is negative for the stredse equation,
v, and positive for the wall-normad/?, and spanwise;?, equations. Furthermore, it
acts as a sink term for the shear stress equation. In suminaag shown that the term
acts as to make the turbulence mim@tropic i.e. decreasing the large normal stresses
and the shear stress and increasing the small normal strélse pressure-strain term
is often called thérobin Hoodterms, because it “takes from the rich and gives to the
poor”.

The role of the pressure strain can be described in physoals as follows. As-
sume that two fluid particles with fluctuating velocitigsbounce into each other &t
so thatdv] /0z; < 0, see Figll.1 As a result the fluctuating pressuyreincreases at

O so that iy
, OV

— <0
paIEl

The fluid in thex; direction is performing work, moving fluid particles agairise
pressure gradient. The kinetic energy lost in thedirection is transferred to the,
andzx; directions and we assume that the collision makes fluid gdastimove in the
other two directions, i.e.
vl ovy
8x2 8:173

Indeed, ifov)/0x; < 0, the continuity equation give8v)/0xs + Ovs/0x3 > 0.
However, in Eq11.43we assume that not only their sum is positive but also that the
both are positive. If this is to happen the kinetic energyhia:; direction must be
larger than that in the, andz; direction, i.e.v}? > vf? andvf? > vi. If this were not
true, the fluctuatiom; would not be able to create an acceleration of bgtandvj.

The amount of kinetic energy transferred from thedirection to ther, andzs

> 0, >0 (11.43)
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directions, should be proportional to the difference ofitkaergy, i.e.
1 o) 11— —5 —  — — 1
a5 [(F ) (7)) =~ 5 (479

3— 1 3
= _ [51)’2 —5 (v’12 + vf? +v§2)] =— <§v’12 - k>

The expression in Ed.1.44applies only to the normal stresses, i.e. the principal axis
of vjv’. By transforming to a coordinate system which is rotated it is shown
that the sign ofp/(0v]/0x; + c’)v}/c’)xi) andW are opposite. Assume that we ex-
press Eq11.44in principal coordinatesx: .., z2. ), and then transform the equation to
(x1,x2) by rotating it anglex = 7/4, see AppendiXD. Replacingu,, in Eq.O.6bby
vjvh we get

(11.44)

ol =05 (W - E) (11.45)

sincev, v}, = vh,v},. Now we have transformed the right side of Hd.44 Next
stepis to transform the left side, i.e. the velocity gratBelVe use Eq€.6bandO.6¢
replacinguis andusg; by dv} /0xe andov) /dz4, respectively, and adding them gives

duy | Ovy _ Ovy,  Ous,

(9%1 + 8x2 o 8351* 8:172*

(11.46)

the pressure-strain term in Edsl.10and11.44can be written

/ / / /
. (% + 8”1) — (_‘%1* - _8”2*) (11.47)

8:171 8:172 8351* 8:172*
Now we apply Eql1.44using the right side of EdL1.47

/ / - JR—
o ((’)vl* 7 8v2*) o (vﬁ _ v’22*) (11.48)

0x1x Oz

Inserting Eqs11.45and11.47into Eq.11.48gives finally

o’ o} _
(L2 4 20 - 11.49
» ( o 8@) s (11.49)

This shows that the pressure-strain term acts as a sink tettme ishear stress equation.
Thus, Eqsl1.44and11.49lead as to write

o)
(I)ij,l = p/ <g—;); + 61;]1) = *Clp% <UZ/-U_; — ;5”]{3) (1150)
where® denotes thenodelledoressure-strain term and subsciipheans the slow part;
the concept “slow” and “rapid” is discussed at3®. We have introduced the turbulent
time scalek/c. This pressure-strain model for the slow part was propoyeddita in
1951 [18].

Letus investigate how E4.1.50behaves for decaying grid turbulence, see Eig2
Flow from left with velocityv,; passes through a grid. The grid creates velocity gradi-
ents behind the grid which generate turbulence. Furthendtwam the velocity gradi-
ents are smoothed out and the mean flow becomes constanttiisgoint and further
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Figure 11.2: Decaying grid turbulence. The circles (a) amel thin rectangles (b)
illustrates past of the grid which consists of a mesh of ¢écaylinders.

downstream the flow represents homogeneous turbulencévestowly approaching
isotropic turbulence; furthermore the turbulence is sio@ying (i.e. decaying) due
to dissipation. The exaetv’; equation for this flow reads (no production or diffusion
because of homogeneity)

viv’, 'Oy O
e R i J
(%% — ey 11.51
N =, (8% +8zi) €ij ( )

Rotta’s pressure-strain model is supposed to reduce anfgotThus it should be in-
teresting to re-write Egl1.51expressed in the normalized anisotropy Reynolds stress
tensor which is defined as _
vz’-v} 1 5
bis = 2k 3
We introduce;; (Eq.11.52, Rotta’s model (Eq11.5Q and the model for the dissipa-
tion tensor 11.49 into Eg.11.51so0 that

217)1 (8<kbl]) + é Ok ) = —2015bij — —(Sij&' (1153)

(11.52)

D1 9301, 3
Analogously to Eq11.5] thek equation in decaying grid turbulence reads

@1% =—¢ (11.54)
(’)xl

Inserting Eq11.54in Eq.11.53and dividing by2k we obtain

0bi; € 1. e ¢
i = —Cc1=biji — =i~ + —
Nom — A% 3% Ty

c_k
Yk k

1
bij + 56 bij(l - Cl) (1155)

Provided that; > 1 Rotta’'s model does indeed reduce non-isotropy as it should.
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The model of the slow pressure-strain term in Ef.50can be extended by in-
cluding terms which are non-linear irfv’,. To make it general it is enough to include
terms which are quadratic infv’;, since according to the Cayley-Hamilton theorem, a
second-order tensor satisfies its own characteristic exjuégee Section 1.20 irLp));
this means that terms cubic irjv; can be expressed in terms linear and quadratic in

v;v;. The most general form eb;; ; can be formulated a20]

1
Q51 = —cip [alij +c <aikakj - gfsijakéaék)]
(11.56)

I.
7
a;j = MR R

a;; is the anisotropy tensor whose trace is zero. In isotropie #tl its components
are zero. Note that the right side is trace-less (i.e. theetimzero). This should be so
since the exact form ob;; is trace-less, i.e®,; = 2p'0v;/0x; = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain terrs developed using phys-
ical arguments. Here we will carry out a mathematical deidwvaof a model for the
rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in tueimee called the rapid
distortion problem, where a very strong velocity gradiént/0z; is imposed so that
initially the second term (the slow term) can be neglected,5q.11.58 It is assumed
that the effect of the mean gradients is much larger than ffleeteof the turbulence,
ie.

g;’; / (e/k) — o0 (11.57)

Thus in this case it is the first term in E@1.58which gives the most “rapid”
response ip’. The second “slow” term becomes important first at a lategestahen
turbulence has been generated.

Now we want to derive an exact equation for the pressurénastieam, I1;;. Since
it includes the fluctuating pressurg/, we start by deriving an exact equation fgr
starting from Navier-Stokes equations.

1. Take the divergence of incompressible Navier-Stokes#gu assuming con-
stant viscosity (see E§.2) i.e. %gwi(vivj) = ... = EquationA.

2. Take the divergence of incompressible time-averagedi&tokes equation as-
suming constant viscosity (see Egd) i.e. %{;_(mﬁj) = ... = EquationB.
J (3

Subtracting of EquatioB from EquationA gives a Poisson equation for the fluc-
tuating pressurg’

1 0% o; O} 0? —
1 _ _o0ui %Y _ (,_,_7,4,}) 11.58
p Ox;0x, Or; 0x; Ox;0x; Uity T ( )
rapid term slow term
For a Poisson equation
0%
f (11.59)

a$j8:17j -
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x2,Y2

T1,Y1

Figure 11.3: The exact solution to Efl.59 The integral is carried out for all points,
y, in volumeV.

there exists an exact analytical solution given by Greesrmfila (it is derived from
Gauss divergence law)
1 f dyrdyad
p(x) = —— f(y)dy1dyadys (11.60)
am Jv ly — x|
where the integrals at the boundaries vanish because isisreesl thatf — 0 at the
boundaries, see Fig1.3 Applying Eq.11.600n Eq.11.58gives

'(x) = 2

s (11.61)

on(y) vily)  o* /., —————\| dy
2 + v (y)v;(y) — vi(y)v) —_—
/V oy, Oy 0y, ( (¥)v5(y) = vi(y) j(Y))l v —x

rapid term slow term
wheredy? = dy; dy»dys. Now make two assumptions in Efl.61

i) the turbulence is homogeneous (i.e. the spatial devieasf all time-averaged
fluctuating quantities is zero). This requirement is not@stic as it may sound
(very few turbulent flows are homogeneous). This term is @adeery small
compared to the second derivative of the instantaneousifitions,v; (y )v’ (y-

ii) the variation of0v;/0x; in space is small. The same argument can be used as
above: the mean gradiefi;/Jz; varies indeed much more slowly than the
instantaneous velocity gradiedt’;(y)/9y;

Assumptioni) means that the last term in the integral in Ef}.61is zero, i.e.
8211;119 B

dyidy;

Assumptionii) means that the mean velocity gradient can be taken outsdetdgral.
Now multiply Eq.11.61with dv;/dx; + 0v’;/Oz;. Since this term is not a function of
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y it can be moved in under the integral. We obtain after timeayiag
1 81}’.(){) 81); (X)
—_p! —__tNv/ 4 7
pp (x) ( Oz, * Ox;
_Oun(x) 1 / <8v£(><) n 3v}(><)) Ovy(y) dy®
14

Oxy 2m 0z ox; Ay |y — x|
Mijke

(11.62)

1 ovl(x) av; (x) 02 , , dy3
T v < Ox; * Ox; ) OyrOye 0k (¥)ve(3) ly — x|

Ai]‘

Note that the mean velocity gradiett/0x,, is taken at poink because it has been
moved out of the integral. In order to understand this bettemsider the integral

_ [T g©)dg
f(w)/o P (11.63)

Note thatz and¢ are coordinates along the same axis (think of them as twerdifit
points along ther axis). If the two pointsg and¢, are far from each other, then the
denominator is large and the contribution to the integrahmall. Hence, we only need
to consider points which are close to. If we assume thaj(¢) varies slowly withg,
g(&) can be moved out of the integral and since close tag, Eq.11.63can be written
as

L
f(z) :9(96)/0 |$d_§§| (11.64)

Going from Eq.11.63to Eqg.11.64corresponds to moving the mean velocity gradient
out of the integral. Equatiohl.62can be written on shorter form as

Lo Ol 0o
J i

where the first term represents the slow ted); ; (see Eq11.50, and second term
the rapid term@®;, » (index2 denotes the rapid part).

Now we will take a closer look at rapid part (i.e. the secomdeof M; ;... The
second term ofM/; ., in the integral in Eq11.62can be rewritten as

B B I 920"
v; (X) 87}4 (Y) _ i ’Ué (y U; (X) _ 1)2 y) v, (X)
85171 ayk ayk axz 3% axz

P ey 0 ([ uly)
~ Oyox; (”é(y )vj (X)) = B <v;(x) aéy >) (11.66)

9°v)(x)/dyxdz; on line 1 is zero becausg (x) is not a function ofy. For the same
reason the last term on line 2 is zero.

Note that the terms above as well as in Bd.62are two-point correlations, the
two points beingk andy. Introduce the distance vector between the two points
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Differentiating Eq.11.67gives

0 0 0
or; Oy Om (11.68)
Equationl1.67is a coordinate transformation where we replacandy; with
I. z; andr;, or
Il. y; andr;.

Assumption) at p.91gives thatd/dx; = 0 (Item I) ord/dy; = 0 (Item II). In other
words, the two-point correlations are independent of wiregpace the two points are
located; they are only dependent on the distance betweéwdheints (i.e.r;). Hence
we can replace the spatial derivative by the distance deria.e.

g 0
8:171' o _aTi
o o (11.69)
dy;  Or;
We can now writeM; . in Eq.11.62 using Eqs11.66and11.69 as
1 0? 02 dr®
M. - _ - ol -z ol -
ikt = o /V [arkari (WUJ) " oo (UM)} r] (11.70)

= Qijke + Ajike
It can be shown that,;x, is symmetric with respect to indexand/ (recall thatv, and
v} are not at the same point but separateayi.e.
Qijke = Qitkj (11.71)

see AppendidG on p.207. Furthermore, Eql1.70is independent of in which order
the two derivatives are taken, so thaj, is symmetric with respect tbandk, i.e.

Aijke = Qkjie (11.72)

Now let us formulate a general expressionaf,, which is linear inv§v§. and
symmetric in(j, ¢) and(i, k). We get
ijke = €100}V
+ c20;00}vy,
+ e3(8i5Vv) + O VIV, + Sigvlv] + Srevjv]) (11.73)
+ 405005k
+ ¢5(0i50ke + 510:0) K
Each line is symmetric ifyj, ¢) and (i, k). For example, on line 3, term 1 & term 3 and
term 2 & term 4 are symmetric with respectit@and/ and term 1 & term 2 and term 3
& term 4 are symmetric with respect iandk.

Consider Eq11.62 Here it is seen that if = j then M;;,, = 0 due to the
continuity equation; looking at E4.1.70we get
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Applying this condition to Eql1.73gives

0 = c10;xvjv) + c20ivjv), + c3(3vj,v; + 5;@% + bi0vp, 0] + 5%@)
+ c40iedirk + c5(30ke + dirdir)k

= c1vv) + cavyvy, + c3(3v v + vy 4+ vv) + 20k0k) (11.75)
+ cadpek + c5(30ke + Ore)k
= vjvy(c1 + c2 + 5¢3) + kdge(ca + 2¢3 + 4cs)

Green'’s third formula reads (see Appen@hon p.207)
aijie = 200 (11.76)
Using Eq.11.76in Eq.11.73gives

200y = 3ervjvy + 2l 0] + c3(8i50i0) + 81500, + 800V’ + 030vjv})
+ (3cadje + c5(8i0i0 + 0;i0:0) )k

(11.77)
= 3cyv'v), ’Ue + 2c20,0k + 4C3’U )+ (3ca +2¢5)050)k
= vjvé(.?)cl + 4ez) + 650k(2c2 + 3ca + 2¢5)
Equationsl1.75and11.77give four equations
c1 +c2+ 563 = 0, cq4 + 263 + 465 =0 (1178)
3c1+4c3—2=0, 2co+3cs4+2c5=0
for the five unknown constants. Let us express all constantswhich gives
4eq + 10 3co + 2 50cs + 4 20co + 6
= — =— = =—— (11.7
C1 11 ’ C3 11 ) Cq 55 ’ Cs 55 ( 9)
Inserting Eq11.79into Eq.11.73and11.65gives
0y, 0vy,
Gijo2 = z]kéa 2 = (aijre + ajiké)a_xe
— 07, 0v; O, Oy,
cl(v}véa—vaz’-vga—)Jch(/ 8—+ /;Caz) e
——0v,  ——07; 8 8 8vk (11.80)
+c3 26”ka5 "+ 6_ + v 5
J7; 81} 0v v
k/’ K3 j k J K3
+ca ( )+ Cs (3$i+8xj)

We find that thez; term and the second and third part of #heterm can be merged.
Furthermore, the, term and the third and fourth part of the term can be merged as
well as thec, andcs terms; using Eql1.78we get

co+8 8ca — 2 6co + 4 4 —60c
Bijo = ———— Py — — i+ P* 4+ ———k5;;
11 11 11 55
0w on (11.81)
D;; = vvka—fv o,
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LRR model | LRR-IP model
c1 (Eq.11.50 1.5 1.5
ce (EQ.11.82 0.4 —
ce (Eq.11.83 — 0.6

Table 11.1: Constants in the LRR and LRR-IP pressure-stnaitels.

Finally we re-write this equation so that it is expressedate-less tensors

co+ 8 2

8¢y — 2 2 .\ 60c;—4
. Dij — 20, P* ) — 22" 15,
LT ( i~ 3% > 55 Lo

(11.82)

wherecy = 0.4. Note that®;; = 0 as we required in EqL1.74 This pressure-strain
model is called the LRR model and it was proposeditj.[

All three terms in Eql1.82satisfy continuity and symmetry conditions. It might
be possible to use a simpler pressure-strain model using@oary two terms. Since
the first term is the most important one, a simpler model has ipeoposeddl, 22]

2
Dij2 = —cap (Pij - §5ijpk) (11.83)

It can be noted that there is a close similarity between thigaRoodel and EqL1.83
both models represent “return-to-isotropy”, the first eegwed irvjv} and the second
in P;;. The model in Eq11.83is commonly called the IP model (IPsdtropization
by Production) . Since two terms are omitted we should expedtttiebest value of
~ should be different thafc; + 8)/11; a value ofy = 0.6 was 2 = —1.4) found to
give good agreement with experimental data. SincelH83is a truncated form of
Eq. 11.82it does not satisfy all requirements that Bq..82do. Equatiorl1.83does
satisfy symmetry condition and continuity but it does ndis$a the integral condition
in Eq.11.76 Although Eq.11.83is a simpler, truncated version of Ef1.82 it is
often found to give more accurate resule§][ Since the IP model is both simpler and
seems to be more accurate than E§.82 it is one of the most popular models of the
rapid pressure-strain term. The coefficients for the slod @pid terms in the LRR
and LRR-IP models are summarized in Tablel

11.7.6 Wall model of the pressure-strain term

When we derived the rapid pressure-strain model using Gréanction in Eq.11.61
we neglected the influence of any boundaries. In wall-bodreitenains it turns out
that the effect of the walls must be taken into account. Bo¢rapid term in the LRR
model and the IP model must be modified to include wall moalglli

The effect of the wall is to dampen turbulence. There are tainmeffects whose
underlying physics are entirely different.

1. Viscosity. Close to the wall the viscous processes (viscous diffuaiahdissi-
pation) dominate over the turbulent ones (production argldent diffusion).

2. Pressure When a fluid particle approaches a wall, the presence of #tldsifelt
by the fluid particle over a long distance. This is true for adfjparticle carried
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T2

Z1

]

Figure 11.4: Modelling of wall correction in pressure-gtreerms.

by the wind approaching a building as well as for a fluid péeticarried by a
fluctuating velocity approaching the wall in a turbulent bdary layer. In both
cases itis the pressure that informs the fluid particle oftesence of the wall.

Since the pressure-strain term includes the fluctuatingspire, it is obviously the
second of these two processes that we want to include in thengdel. Up to now
we have introduced two terms for modelling the pressurairsterm, the slow and the
fast term. It is suitable to include a slow and a fasil model term, i.e.

Qij = Pij1 + Pij2 + Pijiw + Pij2w (11.84)

where subscripty denotes wall modelling.

Consider a wall, see Fid.1.4 The pressure fluctuations dampens the wall-normal
fluctuations. Furthermore, the damping effect of the wadkgti decrease for increasing
wall distance. We need to scale the wall-normal distanchk aitelevant quantity and
the turbulent length scal&?/? /¢, seems to be a good candidate. For the wall-normal
fluctuations, the IP wall model read?/|

Do21w = *QClw%U/QQ

X (11.85)

- 2.550; (|2 — i w|)e

f

wherez; — z;,, andn,;,, denotes the distance vector to the wall and the unit wall-
normal vector, respectively. As explained above, this damjs inviscid (due to pres-
sure) and affects the turbulent fluctuations well into theedegion. It has nothing to do
with viscous damping. Away from the wall, in the fully turlgut region, the damping
function goes to zero since the distance to the wall £ z; .,|) increases faster than
the turbulence length scalk?/? /<. In the viscous region the wall model terdys 14,
is not relevant since it should account only for inviscid gémg. Functionf should
not exceed one.

The IP wall model for the wall-parallel fluctuations read

Q11,10 = P33,10 = Cm%v_g (11.86)

The requirement that the sum of the pressure strain termiéhewzero. i.e®;; 1, =
0, is now satisfied SiNC®11,1,) + P22.10 + P33,10 = 0.
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The wall model for the shear stress is set as

Do = fgclw%vivéf (11.87)
The factor3/2 is needed to ensure th@t; 1, = 0 is satisfied when the coordinate sys-
tem is rotated. You can prove this by rotating the ma@®ix 1., P12,1w; 21,10, P22,1w]
and taking the trace @b in the principal coordinates system (i.e. taking the sunief t
eigenvalues).
The general formula for a wall that is not aligned with a Csida coordinate axis
reads P4

€ [—— P
Q1w = Clwy <v§€v4nnk,wnm,w5ij - §v;v§nk,wnj,w - §v§€v§-m,wnk,w f
(11.88)
An analogous wall model is used for the rapid part which reads

3 3
Dijow = Cow (q)km,an,wnm,w(sij - §¢ki,2nk,wnj,w - §(I)kj,2ni,wnk,w f
(11.89)

11.8 Thek — ¢ model

The exactk equation is given by EdL1.21 By inserting the model assumptions for
the turbulent diffusion (Eql1.33, the production (Eql1.32 and the buoyancy term
(Egs.11.28and11.29 we get themodelledequation fork

8]{3 o 8k v <8@i+817j> 81‘)i+gﬂyt 85
bt oy, Bt
ot J O0x; Oxz; Ox; ) Ox; oy Ox; (11.90)
e O, ) 9K
O0x; o) 0z;
In the same way, the modellecequation is obtained from EG1.26
%4»@'&*56 U 8@i+<%]— 8@1'
ot Jox; k- '\0x; Oz ) ox,
J (11.91)
g En 90D m e
Cglglk 0 01; ce2 k Ox; v 0. ) Ox;
The turbulent viscosity is computed as
2
vy = cuk— (11.92)

€

The standard values for the coefficients read

(CusCe1, Ce2, 05, 0:) = (0.09,1.44,1.92,1,1.3) (11.93)
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11.9 The modelledjv} equation with IP model

With the models for diffusion, pressure-strain and disgrawe get

v,
_ 7 .
Uk, = (convection)
8:ck
v 0v
Y J ! 0! ? 3
—vjvp - — vy, (production)

0
e S (o — 25, e 1 t)
01]{3 vjU; 50 (slow par
2 & .
—co | Pij — géijp (rapid part)

€ ! o 6 3 !,/
—l—clwa [ VLV kM 0 — 2 ViV

—=viv, nEn; wall, slow part
9V KTk ]f ( p ) (1194)
3
+cow [ Phm,2MkMm 0ij — §(I)ik,2nknj

3
——® i ongn; |f  (wall, rapid part)

2
0%l
(i . d.ﬁn .
+V78$k On (viscous diffusion)
0 k Ovlv!
+8— ck VLU, _8—j (turbulent diffusion)
Tk E OTm

—giBvi0 — g; BW (buoyancy production)
2

- §E5ij (dissipation)

11.10 Algebraic Reynolds Stress Model (ASM)

The Algebraic Reynolds tgess_Mbddel is a simplified Reynolds Stress Model. The
RSM andk — ¢ models are written in symbolic form (see§0 & 82) as:

RSM : Cij — Dij = Pij +(I)ij — &ij

11.95
k—e: C*F—DF=pPF_¢ ( )

In ASM we assume that the transport (convective and dife)sof v;v; is related to
that ofk, i.e.

A
Cij — Dy = Uzl:] (Ck —Dk)

Inserting Eq.11.95into the equation above gives

!
Pyj + ®ij —eij = —2L (P* —¢) (11.96)

Thus the transport equation (PDE) f@ has been transformed into atgebraic
equation based on the assumption in E§ 95
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Now we want to re-write this equation as an equatiomil’T)g. Insert the IP models
for ®;;,1 (Eg.11.50 and®;; » (Eq.11.83 and the isotropic model far;; (Eq.11.49
in Eqg.11.96and multiply byk /e so that

k —— 2 k 2 i 2
gPij — C1 <v£v§- — g(swk) — ng (Rg — §5z]Pk) — g(swk

~
~

k VU
+ (Pij1w + Pij2w) =

N
<

(P"—¢)

Collect allvjv} terms so that

k 2 2
- |:]Dij —C2 <Pij - §5ijpk> + Pij1w + q)ij,Qw:| §5ijk(*1 + 1)

2
j3 + g(SZ]k(Pk/E 714’61)

2 2
Pyl —0i;=P% |- 2 <]Dij - §5ijpk> + Pij 1w + Pij 2w

where(2/3)4;; P*k /e was added and subtracted at the last line (shown in boxes). Di
viding both sides byP* /e — 1 + ¢; gives finally

- _ 2 k(1 —c2) (Pij — 206, P%) + @510 + Pij2w
c1 + Pk/&‘ -1

(11.97)

In boundary layer flow EqlL1.97reads

6171+62Pk/€ k_2@
(c1 — 1+ Pk/e) e Oy

Cu

%(1 762)

VAP -
—U1Vy =

As can be seen, this model can be seen as an extension of avieddgity model
where ther,, constant is made a function of the rafy /e.

11.11 Explicit ASM (EASM or EARSM)

Equation11.97is animplicit equation fonfvg., i.e. the Reynolds stresses appear both
on the left and the right side of the equation. It would of s@ube advantageous to
be able to get aexplicit expression for the Reynolds stresses. P& fnanaged

to derive an expliciexpression for ASM in two dimensions. He assumed that the
Reynolds stress tensor can expressed in the strain-raterier);, and the vorticity
tensorf;;. Furthermore, he showed that the coefficietits?, in that expression can
be a function of not more than the following five invariants

(k?/e*)5i5550,  (k*/€*)QujQi, (K /€%)5155j15ns (11.98)
(K /&) Qnsni, (k")) Qi Qe SomSmi |

In two dimension the expression reads

— 2 k2 k3 ~ _
’Uévé = gk’(sij + G(l)?gij + +G(2)€_2(§ik9kj — Qikgkj) (11-99)
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T2

Figure 11.5: Boundary layer flow.

In general three-dimensional flow, the Reynolds stressotethspends on 10 ten-
sors,T;} [29], i.e.

_ 1
1 _ ¢ . 3 3 _z. 3 5.5
Tj = sij, T = 585 — 568,  T5j = SikSkj — §5ij8ik8ki

.

_ s A o
0ij ik Qi Ty = QikSkmSmj — SimSmkSlj

_ _ _ _ 2 _ _
6 _ _ _
T = QiQOkSkj + SikaQOj - g(sijmekaSkp
7 0. = O O O O e 8 = O = = = = 0. =
T, = Qimsmkﬂknﬂnj - QiQOksannja T = SiQOkSknsnj - Simskaannj
9 =~ =~ _ _ S A =~ =~ _
T = QiQOkSknsnj - Simskaannj - g(sijmekasannp

10 5 5. 0 0 Sk Snp
155" = Qim SmkSkn QnpSlp; — Qim QimkSkn Snpflp;

(11.100)

whereT;: may depend on the five invariants in Bd..98 Equationl1.100is a general
form of a non-linear eddy-viscosity model. Any ASM may betean on the form of
Eq.11.100

It may be noted that Edl1.100includes only linear and quadratic terms f
and(;;. That is because of Cayley-Hamilton theorem which states ahsecond-
order tensor satisfies its own characteristic equation $&tion 1.20 in19]); hence
cubic terms or higher can recursively be expressed in li(ggrand quadratic tensors
(5i%5k;). Furthermore, note that all terms in ElL.100are symmetric and traceless as
required by the left sideyiv’; — 20;;k/3.

11.12 Boundary layer flow

Let us study boundary layer flow (Fig1.5 wherev, = 0, ©; = v1(x2). In general
the production?;; has the form:
o,

7
VU
J k@xk

s
P = —vvl —L
L i kaxk
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In this special case we get:

—0v;
Py = — 20l —+
1 U1U28$2
— 00
Pip = —uf L
12 2 8:172
Py =0

Is v_f zero because its production tetfh, is zero? No! The sympathetic terfi;;
which takes from the rich (i.e»7?) and gives to the poor (i.ev}?) saves the unfair
situation! The IP model fo®;; ; and®;; » gives

2 -
(1322,1 = 01E (—k/’ — ’1}52) >0

k\3
1 2— 01
@22,2 = ngpu = _02§UI1U/28—:172 >0

Note also that the dissipation term for thig} is zero, but it takes the valug for the

o2 andv2 equations (see 86). Since the modelled, v}, does not have any dissipation
term, the question arises: what is the main sink term in{hé equation? The answer
is, again, the pressure strain tedry; ; and®;; ».

12 Reynolds stress models vs. eddy-viscosity models

In this section we present three fundamental physical psE®Which Reynolds stress
models are able to handle whereas eddy-viscosity modéls Tdie reason for the
superiority of the former model is in all cases that the piittun term is treated exactly,
whereas it in eddy-viscosity models is modelled.

12.1 Stable and unstable stratification

In flows where buoyancy is dominating, the temperature hasge leffect on the tur-
bulence through the buoyancy tei@);, see Eq11.10 If the temperature increases
upwards (i.e.00/0x3 > 0), then the flow isstably stratified. This is illustrated in
Fig. 12.1 Considerdd/dx3 > 0. This means that the density decreases with increas-
ing vertical height, i.edp/0x3 < 0. If a fluid particle is displaced from its equilibrium
level 0 up to level2, see Figl2.1 it is heavier then the surrounding at this new level
(po > p2). Hence, the buoyancy forces the particle back to its osiigiosition0. In
this way the vertical turbulent fluctuations are dampenéuahil&ly if a particle origi-
nating at leveD, is moved down to level. Here it is lighter than its new environment,
and hence buoyancy makes it to move make to its original [evel

For the case ofinstable stratification, the situation is reversed. Cold fluid is
located on top of hot fluid, i.e96/0z5 < 0 anddp/dz3 > 0. In Fig. 12.1we would
then havep, > po. If a fluid particle at leveD is displaced upwards to leve| it is
at this location lighter than its new environment; henceittinues to move upwards.
If it is moved down to levell it is heavier than its new environments and it will then
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éz > 90 Dl

A 2
P2 < po N
I F
e 0 90/dx3 > 0
NN 0p/dxs <0
F T3
él < éo 1
P1 > po U

Figure 12.1: Stable stratification due to positive tempagagradientd/dzz > 0.

continue downwards. Hence, turbulent fluctuations are ecdth This flow situation
is calledunstable stratification.
The production term due to buoyancy reads (seelEdLQ

Ga3 = 2gPv40’ (12.1)

sinceg; = (0,0, —g). From the equation for the turbulent heat fluk¢’ (i.e. Eq.11.19
with 7 = 3), we find the production term far; 6’

— —— 003
Py = —vhv! — — 0,0/ —
3 ka$k k 8$k

In the case illustrated in Fidl2.1 the production term due to temperature gradient
readsPsy = —v200/0x3 < 0 (recall that we assume that buoyancy dominates so that
the first term in Eql2.2is much larger than the second one). Since the main source
term in thev4#’ equation,Psy, is negative, it makes,§’ < 0 so thatGss < 0 (see
Eq.12.7). Thus, for the case illustrated in Figj2.1 we find that the production term,
(33, due to buoyancy yields a damping of the vertical fluctuatias it should.

Note that the horizontal turbulent fluctuations are not @tfd by the buoyancy
term,G;;, sinceG11 = Ga2 = 0 because the gravity is in the; direction (i.e.g; =
g2 = 0).

If the situation in Fig12.1is reversed so thatf/dx3 < 0 the vertical fluctuations
are instead augmented. This is calletstably stratified conditions.

When eddy-viscosity models are used, transport equatieasaally not solved
for v;0’. Instead the heat flux tensor is modelled with an eddy-vigcessumption
using the Boussinesq assumption, see Fg28 The buoyancy termG*, in the k
equation reads, see Ebl.10(take the trace ofy;; and divide by two)

(12.2)

G* = 0.5G;; = —g:pvl0’ (12.3)

Forg; = (0,0, —g), itreadsG* = gSuv50’ which with Eq.11.28gives

Gt = —gp——=— (12.4)
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Figure 12.2: Flow in a polar coordinate system illustratitigegamline curvature. The
streamline is aligned with th@axis.

<

U1 streamline

Figure 12.3: Streamline curvature occurring when the floprapches, for example, a
separation region or an obstacle.

Hence it is seen that in stably stratified conditio6, < 0 as required. The differ-
ence between an eddy-viscosity model and a Reynolds stiedsins that the former
reduces: whereas the latter reduces only the vertical fluctuations.

12.2 Curvature effects

When the streamlines in boundary layer flow have a convexaturg, the turbulence
is stabilized. This dampens the turbulen2é,[27], especially the shear stress and
the Reynolds stress normal to the wall. Concave curvatustabdizes the turbu-
lence. The ratio of boundary layer thicknesso curvature radius? is a common
parameter for quantifying the curvature effects on theulahce. The work reviewed
by Bradshaw 26] demonstrates that even such small amounts of convex cuevas
d/R = 0.01 can have a significant effect on the turbulence .28 fhey carried out an
experimental investigation on a configuration simulating low near a trailing edge
of an airfoil, where they measuréd R ~ 0.03. They reported a 50 percent decrease
of pvi? (Reynolds stress in the normal direction to the wall) owiogtrvature. The
reduction ofpv?? and— pv/ v}, was also substantial. In addition they reported significant
damping of the turbulence in the shear layer in the outergfatte separation region.
An illustrative model case is curved boundary layer flow, Beg 12.2 A polar
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OVy/Or >0 | 9Vy/0r <0
convex curvature | stabilizing | destabilizing
concave curvature | destabilizing| stabilizing

104

Table 12.1: Effect of streamline curvature on turbulence.

coordinate system — 6 with 6 locally aligned with the streamline is introduced. As
vg = vg(r) (with dvg/0r > 0 andwv, = 0), the radial inviscid momentum equation
degenerates to

P _ 9 _

r or

Here the variables are instantaneous or laminar. The degatiforce exerts a force in
the normal direction (outward) on a fluid following the stndae, which is balanced
by the pressure gradient. Since we have assumedth#br > 0, Eq.12.5shows that
the pressure gradient increases withlf the fluid is displaced by some disturbance
(e.g. turbulent fluctuation) outwards to level A, it encaensta pressure gradient larger
than that to which it was accustomed-at rg, as(vg) , > (vs),, which from Eq.12.5
gives(0dp/or) 4 > (0p/0r),. Hence the fluid is forced back to= r,. Similarly, if
the fluid is displaced inwards to level B, the pressure grad&smaller here than at
r = ro and cannot keep the fluid at level B. Instead the centrifugyakf drives it back
to its original level.

Itis clear from the model problem above that convex cungtwhenduvy /9r > 0,
has a stabilizing effect on (turbulent) fluctuations, astéa the radial direction. It is
discussed below how the Reynolds stress model respondeéordine curvature.

Assume that there is a flat-plate boundary layer flow, see T The ratio of
the normal stresses? to pvZ? is typically 5. At onez; station, the flow is deflected
upwards. How will this affect turbulence? Let us study tHfee&tfof concave streamline
curvature. The production ternfy; owing to rotational strainsiv /0z2, 9v2/0x1)
can be written as (see Ef1.10:

(12.5)

_ v
RSM, v —eq.: Py = —20 0% (12.6a)
8$2
—_ —= 0o — 00
RSM, vjvh —eq.: Pig = —v'fa—zl — vfa—xz (12.6b)
2 7 /81_]2
RSM, vf" —eq.: Poy =|—2vjv)— (12.6¢)
(’)xl
oo, (05, |\
k—e Ph=y |20 |22 (12.6d)
8x2 8:171

The terms in boxes appear because of the streamline cuevatur

As long as the streamlines are parallel to the wall, all potidn is a result of
071 /0x2. However as soon as the streamlines are deflected, thereareterms
resulting fromdvs /0x;. Even if 002 /0x1 is much smaller tha®dv, /0, it will still
contribute non-negligibly td» aspv;? is much larger thapv’?. Thus the magnitude
of P will increase (- is negative) adv,/dx1 > 0. Anincrease in the magnitude of



12.3. Stagnation flow 105
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Figure 12.4: The velocity profile for a wall jet.

P will increase—v’, v/, which in turn will increaseP;; andPss. This means thaiv’?
1Y2 1

andpv?? will be larger and the magnitude & will be further increased, and so on.
It is seen that there is a positive feedback, which contislyoncreases the Reynolds
stresses. The turbulencedsstabilizeawing to concave curvature of the streamlines.
Note than eddy-viscosity models suchkias ¢ andk — w models cannot account for
streamline curvature since the two rotational straing,/0z, and 0v/dx1, in the
production term are multiplied by the same coefficient (tivbtlent viscosity).

If the flow (concave curvature) is a wall jet flow whede, /0z2 < 0 in the outer
part (see Figl2.4) the situation will be reversed: the turbulence will &tabilized If
the streamline (and the wall) is deflected downwards, thetan will be as follows:
the turbulence is stabilizing whéet, /0z2 > 0, and destabilizing fobv; /0x2 < 0.

The stabilizing or destabilizing effect of streamline cattwre is thus dependent on
the type of curvature (convex or concave), and whether tisear increase or decrease
in momentum in the tangential direction with radial distaricom its origin (i.e. the
sign of9V, /Or). For convenience, these cases are summarised in Tadlelt should
be noted that concave or convex depends on from which tharsliree is viewed. The
streamline in Fig12.3 for example, is concave when viewed from the wall but convex
when viewed from the orig of the circle with radius

It should be mentioned that one part of the effect of curveshstlines in Eq12.6
is due to the transformation of the advective term of@—equation (cf. polar coordi-
nates where additional terms appear both in the momentuatiegs and the transport
equation forvjv?). In [29 they proposed a correction term to take this effect into
account.

12.3 Stagnation flow

Thek — £ model does not model the normal stresses properly, wher8&8/RSM do.
The production term in thé equations for RSM/ASM an#él — £ model in stagnation
flow (see Fig12.5 due to0v; /0x1 anddvy/dxs is:

o0 —/28’172 _ o0

RS 0.5 (P11 + Ps2) vy 0z, v g P (vF — vf?) ( )
81_)1 2 81_)2 2
—e: PP =2m 0 (5= - 12,
e ”t{(azl) +(ax2 (12.8)
where continuitydv, /0x; = —Jvy/dz2 has been employed. In RSM, the two terms

are added with sign. In thle— ¢ model, however, the production will be large because
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Figure 12.5: The flow pattern for stagnation flow.

the difference in sign of the two terms is not taken into actou

12.4 RSM/ASM versusk — € models

e Advantages withk — ¢ models (or eddy viscosity models):

i) simple due to the use of an isotropic eddy (turbulent) viggos

i) stable via stability-promoting second-order gradienth@mean-flow equa-
tions

iif) work reasonably well for a large number of engineering flows
e Disadvantages:

i) isotropic, and thus not good in predicting normal stres@s@,@
i) as a consequence it is unable to account for curvature effects

iii) as a consequence Bfit is unable to account for irrotational strains (stag-
nation flow)

iv) in boundary layers approaching separation, the produdiento normal
stresses is of the same magnitude as that due to shear st@@se

e Advantages with ASM/RSM:

i) the production terms do not need to be modelled

i) thanks toi) it can selectively augment or damp the stresses due to cur-
vature effects (RSM is better than ASM because the conwetgims are
accounted for), boundary layers approaching separatigydncy etc.

e Disadvantages with ASM/RSM:

i) RSM is complex and difficult to implement, especially imgli&SM

i) numerically unstable because small stabilizing seconémaerivatives in
the momentum equations (only lamirdiffusion)

iif) CPU time consuming
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13 Realizability

There are a number of realizability constraints. The usualdnes are that all normal
stresses should stay positive and that the correlatiorficiesit for the shear stress
should not exceed one, i.e.

v2 >0 forall i

/0!
’Uin

E—VE
/! !
(v707)

These criteria are seldom used in RSMs. However, satisthi@fjrst criteria is actually
of importance for eddy-viscosity models in stagnation fl@d]] Assume that the flow
is in thez; direction and that it approaches the wall (see Eig.5. The Boussinesq
assumption for the normal stres@ reads (cf. Eq12.7)

< 1 no summation ovei andj, i # j (13.1)

— 2 0v 2
/U/12 = gk/’ — 2Vta—,;1 = gk/’ — 2Vt§11 (132)
1

Itis seen that ifs;; gets too large thent? < 0 which is unphysical, i.e. non-realizable.

Let’'s now briefly repeat the concept “invariants”. This meaomething that is
independent of the coordinate system. Here we mean indepénéirotation of the
coordinate system. If a tensor is symmetric, then we knowitheas real eigenvalues
which means that we can rotate the coordinate system sohthatft-diagonal com-
ponents vanish (see, e.gl9). For the strain tensor this means that the off-diagonal
components of;; vanish and this is the coordinate system where the diagamai ¢
ponents become largest (e.g.; in Eq.13.2). Thus this is the coordinate system in
which the danger of negativé® from Eq.13.2is largest. The equation for finding the
eigenvalues of a tensd@r;; is (see e.g.19 or [32])

|Cij = 6i5Al =0 (13.3)
which gives in 2D
C’11 - A C’12
=0 13.4
Co1 Caz — A (134

The resulting equation is
N —FPA+13P =0
P =Cy (13.5)
1
37 = 5(CiiCj; — CiiCij) = de(Cy)
Since the above equation is the same irrespectively of hewctiordinate system is

rotated, it follows that its coefficient§” andI3? are invariants.
In 3D Eq.13.3gives

Cii— A Cia Ci3
Co Co — A Co3 =0 (13.6)
C'31 032 033 - A
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which gives

NP 43PN -13P =0
P =cy

1 13.7
5P = 5(CiuCjj = CiyCyj) (3.7

1
Ig’D 5 (QCijCjkai —3C;;CCri + Ciicjjckk) = det(Cij)

The invariants ard;?, I3P andI3P.
Let's go back to Eql3.2and assume incompressible 2D flow. The first invariant
reads (cf. Eq13.95

TP =5 =51 +82=M+A=0 (13.8)

Itis zero due to the continuity equation. The second inveidés;; reads
3P = —5,5,5/2, (13.9)
(see Eq13.5 which is the same in all coordinate systems (hence the nanvafant”).

The solution to Eg13.5 using Eq.13.8 is

s o5 o\ 1/2
Nz = (~30)" = & (22 (13.10)

The eigenvalues of;; correspond to the strains in the principal axis. As discdisse
above, we apply Eql3.2in principal coordinate directions of;;. Hence,5;1; in
Eq.13.2is replaced by the largest eigenvalue so that

— 2
v = §k N (13.11)

The requiremend‘z_’l2 > 0 gives now together with E4.3.11
1/2
vy < o = k % (13.12)
3|)\1| 3 SijSij
In 3D, Eq.13.7instead of Eq13.5is used, and EdL3.10is replaced by31]

2§ij§ij /2
Pl =k (22 (13.13)

13.1 Two-component limit

Another realizability constraint is to require that wh@ approaches zero near walls,
it should do so smoothly. One way to ensure this is to reqhaéthe derivative of/?
should go to zero as? goes to zero, i.e.

"ol

— Dl
2 L 13.14
vt —0 = FoTa 0 ( )

whereD/ Dt denotes the material derivative (think of E.14in Lagrangian coordi-
nates, i.e. we follow a fluid particle as it approaches thd)wgly. 13.14requires that
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whenv/? approaches zero, the left side (and thus also the right sidée transport
equation ofv/?> should also do so. Since we are here concerned about thaipress
strain term, we’'ll take a look at how it behaves near walls whg — 0. This is
of some relevance in near-wall turbulence where the walinab stress goes to zero
faster than the wall-parallel ones: this state of turbuéeisacalled the two-component
limit [ 33]. Neither the form of®;; » in Eq.11.83nor Eq.11.82satisfy the requirement

that®ss » = 0 whenv?2 = 0 [20]. In Eg.11.83 for example,
2 k
(1322,2 — WgéuP (1315)

Very complex forms ofb;; » have been propose@4] [CL96] which include terms cu-
bic invjv?. The CL96 model does satisfy the two-component limit. Aeotidvantage
of the CL96 model is that it does not need any wall distancédsglwis valuable in
complex geometries.

The models of the slow pressure-strain in Ed.50(linear model) and Eql1.56
(non-linear model) do also not satisfy the two-componenitli The Rotta model, for
example, gives

2
Do 1 — CngE (13.16)

The only way to ensure this is to make — 0 when the wall is approached. A
convenient parameter proposed BJ][is A which is an expression oA, and A3 (the
second and third invariant af ;, respectively), i.e.

9
Ag = Q45 Qjs, A3 = Q5 QjkOks, A=1- g(AQ — A3) (1317)
The parameted = 0 in the two-component limit aneél = 1 in isotropic turbulence.

Thus A is a suitable parameter to use when damping the constaas$ the wall is
approached.

14 Non-linear Eddy-viscosity Models

In traditional eddy-viscosity models the turbulent stregs; is formulated from the
Boussinesq assumption, i.e.

aij = 721/t%
L _L(on oy (14.1)
Sis — =

J 2 8acj (’)xl

where the anisotropy tensor is defined as

vivh 9
Qi = ij — géu (142)

The relation between the stresg’; and the velocity gradient in E44.1is, as can
be seen, linear. One way to make eddy-viscosity models mamergl, is to include
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non-linear terms25]. A subset of the most general form read$§][

a;; =|—2c,T5;;

N o
(Szkskj - —Szzcsék5zg) + 27 (QuikSis — Sinuj)

9
+ c57° (Qzéﬂémsmj + 5 QemQmj — _anﬂnlsem(sZJ)

+arT

+ e | QueQyn — —Qékﬂék%) + s (SinSreQl; — QioSen5ny)

(14.3)

+ 6T k050515 + e Qe Qo5
o 1/ 0 8’173'
E 2 8:17]' 8:171

wherer is a turbulent time scale; for a non-lindar- ¢ modelr = &/, and for a non-
lineark — w modelr = 1/w. The tensor groups correspond to a subset ofIRL00

2

Line 1: 7L

ijr
Line 2: T;% andT},

Line 3: T;% andT;)

Line 4: T}

Line 5: T}, multiplied by the invariantsysx, andQy,Qxe

The expression in Eql4.3is cubic in 07;/0x;. However, note that it is only
quadratic ins;; and€;;. This is due to Cayley-Hamilton theorem which states that a
tensor is only linearly independent up to quadratic terres,[s89; this means that, for
example,§§j = 5;15K05¢; Can be expressed as a linear combinatio?fpf: 515k and
Sij-

ai; 1S symmetric and its trace is zero; it is easily verified thad tight side of
Eq. 14.3also has these properties. Examples of non-linear modefsgigmes also
calledexplicitalgebraic Reynolds stress models, EARSM) in the literadueghe mod-
els presented in3p, 37, 35, 38]. EARSMs are very popular — especially the model in
[38] — in the aeronautical community where explicit time-manchsolver are used.
They are computationally cheap, more accurate than linddy-giscosity models and
they don't give rise to any numerical instabilities as in linip solvers (like SIMPLE).

In implicit solvers a large turbulent viscosity in the digion term of the momentum
equations is needed to stabilize the solution procedure.
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Let’s take a closer look on Ed.4.3in fully developed channel flowog = o5 =
9/0xy = 8/dx3 = 0); we obtain

1, (00’
ayp = —T2 <ﬂ> (Cl +662 +63)

12 8$2
1 1\ >
99 = —T2 i (Cl — 6¢co + 03)
12 81'2
5 (14.4)
ass = —17'2 90 (1 + c3)
33 — 6 81'2 1 3
o 41 L 4 (0m 3( oot en)
aig = — - — —c5 + ¢+ ¢
12 a o 8:52 5 6 7
Using values on the constants as 89[ i.e ¢c; = —0.05, co = 0.11, ¢3 = 0.21,
¢y = —0.8¢c; =0,c6 = —0.5ande; = 0.5 we get
0.82 5 (90 P 2082 91\~
= - = —k iy S (et
D <5$2 U BT D2
—05 , (01> — 2 05 o1\’
TS 2 (a—ul) = o} = gk — EkTQ <8—U1)
2 2 (14.5)
e 2016 5 (001 ISR (Y L 2
AT D "3 12 D
o = —c k 001
127 ME 8$2

We find that indeed the non-linear model gives anisotropiotab Reynolds stresses.

In Egs.14.4and 14.5we have assumed that the only strairdig /0x2. When
we discussed streamline curvature effects at@b we found that it is important to
investigate the effect of secondary strains such@gdx;. Let's write down Eql14.3
for the straindv, /01

1 0v
a11——27' ( 2) 61—602+C3)

8:r1
ov
az2 = 757 (8;) c1 + 6ca +c3)
! (14.6)
a *717'2 vz c+c)
33 — 6 al’l 1 3
1 0
a2 = —ZTS (sz) (c5 +c6 + c7)
Inserting with values on the constants fro8%] (see above) we obtain
ayy = 05 (002
=717 \on
0.82 , (912
- _—= 14.7
2= (8x1) (4.7

016 , (00 2
= E— = 0
as3 12 (3IE1 , a12
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As can be seen the coefficient fas, is larger than that in Eql4.5 and hence the
model is slightly more sensitive to the secondary st&in/0z, than to the primary
onedv; /Oxs. Thus, the non-linear models are able to account for stiearlrvature,
but due to the choice of constants so that- cg + c; = 0 this effect is weak.

15 The V2F Model

In the V2F model of B9, 40, 31] two additional equations, apart from theand -
equations, are solved: the wall-normal stre§sand a functionf. This is a model
which is aimed at improving modelling of wall effects on thetiulence.

Walls affect the fluctuations in the wall-normal directiof?, in two ways. The wall
damping ofv? is felt by the turbulence fairly far from the walk{’ < 200) through the
pressure field whereas the viscous damping takes placenviithiviscous and buffer
layer @3 < 10). In usual eddy-viscosity models both these effects arewawted for
through damping functions. The damping@ is in the RSM accounted for through
the modelled pressure-strain terds; 1,, and®;2 2, (See Eqs11.88and Eq.11.89.
They go to zero far away from the wall.

In the V2F model the problem of accounting for the wall dangpjxh@ is simply
resolved by solving its transport equation. T@ equation in boundary-layer form
reads (see E®.16at p.71)

OprvlE  Dpuavl: D NE | o
%;12 pa;; = 92y [(u + pir) 8—:17221 — 2050p' /02 — pery - (15.1)

in which the diffusion term has been modelled with an eddcosity assumption, see
Eq.11.40at p.86. Note that the production terih, = 0 because in boundary-layer
approximations, < 7 andd/dx; <« 0/0x2. The model for the dissipatiof,; is

taken as .
model UéQ
€22 =5

Add and subtractji°?! on the right side of EqL5.1yields

€

Opv1vlE  Opigvy

8$1 8$2 -
_] S — (15.2)

0 ov? —_— v v
- — L O _ 2 o p2
D2s l(wrut) s vy0p' /Oy — pezz + p-e = p -
In the V2F modelP is now defined as

/2

0
P = —=vhop'/0xs — 22 + %E (15.3)
p

so that Eq15.2can be written as

12

+pP — p%g (15.4)

ap@l@ (91)772@_ 0 vl

v 2
(9%1 8x2 o 8:172 l(ﬂ+ﬂt) 8:172
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P is the source term in th@-equation above, and it includes the velocity-pressure
gradient term and the difference between the exact and tlieied dissipation. Note
that this term is commonly split into the pressure-straimtand a diffusion term as

oty
W0p J0ws = =2 pou,jox,
8$2
Physically, the main agent for generating wall-normal sdres indeed the pressure-
strain term via re-distribution, see example in Sectidnl 2
A new variablef = P/k is defined and a relaxation equation is formulatedfor
as

(15.5)

3/2 3\ 1/4
LCLmaX{k—,C’77 <V—) }
5 5

where®,; is the IP model of the pressure-strain term, see Ef<50and11.83 the
first term being the slow term, and the second the rapid terne. ¢bnstants are given
the following valuesc, = 0.23, Cr =6, co1 = 1.44, c.o = 1.9, 0, = 0.9, 0. =
1.3, Cy = 1.3, C», = 0.3, O, = 0.2, C,, = 90.
The boundary condition fof is obtained fromy%? equation. Near the wall, the?

equation reads

2,,/2 12
881)5 ke vy

x5 k
Near the wall, Taylor analysis gives= 2vk/z3 [5]; using this expression to replace
kin Eq.15.6gives

O=v

. (15.6)

2,12 2 0112
0= 0°vy  fexs 205

03 212 3
Assuming thatf ande are constant very close to the wall, this equation turns émto
ordinary second-order differential equation with the siolu

(15.7)

4
Lo

2012

— B
v’22:Ax§+m——€f
2

Since@ = O(z4) asz2 — 0, both constants must be zero, i®#= B = 0, so we get

2002 v2
f=- 2 (15.8)
€ x5

For more details, see[]. o
Above we have derived th&? equation in boundary layer form assuming that

is the wall-normal coordinate. In general, three-dimenaldlow it reads
dpvjv® 0

— |(u+ )8—”2 +pfk— v, (15.9)
8xj _8xj H He ij p pk '
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Figure 15.1: lllustration of EqL5.12

In the V2F model a transport equation for the normal stresmabto walls is solved.
If the wall lies in thez; — x3 plane, thenv? = v%2. However, if a wall lies in the
xo — x5 plane, for example, this means that the transport equation’f is turned
into an equation for{?, i.e. v* = v{2. This is done automatically since in the general
formulation in Eq.15.9 0v;/0x5 in the expression foPy, is replaced byP”. If the
wall lies in thezs — x5 plane the largest velocity gradient will b&, /01 or 0U3 /0.
Why does the right side of EdL5.5 has the form it has? Far from the wall,
the source term in the’?-equation simplifies tabso plus isotropic dissipation (see
Eqg.15.1). This is what happens, because far from the wall whgf/dz3 ~ 0, and
Eq.15.5yields (" = k/¢)

kf =P — ®oy + (v /k —2/3) (15.10)

When this expression is inserted in Bdp.4we get

dpv1vl N dpiovl D

v 2
8$1 8$2 o al’g [(u * 'ut) al’g

12

2

which is the usual form of the modelled?-equation with isotropic dissipation. Thus
the f equation acts so as to I¢gtgo from the value of its source term to its (negative)
wall value (see EqlL5.8 over lengthscald.. This is how the reduction of the source
termP in Eqg.15.4is achieved as the wall is approached. The behavior of thatiqu
for f (Eqg.15.9 for different right sides is illustrated in the Fifj5.1where the equation
2
L28—‘£ff+5:0 (15.12)
0x3

has been solved witfi = 0 at the wall and with different andS.

As can be seery; is, as required, reduced as the wall is approached. Furtirerm
f approaches the value of the source termas- L. The influence of the lengthscale
L is nicely illustrated: the largeL, the further away from the wall doeggo to its
far-field value.
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In the V2F model the turbulent viscosity is computed from
v = CLo2T (15.13)

The k ande-equations are also solved (without damping functions)t demve-
nience, the boundary conditions are given again

k=0, v2=0
. 2
€= 2wkjz; (15.14)
2012012
f = - 42
ey

The boundary condition fof makes the equation system numerically unstable.
One way to get around that problem is to solve both the andvZ?, f equations
coupled §1].

An alternative is to use th¢ — f model 42] which is more stable. In this model

they solve for the ratio!? /k instead of forv;? which gives a simpler wall boundary
condition for f, namelyf = 0.

15.1 Modified V2F model

In [43] they proposed a modification of the V2F model allowing thaple explicit
boundary conditiory = 0 at walls. They introduced a new variable

f*=f—5ev?/k?

and they neglected the term
—5L2 o2 ﬁ
(’):cjaxj k2

The resultingy’? and f*-equation read43]

ovjv? 0 ov? v?
= — — kf*—6— 15.15
(’)xj (’)xj |:(V + Vt) 8$J:| + f 6 k ¢ ( )
o%f* 1 v 2 PF
_L27 * _ y = -1 s
0,01, +f T |:(C1 6) A 3(01 ):| + Oy A
dv;  0v;\ 0y
k _ 1 J i
P = e (8!17] + 8:1:1) ij
(15.16)

k v\ 1/2
T:maX{E’G(E) }
3/2 3\ 1/4
LC’LmaX{k—,C77 <V—> }
€ €

Boundary conditions at the walls are

E=0,02=0
e =2vk/x3
fr=0

This modified model is numerically much more stable. Note tha modified model
is identical to the original model far from the wall.
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15.2 Realizable V2F model

The realizable condition for stagnation flow (se&@7) is used also for the V2F model,

and they read43]
T = min [E, 0'67]{ — 1/2]
& V60,2 (5455:) (15.17)
3/2 13/2 ’
L = min ,
[ € \/ECMUQ (28ij8ij)1/21

These realizable conditions have been further investigayeSveningssom[l, 44, 45,
46, 47], and it was found that the limitation dfi is indeed important, whereas that for
L is not. Furthermore, it was found that it is important to ilspdhe limitation ori’

in a consistent manner. For instance, if the limit is usedft equation, it must for
consistency also be used fofk in Eq.15.15

15.3 To ensure that? < 2k/3 [1]

In the V2F modelp? denotes the generic wall-normal stress. Thus it should e th
smallest one. This is not ensured in the V2F models preseatitede. Below the
simple modification proposed b{][is presented.

The source ternt f in thev?-equation (Eq15.19 includes the modelled velocity-
pressure gradient term which is dampened near wall§ gees to zero. Since?
represents the wall-normal normal stress, it should be rthegdlest normal stress, i.e.
v < v andvf < o, and thusvf? should be smaller than or equal k. In
the homogeneous region far away from the wall, the Laplawe te assumed to be
negligible i.e.0? f /dx;0x; — 0. Then Eql5.16reduces tof = right side.

It turns out that in the region far away from the wall, the Lag# term is not negli-
gible, and as a consequencegets too large so thaf > 2k. A simple modification
is to use the right side of E4.5.16as an upper bound on the source téfifin the
v2-equation, i.e.

source

v =min {kf, f% {(01 —6)v% — 2—;(01 - 1)] + CQP’“} (15.18)

This modification ensures that < 2k/3. For more details, sed].

16 The SST Model

The SST (&ear_Sress_FTansport) model of48] is an eddy-viscosity model which
includes two main novelties:

1. Itis combination of & — w model (in the inner boundary layer) akd- £ model
(in the outer region of the boundary layer as well as outsidg;o

2. Alimitation of the shear stress in adverse pressure gradegions.

The k — e model has two main weaknesses: it over-predicts the shezgssin
adverse pressure gradient flows because of too large length &ue to too low dis-
sipation) and it requires near-wall modification (i.e. |& number damping func-
tions/terms)
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Figure 16.1: Flow around an airfoil. Pressure contours.:Régh pressure; blue: low
pressure

One example of adverse pressure gradient is the flow alorgyttfece of an airfoil,
see Figl16.1 Consider the upper surface (suction side). Starting filweiéading edge,
the pressure decreases because the velocity increasehe Atest (atz/c ~ 0.15)
the pressure reaches its minimum and increases further stream as the velocity
decreases. This region is called tverse pressure gradie(APG) region.

The £k — w model is better than thé — ¢ model at predicting adverse pressure
gradient flow and the standard model @] does not use any damping functions.
However, the disadvantage of the standard w model is that it is dependent on the
free-stream value ab [50].

In order to improve both thé — ¢ and thek — w model, it was suggested id§|
to combine the two models. Before doing this, it is convetieriransform thes — ¢
model into ak — w model using the relation = ¢/(5*k), whereg* = ¢,. The left-
hand side of they equation will consist of the convection ters /dt, which denotes
the material derivative assuming steady flow, see E83 Let us express the left-
hand side of they equation as a combination of the left-hand sides of:thad thek
equations by using the chainrule, i.e.

do _de/(8k) _ 1 de e d(1/k)
dt  dt  Brkdt  B* dt
1 de e dk 1 de wdk

T Bkdt  fkZdt Bkdt  kdt

(16.1)

Now we have transformed the left side of theequation. The right side should be
transformed in the same manner. For example, the producfitime w equation will
consist of two terms, one term from thequation

1
MPE (thee equation is the first term at the RHS in Ed.1) (16.2)

and one from thé& equation

—%P’“ (thek equation is the second term at the RHS in Eg11) (16.3)
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(cf. with Eqg.16.1). In the same way we transform the entire right side insgrtire
modelled equations fdr ande so that

D 1 1
w[ PEP’“]{ v f\m}+

Dt |k ° &k Bk k
Production p,, Destruction v,
16.4
L pr_wpr| | v 0wk (164
Bk kO k B*kox?  k 0a?
Turbulent diffusion DT ' Viscous diffusion p» !
e Production term
1
P,= —P. — =Pk = C,y— P* — ZPF
Bk k Bk k (16.5)
w
- (Cgl — 1)EP]C
e Destruction term
1 w g2 w
U, =—0U, — ~U =Cop— — —
e A (16.6)

= (ng — 1)5*(4}2

e Viscous diffusion term

y_ v Pe Pk _ vowk  wd’k
@Bk dxs  k Ox3 ok da3 k Ox3

[0 (0K 0w w0k

Tk Oz, Ox; Ox; k 8x?

(16.7)
v | ow Ok 0%k 0k Ow 0w w 0%k

_=— _— _— _— —_— —_
k | Ox; Ox; w@x? Oz Ox; 8x? k 8z?

_2v 0w Ok 0 ( 8w)

- - - V—
8acj

7k8xjc’)xj+(’)—:cj

The turbulent diffusion term is obtained as (the derivai®found in p1] which
can be downloaded fromww.tfd.chalmers.se/"lada )

pr_ 2ok dw w(ln m)%k
Y okOx;0x;  k 8z?

ce(L_oL\ow ok 9 (v Ow
k \o. o) O0x;0x; Ox; \ 0. Ox;
In the standar& — € model we haver, = 1 ando. = 1.3. If we assume that, = o,

in the second and third term of the right-hand side, we camsidenably simplify the
turbulence diffusion so that

DT*QW 8k8_w 0 (l/t 8w)

© " o.kdx; 0zr;  Ox;

O¢ Ok

(16.8)

— 16.9
0e 05 ( )
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We can now finally write the equation formulated as an equation dor

O ()= 2 m\ Wl Ypk_ g2
Oz (05) = Oz KVﬁL 05> 81:3-] +akP be
+z L Ok Ow (16.10)

k 0. ) Ox; 0x;

a=C —1=044,8=(Cey — 1)5* = 0.0828

Since thek — e model will be used for the outer part of the boundary layer tiscous
part of the cross-diffusion term (second line) is usuallgleeted when the equation is
used as aa equation.

In the SST model the coefficients are smoothly switched fkomw values in the
inner region of the boundary layer to— ¢ values in the outer region. Functions of the
form

(16.11)

Vi 5000 | dousk
_ 1 — mi w
Fy = tanh(¢*), € = min lmax { frwy’ y2w | CDyy?

are used.F; = 1 in the near-wall region and’} = 0 in the outer region. The-
coefficient, for example, is computed as

Bsst = F1fk—w + (1 — F1)Br—- (16.12)

where,_, = 0.075 and8x_. = 0.0828. Since the standard — w model does
not include any cross-diffusion term, the last term in thequation (second line in
Eq.16.10 should only be active in the — ¢ region; hence it is multiplied byl — F7).

At p. 116it was mentioned that the — w model is better than the — e model
in predicting adverse pressure-gradient flows becausedligts a smaller shear stress.
Still, the predicted shear stress is too large. This brirgtouthe second modification
(see p116). When introducing this second modification, the authoig| hoted that
a model (the Johnson - King model [JK]) which is based on par®of the main shear
stressv] vh, predicts adverse pressure gradient flows much better kiegin-t w model.
In the JK model, the] v}, transport equation is built on Bradshaw’s assumpttss

—vjvh = ark (16.13)
wherea; = c}/2 = *1/2, In boundary layer flow, the Boussinesq assumption can be
written as

1/2

— koD k2 9% k2 [ 0o\ 2 pr\ 2
- b ki gl (20)] o ()

T WOz e Oxo ® c2 \ Ozo €
(16.14)

Itis found from experiments that in boundary layers of adegressure gradient flows
the productionis much larger than the dissipatiBfi (> €) and—v/ v}, ~ ci/Qk:, which
explains why Eq16.14over-predicts the shear stress and works poorly in this tfpe
flow. To reducdv|v}| in Eq.16.14in adverse pressure gradient flowg] proposed to
re-define the turbulent eddy viscosity including the expi@sin Eq.16.13 We have
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two expressions for the turbulent viscosity

—— 1/2
—vj v} cl“k
_ Y% _ & F 16.15a
V¢ Q Q ( )
ook
y= == (16.15h)
w /2
¢l w

where( is the absolute vorticity (in boundary layer flow = 0w, /0x5); in (a) the
Boussinesq assumption together with BE§.13were used and (b) is taken from the
k — w model. We want (a) to apply only in the boundary layer and beme multiply

it with a functionF; (similar to F) which is 1 near walls and zero elsewhere. Then we
take the minimum of (a) and (b) so that

c,l/ ’k

Vg = —
max(cll/zw, Q)

(16.16)

When the production is large (i.e. whéhis large), Eq16.16reduces/, according to
the Johnson - King model, i.e. Ef6.1%. It is important to ensure that this limitation
is not active in usual boundary layer flows whePé ~ ¢. It can be seen that, is

reduced only in regions whe@* > ¢, because iP* < e thenQ < ¢}/ *w since

02 = Vltytm = %Pk < %5 = c w? (16.17)
Hence, in regions wherB* < ¢, Eq.16.16returns tov; = k/w as it should.

Today, the SST model has been slightly further developed. Madifications have
been introducedd3]. The first modification is that the absolute vorticidyin Eq.16.16
has been replaced by = (25;,5;;)'/? which comes from the production term using
the Boussinesq assumption (see Ef 32, i.e.

_ 0v; 0v;\ 07v; o _ o
5| = (8xj + 8;1) 2, 2515 (5i5 + Qhij) = 255554

— 1 /0y, (’)T)j
Qij = - —
2 8:17]' 83:1
wheres;;Q;; = 0 because;; is symmetric and;; is anti-symmetric. Equatioh6.16
with |3] limits v, in stagnation regions similar to Ef3.12 The second modification

in the SST model is that the production term in the new SST rriediited by 10¢,
ie.

(16.18)

Py new = min (P¥,10¢) (16.19)
The final form of the SST model is given in EtP.5at p.149
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—no filter
- - one filter
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T

Figure 17.1: Filtering the velocity.

17 Large Eddy Simulations

17.1 Time averaging and filtering

In CFD we time average our equations to get the equationsadgform. This is
called Reynolds time averaging

T

(®) = L/ O(t)dt, = (D) + P’ (17.1)
2T -T

(note that we use the notatidn for time averaging). In LES we filt§volume average)

the equations. In 1D we get (see Fig..])

B x+0.5Ax
O(z,t) = A_ac/ ia (¢, t)dE

O=0+ "

Since in LES we do not average in time, the filtered variablegunctions of space
andtime.
The equations for the filtered variables have the same forlNeager-Stokes, i.e.

8@1' 4 i (@-@-) . 71 813 Ly 821_)1' _ aTij
ot ox; "7 poxy Ox;0x;  Oz; (17.2)
9% _ '
(’)xi o
where the subgrid stresses are given by
Tij = V05 — U; U (173)

Contrary to Reynolds time averaging whetg) = 0, we have here

o #0

51'7&1_)1'
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This is true for box filters. Note that for the spectral cut-fifer v; = v;, see
p. 124 However, in finite volume methods, box filters are alwaysdude this course
we use box filters, if not otherwise stated.

Let’s look at the filtering of Eq17.2in more detail. The pressure gradient term, for

example, reads
Op 1 [ Op
I —— —d

Now we want to move the derivative out of the integral. Whethat allowed? The
answer is “if the integration region is not a functiomgf, i.e. if V' is constant. In finite
volume methods, the filtering volum#;, is (almost always) identical to the control
volume. In general, the size of the control volume variegiace. Fortunately, it can
be shown that i is a function ofz;, the error we do when moving the derivative out
of the integral is proportional td'2, i.e. it is an error of second order. Since this is the
order of accuracy of our finite volume method anyway, we careptthis error. Now
let's move the derivative out of the integral, i.e.

@i(i/‘/pdV)JrO(VQ) 8ﬁ+o(v2)

All linear terms are treated in the same way.
Now we take a look at the non-linear term in Bq..2 i.e. the convective term.
First we filter the term and move the derivative out of thegné, i.e.
Ov;v; 0 1 f 0
—L=— (= [ vudV )+ 0 (V?) = =—(vv;) + O (V?
O0x; O0x; (V/Vvv] )Jr (V%) ax-(MJH (V%)

J
There is still a problem with the formulation of this term:iricludes an integral of a
product, i.ew;v;; we want it to appear like a product of integrals, ivgv;. To achieve
this we simple add the term we want{;) and subtract the one we don’t wari;;)
on both the right and left side. This is how we end up with theveative term and the
SGStermin Eql7.2

17.2 Differences between time-averaging (RANS) and spacédi-
ing (LES)

In RANS, if a variable is time averaged twicé({))), it is the same as time averaging
once (v)). This is becausév) is not dependent on time. From ELj.1we get

I g 1
() =57 [ (0t = gp027 = (0
This is obvious if the flow is steady, i.8(v) /0t = 0. If the flow is unsteady, we must
assume a separation in time scales so that the variatior) @furing the time interval
T is negligible, i.e.0/0t < 1/T. In practice this requirement is rarely satisfied.

In LES, 7 # © (and sincey = v + v we getv” # 0).

Let’s filter u; once more (filter size\z, see Fig.17.2 For simplicity we do it in
1D. (Note that subscript denotes node number.)

_ 1 AE/27 B 1 0 B A"E/27 B
R CL ( [ e | v(&)dﬁ) -
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I—-1 A I B I+1
—
X

Figure 17.2: Box filter illustrated for a control volume.

cut-off

E(x)

resolved scales

SGS

Figure 17.3: Spectrum of velocity.

The trapezoidal rule, which is second-order accurate, wad to estimate the integrals.
v at locationsA and B (see Figl17.2) is estimated by linear interpolation, which gives

- 1[/1_ 3_ 3 1_
Ur =g\ gv-t + 7Y + 7Y + Vias

1
=3 (Ur—1 + 607 + Tr41) # U1

(17.4)

17.3 Resolved & SGS scales

The basic idea in LES is to resolve (largajdyscales (G$ and to model (small)
subgid-scales (SG§ B

The limit (cut-off) between GS and SGS is supposed to takeepia the inertial
subrange (Il), see Fid.7.3
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l: large, energy-containing scales
[I:  inertial subrange (Kolmogorowv5/3-range)
lll:  dissipation subrange

17.4 The box-filter and the cut-off filter

The filtering is formally defined as (1D)

o(x) = /_Z Gp(r)v(z — r)dr

Grr) = { (1)/ if;,”: < A/2 (17.5)

/Z Go(r)dr =1

It is often convenient to study the filtering process in thectfal space. The filter in
spectral space is particular simple: we simply set the dmution from wavenumbers
larger than cut-off to zero. Hence the cut-off filter filterg all scales with wavenumber
larger than the cut-off wavenumber = 7/ A. Itis defined as

A [ 1/A ik <k
Go(k) = { 0 otherwise (17.6)
The Fourier transform is defined as (see Sec@ipn
1 o0
(k) = —/ v(r) exp(—ukr)dr (17.7)
27T 0
and its inverse -
v(r) = / (k) exp(ekr)dk (17.8)
0

where s denotes the wavenumber and= /—1. Note that it is physically mean-
ingful to use Fourier transforms only in a homogeneous cioatd direction; in non-
homogeneous directions the Fourier coefficients — whichnatea function of space
— have no meaning. Using the convolution theorem (sayingth®integrated prod-
uct of two functions is equal to the product of their Fourianisforms) the filtering in
Eq.17.5is conveniently written

(k) = (k) = 0017 xp(—16n)d
() =5 = [ st expl-nmi
= [ [ ewmaetontn - ooy
Y s (17.9)
:/0 /0 exp(—tkp) exp(—wk(n — p))Ge(p)v(n — p)dpdn
= /000 /000 exp(—1rp) exp(—1k€)Ge(p)v(€)dedp = Ge (k)i (k)

If we filter twice with the cut-off filter we get (see Efj7.9

(17.10)

|

= GoGo = God =

SN
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4 04,
4 /Ull 02,
4 0,
node 1 2 3 1 2 3 4 5

4 _0.2,

0 0.5 1 15 0 0.5 1 15

@ /L . . /L
(a) One sinus period covering two cells (b) One sinus perlo& covering four cells

Figure 17.4: Physical and wavenumber space. Sinus cuntbiiffierent wavenum-
bers illustrated in physical space.

using Egs17.9and17.6 Thus, contrary to the box-filter (see E.4), nothing hap-
pens when we filter twice in spectral space. The box filter aslin physical space
but not in wavenumber space; for the cut-off filter it is vi@rsa.

In finite volume methods box filtering is always used. Funhereimplicit filtering
is employed. This means that the filtering is the same as sloeadization (=integration
over the control volume which is equal to the filter volumes &e.17.14.

17.5 Highest resolved wavenumbers

Any function can be expressed as a Fourier series as Ef§provided that the coordi-
nate direction is homogeneous. Let's choose the fluctuagtagity in thez; direction,
i.e. v1, and let it be a function af;. We require it to be homogeneous, i.e. its RMS,
v1,rms, dO€s not vary withz;. Now we ask the question: on a given grid, what is the
highest wavenumber that is resolved? Or, in other wordst ishihe cut-off wavenum-
ber?

In Fig. 17.4a, the highest wave

vy = 0.25[1 + 0.8sin(k171)], k1 =27/L (17.11)

and it covers two cellsfz, /L = 0.5). If we define this as the cut-off wavenumber we
getky L = k1,.2Ax; = 27 so that

Ki,c = 21/(2Ax1) = 7/ Axq (17.12)

It is of course questionable if; in Fig. 17.4a really is resolved since the sinus wave
covers only two cells. However this is the usual definitionref cut-off wavenumber.

If we require that the highest resolved wavenumber shoulmblered by four cells
(Az1/L = 0.25), as in Fig.17.4, then the cut-off wavenumber is given By . =
21/ (4Ax1) = w/(2Ax1).

17.6 Subgrid model

We need a subgrid model to model the turbulent scales whichatébe resolved by
the grid and the discretization scheme.
The simplest model is the Smagorinsky modef{
1 v,  0v;
i’__éi‘ = T Vsgs . / :_28877:'
Tij 3 3§ Tk Vsg <8xj + axi) VsgsSij (17.13)
Vegs = (CsA)? \/25:;5:; = (CsA)? |3]
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and the filter-width is taken as the local grid size
A= (AVix)'? (17.14)

The scalals| is the norm (i.e. the “length”) 0§v;/0z; + 0v;/0z; in the Boussinesq
assumption, see EG6.18

Near the wall, the SGS viscosity becomes quite large sire@eltocity gradient is
very large at the wall. However, because the SGS turbulectiifions near a wall go
to zero, so must the SGS viscosity. A damping functfgns added to ensure this

fu=1- exp(—z3 /26) (17.15)

A more convenient way to dampen the SGS viscosity near thesgmply to use
the RANS length scale as an upper limit, i.e.

A= mm{(m/,m)l/3 , m} (17.16)

wheren is the distance to the nearest wall.

Disadvantage of Smagorinsky model: the “constari§’is not constant, but it is
flow-dependent. It is found to vary in the range fraify = 0.065 [55 to Cs =
0.25 [56].

17.7 Smagorinsky model vs. mixing-length model

The eddy viscosity according to the mixing length theorydsee& boundary-layer
flow [57, 58]
8$2

Generalized to three dimensions, we have

— /2 J J % — p2 27“7"1/25 2|3
it [(8xj - 8$i) 8:17]} " (25;555) 23]

I/t:£2

In the Smagorinsky model the SGS turbulent length scaleesponds td = Cs A so
that
Vsgs = (CsA)?|3]

which is the same as Ef7.13

17.8 Energy path

The path of kinetic energy is illustrated in Fitj7.5 At cut-off, SGS kinetic energy is
dissipated
Esgs = —TijSij = 2Vsgs8ijSij (17.17)

from the resolved turbulence. This energy is transferretth¢oSGS scales and act as
production term ) in the k4 equation. The SGS kinetic energy is then trans-
ferred to higher wave-numbers via the cascade effect anKitie¢ic energy is finally
dissipated £=physical dissipation) in the dissipation range. It shaoédmentioned
that this process is an idealized one. We assume that ALipdissn takes place in the
dissipation range. This is a good approximation, but initedissipation (i.e. transfer
of energy from kinetic energy to internal energy, i.e. irage in temperature) takes
place at all wave numbers, and the dissipation increasesdmgasing wave number.
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dissipating range

K
Ke

Figure 17.5: Energy spectrum.

17.9 SGS kinetic energy

The SGS kinetic energy,,s can be estimated from the Kolmogores /3 law. The
total turbulent kinetic energy is obtained from the enenggcrum as

k= /0 " B(w)ds

Changing the lower integration limit to wavenumbers larpan cut-off (i.e.x.) gives
the SGS kinetic energy

ksgs = / h E(k)dr (17.18)

c

The Kolmogorow5/3 law now gives
kogs = / Cr™3e*3dk

(Note that for these high wavenumbers, the Kolmogorov spetbught to be replaced
by the Kolmogorov-Pau spectrum in which an exponential diecgfunction is added
for high wavenumbersy7, Chapter 3]). Carrying out the integration and replacing

with /A we get
3 Ae\ Y3
ksgs =_-C (_) (1719)
2 T

In the same way &, ;s can be computed from EG7.18 the resolved turbulent kinetic
energyk..s, is obtained from

kres:/ 4E(H)dli
0

17.10 LESvs. RANS

LES can handle many flows which RANSditolds Areraged Mwvier Sokes) cannot;
the reason is that in LES large, turbulent scales are redoleamples are:
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test filter cut-off, grid filter

E(r) N7

SGS grid scales

SGS test filter scales

resolved on test filtefr

resolved on grid filttef |

L

n:w/'& Ke=m/A

Figure 17.6: Energy spectrum with grid and test filter.

o Flows with large separation

Bluff-body flows (e.g. flow around a car); the wake often imgg large, un-
steady, turbulent structures

Q

o Transition

In RANS all turbulent scales are modelledinaccurate

¢ In LES only small, isotropic turbulent scales are modeHedccurate

LES isverymuch more expensive than RANS.

If we apply the second filter to the grid-filtered equationg.(E7.2 we obtain

17.11 The dynamic model

In this model of p9] the constant is not arbitrarily chosen (or optimized), but it is
computed
If we apply two filters to Navier-Stokes [grid filter and a sadocoarser filter (test

filter, denoted by™)] whereA = 2A we get

(17.20)

IV, 9 (m=m\_ 107 T omy
ot 8117]' v pa:zzl 8:1:]-8xj 8:1:]-

where the subgrid stresses on the test level now are given by

TN A
ViUj

T;j =ViVj — ViV (1721)
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17.12. The test filter
grid filter

test filter

Figure 17.7: Control volume for grid and test filter.

~ e
82vi (’)’?U

(’)’1.7\1- 0 ~ A~ 10 D
| ViV | =—— +v E —
~ 20 (sm-%5
o; Y7 iV
Identification of Eqs17.20and17.22gives
V05 — ,1?1,1:)\] —l—?ij =1;; (1723)
ThedynamicLeonard stresses are now defined as
Eij = V05 —,’l?i,i:)\j = Tij _?ij (1724)
The trace of this relation reads
Lii =T — T
With this expression we can re-formulate B{J.24as
(17.25)

1 1 1
Lij— §5ij£kk =T — g(sikak - (?ij - géij?kk)
In the energy spectrum, the test filter is located at lowerenraymber than the grid

filter, see Figl7.6

17.12 The test filter

The test filter is twice the size of the grid filter, iA = 2A.
The test-filtered variables are computed by integratiomnr tve test filter. For ex-

ample, the 1D example in Fig7.77 is computed as\z = 2Ax)

P B
/ vdx +/ vdx
P

~ 1 E_d 1
YT oA WU$72AJ;

w
I _ _ 1 (ow+op  Up+iE (17.26)
= (DwAzx + 0.Az) = 5 ( 5 +— )

2Ax

1 _ _ _
(ow + 20p + UE)

4
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\ . €
x I,J-1,K

Figure 17.8: A 2D test filter control volume.

For 3D, filtering at the test level is carried out in the samg Wa integrating over
the test cell assuming linear variation of the variab&,[i.e. (see Fig17.8

~ 1, _

VI,JK = §(0171/2,J71/2,K71/2 +Ury1/2,0-1/2,K-1/2
+Ur-1/2,041/2,K—1/2 + UI41/2,041/2,K—1/2 (17.27)
+Ur_1/2,7-1/2, K+1/2 + Ur41/2,7-1/2, K+1/2

01172, 741/2,K+1/2 T Vr41/2,041/2,K+1/2)

17.13 Stresses on grid, test and intermediate level

The stresses on the grid level, test level and intermedatel [(dynamic Leonard
stresses) have the form

Tij = U;0; — U;U; stresseswith ¢ <A

N . N
Tij =vv; — U;0; stresseswith{ < A

~ . >
Li; =T — T stresseswith A </ <A

Thus the dynamic Leonard stresses represent the stregbdsngthscale, in the

range betweer\ andA.

Assume now that the same functional form for the subgrigstee that is used at the
grid level (r;;) also can be used at the test filter levE};§. If we use the Smagorinsky
model we get

1
Tij — g&'ﬂkk = —2CA?|3]5;; (17.28)

1 2
Tij — §6ikak = —QCZ |?|?U (17.29)

where

~ _1 a’a+a’{7‘j 2 (27 1/2
* 2 (’)xj 8,%1' ’ R
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Note thatC in Eq. 17.28is not squared (cf. the Smagorinsky model, BE@.13at
p.125. Hence,C should be compared wit6'2. Applying the test filter to Eq17.28
(assuming that’ varies slowly), substituting this equation and E@.29into Eq.17.25
gives

1 ~2 _~ o~ —
ﬁij — géijﬁkk =-2C (A | S | Sij — A? |S|SU> (1730)

Note that the “constantC really is a function of both space and time, i.€& =
C(mi, f).

Equation17.30is a tensor equation, and we have figg; (s symmetric and trace-
less) equations fof'. [61] suggested to satisfy EG.7.30in a least-square sense. Let
us define the error as the difference between the left-haledasid the right-hand side
of Eg.17.30raised to the power of two, i.e.

1 2
Q= (Eij - §5ijﬁkk + QCMij) (17.31a)
/\2 ~ ~ N
Mi; = (A |5 [53; — A? |§|§ij> (17.31b)

The error,@, has a minimum (or maximum) whe?)/0C = 0. Carrying out the
derivation of17.31a gives
g—g = 4Mij <£z] — %5zyﬁkk + 20M1j> =0 (1732)
Sinced?Q/0C? = 8M;;M;; > 0 it is a minimum. Equatior17.31is re-written so
that
Lij M;;

It turns out that the dynamic coefficie@itfluctuates wildly both in space and time.
This causes numerical problems, and it has been found reegé¢ssiverag€’ in homo-
geneous direction(s). Furthermoée must be clipped to ensure that the total viscosity
stays positivey + vg45 > 0).

In real 3D flows, there is no homogeneous direction. Usualtal averaging and
clipping (i.e. requiring that” stays within pre-defined limits) of the dynamic coeffi-
cientis used.

Use of one-equation models solve these numerical problsegsg139).

C=_ (17.33)

17.14 Numerical dissipation

The main function of an SGS model is to dissipate (i.e. to damppesolved turbulent
fluctuations. The SGS model is — hopefully — designed to giwmaer amount of dis-
sipation. This is the reason why in LES we should use a cediffafencing scheme,
because this class of schemes does not givenamnyericaldissipation. All upwind
schemes give numerical dissipation in addition to the medebGS dissipation. In-
deed, there are LES-methods in which upwind schemes aretosedate dissipation
and where no SGS model is used at all (e.g. MILBJ). However, here we focus
on ensuring proper dissipation through an SGS model rattaer via upwind differ-
encing. It can be shown using Neumann stability analysisahapwind schemes are
dissipative (se&urther readingat
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Figure 17.9: Numerical dissipation.

http://www.tfd.chalmers.se/"lada/comp turb _model/ ). Below it is
shown that first-order upwind schemes are dissipative.

The first-derivative in the convective term is estimated bstforder upwind differ-
encing as (finite difference, see Fig7.9

_(ov\  _ (V-1
R

where we have assumegd > 0. Taylor expansion gives

L v 1 5 (0% 3
Ur—1 =701 — Az <%>1 + §(AIE) (w)l + O ((Az)?)

so that 5 o2
v (00 1, (0% 2
Az (81:)1 2A$<ax2>1+o((A$) )

Insert this into Eq17.34

[0V _ dv 1 0*v 9
v (%)1 = (%)1 Tghe (@)1 +O((a2))
O(Ax)

where the second term on the right side corresponds to tloe temm in Eq.17.34
When this expression is inserted into the LES momentum @nstthe second term
on the right-hand side will act as an additional (numeridéfusion term. The total
diffusion term will have the form

v

diffusion term = % {(1/ + Vogs + I/num)%} (17.35)

where the additional numerical viscosity,.., ~ 0.5|7;|Ax. This means that the total
dissipation due to SGS viscosity and numerical viscositgfisEq.17.17

Esgs+num — Q(ngs + Vnum)gijgij
For more details on derivation of equations transport dqoatof turbulent kinetic

energies, seelf].

17.15 Scale-similarity Models

In the models presented in the previous sections (the Srmstigrand the dynamic
models) the total SGS stresg = v;v; — v;0; was modelled with an eddy-viscosity
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hypothesis. In scale-similarity models the total strespig up as

Tij = 005 — 0iv; = (0; + v} ) (V5 + vf) — U;9;

11,11

—UZUJ-"-’Ul’U —l—vv + v; vy = V05

= (0;0; — v;95) + [vzv + v;v} } + v v

where the term in brackets is denoted the Leonard stre$meterm in square brackets
is denoted cross terms, and the last term is denoted the Risy&GS stress. Thus

le - LZ] + CZ] Jr le

(17.36)

Note that the Leonard stressbg; arecomputablei.e. they are exact and don’t need
to be modelled.

In scale-similarity models the main idea is that the turhtlzales just above cut-
off wavenumbers.., (smaller tham\) are similar to the ones just below (larger than
A); hence the word "scale-similar”. Looking at Etj7.36it seems natural to assume
that the cross term is responsible for the interaction betwesolved scaleg{) and
modelled scalesy’), sinceC;; includes both scales.

17.16 The Bardina Model

In the Bardina model the Leonard streségsare computed explicitly, and the sum of
the cross ternt’;; and the Reynolds term is modelled &8,[64]

CY = cr(viv; — Vi) (17.37)

ande‘f = 0 (superscriptM denotes Mdelled). It was found that this model was not

sufficiently dissipative, and thus a Smagorinsky model velked
CZIU = Cp @1‘1—)' 7515

Y ( ) ”” (17.38)

Rij = —QCSA |S|SU

17.17 Redefined terms in the Bardina Model

The stresses in the Bardina model can be redefined to makeGhélman invariant for
any valuer, (see Appendixl). A modified Leonard stress tensbf; is defined as5]

m __ . __ om m m
Ty = Tij = Cij + Lij + R}
m — T _:4:,
L} = cr (005 — v;05)
CTT.‘ =0
m // "
R} = Rij = v;

J

(17.39)

Note that the modified Leonard stresses is the same as theodified” one plus
the modelled cross terr@;; in the Bardina model witle, = 1 (right-hand side of
Eq.17.3%, i.e.
m o __ M
Lij = Lij + Cij
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Figure 17.10: Dissipation terms and production term from®xdata.963 mesh data
filtered onto at8 mesh.Re, = 500. — : —efiqi---1 —€5ag; +1 —€sGS-

In order to make the model sufficiently dissipative a Smaggky model is added,
and the total SGS stress; is modelled as

Tij = 0i0; — 0;0; — 2(CsA)?[5]55, (17.40)

Below we verify that the modified Leonard stress is Galilearariant.

1 M ok gk HEa* 5 = > =
L 7 w0 = GG ) - G )
= V;v; + TV} + E‘/; — Elij — EZX/J — V;EJ (1741)
__ 1
=iV — 005 = —Lg

17.18 A dissipative scale-similarity model.

Above it was mentioned that when the first scale-similaritydel was proposed it
was found that it is not sufficiently dissipativéd. An eddy-viscosity model has
to be added to make the model sufficiently dissipative; tiesdels are calledhixed
models. p6] (can be downloaded fromvww.tfd.chalmers.se/"lada ) presents
and evaluates a dissipative scale-similarity model.

The filtered Navier-Stokes read

dv; 1 0p 0%, Otk
z - — 17.42
dt — pOox; Y OxpOxr Oz ( )

whered/dt andr;; denote the material derivative and the SGS stress tenspece

tively.
The SGS stress tensor is given by

Tik = Vilk — UiUk. (17.43)

When it is modelled with the standard scale-similarity moiés not sufficiently dis-
sipative. Let us take a closer look at the equation for thelvesl, turbulent kinetic
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energyk = (viv.)/2, which reads

dk ,, , 0;)  O{p'v;)  10(v,09;) 0*v;
g Ot o s =V Garan

8%_ OTik A 82’172 A aTik@, .
dxy, dxy, NG T oxr '/ (17.44)

0%k ov, Ov] OTits _,
v -V — U

£ €s5Gs

The first term on the last line is the viscous diffusion ternd #me second terng, is
the viscous dissipation term which is always positive. Tdst termggag, is a source
term arising from the SGS stress tensor, which can be pesitinegative. When it is
positive, forward scattering takes place (i.e. it acts assaightion term); when it is
negative, back scattering occurs.

Figure17.10presents SGS dissipatiang s in Eq.17.44 computed from filtered
DNS data. The forward scatterf, ., and back scatter. 4, SGS dissipation are
defined as the sum of all instants whejys is positive and negative, respectively. As
can be seen, the scale-similarity model is slightly digsipdi.e. csgs > 0) , but the
forward and back scatter dissipation are both much largerdbgs.

One way to make the SGS stress tensor strictly dissipatiicesst the back scatter
to zero, i.e.max(esas, 0). This could be achieved by settidg;;, /0x; = 0 when its
sign is different from that ofi; (see the last term in EG.7.44. This would work if we
were solving fork. Usually we do not, and the equations that we do solve (trezdiit
Navier-Stokes equations) are not directly affected by tbsiplation termg g s.

Instead we have to modify the SGS stress tensor as it appethsfiltered Navier-
Stokes equations, EG7.42 The second derivative on the right side is usually called a
diffusionterm because it acts like a diffusion transport term. Wheadyering the sta-
bility properties of discretized equations to an imposestidtbancey’, using Neumann
analysis (see, for example, Chapter 8 @7]), this term is referred to as dissipation
term. In stability analysis the concern is to dampen nuna¢dscillations; in connec-
tion with SGS models, the aim is to dampen turbulent resdilvetuations. It is shown
in Neumann analysis that the diffusion term in the Navierk®s equations is dissipa-
tive, i.e. it dampens numerical oscillations. Howevergsiit is the resolveturbulent
fluctuationsi.e. k in Eq.17.44 that we want to dissipate, we must consider the filtered
Navier-Stokes equations for the fluctuating velocity, It is the diffusion term in this
equation which appears in the first term on the right sidet(iime) in Eq.17.44 To
ensure thatsgs > 0, we set—07;,/ 0z, to zero when its sign is different from that of
the viscous diffusion term (cf. the two last terms on the seldoe in Eq.17.44. This
is achieved by defining a sign function; for details, s&§.

17.19 Forcing

An alternative way to modify the scale-similarity modeldsdmit theforward scatter,
i.e. to include instants when the subgrid stresses acbaster-gradiendiffusion. In
hybrid LES-RANS, the stresses can then be used as forcirfgedhterface between
URANS and LES. This new approach is the focusGf]|
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17.20 Numerical method

A numerical method based on an implicit, finite volume methaith collocated grid
arrangement, central differencing in space, and Cranlolsan (v = 0.5) in time is
briefly described below. The discretized momentum equatiead

gt e g AtH( n *”“/2)

op"
(’)xi

" (17.45)

—aAt
@ 8,%1'

—(1-a)At

whereH includes convective, viscous and SGS terms. In SIMPLE iootahis equa-

tion reads
—n+1/2

ap6?+1/2 Za W T2 4 Sy — aAta
nb

where Sy includes all source terms except the implicit pressure. felse velocities

‘}”Ll/Q 0.5(v; "+1/2 + 61";’1{2) (note thatj denotes node number ands a tensor

index) do not satlsfy continuity. Create an intermediatloei¢y field by subtracting

the implicit pressure gradient from Efj7.45 i.e.

AV

Ly

op"
ox;

o= +AtH< n -"“/2)4 a)At (17.46a)

a—n+1/2
=0 =T 4 ant

= a— 17.46b
=7 o (17.46b)

Take the divergence of E47.46 and require thai?v"“/z/a:ci = 0 so that

82ﬁn+1 1 81_);;71.

0x;0x; ~ Ata ox; (17.47)

The Poisson equation fpr+! is solved with an efficient multigrid metho@]. In the
3D MG we use a plane-by-plane 2D MG. The face velocities aneected as

aﬁn+1

i =03, — alt
I fii ox;

(17.48)

A few iterations (typically two) solving the momentum eqoat and the Poisson pres-
sure equation are required each time step to obtain conveegeMore details can be
found [70]

Solve the discretized filtered Navier-Stokes equation{fov, andos.
Create an intermediate velocity fieifl from Eq.17.46

The Poisson equation (EfZ.47) is solved with an efficient multigrid metho@9].

P w0 D

. Compute the face velocities (which satisfy continuitgyh the pressure and the
intermediate face velocity from E47.48

5. Step 1 to 4 is performed till convergence (normally two et iterations) is
reached.

6. The turbulent viscosity is computed.
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RANS LES
Domain 2D or 3D always 3D
Time domain steady or unsteady always unsteady
Space discretization 2nd order upwind central differencing
Time discretization 1st order 2nd order (e.g. C-N)
Turbulence model more than two-equations zero- or one-equation

Table 17.1: Differences between a finite volume RANS and L&®ec

U1

W\/\/\/\/

tq: start ty: end

Figure 17.11: Time averaging in LES.

7. Next time step.

Since the Poisson solver i69] is a nested MG solver, it is difficult to parallelize
with MPI (Message Passing Interface) on large Linux clsstédence, when we do
large simulations®$ 20M cells) we use a traditional SIMPLE method.

17.20.1 RANSvs. LES

Above a numerical procedure suitable for LES was describlegever, in general, any
numerical procedure used for RANS can also be used for LES:xfample pressure-
correction methods such as SIMPLEL] 72 are often used for LES. What are the
specific requirements to carry out LES with a finite volumee®df you have a RANS
finite volume code, it is very simple to transform that intold#S code. An LES code
is actually simpler than a RANS code. Both the discretizasoheme and and the
turbulence model are simpler in LES and RANS, see Tail&

It is important to use a non-dissipative discretizationesok which does not intro-
duce any additional numerical dissipation, see Sedtibfh4 hence a second-order (or
higher) central differencing scheme should be employed.

The time discretization should also be non-dissipatives Chank-Nicolson scheme
is suitable.

As mentioned above, turbulence models in LES are simpleteldre two reasons:
first, only the small-scale turbulence is modelled and, sdcoo equation for the tur-
bulent length scale is required since the turbulent lenggtescan be taken as the filter
width, A.

In LES we are doing unsteady simulations. The question theasa when can we
start to time average and for how long? This is exactly theesgmestion we must
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ask our self whenever doing an experiment in, for exampleanatwnnel. We start the
windtunnel: when has the flow (and turbulence) reached figlyeloped conditions so
that we can start the measure the flow. Next question: for lomg Ehould we carry
out the measurements.

Both in LES and the windtunnel, the recorded time historyhaf #; velocity at
a point may look like in Figl7.11 Time averaging can start at tinig when the
flow seems to have reached fully developed conditions. lificdlt to judge for how
long one should carry out time averaging. Usually it is a gateh to form a non-
dimensional time scale from a velocity, (free-stream or bulk velocity), and a length
scale,L (width of a wake, width or length of a recirculation regioa)d use this to
estimate the required averaging timi@p time units, i.e.100L/V, may be a suitable
averaging time.

17.21 One-equationk,,, model

A one-equation model can be used to model the SGS turbulaati&ienergy. The
equation can be written on the same form as the RANSjuation, i.e.

Oksgs O Y Okisys
sgs _'ks ) = - sgs P. B
B (k) = [myg ) oz } P -
3/2 (17.49)
k:S S
Vsgs = CkAkigfv Pksgs = 2ngs§ij§ija e=0C, Ag

Note that the production ternf,___, is equivalent to the SGS dissipation in the equa-
tion for the resolved turbulent kinetic energy (look at th@aflof kinetic energy dis-
cussed at the end of §)).

17.22 Smagorinsky model derived from thek,,, equation

We can use the one-equation model to derive the SmagorinekleinEq.17.13 The
length scale in the Smagorinsky model is the filter widthx x;7, see Figl7.12 The
cut-off takes place in the inertial subrange where diffasimd convection in thé, g,
equation are negligible (their time scales are too largensy have no time to adapt
to rapid changes in the velocity gradiengs;). Hence, production and dissipation in
Eq.17.49are in balance so that

Pk = 2ngs=§ij§ij =£ (1750)

Let us replace by SGS viscosity andh. We can write the SGS viscosity as
Vsgs = €(CsA)° (17.51)
Dimensional analysis yields= 1/3,b = 4/3 so that
Vsgs = (CgA)Y3el/3, (17.52)
Eq.17.50substituted into EqL7.52gives
Vggs = (CsA)'e = (CsA)'vsys(25:55i5)
= Vggs = (CsA)?|5 (17.53)
|| = (255i)'/?

which is the Smagorinsky model.
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E(k)

K

Figure 17.12: Spectrum fot. |: Range for the large, energy containing eddies; Il
the inertial subrange for isotropic scales, independenheflarge scales/Y and the
dissipative scales/; lll: Range for small, isotropic, dissipative scales.

17.23 A dynamic one-equation model

One of the drawbacks of the dynamic model 6] (see p.128) is the numerical
instability associated with the negative values and laay@tion of theC' coefficient.
Usually this problem is fixed by averaging the coefficientam& homogeneous flow
direction. In real applications ad-hoc local smoothing afigping is used. Below
a dynamic one-equation model is presented. The main objeenhwleveloping this
model was that it should be applicable to real industrial owurthermore, being a
dynamic model, it has the great advantage that the coefficéa@acomputedather than
being prescribed.
The equation for the subgrid kinetic energy reat [/5] (see also 16, 77])

Oksys O d ok k32
2298 L (Dikegs) = P — (=22 ) — 0,2
ot =+ axj (’U] g ) ksgs + 8$J <V ff axj ) A (1754)
Pksgs = _Tiajﬁi,ja Tiaj = —QCAks%gsgij

With vesr = v + 2C’;wmAk§gs. The C in the production termP,_  is computed
dynamically (cf. EqQ17.33. To ensure numerical stability,@nstantvalue (in space)
of C (Chom) is used in the diffusion term in Eq7.54and in the momentum equations.
Chom 1S computed by requiring that},,,, should yield the same total production of
ksgs asC, i.e.

1 1
<20Akszgs§ij§ij>zyz = 20h0m<Ak§gs§ij§ij>wyz

The dissipation termy___ is estimated as:

sgs

13/2
= vTf(vij,vi5) = Cs ng : (17.55)
Now we want to find a dynamic equation f6t.. The equations fok,,, andK read in
symbolic form

€k

sgs

13/2

K3/2
~
A

T(ksgs) = Ck —D

sgs ksgs

(17.56)
T(K)=Ckg — D = PK —C,
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Since the turbulence on both the grid level and the test Ewalild be in local equilib-
rium (in the inertial—5/3 region), the left-hand side of the two equations in Ef.56
should be close to zero. An even better approximation shioelkts assumeé(k.gs) =
T(K),ie.

1 3/2 K3/2
?kggg - _C*ksgs = PK - C* P
A
so that
~ 1 > E
cntl — <PK ~ P, + KO}}k%f) =T (17.57)

The idea is to put the local dynamic coefficients in the soteoms, i.e. in the produc-
tion and the dissipation terms of the,; equation (Eq17.54. In this way the dynamic
coefficientsC' andC,. don’t need to be clipped or averaged in any way. This is a big
advantage compared to the standard dynamic model of Gergsaeodiscussion on

p.137).

17.24 A Mixed Model Based on a One-Eqg. Model

Recently a new dynamic scale-similarity model was presebye78]. In this model a
dynamic one-equation SGS model is solved, and the scalasiypart is estimated
in a similar way as in EqL7.4Q

17.25 Applied LES

At the Department we used LES for applied flows such as flowrad@ucube 79, 80],
the flow and heat transfer in a square rotating d8&t82], the flow around a simplified
bus B3, 80], a simplified car 84, 85, 86] and the flow around an airfoilg7, 88|,
detailed SUV 89, trains and buses subjected to sidewinds and wind g86{9], 92].
We have also done some work on buoyancy-affected fl@8s34, 95, 96, 97, 98, 99].

17.26 Resolution requirements

The near-wall grid spacing should be about one wall unit @wall-normal direction.
This is similar to the requirement in RANS (Reynolds-AvezddNavier-Stokes) using
low-Re number models. The resolution requirements in wathllel planes for a well-
resolved LES in the near-wall region expressed in wall uaits approximately 00
(streamwise) and0 (spanwise). This enables resolution of the near-wall tienoiu
structures in the viscous sub-layer and the buffer layesisting of high-speed in-
rushes and low-speed ejectiodd(), often called the streak process. At low to medium
Reynolds numbers the streak process is responsible fordja part of the turbulence
production. These structures must be resolved in an LESdardo achieve accurate
results. Then the spectra of the resolved turbulence whlllk—5/3 range, see figure
on p.43.

In applied LES, this kind of resolution can hardly ever beafed. In outer scaling
(i.e. comparing the resolution to the boundary layer the&dsy), we can afford / Az,
andd/Az in the region ofl0 — 20 and20 — 40, respectively. In this case, the spectra
in the boundary layer will look something like that shown igFL7.13[101]. Energy
spectra are actually not very reliable to judge if a LES satioh is well resolved or not.
In[101, 107 different ways to estimate the resolution of an LES werestigated. The
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Figure 17.13: Energy spectra in fully developed channel l2@4]. ¢ denotes half
channel width. Number of cells expressed &8Xz1,0/Axs). — : (10,20); ---:
(20,20); ---: (10, 40); o: (5,20); +: (10, 10).
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Figure 17.14: Onera bump. Computational domain (not tcegcal

suggestion in these works was that two-point correlatierise best way to estimate if
an LES is sufficiently resolved or not.

Even if the turbulence in boundary layer seldom can be reshlthe flow in re-
circulation regions and shear layer can. 19§ the flow (Re ~ 10°) over a bump
was computed. The geometry is shown in Fig.14 The turbulence in the bound-
ary layer on the bump was very poorly resolveNz, /0;, = 0.33, Axs/d;, = 0.44,
Az = 1300 andAz3 = 1800. Nevertheless, the turbulence in the recirculation re-
gion and in the shear layer downstream the bump turned ou twdil resolved, see
Fig.17.15

Thus, for wall-bounded flows at high Reynolds numbers of eegiing interest,
the computational resource requirement of accurate LE®isilpitively large. Indeed,
the requirement of near-wall grid resolution is the mainssrawhy LES is too ex-
pensive for engineering flows, which was one of the lesscarsiézl in the LESFOIL
project [LO4, 105.
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10 100 200
R3 = 27Tk3/$37mam

Figure 17.15: Energy spectiiss(rx3) in the recirculation region and the shear layer
downstream the bumpe(/H = 1.2). Thick dashed line shows5/3 slope. — :
xo/H = 0.0035 (near the wall); - -: xo/H = 0.13;-.-: zo/H = 0.34 (in the shear
layer).

18 Unsteady RANS

To perform an accurate LES, a very fine mesh must be used. @hges problems, for
example, near walls. LES is very good for wake flow, where tbe i governed by
large, turbulent structures, which can be captured by §/fae@rarse mesh.

However, if attached boundary layers are important, LES$ pvibbably give poor
predictions in these regions, unless fine grids are used.

An alternative to LES for industrial flows can then besteadyRANS (Reynolds-
Averaged Mwier-Sokes), often denotddRANS (Unsteady RANS) of RANS (Transient
RANS).

In URANS the usual Reynolds decomposition is employed, i.e.

1 t+T
o(t) = —/ v(t)dt, v="0+2" (18.1)
2T Ji_r

The URANS equations are the usual RANS equations, but wéttréimsient (unsteady)
term retained, i.e. (on incompressible form)

v 0, 10p 0% Ovivf
+ o (0iyy) = —— v -
ot Oz; o p O0x; Ox;0x; dz; (18.2)
Ui
8%—

Note that the dependent variables are now not only functfdheospace coordinates,
but also function of time, i.ev; = v;(x1, 2, x3,1), p = p(z1, T2, 23, t) and v'v} =
W(Iﬂl, T, T3, t)

Even if the results from URANS are unsteady, one is ofterrésted only in the
time-averaged flow. We denote here the time-averaged ¥glasiv), which means
that we can decompose the results from an URANS as a timage@mpart,(v), a

resolved fluctuationy’, and the modelled, turbulent fluctuatiar, i.e.

v=0+0" = @)+ +0" (18.3)
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see Fig18.1 The modelled turbulent fluctuation’ is not shown in the figure; if this
is added to(v) + v’ we obtainy.

What type of turbulence model should be used in URANS? Tha¢kés on type
of flow. If the flow has strong vortex shedding, the standaghfiRe numbek — ¢
model can be used, i.e.

Opk ~ Opvjk 0] ue\ Ok &
— = — ||| +P°"— 18.4
ot * Oz Oz a or ) Ox; pe ( )

Ope | Opvie _ 9 pe) 9] | € K
ot = Bz, . T P —c. .
o " on; o [(“* 0. ) oy | T E (@l — e (18.5)
k2
He = cup— (18.6)

With an eddy-viscosity, the URANS equations read

dp7; 0pv;v 1 0p 0 0v;
o s 100 g

ot oxy pOx; Oz oxy,

So we are doing unsteady simulations, but still we time ayethe equations. How
is this possible? The theoretical answer is that the timeén Eq.18.1should be much
smaller than the resolved time scale, i.e. the modelleditartt fluctuationsy”, should
have a much smaller time scale than the resolved are$his is calledscale separa-
tion. In practice this requirement is often not satisfig@][ On the other hand, how do
the momentum equation, E&8.7, know how they were time averaged? Or if they were
volume filtered? The answer is that they don’t. The URANS motuie equation and
the LES momentum equation are exactly the same, except thdénote the turbulent
viscosity in the former case by, and in the latter case by,,s. In URANS, much
more of the turbulence is modelled than in LES, and, henestutibulent viscosityy;,
is much larger than the SGS viscosity,..

The common definition of URANS is that the turbulent lengthleds not deter-
mined by the grid, whereas in LES it is. In URANS we do usuably care about scale

v, (0)

Figure 18.1: Decomposition of velocities in URANS.
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Figure 18.2: Configuration of the flow past a triangular flawidbr. Flow from left to
right

reference velocity

normdtizead V-velocity

P T

4.5 6.8 9.0

time [ms]

Figure 18.3: 2D URANSk — ¢ simulations 10g. One cycle of they, velocity in a
cell near the upper-right corner of the flameholder.

separation. What we care about is that the turbulence maoukttee discretization
scheme should not be too dissipative, i.e. they should fidhkiresolved fluctuations,
v'.

The standard@ — ¢ model (Eq18.4and18.5 was used by]06 for URANS simu-
lations computing the flow around a triangular flame-holdex thannel, see Fi8.2

This flow has a very regular vortex shedding. and the flow digtleas a scale
separation. In the figure below thg velocity in a point above the flame-holder is
shown. Figurel8.3shows that the velocity varies with time in a sinusoidal mann

When we're doing URANS, the question arises how the restitailsl be time
averaged, i.e. when should we start to average and for hagv [Binis issue is the same
when doing LES, and this was discussed in the LES-lecture.
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Figure 18.4: 2D URANS: — ¢ simulations compared with experimeritdg. Solid
lines: total turbulent kinetic energy; dashed lines: resdlturbulent kinetic energy:
x. experimental data. Left figure: = 0.43H; right figure:z = 1.1H (x = 0 at the
downstream vertical plane of the flame-holder).

18.1 Turbulence Modelling

In URANS, part of the turbulence is modelled’] and part of the turbulence is re-
solved ¢’). If we want to compare computed turbulence with experimmnrbulence,
we must add these two parts together. Profiles downstreaftatheholder are shown
in Fig. 18.4 It can be seen that here the resolved and the modelled &umbeilare of
the same magnitude.

If the turbulence model in URANS generates "too much” eddscusity, the flow
may not become unsteady at all, because the unsteadinessaji®ded out; the reason
for this is that the turbulence model is too dissipativé07 10§ found when using
URANS for the flow around a surface-mounted cube and arouad #hat the standard
k — ¢ model was too dissipative. Non-linear models like thatléfq was found to be
less dissipative, and was successfully applied in URANS4kitions for these two
flows.

18.2 Discretization

In LES it is well-known that non-dissipative discretizatischemes should be used.
The reason is that we don’t want to dampen out resolved, kembtiuctuations. The
same is to some extent true also for URANS. In the predictamnshe flame-holder
presented above, the hybrid discretization scheme for dheeactive terms was used
together with fully implicit first-order discretization itime; this gives first-order ac-
curacy in both space and time. The turbulence model that wed was the standard
k — ¢ model. Thus, both the discretization and the turbulenceahloave high dissi-
pation. The reason why the unsteadiness in these commgati@s not dampened out
is that the vortex shedding in this flow is very strong.

In general a discretization scheme which has little nuna¢dissipation should be
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Figure 18.5: URANS simulations of the flow around a surfaaainted cube.

used. How dissipative a scheme needs to be in order to be sseftdw dependent; for
some simple flows, it may work with no dissipation at all (ientral differencing),

whereas for industrially complex flows maybe a bounded se&amder scheme must
be used.

For time discretization, the second-order accurate Cidigkison works in most
cases.

In[107] LES and URANS simulations were carried out of the flow aroasdrface-
mounted cube (Figl8.5 with a coarse mesh using wall-functions.

Two different discretization schemes were used: the ckstteeme and the Mars
scheme (a blend between central differencing and a bounmeithd scheme of second-
order accuracy). In Figl8.6the time-averaged velocity profile upstream of the cube
(xr1 = —0.6H) using URANS and LES with central differencing are shownetibgr
with URANS and Mars scheme. It is seen that with LES and cénifeerencing
unphysical oscillations are present (this was also founfi78}). However, LES with
the Mars scheme (in which some numerical dissipation isgg@sand URANS with
the central scheme (where the modelling dissipation iselatigan in LES) no such
unphysical oscillations are present. The main reason taitfphysical oscillations
is that the predicted flow in this region does not have anylvesofluctuations. If
turbulent unsteady inlet fluctuations are used, the unghysiscillations do usually
not appear, even if a central differencing scheme is usedhisncase the turbulent,
resolved fluctuations dominate over any numerical osilfest

19 DES

DES (Detached Hdy Smulation) is a mix of LES and URANS. The aim is to treat
the boundary layer with RANS and capture the outer detactdies with LES. The
model was originally developed for wings at very high angléattack.

The RANS model that was originally used was the one-equatiodel by fL10.
It can be written 110, 104, Sect. 4.6]

Opi n Opvjoy O [+ pe 0oy Ch2p Ovy Oy
ot 8acj o (’)xj oy, (’)xj Oy, 8acj (’)xj (191)

vy = i f1
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Figure 18.6: URANS simulations of the flow around a surfaaminted cube. Velocity
profiles upstream the cub&@7.

The production terni and the destruction term have the form

Z _
P =Cup (S + —Hzfp fz) Uy
2 (19.2)
1%
5= (2555)"%, W= Cuipfu <Et>
d in the RANS SA model is equal to the distance to the nearest wal

In [11]) the DES model was proposed in whidhs taken as the minimum of the
RANS turbulent length scal¢ and the cell lengti\ = max(Axze¢, Az,), Az¢), i.e.

d = min(d, Cges A) (19.3)

Axe, Az, and Az denote the cell length in the three grid directigng and{. The
constantC,., is usually set td.65.

In the boundary layed < Cy.sA and thus the model operates in RANS mode.
Outside the turbulent boundary layér> C,4.sA so that the model operates in LES
mode. The modelled length scale is reduced and the consegjisghat the destruction
termY increases, which gives a reduction in the turbulent viggasi A reduced’,
gives a smaller production ter so that the turbulent viscosity is further reduced.

At first sight it may seem that as the model switches from RAN&Iento LES
mode thus reducind, this would give rise to an increased production tdfrthrough
the second term (see Ef9.2. However, this second term is a viscous term and is
active only close to the wall. This term is sometimes neglét12

19.1 DES based on two-equation models

The model described above is a one-equation model. In RAN&eritdakes its length
scale from the wall distance, which in many situations isan@levant turbulent length
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scale. Recently, DES models based on two-equation modeés ieen formulated
by [113 114 115. In these models the turbulent length scale is either abthifrom
the two turbulent quantities (e.g:*/2 /e or k'/2/w) or the filter widthA. A model
based on thé — = model can read

ok o, .. 0 v\ Ok &

ot + O0x; (05k) = O0x; [(VJF ak> 830]} P —er

Oe g, . 0 v\ Oe € &

ot + O0x; (05¢) = O0x; [(VJF 05> 8J:j] + k(Clp C2e)

Pk = 2Vt=§ij§ij; Vy = k1/2€t

The turbulent length scalg and the turbulent dissipations, are computed asl L5
114

k3/2
Et = min (CMT, CkA)

k3/2
e = max (5, CET)

In other models113 53 only the dissipation terng is modified. When the grid
is sufficiently fine, the length scale is takenas The result is that the dissipation in
the k equation increases, decreases which gives a reduaed A third alternative is
to modify only the turbulent length scale appearing in thbulent viscosity 116. A
rather new approach is to reduce the destruction term ia &uygiation as in PANSLL7,
118 119 (Partially Averaged Mvier-Sokes) and PITM 12( (Partially Integrated
Transport Mbdelling). In these modelsincreases because of its reduced destruction
term which decreases bokhandv.

The values of the constants can be

(Cyi, 02, Ci, Cs, Cy, Cz) = (0.09,1.31,0.07,1.09, 1.44, 1.92) (19.4)

Note that a low-Ré& — ¢ model should be used. The AKN modé&l[l] could be a
suitable one.

In regions where the turbulent length scales are taken ffothES mode) the:-
equation is still solved, but is not used. However, it is needed as soon as the model
switches to RANS model again.

In the RANS mode the major part of the turbulence is modeN&tien the model
switches to LES mode, the turbulence is supposed to be mpessby resolved tur-
bulence. This poses a major problem with this type of modétbe switch occurs at
locationz, say, it will take some distanck before the momentum equations start to
resolve any turbulence. This is exactly what happens atlahiman LES simulation
if no real turbulence is given as inlet boundary conditiobae way to get around this
is to impose turbulence fluctuations as forcing conditidr®2[ 123 73, 124, 125 ] at
the location where the model switches from RANS mode to LE8Sendhe forcing is
added in the form of a source term (per unit volume) in the muna equations.
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19.2 DES based on thé — w SST model
The standard — w model SST read<iB, 53]

Ok | 9 (o) =2 Ku+i> %] + Py — B kw

ot axj( i) = Ox; o) 0z;
Oow o 0 v\ Ow P 9
ot + Oz (vjw) = Oz {(V—i_ O’w) 8:17]} +al/t — P
1 9k Ow
+2(1*F1)Jw2$a—xlaxl

(19.5)
Fl — tanh(f‘l), é- — min [max{ \/E 5001/} 4Jw2k ]

B*wd’ d?w [ CD,d?
alk
Vt = e —
max(aw, |5 F2)
Fy = tanh(r?) N 2k1/2 500v
= n = max{ —, ——
2 m) n ﬁ*wdv d2w

whered is the distance to the closest wall node. The SST model belesrek — w

model near the wall wheré; = 1 and ak — ¢ model far from walls {7 = 0). All

coefficients are blended between the w and thek — £ model using the functiod.
In DES the dissipation term in tHeequation is modified a$Hp)

L
Bkw — B kwFprs, Fpps= max{ : ,1}
CpesA

k1/2
= o

Again, the DES modification is meant to switch the turbulemigth scale from a
RANS length scalet k'/2/w) to a LES length scalex{ A) when the grid is suf-
ficiently fine. WhenFpgg is larger than one, the dissipation term in thequation
increases which in turn decreasesnd thereby also the turbulent viscosity. With a
smaller turbulent viscosity in the momentum equations,nieelelled dissipation (i.e
the damping) is reduced and the flow is induced to go unstddyresult is, hopefully,
that a large part of the turbulence is resolved rather thamgmodelled.

In some flows it may occur that thE, gs term switches to DES in the boundary
layer becausé z is too small (smaller than the boundary layer thicknégsDifferent
proposals have been madep 127] to protectthe boundary layer from the LES mode

A = max {Ax1, Axy, Axs}, L

Ly
F = 1-—Fgqg),1
DES = Inax { CDESA( S), }

whereF is taken ag; or F; (see Eq19.5 of the SST model.

20 Hybrid LES-RANS

When simulating bluff body flows, LES (Large Eddy Simulafieéthe ideal method.
Bluff body flows are dominated by large turbulent scales taat be resolved by LES
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without too fine a resolution and accurate results can thusbbsned at an affordable
cost. On the other hand, it is a challenging task to make ateyredictions of wall-
bounded flows with LES. The near-wall grid spacing should lii@ug one wall unit in
the wall-normal direction. This is similar to the requirembén RANS using low-Re
number models. The resolution requirements in wall-pakplanes for a well-resolved
LES in the near-wall region expressed in wall units are apipnately100 (streamwise)
and30 (spanwise). This enables resolution of the near-wall tiemistructures in the
viscous sub-layer and the buffer layer consisting of highaesl in-rushes and low-speed
ejections L0Q, often called the streak process.

An event of a high-speed in-rush is illustrated in F&§.1 In the lower part of
the figure the spanwise vortex line is shown. Initially it isteaight line, but due to a
disturbance — e.g. a turbulent fluctuation — the mid-parhefiortex line is somewhat
lifted up away from the wall. The mid-part of the vortex lingperiences now a higher
71 velocity (denoted by/ in the figure) than the remaining part of the vortex line. As
a result the mid-part is lifted up even more and a tip of a haigortex is formed.
The vorticity of the legs lift each other through self-indioa which helps lifting the
tip even more. In the;; — 22 plane (upper part of Fig20.]) the instantaneous and
mean velocity profiles (denoted Wy and U in the figure, respectively) are shown
as the hairpin vortex is created. It can be seen that an iofigxdint is created in the
instantaneous velocity profil&], and the momentum deficit in the inner layer increases
for increasingr;. Eventually the momentum deficit becomes too large and tie- hi
speed fluid rushes in compensating for the momentum deficé.ifi-rush event is also
called asweep There are also events which occurs in the other directien, low-
speed fluid is ejected away from the wall. These events aleddalrstsor ejections
The spanwise separation between sweeps and bursts is veltyapproximatelyl 00
viscous units, see Fi@0.7). This is the main reason why the grid must be very fine
in the spanwise direction. The streamwise distance betiezevents is related to
the boundary layer thicknessq, see Fig20.1). The process by which the events are
formed is similar to the later stage in the transition preciesm laminar to turbulent
flow. Figure20.2presents the instantaneous field of the streamwise velbaityiation,

v} in the viscous wall region. As can be seen, the turbulentsiras very elongated
in the streamwise direction.

At low to medium Reynolds numbers the streak process is resspie for the major
part of the turbulence production. These structures mustdrgved in an LES in order
to achieve accurate results. Thus, for wall-bounded flowsgtt Reynolds numbers
of engineering interest, the computational resource requént of accurate LES is
prohibitively large. Indeed, the requirement of near-wgill resolution is the main
reason why LES is too expensive for engineering flows, whiek ane of the lessons
learned in the LESFOIL projecip4 105.

The object of hybrid LES-RANS (and of DES) is to eliminate thgquirement of
high near-wall resolution in wall-parallel planes. In thean-wall region (the URANS
region), a low-Re number RANS turbulence model (usually dehyeviscosity model)
is used. In the outer region (the LES region), the usual LESsed, see Fig20.3
The idea is that the effect of the near-wall turbulent stiees should be modelled by
the RANS turbulence model rather than being resolved. InLt&8 region, coarser
grid spacing in wall-parallel planes can be used. The gsdltdion in this region is
presumably dictated by the requirement of resolving thgdar turbulent scales in the
flow (which are related to the outer length scales, e.g. thenbary layer thickness)
rather than the near-wall turbulent processes. The ungt@adnentum equations are
solved throughout the computational domain. The turbURiNS viscosity is used in
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Figure 20.4: Comparison of standard hybrid LES-RANS in cterilow on a very
coarse meshXz; = 2Az] = 785. §/Axy ~ 2.5,5/Axz ~ 5.) [73]. — : hybrid
LES-RANS;o: 0.4In(y™) + 5.2. Markers in right figure indicate resolution.
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Figure 20.5: Using forcing at the interface between the LE&G @RANS region.

the URANS region, and the turbulent SGS viscosity is useden S region.

Much work on hybrid LES-RANS has been carried out. 12§ 70, 129 two-
equation models were used in the URANS region and a oneiequ@GS model
was employed in the LES region. One-equation models werd imsboth regions
in [130 131]. The locations of the matching planes were determinedffardint ways.
In some work 70, 129 it was chosen along a pre-selected grid plane.18(] it was
determined by comparing the URANS and the LES turbulentttesgales or was com-
puted from turbulence/physics requirements. 18§ they used a two-equation model
in the URANS region and blended it into a one-equation mau#ié LES region. Dif-
ferent partial differential equations for automaticallyding the matching plane were
investigated in131]. A one-equation model was used in both regiondli®], and the
c,, coefficient at the interface was computed dynamically tddygesmoother transi-
tion between the URANS and LES regions. Ir8B they proposed & — ¢ turbulence
model, later also used by 84, in which thec., is made into a function of the ratio of
the RANS and LES length scales. On a fine mesh the model switrheothly to LES
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Figure 20.6: Added fluctuationﬁ,;m,v}g,v’m, in a control volume { = j + 1)
in the LES region adjacent to the interface. The fluctuatiareseither synthesized
(subscriptf = S) or taken from channel DNS (subscript= DN S).

and in the limitc.; = ¢ so that a pure DNS solution is obtained.

Hybrid LES-RANS is similar to DES (Detached Eddy Simulagpiiil11, 135
127. The main difference is that the original DES aims at cavgthe whole attached
boundary layer with URANS, whereas hybrid LES-RANS aimsaitering only the
inner part of the boundary layer with URANS. In later work DBE&s been used as a
wall model [L36 123, and, in this form, DES is similar hybrid LES-RANS.

Figure20.4a presents comparison of LES and hybrid LES-RANS in chanow/dk
Re, = 2000 on a very coarse mesh. The momentum equations are solvee émtine
domain and the turbulent viscosity is in both regions ol#difrom a one-equations
ksgs €quation and an algebraic length scale (see Secidrisind20.2). The resolution
in the wall-parallel plane is comparable to what can be d#drfor boundary layer in
real, industrial flows, at least in terms of viscous unifsz{ and Azj). The LES
cannot resolve the flow at all. Hybrid LES-RANS gives much ioyed results, still
not very good however. The normalized streamwise two-pmntelation is shown in
Fig. 20.4. As can be seen, the streamwise lengthscale predictedhyidithid LES-
RANS is extremely large. It should be mentioned that stashdigbrid LES-RANS
does — of course — give better results on finer gritl81], but these finer grids are
rarely affordable in industrial flows.

Although the results obtained with hybrid LES-RANS are éethan those ob-
tained with LES, it has been found that the treatment of therface between the
URANS region and the LES region is crucial for the succeshiefrhethod. The re-
solved turbulence supplied by the URANS region to the LES$orebas no reasonable
turbulent characteristics and is not appropriate for giggg the LES equations to re-
solve turbulence. This results in too poorly resolved sissin the interface region
and thereby gives a ramp — also referred to as a shift — in tloeitge profile approx-
imately at the location of the matching plark®] 136 124, 129, 137, 130, 123. The
overly small resolved stresses in the LES region are tréggslmto too small a wall
shear stress. Several modifications have been proposethtiveethis deficiency. In
[137, 132, they suggested dampening the modelled stresses in theNSRAgion to
reduce the total (i.e. resolved plus modelled) shear stref®e URANS region and
thereby reduce the jump in shear stress across the matclaing. ]Numerical smooth-
ing was used at the interface ibdQ. [129 proposed a modification of the discretized
streamwise equation at the interface in order to avoid iiilteout any resolved fluctu-
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URANS region LES region
4 nc;?’ “n[l — exp(—0.2k/2n /v)] {=A
VT ﬁct/4k1/2n[1 — exp(—0.014k?n/v)] | 0.07k'/%¢
C. 1.0 1.05

Table 20.1: Turbulent viscosity and turbulent length ssafethe URANS and LES
regions. n and x denote the distance to the nearest wall and von Karmantauns
(= 0.41), respectivelyA = (§V)1/3

ations at the interface. InR3 backscatter was introduced in the interface region with
the object of generating resolved fluctuations.

One way to improve hybrid LES-RANS is to add fluctuations te thomentum
equations at the interfac&?4, 73], see Figs20.5and20.6 The object is to trigger the
equations to resolve turbulence. Adding fluctuations ireotd trigger the equations
to resolve turbulence is actually very similar to preseripfluctuating turbulent inlet
boundary conditions for DNS or LES (or hybrid LES-RANS). 16 triggering inlet
boundary conditions are prescribed in DNS or LES, the resblurbulence near the
inlet will be too small and a large streamwise distance isiiregl before the equations
trigger themselves into describing turbulent flow. Thislsoahe case in hybrid LES-
RANS: if no triggering (forcing) is applied at the interfaoetween the LES region and
the URANS region, the resolved turbulence in the LES regiearthe URANS region
will be too small.

20.1 Momentum equations in hybrid LES-RANS

The incompressible Navier-Stokes equations with an adddmlifent/SGS viscosity
read o 0 1 0p 0
V; 5o p

ot * Ox; (0:73) pOx;  Oxj
wherevr = v, (v, denotes the turbulent RANS viscosity) foy < 2 ,,,; (see Fig20.3
and, forze > 22 mi, v = Vsgs. The turbulent viscosityyr, is computed from an al-
gebraic turbulent length scale (see Taklel) andk; the latter is obtained by solving
its transport equation, see E2).2

(20.1)

20.2 The equation for turbulent kinetic energy in hybrid LES-RANS

A one-equation model is employed in both the URANS region #redLES region,
which reads

Okr 0 _ ) Ok ’#/_2
o) = —— + — | + Py — Ck

ot + Ox; (0hr) Ox; {(V vr) axj] br =€ ¢ (20.2)
Prp = —TijSij,  Tij = —2vr8i;

In the inner regions < z2,,,;) k7 corresponds to the RANS turbulent kinetic energy,
k; in the outer region£s > x2 ,,,;) it corresponds to the subgrid-scale kinetic turbulent
energy &.4s). No special treatment is used in the equations at the nrajgiiane ex-
cept that the form of the turbulent viscosity and the turbtilength scale are different
in the two regions, see Tab®9.1 At the walls,kr = 0.
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Figure 20.8: Shear stress and turbulent kinetic ener@}; [Solid lines: no forcing;
dashed lines: forcing with isotropic fluctuations withs = 0.25; o: presend6> DNS.
Thick lines: resolved; thin lines: modelled.

20.3 Results

Fully developed channel flow a&e, = w,d/v = 2000 (6 denotes the channel half
width) is used as a test case to evaluate the effect of difféoecing conditions. This
flow may seem to be an easy test case, but it is not. In attemptgprove the perfor-
mance of LES in wall-bounded flows, the Achilles’ heel is tleanwall flow region.
The bulk velocity in fully developed channel flow with periodoundary conditions
(see Eq20.]) is entirely determined by the wall shear stress; consetyutne flow is
extremely sensitive to the turbulence in the near-wallgrgi

The streamwise velocity profiles obtained with and witharting are compared
in Fig. 20.7 with the present DNS and the log-law. It can be seen that théece
line velocity is strongly over-predicted when no forcingised, whereas forcing with
Mg = Mpns = 0.25 gives excellent agreement with the log-lai ¢ and Mp g
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denote forcing with synthetic and DNS fluctuations, respebt). The reason for the
overly large velocities without forcing is that the resah&hear is too small. It can be
seen in Fig20.& that it is the resolved shear stress that increases whendas intro-
duced, indicating that the resolved shear stress withauirfg is too small. This was
also observed bylR3: when forcing is introduced, the resolved shear streseames,
which reduces the bulk and centerline velocity.

Recently a novel way for generating fluctuations to be usefb@ing at the in-
terface was presented(1]. In this work backscatter obtained from a scale-similarit
model was used.

21 The SAS model

21.1 Resolved motions in unsteady

When doing URANS or DES, the momentum equations are trighgm®ugh instabil-
ities to go unsteady in regions where the grid is fine enoughlRANS or in DES op-
erating in RANS mode, high turbulent viscosity often dangpeut these instabilities.
In many cases this is an undesired feature, because if thevdmis to go unsteady, it
is usually a bad idea to force the equations to stay steady.r€ason is that there may
not be any steady solution. Hence, the equations will novexge. Another reason
is that if the numerical solution wants to go unsteady, tihgddurbulent scales — i.e.
part of the turbulent spectrum — will be resolved insteadeihly modelled. This leads
to a more accurate prediction of the flow.

One way to improve a RANS model’s ability to resolve largaelsanotions is to
use the SAS (&le- Adaptive $mulation) model

21.2 The von Karman length scale

The von Karman length scale

8<6>/8$2

Lykip =k

which includes the second velocity gradient is a suitabhgtle scale for detecting
unsteadiness. The von Karman length scale is smallerrfanstantaneous velocity
profile than for a time averaged velocity, see FA@.1 This is interesting because, as
noted in fL39, the von Karméan length scale decreases when the momesquations
resolve (part of) the turbulence spectrum.

The first and second derivatives in EtfL..1are given in boundary layer form. We
want to extend this expression to a general one, applicaliteée dimensions. In the
same way as in, for example, the Smagorinsky model, we takéirgt derivative as
5| = (254,5:;)'/2. The second derivative can be generalized in a number of ways
the SAS model it is taken as

T

U=+t 21.2

Hence, the general three-dimensional expression for thé&K@man length scale reads
||

Lyksp = o (21.3)
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In [139 they derived a one-equatian turbulence model where the von Karman
length scale was used. The model was called the SAS modeér, lisgsed on the
k — k2L model of Rotta 140, Menter & Egorov [L39 derived a new: — kL model
using the von Karman length scale. Finally, it¥[]] they modified thek — w-SST
model to include the SAS features; they called this model3B&-SAS model. This
model is described in more detail below.

The SST-SAS model

The k — w SST model is given in Egl9.5at p. 149 (see also the section starting at
p. 116 Now, Menter & Egorov 141]] introduced a SAS-term in the equation. The
object of this term is to decrease the turbulent viscositgmvhnsteadiness is detected,
i.e. when the von Karman length scale becomes small. Todugtion term in thev
equation in thé& —w-SST model read®,, = aP* /v, « |5|2. To decrease the turbulent
viscosity we should increase Thus it seems reasonable to add a new production term
proportional toP,, L,/ L, k,3p WhereL; denotes a RANS length scale. The additional
term reads

- L k1/2
—12 t
k|3 . L= —— 21.4
CQ | | L'uK,BD t wc}/4 ( )

When unsteadiness occurs — i.e. when the momentum equaitieemspt to resolve
part of the turbulence spectrum —, this term reacts as fallow

e Local unsteadiness will create velocity gradients whichrdase the turbulent
length scale, see Figl1.1

This results in a decrease in the von Karman length séalg,;p

As a consequence the additional source,Hg4 in thew equation increases

This gives an increase in and hence a decreaseuin

The decreased turbulent viscosity will allow the unsteadinto stay alive and,
perhaps, grow.

The last item in the list above is the main object of the SAS ehodihe reaction
to local unsteadiness in a eddy-viscosity model withoutSA& feature is as follows:
the increased local velocity gradients will create addiigproduction of turbulent ki-
netic energy and give an increased turbulent viscosity vhidl dampen/kill the local
unsteadiness. As mentioned in the introduction to this trafhis is an undesirable
feature.

When incorporating the additional production term (24.4) in the k — w-SST
model, the last term in the equation is replaced by (for further details, s&41])

Psas = Fsasmax (T1 — 13,0)

Ty = (okS? L
vK,3D
£y 2 e (L2002 108 01) @15
LS w? dxj Ox; k2 Oxj Ox;
k1/2
wc}/4

Note that the terndy is the “real” additional SAS ternif is included to make sure
that the model in steady flow works a&a- w SST model.
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Figure 21.1: Velocity profiles from a DNS of channel flow. Sdine: time-averaged
velocity with length scald., 1p, Eq.21.1; dashed line: instantaneous velocity with
length scalel, x 3p, Eq.21.3

21.3 The second derivative of the velocity

To computd/” in Eq.21.2 we need to compute the second velocity gradients. In finite
volume methods there are two main options for computingrseéderivatives.
Option I: compute the first derivatives at the faces

<ﬂ> TS <ﬁ) R/
al’g J+1/2 Al’g ’ 8$2 j—1/2 Al’g
and then
%0\ _ v = 2v Fuj (Awa)? O
dr3); (Axg)2 12 Ox}

Option Il: compute the first derivatives at the center
(8’1}) _Uj+2—’l}j ((’)v) _’Uj—Uj_Q
8:1:2 G+1 2AIL'2 ’ 8:1:2 j—1 2AIL'2

(821)) _ Vit — 2’Uj + vj—2 (AJ}2)2 ot
J

8—17% 4(A$2)2 3 8—$421

and then

In [142, Option | was used unless otherwise stated.

21.4 Evaluation of the von Karman length scale in channel flow

In Fig. 21.2the turbulent length scaléL, x 3p), is evaluated using DNS data of fully
developed channel flow. When using DNS data only viscougxigen of resolved tur-
bulence affects the equations. This implies that the sistaleales that can be resolved
are related to the grid scale. The von Karman length scdedb on instantaneous ve-
locities, (L, k 3p), is presented in Figz1.2 Forz, > 0.2, its magnitude is close to
Axo which confirms that the von Karman length scale is relabetié smallest resolv-
able scales. Closer to the wall,, x 3p) increases slightly wheredsz, continues to
decrease.
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Figure 21.2: Turbulent length scales in fully developedrute flow. Left: global
view; right: zoom. DNS96° mesh. Re, = 500. Az /5 = 0.065, Ax3/d = 0.016,
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Figure 21.3: Turbulent length scales in fully developedroie flow. Hybrid LES-

RANS. Left: global view; right: zoom32 x 64 x 32 mesh.Re, = 2000. Az;/§ =

0.39, Az3/d = 0.19, za-stretching of 17%.— : (Lyk3sp); ---: Lykip; ---:

(Azy Ay Ax3)'/3; 01 Axg; +: by = K05 /(e *w).
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The von Karman length scald,,x 1p, based on the averaged velocity profile
(v1) = (1) (x2) is also included in Fig21.2 and as can be seen it is much larger than
(Lvk,3p)- Nearthe wallL, k 1 p increases because the time-average second derivative,
0?(v1)/0x3, goes to zero as the wall is approached. No such behavioersfse the
three-dimensional formulatiofL, x sp)-

In Fig. 21.3 data from hybrid LES-RANS are used (taken fron3]). When using
hybrid LES-RANS, part of the turbulence is resolved and pétthe turbulence is mod-
elled. The resolved turbulence is dissipated by a modelissightion,—2(v75,;5;,)

(vr denotes SGS or RANS turbulent viscosity), and>> v. As a result, the length

scale of the smallest resolved turbulence is larger in lilybES-RANS than in DNS.

Close to the wall in the URANS regiorz{ < 0.0319), the resolved turbulence is
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dampened by the high turbulent viscosity, and as a re¢lilig 3p) follows closely
Lyk1D-

The RANS turbulent length scalé,_,, from a 1D RANS simulation aRe, =
2000 with the & — w SST model is also included in Fi@1.3 In the inner region
(z2 < 0.56), its behavior is close to that of the von Karman lengthesda, i 1 p. In the
center region the RANS turbulent length scale continuesdmease which is physically
correct. However, the von Karman length scalgx 1p, goes to zero because the
velocity derivative goes to zero.

Two filter scales are included in Fig21.2and21.3 In the DNS-simulations,
Axy < (AzyAxeAxs)/3 nearthe wall, whereas far from the walle, > (Axz; AzyAxs)'/?
because of the stretching in the direction and because of smallz; andAzs. In the
hybrid simulations, it can be noted that the three-dimeraifilter width is more that
twice as large as the three-dimensional formulation of the Karman length scale,
ie. (A$1A$3AI3)1/3 > 2<LUK,3D>-

In[142, the SST-SAS model has been evaluated in channel flow, flam imsym-
metric diffuser and flow over an axi-symmetric hill.

22 The PANS Model

The PANS method uses the so-called “partial averaging”eptiavhich corresponds
to a filtering operation for a portion of the fluctuating sca#43.

For an instantaneous flow variablE, we usef to denote the partially-averaged
part, namelyf = P(F), whereP denotes the partial-averaging operator. We consider
incompressible flows. Applying the partial averaging todgio@erning equations gives

07v; .
G =0 (22.1)
9v;  0(v;v;) Lop 0 ( Oy
Avi%) _ 2 7 — 222
ot + 8117]' paxz + ij Va$j Tij ( )

wherer;; is the central second moment resulting from the partial &yeg for the
nonlinear terms, that is;; = (P(v;v;) — ¥;7;), wherev; indicates instantaneous ve-
locity components. This term is similar to the Reynoldssdrensor resulting from the
Reynolds averaging in RANS or to the subgrid-scale (SG$&§sttensor after the spa-
tial filtering in LES. For simplicity, we also use the termlagy of Reynolds stresses
for the termr;; in Eq.22.2

To close the system of the partially-averaged Navier-St@giations, as in RANS
and LES, a model is needed fof;. In [143 they proposed using the conventional
eddy viscosity concept so that = —2v,,5;;, wheres;; is the strain-rate tensor of the
computed flow and, is the PANS eddy viscosity.

In order to formulate the PANS eddy viscosity, they definefili#3 another two
guantities, the partially-averaged turbulent kineticrgyek,, and its dissipation rate,,
so thaty,, = Cﬂkﬁ/su. In the derivation of the transport equations fgrande,,, two
parametersf;, and f., have been introduced, relating the unresolved to thevedol
fluctuating scales. Parametér defines the ratio of unresolved (partially-averaged)
turbulent kinetic energyk(,) to the total kinetic energyk{), andf. is the ratio between
the unresolveds(,) and the total) dissipation rates. These give

k= ku ande = — (22.3)
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The extent of the resolved part is now determinedfRyand f.. In [144 143 they
employed the standadd—  model as the base model.

Thek, equation is derived by multiplying the RANSequation (Eq11.90 in the
k — e model by, i.e. (for simplicity we omit the buoyancy term)

ok _ Ok , 0 v\ Ok
bR AU 1 (Gl | B

whereV; denotes the RANS velocity. The left side can be re-written

ok ok Ok, - Ok, Ok, _ Oky — _ 0Ok,
fk{ VT}W* e T e\ v

The convective term must be expressed;irfthe PANS averaged velocity) rather than
in V; (the RANS averaged velocity), because itristhat transports:,, becausey;
represents the PANS resolved partgf The last term on the right side in E&2.5is
usually neglected.

The diffusion term is re-written using E2.3

o () )y s (1) &)

(22.5)

22.6
BRI B
- Oxj Oku ) OT;
where
Okuy = Ok ;—k (22.7)

The sum of the source terms in E22.4must be equal to the sum of the source terms
of thek,, equation, i.e.

fu (PP —e) =P, —c, (22.8)
This relation implies
1 €
PF=—(P, —e,)+ 22.9
fk ( ) fa ( )
Using Egs22.5 22.6and22.8the final transport equation fdt, can now be written
as
Ok,  0(ky7;) 0 Ok,
— = — P, 22.1
ot * O0x; O0x; g Oku 81:3 * ( 0

where the production ternt;,, is expressed in terms of the PANS eddy viscosity,
and the strain rate of PANS-resolved flow field, i.e.

0v; ~ 0v;\ 0v;
P, =y, : J ! 22.11
v (81'] * 8%) Oz ( )
where
kQ
Uy = Cp— (22.12)

Thee, equation is derived by multiplying the RANSequation byf., i.e.
Oey n 0(euTj) _ Oe 8(51_/3-)
8t 8% ¢ 815 ij

) ) L. (22.13)
o e V¢ e 9
= (2 reani-ea)
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The diffusion term is re-written using E§2.3

0 v\ Oe 0 v\ Oy
fa{a—zj [(”a) a—zﬂ} = o, K”*z) az-]

(22.14)
VRN
_&Ej Oeu /) O
where
L fR
Ockuy = O’Ekf— (22.15)

In the same way, the production and destruction terms afermedlated as (using
Eqgs.22.3and22.9

2 1 2
fa {C“EIPI@E - 0526_} = 0815Ufk ( (Pu - Eu) + Eu) - CE2EUfk

k k ke \ fr fe feku
Eu g2 g2 fr €2 Jx
- Sup “u L u 22.1
el ku u Csl ku + Cal kufs 052 feku ( 6)
2
Eu % Eu
= Ca EPU ~ Ly
where s
S =Ca+ f—k(Caz —Ce1) (22.17)
€

Thee, equation in the PANS model now takes the following form

ey, O(g40y) 0 vy \ Oey Eu g2
Geu | Aeuty) _ 7 Pul Loap 2t —onSe (22,18
ot + 0z, 0z, v Ocu ) 0% e ky 2k, ( )

As in thek,, equation, the the additional terf#; —v,)9e,,/0z ; has been neglected.

The PANS equation fak,,, Eq.22.1Q was derived by multiplying the RANS equa-
tion for k& by fi. which was assumed to be constant in space and in time. Byirefer
to Eqs.22.6 22.12and22.7, the turbulent diffusion term was obtained as

0 (v 9k 0 (v Ok,
L (?@) = o, <ak ax) (22.192)
0 v, Ok
= ([ x 22.1
Ox; (O’ku 8@-) ( 9b)

The expression on the right-hand side of £g.19a) suggests that the turbulent trans-
port for the PANS-modelled turbulent kinetic energy,, is actually formulated in
terms of the RANS turbulent viscosity from the base modelisT$ different from
the turbulent diffusion in subgrid scale (SGS) modellind_&S with a one-equation

ksqs model, which reads

8 ngs ak/)sgs

— | === 22.20
Ox; ( o Oz; ) ( )

In Eq. 22.20the SGSturbulent viscosity is invoked for the transportkf,, whereas

on the right-hand side of EQ2.19a) thetotal (i.e. the RANS) turbulent viscosity has

been used fok,. Equation22.19a) suggests that, when used as an SGS model, the

modelled turbulent diffusion in the PANS formulation is &tfar of o, /oy, = f=/ f2

larger than in Eq22.2Q see Eqs22.10and22.19b). With f. = 1 and f;, = 0.4, for
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example, this factor is larger than six. The modificationted tiffusion coefficient,
Oku, IS @ unique property of the PANS model. In other models, agbES 145,
X-LES [115 and PITM [120, the sink term in thé:, £ or w equation is modified, but
not the diffusion term.

A Low Reynolds number PANS model was presentedlibg. A recently devel-
oped LRN PANS model is employed, for improved modelling odimevall turbulence,
which reads119

Ok,  0(k,0j) 0 vy \ Ok,
i) -2 Zu ) T P _
ot + Oz Oz {(V—i_ O’ku) 8:17]} + (P —eu)

= 2
gy On) 0 [, )0 gt

E (’)xj (’)xj Ocu al’j Ky 825

12 A (22.21)
Vu:Cuqu—u, Yo = Ce1 + T (Ceafa — Cer)

2 2
Oky = Ok % ) Ocu = O¢ %

The modification introduced by the PANS modelling as comgdeeits parent
RANS model is highlighted by boxes. The model constants tlakessame values as in
the LRN model L21], i.e.

Cey =15,Ce0 = 1.9,04 = 1.4,0. = 1.4,C,, = 0.09 (22.22)

23 Hybrid LES/RANS for Dummies

23.1 Introduction

Fluid flow problems are governed by the Navier-Stokes equati

Ov;  Ovv; 1 90p 0%v;

ot "o, pow | Uoz,00,

(23.1)

wherev; denotes the velocity vectagr,is the pressure andandp are the viscosity and
density of the fluid, respectively. In turbulent flow, the agity and pressure are un-
steady and; andp include all turbulent motions, often called eddies. Theigbacale
of these eddies vary widely in magnitude where the largediesdare proportional to
the size of the largest physical length (for example the bamylayer thicknessj, in
case of a boundary layer). The smallest scales are relatbe ®ddies where dissipa-
tion takes place, i.e. where the kinetic energy of the edditransformed into internal
energy causing increased temperature. The ratio of thedatg the smallest eddies
increases with Reynolds numb@&e = |v;|d/v. This has the unfortunate consequence
— unless one is a fan of huge computer centers — that it is ctatipoally extremely
expensive to solve the Navier-Stokes equations for largm&ds numbers.

23.1.1 Reynolds-Averaging Navier-Stokes equations: RANS

In order to be able to solve the Navier-Stokes equations witeasonable computa-
tional cost, the velocity vector and the pressure are ggiit & time-averaged part’{
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andP) and a fluctuating part( andp’), i.e. V; = v; + v}, p = P + p’. The resulting
equation is called the RANS (Reynolds-Averaging Navierk8s) equations

ViV, 19P 9%V,  Ovu,  19P Q)

Oz p Ox; * Vaxjaacj O0x; p Oz i a—ac]

J

<(y + 1) g}f) (23.2)

The term in front of the second equal sign is called the Redmetress and it is un-
known and must be modelled. All turbulent fluctuation are eitsdi with a turbulence
model and the results when solving EXR.2are highly dependent on the accuracy of
the turbulence model. On the right side of 2§.2the unknown Reynolds stresses are
expressed by a turbulence model in which a new unknown Variaintroduced which

is called the turbulent viscosity,. The ratio ofy; to v may be of the order of000

or larger. In industry today, CFD (Computationally Fluid itamics) based on finite
volume methods is used extensively to solve the RANS equstieq.23.2

23.1.2 Large Eddy Simulations: LES

A method more accurate than RANS is LES (Large Eddy Simuia)iin which only
the small eddies (fluctuations whose eddies are smalletttteecomputational cell) are
modelled with a turbulence model. The LES equations read

dv; OV 10p 0%, 07i; 10p 0 ( 0v; )
e T ol (AR
ot Ox; p Ox; O0z;j0x;  Ox; pOx;  Oxj Ox;

(23.3)
Note that the time dependence term (the first term on theild#) fias been retained,
because the large, time dependent turbulent (i.e. theuwedpfluctuations are part
of v, andp and are not modelled with the turbulence model. The term antfof
the second equal sign includes the Reynolds stresses ofrik eddies, which are
called SGS (sub-grid stresses). This term must also — as.i2Ef— be modelled,
and at the right side it has been modelled with a SGS turbwisnbsity, v,4s. The
difference ofv,,, compared ta, in Eq. 23.2is that it includes only the effect of the
smalleddies. The ratio ofs,; to v is of the order ofl to 100. However, the ratio of
the resolved to the modelled turbulen¢gy’|/|7;;| (see Eqs23.2and23.3 is much
smaller than one. Hence, LES is much more accurate than RAN&.se only a small
part of the turbulence is modelled with the turbulence SG8ehwhereas in RANS
all turbulence is modelled. The disadvantage of LES is thiathuchmore expensive
than RANS because a finer mesh must be used and because thiereqaee solved
in four dimensions (time and three spatial directions) vweaerRANS can be solved in
steady state (no time dependence).

When the flow near walls is of importance, is turns out that Li&Brohibitively
expensive because very fine cells must be used there. Thenresaentirely due to
physics: near the walls, the spatial scales of the “largdiulent eddies which should
be resolved by LES are in reality rather small. Furthermtinejr spatial scales get
smaller for increasing Reynolds number. Much research madaist ten years been
carried out to circumvent this problem. All proposed methadmbines RANS and
LES where RANS is used near walls and LES is used some distamag from the
walls, see Fig23.1 These methods are called Detached Eddy Simulation (DES), h
brid LES/RANS or zonal LES/RANS. The focus of this report@mal LES/RANS.
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23.1.3 Zonal LES/RANS
Equation23.2and23.3can be written in a same form as

07v; a’ljif)j . _l op i
ot or;  pox; Oz,

07;
((V +vr) 817]-) (23.4)
Near the walls, a RANS turbulence model is used for the teriscosity, i.evyr =

v and away from the walls an LES turbulence model is employed vy = vggs.
Note that the time dependence term is now retained also iIR&NS region: near the
wall we are using annsteady RANS, i.e. URANS.

Above, we have describe how to use the zonal LES/RANS methioftiofvs near
walls. Another form of zonal LES/RANS ismbedded.ES, in which an LES mode is
embedded in a RANS region. One example is prediction of aenstic noise created
by the turbulence around an external mirror on a vehig#.[The flow around the ve-
hicle can be computed with RANS, but in order to predict this@m the region of the
external mirror we must predict the large turbulence flutitress and hence LES must
be used in this region. In Sectid®8.4we will present simulations using embedded
LES in a simplified configuration represented by the flow in argiel in which RANS
is used upstream of the interface and LES is used downstréansee Fig.23.4

23.2 The PANSE — ¢ turbulence model

In the present work, the PANS — ¢ model is used to simulate wall-bounded flow at
high Reynolds number as well as embedded LES. The turbulmocke! reads117,
119, see Eqg22.21(here in a slightly simplified form to enhance readability)

ok ak’ljj 0 vr ok
— = — — ) — P, — 23.5
ot + Ox; Oz {(V—’— O’k) 8:17]} T e ( )
Os  Oevj 0 vr\ Oe € g2
— = — — | =— 1 P— — O — 23.
ot + 8117]' 8:1:]- |:(V+ O'E) 8$j:| c ! kk =2 k ( 3 6)
Cly = Caa + f1(Cea — Car), Co1 =15, Cea=19 (23.7)
]{?2
vr = Cﬂ?, C,=0.09 (23.8)

Note thatk ande are always positive. The key elements in the present usedANS
k — ¢ model are highlighted in red. Whef). in Eqg. 23.7is equal to one, the model
acts as a standadd— ¢ RANS model giving a large turbulent viscosity. Wh¢nis
decreased (0.4 in the present study},’’, in Eq.23.7decreases. As a result

e ¢ increases because the destruction term (last term i@ EGwhich is the main
sink term) in thes equation decreases,

e k decreases becausg(last term in Eg.23.5 is the main sink term in thé
equation increases, and

e vp in EQ.23.8decreases becaukelecreases andincrease.

Hence, the turbulence model in E@8.5-23.8acts as a RANS turbulence model
(large turbulent viscosity) whefi, = 1 and it acts as an LES SGS turbulence model
(small turbulent viscosity) whefy, = 0.4.
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Figure 23.1: The LES and URANS regions. Fully developed aehflow. Periodic
boundary conditions are applied at the left and right bouleda
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Figure 23.2: Velocities and resolved shear stresg@g, x N,) = (64 x 64) — :
Re, =4000;---: Re; = 8000; ---: Re, = 16000; ///I: Re. = 32000.

23.3 Zonal LES/RANS: wall modeling
23.3.1 The interface conditions

The interface plane (see Fig3.1) separates the URANS regions near the walls and the
LES region in the core region. In the LES regign= 0.4 and in the URANS region

fr = 1. Inthe former region, the turbulent viscosity should be an SGS viscosity and
in the latter region it should be an RANS viscosity. Hemgemust decrease rapidly
when going from the URANS region to the LES region. This isiaedd by setting
the usual convection and diffusion fluxes/o#t the interface to zero. New fluxes are
introduced using smaller SGS valud<lf.

23.3.2 Results

Fully developed channel flow is computed for Reynolds number, = w,.d/v =
4000, 8000, 16 000 and32 000. The baseline mesh hég x 64 cells in the streamwise
(x) and spanwisez) directions, respectively. The size of the domainis,, = 3.2,
Ymaz = 2 aNdzmaz = 1.6 (6§ = u, = 1). The grid in they direction varies between
80 and128 cells depending on Reynolds number. The interface is sgt te 500 for
all grids.

The velocity profiles and the resolved shear stresses asefnues] in Fig23.2 As
can be seen, the predicted velocity profiles are in good aggaewith the log-law
which represents experiments. Fig@&2 presents the resolved shear stresses. The
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interface is shown by thick dashed lines and it moves towtresvall for increasing
Reynolds number since it is locatedydt ~ 500 for all Reynolds numbers.

The turbulent viscosity profiles are shown in F28.3for three different resolutions
inthex — z plane. Itis interesting to note that the turbulent visgositnot affected by
the grid resolution. Hence, the model yielgisd independentesults contrary to other
LES/RANS models.

The turbulent viscosity (Fig23.3 is sharply reduced when going across the in-
terface from the URANS region to the LES region and the rembfluctuations (the
Reynolds shear stress in F&3.2b) increase. This shows that the model is switching
from RANS mode to LES mode as it should. More detailed resdts be found in

[144.

23.4 Zonal LES/RANS: embedded LES
23.4.1 The interface conditions

The interface plane is now vertical, see F&3.4 The interface conditions fdr and
¢ are treated in the same way as in Sec2@13.1 The difference is now that “inlet”
turbulent fluctuations must be added to the Lz ®quations (Eg23.3 to trigger the
flow into turbulence-resolving mode. Anisotropic synthdtirbulent fluctuations are
used 47, 148.

23.4.2 Results

The Reynolds number for the channel flowAs, = 950. With a3.2 x 2 x 1.6 domain,
a mesh with64 x 80 x 64 cells is used in, respectively, the streamwisy the wall-
normal {/) and the spanwisez] direction, see Fig23.4 Inlet conditions att = 0
are created by computing fully developed channel flow wihRANSE — ¢ model in
RANS mode (i.e. withf;, = 1).

Figure 23.5a presents the mean velocity and the resolved shear strastage
streamwise locations; = 0.19, 1.25 and3 (recall that the interface is locatedat=
1). At z = 3, the predicted velocity agrees very well with the experitaélog-law
profile.

The resolved streamwise velocity fluctuations are zero@rRANS region, as they
should (Fig.23.%), and the maximum resolved values increase sharply oeeinth
terface thanks to the imposed synthetic turbulent “inlefitflations. The turbulent
viscosity is reduced at the interface from its peak RANS gatiapproximate\80 to
a small LES value of approximately one (these values arefaoti low because of the
low Reynolds number). Hence, it is seen that the present hsodeessfully switches
from RANS to LES across the interface. The results will bespreged in more detail in

[144.

24 Inlet boundary conditions

In RANS it is sufficient to supply profiles of the mean quaestsuch as velocity and
temperature plus the turbulent quantities (d:@nd<). However, in unsteady simula-
tions (LES, URANS, DES. .. .) the time history of the velocityddemperature need to
be prescribed; the time history corresponds to turbulesplved fluctuations. In some
flows it is critical to prescribe reasonable turbulent flattans, but in many flows it

seems to be sufficient to prescribe constant (in time) poflle3 149.
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Figure 23.5: Channel flow with inlet and outlet. (a) Veloe#tj (b) maximum resolved
streamwise turbulent fluctuations and turbulent viscog#ysuse.
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There are different ways to create turbulent inlet boundaryditions. One way is
to use a pre-cursor DNS or well resolved LES of channel flows Tiethod is limited
to fairly low Reynolds numbers and it is difficult (or impolsk) to re-scale the DNS
fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuatiomeigartex methodl50.

It is based on a superposition of coherent eddies where aibhis described by a
shape function that is localized in space. The eddies arergtsd randomly in the
inflow plane and then convected through it. The method is tbteproduce first and
second-order statistics as well as two-point correlations

A third method is to take resolved fluctuations at a plane ditream of the inlet
plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlgtuitions.

24.1 Synthesized turbulence

The method described below was developed byl] 152 73] for creating turbu-
lence for generating noise. It was later further developednet boundary conditions
by [153 154, 147.
A turbulent fluctuating velocity fluctuating field (whose axge is zero) can be
expressed using a Fourier series, seeEd7. Let us re-write this formula as
an, cos(nx') + by, s%n(nx) = (24.1)
n, cos(ay, ) cos(nx) + ¢y, sin(ay, ) sin(nz) = ¢, cos(nx — ay,)
wherea,, = ¢, cos(a) , b, = ¢, sin(ay,). The new coefficient;,,, and the phase angle,
a,,, are related ta,, andbd,, as

1/2

bn
Cn = (ai + bi) o, = arctan (—) (24.2)

an
A general form for a turbulent velocity field is given By random Fourier modes
as

N
v/(x) =2 Z " cos(k"™ - x + ™)™ (24.3)
n=1

whered™, ™ ando} are the amplitude, phase and direction of Fourier med&he
synthesized turbulence at one time step is generated ag/foll

24.2 Random angles

The angles™ andf™ determine the direction of the wavenumber veetpsee Eq24.3
and Eq.24.1 o™ denotes the direction of the velocity vectef, For more details, see
Appendixl.

24.3 Highest wave number

Define the highest wave number based on mesh resoldtign = 27 /(2A), where
A is the grid spacing. The fluctuations are generated on a gtideguidistant spacing
(or on a weakly stretched mesh\n = x2 mas/Na2, Axs = 23 masz/N3, Wheren
denotes the wall-normal direction and and N5 denote the number of cells in the
andzx; direction, respectively. The fluctuations are set to zethatvall and are then
interpolated to the inlet plane of the CFD grid (thge— x5 plane).
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Figure 24.1: The wave-number vectef,, and the velocity unit vectos;*, are orthog-
onal (in physical space) for each wave number

24.4 Smallest wave number

Define the smallest wave number fram = k./p, wherek, = a97/(55L:), a =
1.453. The turbulent length scalé,;, may be estimated in the same way as in RANS
simulations, i.e.L; & 6 whered denotes the inlet boundary layer thickness. 163
154, 147 it was found thatl; ~ 0.16;,, is suitable.

Factorp should be larger than one to make the largest scales largarttiose
corresponding ta.. A valuep = 2 is suitable.

24.5 Divide the wave number range

Divide the wavenumber space,... — k1, into N modes, equally large, of sizk«.

24.6 von Karman spectrum

A modified von Karman spectrum is chosen, seeEgdand Fig.24.2 The amplitude
u™ of each mode in EQR4.3is then obtained from

" = (E(rk)Ar)Y?

u? (k/Ke)t 2
E _ rms e [=2(k/krn)"] 24.4
(k) =cpg ke 04 (m/me)Q]”/ﬁe ( )

K = (ki) /2, oy = c1/4,,-3/4
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Figure 24.2: Modified von Karméan spectrum

The coefficientg is obtained by integrating the energy spectrum over all wawgbers
to get the turbulent kinetic energy, i.e.

k= /Oo E(k)dk (24.5)
0
which gives p7] 4 TA7/6)
cp = ﬁ T{1/3) ~ 1.453 (24.6)
where -
[(z) = / e 2*ld (24.7)
0

24.7 Computing the fluctuations

Havinga™, k7, o andy™, allows the expression in Eg4.3to be computed, i.e.

hE

2

vy " cos(B™)oq

3
Il
N

WS-
I
[\
WE
>

" cos(B%)o2 (24.8)

3
Il
-

WE
>

vh =2 " cos(3") o3

Il
-

ﬁn = k?l’l —l—k/’gmg +kg$3 _’_wn

whered™ is computed from ER4.4

In this way inlet fluctuating velocity fields/{, v5, v5) are created atthe inlet —z3
plane.

The code for generating the isotropic fluctuations can bentimadechere
http://www.tfd.chalmers.se/"lada/projects/inlet-bou ndary-conditions/proright.html
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Figure 24.3: Auto correlation3(r) = (v} (¢)v}(t — 7): (averaged over timg). — :
Eqg.24.10 - - - : computed from synthetic dat@y;)™, see Eq24.9

24.8 Introducing time correlation

A fluctuating velocity field is generated each time step astilesd above. They are in-
dependent of each other and their time correlation will teizero. This is unphysical.
To create correlation in time, new fluctuating velocity feld;, V5, V4, are computed
based on an asymmetric time filter

VD™ = a(V)"™ " +b(vy)™
(Vo)™ = a(Vg)"™ " + b(uy)™ (24.9)
(Va)™ = a(Va)™ ™" + b(vy)™

wherem denotes the time step number ane: exp(—At/T).
The second coefficient is takenias- (1 —a?)"® which ensures thgd);?) = (v/?)
({-) denotes averaging). The time correlation of will be equal to

exp(—7/T) (24.10)

wherer is the time separation and thus EXL.9is a convenient way to prescribe the
turbulent time scale of the fluctuations. The inlet boundamditions are prescribed
as (we assume that the inlet is locatedat= 0 and that the mean velocity is constant
in the spanwise direction;s)

01(0, 22, 23, 1) = Vi in(x2) + 1l 4, (22, 23, 1)
@2 (0, To,T3, t) = ‘/Q,in (1‘2) + vé,in (IL‘Q, T3, t) (2411)
03(0, 22, 23, 1) = V3,in(22) + 3 4, (2, 73, 1)

wherev) ;, = (V1)™, vh,;, = (V3)™ andvs ;. = (V3)™ (see Eq24.9. The mean

inlet profiles, Vi i, Va.in, V3,in, are either taken from experimental data, a RANS
solution or from the law of the wall; for example, Wt ;,, = V3 ;, = 0 we can estimate
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Vi,n as [L55

Ty ry <5
Vit, =4 —3.05+5In(z§) 5<zj <30 (24.12)
Iin@z3)+B z3 > 30

wherex = 0.4 andB = 5.2.

The method to prescribed fluctuating inlet boundary coadgihave been used for
channel flow 147, for diffuser flow [149 as well as for the flow over a bump and an
axisymmetric hill [L5§.
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25 Best practice guidelines (BPG)

In the early days of CFD, different CFD codes used to giveeddiit results. Even
if the same grid and the same turbulence model were used, toeitd be substantial
differences between the results. The reasons to theseatiffes could be that the
turbulence model was not implemented in exactly the sameiwé#ye two codes, or
that the discretization scheme in one code was more diffubian in the other. There
could be small differences in the implementation of the laug conditions in the two
codes.

Today the situation is much improved. Two different CFD codsually give the
same results on the same grid. The main reason for this iredreiuation is because
of workshops and EU projects where academics, engineens iftrdustry and CFD
software vendors regularly meet and discuss differentaspd CFD. Test cases with
mandatory grids, boundary conditions, turbulence modelsee defined and the par-
ticipants in the workshops and EU projects carry out CFD &itans for these test
cases. Then they compare and discuss their results.

25.1 EU projects
Four EU projects in which the author has taken part can beioresd

LESFOIL: Large Eddy Simulation of Flow Around Airfoils
http://lwww.tfd.chalmers.se/"lada/projects/lesfaitipght.html

FLOMANIA: Flow Physics Modelling: An Integrated Approach
http://cfd.mace.manchester.ac.uk/flomania/

DESIDER: Detached Eddy Simulation for Industrial Aerodynamics
http://cfd.mace.manchester.ac.uk/desider

ATAAC: Advanced Turbulence Simulation for Aerodynamic ApplicatiChallenges
http://cfd.mace.manchester.ac.uk/ATAAC/WebHome

25.2 Ercoftac workshops

Workshops are organized by Ercoft&afopearResearctCommunityOn Flow, Turbulence
And Combustion). The Special Interest Group Sigl5 is focusedvatuating turbu-
lence models. The outcome from all workshop are presented

here
http://lwww.ercoftac.org/fileadmin/usepload/bigfiles/sigl5/database/index.html

Ercoftac also organizes workshops and courses on Besti¢er&tidelines. The
publicationIndustrial Computational Fluid Dynamics of Single-Phadews can be
ordered on

Ercoftac www page
http://www.ercoftac.org/publications/ercofthestpracticeguidelines/single-phadéows spf/


http://www.tfd.chalmers.se/~lada/projects/lesfoil/proright.html
http://cfd.mace.manchester.ac.uk/flomania/
http://cfd.mace.manchester.ac.uk/desider//
http://cfd.mace.manchester.ac.uk/ATAAC/WebHome
http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/index.html
http://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/single-phase_flows_spf/
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25.3 Ercoftac Classical Database

A Classical Databasewhich includes some 100 experimental investigations,man
found at

Ercoftac’s www page
http://www.ercoftac.org/producnd services/classicollectiondatabase

25.4 ERCOFTAC QNET Knowledge Base Wiki

The QNET is also the responsibility of Ercoftac. Here you fiebcriptions of how
CFD simulations of more than 60 different flows were carried orhe flows are di-
vided into

Application Areas. These are sector disciplines such as Built Environmergn@Gtal
and Process Engineering, External Aerodynamics, Turbaimaty, Combustion
and Heat Transfer etc. Each Application Area is comprisedjmdlication Chal-
lenges. These are realistic industrial test cases whictbeamsed to judge the
competency and limitations of CFD for a given Applicatiorear

Underlying Flow Regimes These are generic, well-studied test cases capturing im-
portant elements of the key flow physics encountered achespplication Ar-
eas.

For more information, visit

ERCOFTAC QNET Knowledge Base Wiki
http://www.ercoftac.org/productnd services/wiki/


http://www.ercoftac.org/products_and_services/classic_collection_database//
http://www.ercoftac.org/products_and_services/wiki/
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A TME225: ¢ — § identity

Thee — ¢ identity reads

EinmEmik = Emin€mik = Enmi€mjk = 6ij6nk - 5ik5nj

In TableA.1 the components of the— § identity are given.

it n|Jlk EinmEmijk 0i50nk — 0ikOn;j
1 2 1 2 €12mEm12 = €123€312 = 1-1=1 1-0=1
211|112 caimeEmiz =¢€2136312=—1-1=-1 0—-1=-1
1 2 2 1 €12mEm21 — €123€321 = 1-—1=-1 0—-1=-1
1 3 1 3 513m5m13:51325213:*1'*1:1 1-0=1
3|1 1|13 ce3tmémiz==czeeai3=1-—-1=-1 0-1=-1
1 3 3 1 €13mEm31 = €132€231 = —-1-1=-1 0—1=-1
2 3 2 3 €23mEm23 = £€231£123 = 1-1=1 1-0=1
3 2 2 3 €39mEm23 — €321€123 = —1-1=-1 0—-1=-1
213 |3| 2| cosmEmzz=¢czz1€132=1--1=-1 0-1=-1

Table A.1: The components of the- § identity which are non-zero.

176
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Figure B.1: Flow between two plates (not to scale).

B TME225 Assignment 1: laminar flow

You will get results of a developing two-dimensional charftev (i.e. flow between
two parallel plates), see Fi@.1. The flow is steady and incompressible. The simula-
tions have been done with Calc-BFCH[/]. The inlet boundary condition (left bound-
ary) isv; = Vi, = 0.7. The height of the channel is= 0.011m andL = 0.6385m;

the fluid is air 0f20°C. You will use Matlab to analyze the data.

e First, find out and write down the governing equations (Ny®u cannot assume
that the flow is fully developed).

From the course www padwetp://www.tfd.chalmers.se/"lada/MoF/ ,
download the data filehannel _flow _data.dat andthe m-filehannel _flow.m
which reads the data and plot some results. Open Matlab awditchannel _flow .

Openchannel _flow.m in an editor and make sure that you understand it. There
are three field variables;;, v, and p; the corresponding Matlab arrays aré_2d,
v2_2d andp_2d. The grid is199 x 22, i.e. ni = 199 grid points in thex; direction
andnj = 22 grid points in thez, direction. The field variables are stored at these grid
points. We denote the first index asind the second index gsi.e. v1_2d(i,j)

Hence in

v1_2d(;,1) are thev, values at the lower wall;
v1_2d(:,nj) are thev; values at the upper wall;
vl_2d(1,:) are thev; values at the inlet;
v1_2d(ni,:) are thev; values at the outlet;

The work should be carried out in groups of two (you may alsoitdan your
own, but we don’t recommend it). At the end of this Assignmiret group should
write and submit a report (in English). Divide the reportirgections corresponding
to the section8.1—B.9. In some sections you need to make derivations; these should
clearly be described and presented. Present the resultechn sction with a figure
(or a numerical value). The results should also be discuasdd- as far as you can —
explained.

B.1 Fully developed region

Fully developed conditions mean that the flow does not chamgfee streamwise di-
rection, i.e. dv1 /0x1 = 0. If we define “fully developed” as the location where the


http://www.tfd.chalmers.se/~lada/MoF/
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velocity gradient in the center becomes smaller than, i.e. |0v; /0x;| < 0.01, how
long distance from the inlet does the flow become fully depet?

Another way to define fully developed conditions can beith@osition where the
centerline velocity has reached, for exampl&% of its final value. What:; value do
you get?

In Section3.2.2 a distance taken from the literature is given. How well dies
agree with your values?

In the fully developed region, compare the velocity profilétwthe analytical pro-
file (see Sectio’.2.2.

Look at the vertical velocity component,. What value should it take in the fully
developed region (see Secti@®2.2? What value does it take (ak = h/4, for
example)?

B.2 Wall shear stress
On the lower wall, the wall shear stresg, ;, (index L denotes bwer), is computed as

8’1}1
Malﬂg L
Recall thatris = p(0v1/dz2 + Ova/0x1) (See Eqs2.4 and 1.5 but at the wall
Ova/dz1 = 0; Sk = 0 because of the continuity equation, E43 Plot 7, 1, ver-
susz;. Why does it behave as it does?

Now we will compute the wall shear stress at the upper wall;;. If you use
Eq.B.1, you get the incorrect sign. Instead, use Cauchy'’s fornaéda p], Chapt. 4.2)

(B.1)

Tw,L = T21,w,L =

tgn) = TjiNTy (BZ)
which is a general way to compute the stress vector on a mhose (outward point-
ing) normal vector ish = n;. The expression for;; can be found in Eqsl.5 and
2.4; recall that the flow in incompressible. On the top wall, tleemal vector points
out from the surface (i.en; = (0,—1,0)). Use Eq.B.2 to compute the wall shear
stress at the upper wall. Plot the two wall shear stressdseisame figure. How do
they compare? In the fully developed region, compare withahalytical value (see
Eq.3.30.

B.3 Inlet region

In the inlet region the flow is developing from its inlet prefip; = V = 0.7) to
the fully developed profile somewhere downstream. Thevelocity is decelerated
in the near-wall regions, and hence the velocity in the center must increase due
to continuity. Plotv; in the center and near the wall as a functionzef Plot also
Ov1/0x4. Ifyou, for a fixedz, , integratevy, i.e.

h
§($1) = / vl(ml, wg)dmg
0
what do you get? How dog&gx, ) vary in thexz; direction? How should it vary?

B.4 Wall-normal velocity in the developing region

In SectionB.3 we found that, in the developing region, near the walls decreases for
increasingr; . What abouw,? How do you explain the behaviour of?
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B.5 Vorticity

Do you expect the flow to bigrotational anywhere? Let’s find out by computing the
vorticity, see Sectiod.3 Plot it in the fully developed region as; vs. x5. Where is it
largest? Plot the vorticity also in the inlet and developiegions; what happens with
the vorticity in the inlet region? Nows the flow rotational anywhere? Why? Why
not?

B.6 Deformation

In Sectionl.5, we divided the velocity gradient into a strain-rate tensgy, and a vor-
ticity tensor,2;;. Since the flow is two-dimensional, we have only two off-diagl
terms (which ones?). Plot and compare one of the off-dialgena of S;; and(;;.

Where are they largest? Why? What is the physical meanirtg,cdnd(2;;, respec-
tively? Compare?;; with the vorticity you plotted in SectioB.5. Are they similar?
Any comment?

B.7 Dissipation

Compute and plot the dissipatio®, = 7;,0v;/0z;. What is the physical meaning
of the dissipation? Where do you expect it to be largest? Wit largest? Any
difference it its behaviour in the inlet region comparedidhie fully developed region?

The dissipation appears as a source term in the equatiomtiennal energy, see
Eq.2.9 This means that dissipation increases the internal epieegyhe temperature.
This is discussed in some detail at)2.

Use Eq2.14to compute the temperature increase that is created by théifeo by
dissipation). Start by integrating the dissipation overéimtire computational domain.
Next, re-write the left side on conservative form and theplaphe Gauss divergence
theorem. Assume that the upper and lower walls are adigtfatithermore we can
neglect the heat flux by conductios,, (see Eq2.1]) at the inlet and outlet. Now
you can compute the increase in bulk temperatiliye from inlet to outlet. The bulk
temperature is defined at
foh UleZ‘Q

p =
foh Uldl‘g

B.8 Eigenvalues

Compute and plot the eigenvalues of the viscous stressrienso Use the Matlab
commanceig . If you have computed the four elements of thematrix you can use
the following commands:

tau=[tau_11 tau 12; tau_21 tau_22];
[n,lambda]=eig(tau);

wheren andlambda denote eigenvalues and eigenvectors, respectively.

What is the physical meaning of the eigenvalues (see ChamerPick an; loca-
tion where the flow is fully developed. Plot one eigenvaluaas-y graph (eigenvalue
versuses). Plot also the four stress components, versuse,. Is (Are) anyone(s) neg-
ligible? How does the largest componentgf compare with the largest eigenvalue?
Any thoughts? And agairwhat is the physical meaning of the eigenvalues?
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B.9 Eigenvectors

Compute and plot the eigenvectorsgf. Recall that at each point you will get two
eigenvectors, perpendicular to each other. It is enougtotoome of them. An eigen-
vector is, of course, a vector. Use the Matlab commguider to plot the field of the
eigenvectors. Recall that the sign of the eigenvector igdeéined (for example, both
¥, and—v¥; in Fig. 1.10at p.19are eigenvectors). Try to analyze why the eigenvectors
behave as they do.
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Figure C.1: Scalar product.

C TMEZ225: Fourier series

Here a brief introduction to Fourier series extracted frdrs{ is given.

C.1 Orthogonal functions

Consider three vectord/;, V2, V3, in physical space which form an orthogonal base
in R? (i.e. their scalar products are zero). Let us call thzamis functionsAny vector,
T, in R3 can now be expressed in these three vectors, i.e.

T = Clvl + CQVQ + 63V3 (Cl)

see FigC.1 Now define the scalar product of two vectaisandb, asa - b = (a|b).
The coordinates;;, can be determined by making a scalar product of Ed.and V;
which gives
(T|Vi) = (a1 V1| Vi) + (2V2|V,) + (e3V35]V;)
= (01V1|V1) + (CQV2|V2) + (C3V3|V3) (CZ)
= 61|V1|2 + CQ|V2|2 + 63|V3|2 = Ci|Vi|2

where|V;| denotes the length d&¥;; the second line follows because of the orthogo-
nality of V;. Hence the coordinates,, are determined by

¢ = (T|Vy)/|Vil]? (C.3)
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Now let us define an infinitexp-dimensional) functional spacB, with orthogonal
basis functiong ¢g}{°. The “scalar product” of two functiong, andg,,, is defined as

b
(Flgn) = / F(@)gn(@)dz (C.9)

Then, in a similar way to EdC.1, any function can, over the intervial, b], be expressed
as

[ = Z Cndn (C.5)
n=1

As above, we must now find the “coordinates” (cf. the coortdisa;, in Eq. C.1).
Multiply, as in Eq.C.2, f with the basis functiongy,, i.e.

(flg:) =D calgnlgs) (C.6)
n=1

Since we know that al,, are orthogonal, EqC.6is non-zero only ifi = n, i.e.

(flgi) = (c1911g:) + (c2g219:) - - - ci(9ilgi) - - - civ1(giv1lgi) - .. =

(C.7)
ci(gilgi) = Ci||gz'||2

Similar to Eq.C.3, the “coordinates” can be found from (switch from indie n)

cn = (flgn)/llgnll? (C.8)

The “coordinates”¢,, are called thémourier coefficients tof in system{g}$° and
llgn|| is the “length” ofg,, (cf. |V;| which is the length oV, in Eq.C.3), i.e.

b 1/2
gnl| = (gnlgn)*/? = (/ gn(x)gn(w)dDC) (C.9)

Let us now summarize and compare the basis functions in gdlyspace and the
basis functions in functional space

1. Any vectorinR? can be expressedin 1. Any function in [a,b] can be ex-

the orthogonal basis vectok; pressed in the orthogonal basis func-
tionsg,
2. The length of the basis vectdv,;, is
[V 2. The length of the basis functiog,,
s (g0

3. The coordinates o¥; are computed
asc; = (T|V,)/|Vi|? 3. The coordinates qf,, are computed

ascy = (flgn)/llgnl?

C.2 Trigonometric functions

Here we choosg,, as trigonometric functions which are periodic igm,w]. The
question is now how to choose the orthogonal function sysieq© on the interval
[—7, w]. In mathematics, we usually start by doing an intelligentégs”, and then we
prove that it is correct. So let us “guess” that the trigontrinseries

[1,sinx, cosz,sin(2z), . . ., sin(nz), cos(nx), . . .] (C.10)
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is an orthogonal system. The function system in Ed.0can be defined as

| ¢r(z), forn=2k=2/4,...
gn(x){ Un(z), forn—2k+1=1.3,... (C.11)

where¢y, (x) = sin(kz) (k = 1,2,...) andyy(z) = cos(kx) (k = 0,1,...). Now we
need to show that they are orthogonal, i.e. that the integfride product of any two

functions¢y, andyy is zero onB[—7, 7] and we need to compute their “length” (i.e.
their norm).

Orthogonality of 1, and v

(Vn|thr) = /_Tr cos(nx) cos(kx)dr = %/j [cos((n + k)x) + cos((n — k)x)] dx

L ksin((nk)x)}7T =0 for k#n

1 1 .
=3 [n+ks1n((n+k)x)+n_

™

(C.12)

“Length” of

(U lvr) = U] ]? = /Tr cos? (kx)dx = [g + isin(Qx)} =m for k>0

(tholvo) = ||l = / 1-der =27

-7

(C.13)

Orthogonality of ¢,, and v,

T

(Pn|r) = /7r sin(nzx) cos(kz)dr = % / [sin((n + k)z) + sin((n — k)x)] dz =

—T —T

! kcos((n—k)x)]ﬂ ~0

n —

1 1
-5 [nJrkcos((n—i—k‘)x)—l— )

(C.14)

Orthogonality of ¢,, and ¢y

(Pnlor) = /_F sin(nz) sin(kx)dz = %/j [cos((n — k)x) — cos((n + k)x)] dx

sin((n + k)z)] ’ =0 for k#n

™

1 1 . 1
=3 [n_ksm((nk)z) ——
(C.15)

“Length” of ¢y,

(br|dr) = ||ox])* = /F sin?(kx)dzr = {g — isim@a@)]7T =n for k>1
o o (C.16)
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C.3 Fourier series of a function

Now that we have proved th&y}$° in Eg.C.11forms an orthogonal system of func-
tions, we know that we can express any periodic functjpfwith a period of27) in

{g}i° as N
flx)=c+ Z(an cos(nx) + by, sin(nzx)) (C.17)

n=1

wherez is a spatial coordinate. The Fourier coeffients are given by

b = (6160l = = [ fla)sin(ro)s (c.182
n = T all = = [ ) costna)dzn =0 (Ca8b)
= (oIl = 3= [ fta)ds (C.180)
If we setc = ag/2, thena is obtained from EqC.1&, i.e.
= 30 i (an cos(nz) + by, sin(nx)) (C.19a)
b= (0 /I6al = = [ @)sintuoyde  (©.19)
on = T nll = 1 [ f@)costus)is (€190)

Note thatay corresponds to the average fof Taking the average of (i.e. integrat-
ing f from —x to ) gives (see EqC.1%)

f= f(z)dx = mag (C.20)
Hence, iff = 0 thenay = 0.

C.4 Derivation of Parseval’s formula

Parseval’s formula reads

/ﬂ(f( ))*d =—ao+wZa +07,)

—T

We will try to prove this formula. Assume that we want to appnoate the function
f as well as possible with an orthogonal series

i GnGn (C.21)
n=1

Now we want to prove that the Fourier coefficients are the blesice to minimize the
difference

N
1f = angnll (C.22)
n=1
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Later we will let N — oo. Using the definition of the norm and the laws of scalar
product we can write

N N
||f ZangnH ( Z angn f_zakgk>
N - N ]]\; '
= (fI1f) - Zan flgn) =Y ar(Floe) + > Y ana(gnlgr) = (C.23)
n=1 k=1
N

n=1k=1
N

n=1 n=1

because of the orthogonality of the function systdm} Y. Expressf in the second
term using the Fourier coefficients (see EqsC.5andC.8) gives

N N
(flf) =2 Z anCn(gnlgn) + Z a%(gnlgn)
n=1 n=1
N
=117+ D llgnll® (a — 2ancn) (C.24)
n=1

N N
2
= 1AIP + D llgnll® (@n = ca)® = D llgnll*eh
n=1 n=1

The left side of EqC.23is thus minimized if the coefficients,, are chosen as the
Fourier coefficientsg,, so that

N N
15 =" angal > = IF12 =D llgnlPe2 (C.25)
n=1 n=1

The left side must always be positive and hence

™

N
Z lgnll?c2 < ||F11? = / (f(x))%dz forall N (C.26)

—T

As N is made larger, the magnitude of the left side increasesjtamdagnitude gets
closer and closer to that of the right side, but it will alwatay smaller than| f||?.
This means the series on the left sidedvergent Using the Fourier coefficients in
Eq.C.19and lettingN — oo it can be shown that we get equality of the left and right
side, which gives Parseval's formula,

||f||25[< f(@))d :—awza 1)

Note thatr/2 andw on the right side correspond to the “length” |||, i.e. ||%o]],
|[4n|| @nd||¢, ||, respectively.

AppendixD describes in detail how to create energy spectra from twintporre-
lations.
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C.5 Complex Fourier series

EquationC.19 gives the Fourier series of a real function. It is more cofeento
express a Fourier series in complex variables even if thetiom f itself is real. On
complex form it reads

flx) = Z ¢ exp(1nz)) (C.273a)
Cn = % ! f(z) exp(—wnx)dz (C.27b)

—T

where the Fourier coefficients,, are complex. Below we verify that if is real, then
Eq.C.27is equivalent to EQC.19 The Fourier coefficients;,, read — assuming that
fis real —according to EqC.27

Cn L/ f(z)(cos(nx) — esin(nx))dx = %(an —by), n>0 (C.28)

T o o

wherea,, andb,, are given by EqC.19 For negativen in Eq.C.27we get

Cp=c" [ f(z)(cos(nz) +1sin(nzx))dx = %(an +1by,), n>0 (C.29)

Too2n .

wherec;, denotes the complex conjugate. ot 0, Eq.C.27reads

co = % /Tr f(z)dx = %ao (C.30)

see EqC.19 Inserting EqsC.28 C.29andC.30into Eq.C.27gives
1 1 . ;
flx) = 540 + 5 Zl(an —1by,) exp(anz) + (an + tby,) exp(—inx)

ap + (an — 1by)(cos(nz) 4+ 1sin(nx)) + (an, + by, )(cos(nx) — vsin(nx))

|~
|~
Il
—

n
o0

1 1 >
500 + > ay cos(nz) —1%by sin(nx) = 500+ > ap cos(na) + by sin(nz)

n=1 n=1

(C.31)

which verifies that the complex Fourier series for a real fiorcf is indeed identical
to the usual formulation in EdC.19although the Fourier coefficients,, are complex.
One advantage of E.27over the formulation in EqC.19is that we don’t need any
special definition for the first Fourier coefficienty. The trick in the formulation in
Eq. C.27is that the imaginary coefficients for negative and positiveancel whereas
the real coefficients add. This means that the real coefficame multiplied by a factor
two except the first coefficient,y, which makes up for the factcg in front of qg in
Eq.C.19
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D TME225: Compute energy spectra from LES/DNS
data using Matlab

D.1 Introduction

When analyzing DNS or LES data, we are interested to look atetiergy spectra.
From these we can find out in which turbulence scales (i.e.héthwwave numbers)
the fluctuating kinetic turbulent energy reside. By takihg Fourier transform of the
time signal (a fluctuating turbulent velocity) and then takthe square of the Fourier
coefficients we obtain the energy spectrum versus frequency

If we want to have the energy spectrum versus wavenumberpwsdf transform
N instantaneous signals in space and then time averagé&’ tReurier transforms.
An alternative way is to Fourier transform of a (time-averdptwo-point correlation,
Bss(i3), which is defined as (see Ef0.2)

B(x3,23) = (v3(x3 — @3)v5(23)) (D.1)

where 23 is the separation between the two points. Here we assumerihiatan
homogeneous direction so thBgs is independent ofs, i.e. Bss = Bss(Z3). The
two-point correlation for an infinite channel flow is shownkig. D.1. On discrete
form the expression foB33 reads

M
Bi(kz) = 2 D vh(ws — kAZ)o) () (D.2)
m=1
wherem denotes summation in homogeneous directions (i.e. timggpatial homo-
geneous directions).

In the following section we give a simple example how to usdldbato Fourier
transform a signal where we know the answer. Then we show basrive the energy
spectrum from a spatial two-point correlation. Finallyrs®comments are given on
how to create an energy spectrum versus frequency from acauélation (i.e. from
a two-point correlation in time).

D.2 An example of using FFT
Here we will present a simple example. Consider the function
u=1+4 cos(2rz/L) =1+ cos(2m(n —1)/N) (D.3)

whereL is the length of the domain andl = 16 is the number of discrete points, see
Fig.D.2. Let’s use this function as input vector for the discreterfieiransform (DFT)
using Matlab. The function is symmetric, so we expect the Fourier coefficients to be
real. In Matlab the DFT of; is defined as (typkelp fft  at the Matlab prompt)

U =3 e { 2k~ D(n - 1>}

N (D.4)

n=1

1<k<N

wherek is the non-dimensional wavenumber ane= +/—1. The ratio(n — 1)/N
corresponds to the physical coordinatein the the continuous FFT

Uf(ky = %/_LL u(z) exp(—wkx)dr, k=2r/L (D.5)
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Note that the discrete Fouri&f(k) coefficients in EqD.4 must be divided byV, i.e.
U(k)/N, in order to correspond to the Fourier coefficietits(/V corresponds td. in
Eq.D.5). Furthermore, it can be noted that in Ex4 the period0, 27| is used whereas
the formulation in EqD.5is based on the intervak, 7).

In Matlab, we generate the functiann Eqg.D.3 using the commands

N=16;
n=1:1:N;
u=1+cos(2 *pi *(n-1)/N);

Thew function is shown in FigD.2. 16 nodes are used; node 1 is located at 0
and nodd6 is located at 5L/16.

Bs3(3)

Figure D.1: Two-point correlation3(&3) = (vi(xs — &3)vh(z3)), of DNS data in
channel flow taken from73].

g
4
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1.5
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0.5
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T

Figure D.2: Theu function.
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Now we take the discrete Fourier transformofType
U=fft(u);

Instead of using the built-ifft command in Matlab we can program Hp.4
directly in Matlab as

U=zeros(1,N);
for k=1:N
for n=1:N
argl=2 =pi *(k-1) =*(n-1)/N;
U(k)=U(k)+u(n)  *cos(-argl);
end
end

Note that since: is symmetric, we have only useds(—z) = cos(z) (the sym-
metric part ofexp(—ux)).

The resulting Fourier coefficients are shown in Higd4. Since the function: in-
cludes only one cosine function and a mean (which is equaté) only three Fourier
coefficient are non-zero. Two of the®@(2) /N = 0.5, U(16)/N = 0.5, correspond to
the cosine functions (there must be two sifités symmetric)

cos(2m(n —1)/N)

cos((N —1)2w(n — 1)/N) = cos(—2n(n — 1)/N) = cos(2n(n — 1)/N) (0-6)

which corresponds toos(27z/L) in Eq. D.3. It can be noted that the intervgll =
N/2+ 1, N =9,16] corresponds to the negative, symmetric part of the wavemusnb
in the physical formulation (cf. Eq®.4 andD.5). The first Fourier coefficient corre-
sponds — as always — to the meanpf.e. U(1)/N = (u). This is easily verified from
Eq.D.4 by insertingk = 1. The remaining coefficients are zero.

In Fig. D.3, U/N is plotted versus non-dimensional wavenumligerand versus
wavenumber = 27(n — 1)/ L.

The energy(u?), of the signal in FigD.2 can be computed as

2 Lt > 2
(u®) = Z/o u”(x)dr = Zun/N =15 (D.7)
n=1

In wavenumber space the energy is — according to Parsevafisufa, see EqC.4 —
equal to the integral of the square of the Fourier coefficigirg.

00 N
(u?) = % / U?(k)drk = % S UZN=15 (D.8)

0 n=1

D.3 Energy spectrum from the two-point correlation

Now that we have learnt how to use the FFT command in Matldls, dse it on our
two-point correlation in EqD.1 and Fig.D.1. EquationD.4 reads

Baalk) = 3 Bua(myexp { 2= 09)
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Figure D.3: TheJ//N Fourier coefficients.

Bs3(3)

3

Figure D.4: Periodic two-point correlatiolss (&3) = (v5(x3)vs(zs + Z3)), of DNS
data in channel flow taken fron7§].

The simulations have been carried out with periodic boupdanditions inxzs direc-
tion (andz,), and henceBs3(#3) is symmetric, see Fidd.4. Thus, it is sufficient to
use the cosine part of ER.9, i.e.

N
ng(kz) = Z Bss(n) cos { 2m(k — ]1\;(71 —1) } (D.10)

In Fig. D.5a the Fourier coefficientBs3 5 are presented versus wavenumbegre=
2 (n — 1) /23 maz, Wherexs nq. ~ 1.55, see FigD.4. FigureD.5b shows the same
energy spectra in log-log scale (only half of the spectrunmétuded), which is the
common way to present energy spectra. The dashed line shews{ 3 slope which
indicates that the energy spectra from the DNS follows thirégorov—5/3 decay.

As usual, the Fourier coefficient for the first non-dimensiowavenumber, i.e.
Bss(1)/N is equal to the mean dBss, i.e.

1 & 1.
(Bss) = = D _ Bas(n) = +-Bas(1) (D.11)
n=1

compare with EqD.10. Note that this is almost the same expression as that for the
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Figure D.5: The energy spectrum @ versus wavenumberk;. Dashed line in b)
show—5/3 slope.

integral length scale which reads (see EQ.5

. 1 [ o B
Lint(l'g) = ?2/ B33(1'3,$3)d$3 = <7323> (DlZ)
Vg 0 Vg
Hence the integral length scale is related to the first Foun@de as
Bas(1
Lint = 33(1) (D.13)
12
U3

The two-point correlation for zero separation is equazlz_gf’o i.e. B33(0) = vf =
1.51. Another way to obtain#? is to integrate the energy spectrum in A5, i.e.

T3, max

N

— 1 ROl 1 Z A

UéQ = /0 ng(lig)dﬂg = N ng(n) = 152 (D14)
n=1

D.4 Energy spectra from the autocorrelation

When computing the energy spectra of thevelocity, say, versus frequency, the time
series ofv(t) is commonly Fourier transformed and the energy spectrurbtaioed
by plotting the square of the Fourier coefficients versugdency,f. We can also split
the time signal into a number subsets, Fourier transforrh sabset and then average.
In Matlab, the commangwelch is a convenient command which does all this.

In the previous section we computed the energy spectrunusevavenumber by
Fourier transforming the two-point correlation. We can tiesame approach in time.
First we create the autocorrelatid®s(7) = (v5(t)vs(t + 7)) (this can be seen as a
two-point correlation in time). ThemBss(7) is Fourier transformed to gess(f) in
the same way as in Sectidh3. The only difference is thaBss(7) is a function of
frequency Wherea§33(f<53) is a function of wavenumber.
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E TME225 Assignment 2: turbulent flow

In this exercise you will use data from a Direct Numerical Siation (DNS) for fully
developed channel flow. In DNS the unsteady, three-dimeatavier-Stokes equa-
tions are solved numerically. ThRe number based on the friction velocity and the
half channel width isRe, = u,h/v = 500 (h = p = u, = 1 so thatv = 1/Re.).

A 96 x 96 x 96 mesh has been used. The streamwise, wall-normal and sganwis
directions are denoted hy(z1), y (z2) andz (x3) respectively. The cell size inand
z directions areAz = 0.0654 andAz = 0.0164. Periodic boundary conditions were
applied in thex and z direction (homogeneous directions). All data have beenemad
non-dimensional by.. andp.

You can do the assignment on your own or in a group of two. Yawukhwrite a
reportwhere you analyze the results following the headifgtl 3. Itis recommended
(but the not required) that you ug@gx(an example of how to write if[eXis available
on the course www page). It is available on Linux. On Windows gan use, for
exampleMikTex (www.miktex.org ) which is free to download.

E.1 Time history

At the course home pagenttp://www.tfd.chalmers.se/"lada/MoF/ you
find a file u_v_time _4nodes.dat with the time history ofv; andvs. The file
has eight columns of; and v, at four nodes:z2/6 = 0.0039, z2/6 = 0.0176,
x2/6 = 0.107 andzs /6 = 0.47. With u, = 1 andv = 1/Re, = 1/500 this cor-
respond tor] = 1.95, z3 = 8.8, z5 = 53.5 andx] = 235. The sampling time step
is At = 0.0033 (every second time step). The four points are located in theous
sublayer, the buffer layer and in the logarithmic layer, Beg 6.2at p.51.

Use the Matlab programpl _time.m which loads and plots the time history of.
Start Matlab and run the prograoh _time . Recall that the velocities have been scaled
with the friction velocityu.., and thus what you see is really/u.. The time history of
vy atae /6 = 0.0176 andxy/§ = 0.107 are shown. Study the time history of the blue
line (x2/d = 0.0176) more in detail. Make a zoom between, for example; 10 and
t = 11 andvy i, = 3 andvy m., = 21. This is conveniently done with the command

axis([10 11 3 21))
In order to see the value at each sampling time step, chaegddhcommand to
plot(t,u2,’b-',t,u2,’bo’)

Use this technique to zoom, to look at the details of the timhy. Alternatively,
you can use the zoom buttons above the figure.

Plot v, for all four nodes. How does the time variation @f vary for different
positions? Plot also, at the four different positions. What is the differencesnmsn
vy andve?

E.2 Time averaging

Compute the average of the velocity at node 2. Add the following code (before the
plotting section)

umean=mean(u2)


http://www.miktex.org/
http://www.tfd.chalmers.se/~lada/MoF/
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Here the number of samplesris= 5000 (the entireu2 array). Find out how many
samples must be used to get a correct mean value. Start by tiyih 100 samples as

umean_100=mean(u2(1:100))

What is the maximum and minimum value@f? Compare those to the mean.

Do the same exercise for the other three nodes.

Compute and plot also the instantaneous fluctuationat node 1, for example, is
computed as

ul_mean=mean(ul);
ul fluct=ul-ul_mean;

E.3 Mean flow

All data in the data files below have been stored euéty. time step.

Downloadthe filaivw_inst _small.mat ,y.dat andthe Matlab filgl _vel.m
which reads the data files. The data file includgsv, andvs from the same DNS as
above, but now you are given the time history ofallnodes at one chosen andzxs
node. There arej = 98 nodes in ther, direction; nodel andnj are located at the
lower and upper wall, respectively.

Your data are instantaneous. Compute the mean velocityt itHdoth as linear-
linear plot and a log-linear plot (cf. Fig.4).

Inthe log-linear plot, use; for the wall distance. Include the linear law), = x5,
and the log lawp; = k= 'Inaf + B (k = 0.41 is the von Karman constant and
B = 5.2). How far out from the wall does the velocity profile followahinear law?
Atwhatz] does it start to follow the log-law?

Compute the bulk velocity

1 2h

Vl,b = % o Ule'Q (El)

(recall thath denote half the channel width) What is the Reynolds numbsedan
V1 » and centerline velocityy; ., respectively?

E.4 The time-averaged momentum equation

Let us time average the streamwise momentum equation. 8iadew is fully devel-
oped and two dimensional we get
1 0p 0%v1 Qv

0= -2
p Ox1 +V8x§ 0z

(E.2)

This equation is very similar to fully developed laminar flesich you studied in As-
signment 1, see EQ.24 the difference is that we now have an additional Reynolds
stress term. Recall that all terms in the equation aboveesgmiforces(per unit vol-
ume). Let us investigate how these forces (the pressureéemtathe viscous term and
the Reynolds stress term) affect fluid particles locatedfégrdnt x5 locations. Com-
pute and plot the three terms. (the filew_inst _small.mat does not includg; set
op/ox = —1.)

If a term is positive it means that it pushes the fluid particléhe positivex;
direction. What about the viscous term? Is it always neg&tiwhere is it largest? At
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that point? which term balances it? How large is the thirdn®rThe pressure term
should be alriving force. Where is the Reynolds shear stress positive and vibére
negative?

E.5 Wall shear stress

Compute the wall shear stress at both walls. They should aetlg>equal. Are they?

E.6 Resolved stresses

In SectionE.3you computed the mean velocities. From the instantaneaithamean
velocity, you can compute the fluctuations as

Uz/' =v; —U; (E.3)

Now you can easily compute all stressgs’. Plot the normal stresses in one figure
and the shear stresses in one figure (plot the stresses eventine channel, i.e. from
xo = 0t0o x9 = 2h). Which shear stresses are zero?

E.7 Fluctuating wall shear stress

In the same way as the velocity, the wall shear stress candmrgmsed into a mean
value and a fluctuation. In general, any fluctuating variablean be decomposed into
a mean and fluctuation @= ¢ + ¢’. The root-mean-square (RMS) is then defined as

bruns = (7)) (E4)

Compute the RMS of the wall shear stress. This is a measuteedfuctuating tan-
gential force on the wall due to turbulence. If heat tran&envolved, the fluctuating
temperature at the wall inducing fluctuating heat transfay ime damaging to the ma-
terial of the walls causing material fatigue. This is prolyahe most common form of
fluid-solid interaction.

E.8 Production terms

In order to understand why a stress is large, it is usefuldé bt its transport equation,
see Eq9.12 Usually, a stress is large when its production tefy, is large (there
may be exceptions when other terms, such as the diffusiom e largest). Plot the
production terms for all non-zero stresses across theeectiannel. Which ones are
zero (or close to)? Does any production term change sigreatehterline? If so, what
about the sign of the corresponding shear stress plotteddtidh E.6?

E.9 Pressure-strain terms

The pressure-strain term reads (see €4

P ov’ 8’1}5
I, = — i E.5
T <8xj i Ox; (ES)
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Our data are obtained from incompressible simulations, fclvthe pressure may
vary unphysically in timedp/0t does not appear in the equations). Hence, we prefer
to compute the velocity-pressure gradient term

ol dp' v; Op'
p Oz  p Ox;’

7, = (E.6)

see the second line in E§.3. The pressure diffusion term in thg* equation — which
is the difference between Egs.5 andE.6 (the two first terms in Eg9.8) — is small
except very close to the wall (see Fi§s2and9.3). Hence, the difference betweénﬁj
andll;; is small.

Download the data filp_inst _small.mat andthe Matlab filgl _press _strain.m
which reads the data file. The time histories of the presdoreydivex; lines [(x1, x2, x3),
(1 £ Azq,xo, x3) and(x1, x2, x3 £+ Axs)] are stored in this file. This allows you to
compute all the three spatial derivativegtfUsing the velocities stored ivw_inst _small.mat
(see Sectiol.3), you can compute all the terms in Hg.6.

Plotthe pressure straifi;;, for the three normal stresses and the shear stress across
the channel. For which stresses is it negative and positvike®?

Which termej is the largest source and sink term, respectively?

E.10 Dissipation

The physical meaning of dissipatios, is transformation of turbulent kinetic energy
into internal energy, i.e. increased temperature.

Download the filey _half.dat ,diss _instmat andthe Matlab filpl _diss.m
which reads it. The data file includes the time history of tkeéogities along fivers;
lines [(x1, 22, x3), (x1 £ Ax1, 2, z3) and(x1, z2, 3+ Axs)] SO that you can compute
all spatial derivatives. The data cover only the lower héthe channel. Compute and
plot

ov}, 0]
8$k 817k (E.7)
see Eq8.14 Where is it largest? In which equation does this quantipyeap?

Let us now consider the equations for the mean kinetic enéfgy v;v;/2 (Eq.8.39
and turbulent kinetic energy, = vv./2 (Eq.8.14. The dissipation in thé equation
reads

E=V

. o0v; 0v;
Emean = ”axk Oxy,
The flow of kinetic energy betweeR, &k and AT is illustrated in Fig.8.5 The dissi-
pationse ande,,.qn, are defined in Eq€.7andE.8, respectively. Compute and plot
alsoemean and Pk, Which is large and which is small? How is the major part of the
kinetic energy transformed fromt' to AT'? Is it transformed vig or directly from K
to AT?

(E.8)

E.11 Do something fun!

You have been provided with a lot of data which you have arelyim many ways.
Now think of some other way to analyze the data. There are nraayesting things
yet to be analyzed!
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F TME225 Learning outcomes

TME225 Learning outcomes: week 1

1. Explain the difference between Lagrangian and Eulerestdption

2. Watch the on-line lecturgulerian and Lagrangian Description, part 1 -3
http://www.tfd.chalmers.se/ lada/flow viz.html

i. Part 1 describes the difference between Lagrangian aleti&n points and
velocities.

- T T . . .
ii. The formula%—t + Ulg_ is nicely explained in Part 2
T

3. Show which stress components;, that act on the Cartesian surfaces of a quad-

rant (two dimensions). Show also the stress veefor,
. Show that the product of a symmetric and an antisymmaedrisdr is zero.
. Show the relation between the stress tensgr,and the stress vectdfﬁ.
. Explain the physical meaning of diagonal and off-diageoanponents ob;;
Explain the physical meaning of;;

. What is the definition of irrotational flow?

© ® N o 0 »

. What is the physical meaning of irrotational flow?
10. Derive the relation between the vorticity vector andubsicity tensor

11. Starting from the Navier-Stokes equations (see Forrsludget), derive the flow
equation governing the Rayleigh problem expressed andn~; what are the

boundary conditions in timet) and spaceafz); how are they expressed in the

similarity variablen?
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TME225 Learning outcomes: week 3

1.

N~ oo o~ W

(o]

10.
11.

12.

13.

14.
15.
16.
17.

18.

19.

Explain the physical meaning of the eigenvectors and thengalues of the
stress tensor

. Show how the boundary layer thickness can be estimated fre Rayleigh

problem usingf andn (Fig. 3.3

. Explain the flow physics at the entrance (smooth curvetsival a plane channel
. Explain the flow physics in a channel bend

. Derive the Navier-Stokes equation, b

. Derive the incompressible Navier-Stokes equation 2E4.

. Derive the transport equation for the inner energyEq. 2.12 What is the

physical meaning of the different terms?

. Derive the transport equation for temperature in incaagpible flow, Eq2.15

. Derive the transport equation for kinetic energyy; /2, Eq.2.20 What is the

physical meaning of the different terms?
Explain the energy transfer between kinetic energy andrienergy

Show how the left side of the transport equations can liteewion conservative
and non-conservative form

Derive the flow equations for fully developed flow betwéen parallel plates,
i.e. fully developed channel flow (Eq3.18 3.22and3.26)

The Navier-Stokes equation can be re-written on the form
v Ok 1 9p &v;
- = —EijkVjWg = ——F5— +V—F— ;
ot ox; M p Ox; + O0x;0x; + /i
—~ rotation

no rotation
Derive the transport equation (3D) for the vorticity vectg.4.21
Show that the divergence of the vorticity vectoy, is zero
Explain vortex stretching and vortex tilting
Show that the vortex stretching/tilting term is zerowmmtdimensional flow

Derive the 2D equation transport equation for the vityticector from the 3D
transport equation, Ed..23

Show the similarities between the vorticity and tempagatransport equations
in fully developed flow between two parallel plates

. . . 1
Use the diffusion of vorticity to show tha% o< ,/é = \/R— (see also
e

Eq.3.14.
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20. Watch the on-line lectutigoundary layers parts &t
http://www.tfd.chalmers.se/"lada/flow viz.html

i. Consider the flow over the flat plate. How does the boundaygi thickness
change when we move downstream?

ii. What value does the fluid velocity take at the surface? ¥i#this boundary
conditions called: slip or no-slip? How do they define the fmbary layer
thickness?

iii. How is the wall shear stress defined? How does it changernwhe move
downstream? (how does this compare with the channel flow 0K
Assignment 1?

iv. How is the circulation]", defined? (cf. with Eql.19 How is it related to
vorticity? How do they comput€ for a unit length & §) of the boundary
layer? How large is it? How does it change when we move dowastron
the plate?

v. Where is the circulation (i.e. the vorticity) created? & is the vortic-
ity created in “your” channel flow (TME225 Assignment 1)? Tleticity
is created at different locations in the flat-plate boundayer and in the
channel flow: can you explain why? (hint: in the former case

@7 0%vy -0
011 7”81:% o

wall
but not in the latter; this has an implication fer .., [See Sectios.3)
vi. How do they estimate the boundary layer thickness? (ettisn.4.3.7)

21. Watch the on-line lectuiBoundary layers part 2t
http://www.tfd.chalmers.se/"lada/flow viz.html

i. How does the boundary layer thickness change when wedgerthe veloc-
ity? Explain why?

ii. Consider the flow in a contraction: what happens with toerdary layer
thickness after the contraction?

iii. Why is the vorticity level higher after the contracti@n
iv. Is the wall shear stress lower or higher after the cotitba® Why?

v. Consider the flow in a divergent channel (a diffuser): whegtpens with the
boundary layer thickness and the wall shear stress?

vi. What happens when the angle of the diffuser increases?

vii. What do we mean by a “separated boundary layer'? Howdasghe wall
shear stress at the separation point?

viii. The second part of the movie deals with turbulent flone’lntalk about that
in the next lecture (and the remaining ones).
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TMEZ225 Learning outcomes: week 4

1. Watch the on-line lecturBoundary layers parts 2 & at
http://www.tfd.chalmers.se/"lada/flow viz.html

i. The flow is “tripped” into turbulence. How?

ii. When the flow along the lower wall of the diffuser is trippp@to turbulent
flow, the separation region is suppressed. Try to explain why

iii. Two boundary layers — one on each side of the plate — ase&vehThe upper
one is turbulent and the lower one is laminar. What is theedéffice in the
two velocity profiles? Explain the differences.

iv. Why is the turbulent wall shear stress larger for the tlebt boundary
layer? What about the amount of circulation (and vorticityjhe laminar
and turbulent boundary layer? How are they distributed?

v. Consider the airfoil: when the boundary layer on the ugsection) side
is turbulent, stall occurs at a higher angle of incidence parad when the
boundary layer is laminar. Why?

vi. Vortex generator are place on the suction side in ordevemt or delay sep-
aration. Try to explain why separation is delayed.

2. What characterizes turbulence? Explain the charatitexisNhat is a turbulent
eddy?

3. Explain the cascade process. How large are the largdss8c&Vhat is dissi-
pation? What dimensions does it have? Which eddies extrertg from the
mean flow? Why are these these eddies “best” at extractingygrfiem the
mean flow?

4. What are the Kolmogorov scales? Use dimensional andtydisrive the expres-
sion for the velocity scaley,, the length scalé,, and the time scaley,.

5. Make a figure of the energy spectrum. The energy spectrumisis of thee
subregions: which? describe their characteristics. Shmaflow of turbulent
kinetic energy in the energy spectrum. Given the energytapec £(x), how
is the turbulent kinetic energy, computed? Use dimensional analysis to derive
the —5/3 Kolmogorov law.

6. What does isotropic turbulence mean?

7. How s the energy transfer from eddy-to-eddy, estimated? Show how the ratio
of the large eddies to the dissipative eddies depend on thedRis number.

8. Describe the cascade process created by vorticity. Whitevortex stretch-
ing/tilting term in tensor notation. What is its physical amng? Describe the
physical process of vortex stretching which creates smahe smaller eddies.
Show and discuss the family tree of turbulence eddies aridvbsticity. Show
that in 2D flow the vortex stretching/tilting term vanishes.

9. Watch the on-line lectur@urbulence part Jat
http://www.tfd.chalmers.se/ lada/flow viz.html

i. Why does the irregular motion of wave on the sea not quakfyurbulence?
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ii. How is the turbulence syndrome defined?

iii. The movie laminar shows flow in a pipe. The viscosity i€tEased, and the
pressure drop (i.e. the resistance) decreases. Why? Tewsitisis further
decreased, and the pressure drop increases. Why? How @oeatir-flow
coming out of the pipe change due to the second decreasecobitig?

iv. Itis usually said that the flow in a pipe gets turbulent &eynolds number
of 2300. In the movie they show that the flosan remain laminar up to
8 000. How?

v. Dye is introduced into the pipe. For laminar flow, the dyeslaot mix with
the water; in turbulent flow it does.

10. Watch the on-line lectufBurbulence part 2t
http://www.tfd.chalmers.se/ lada/flow viz.html

i. Draw a laminar and turbulent velocity profile for pipe flowVhat is the

L . . 0
main difference? In which flow is the wall shear stregs= ua—vl largest,
)
laminar to turbulent?
ii. Inturbulent flow, the velocity near the wall is larger than laminar flow.
Why?
iii. Discuss the connection between mixing and the crossast (i.e.v}) fluc-
tuations.

iv. Try to explain the increased pressure drop in turbulemw flvith the in-
creased mixing.

v. The center part of the pipe is colored with blue dye and thé wgion is
colored with red dye: by looking at this flow, try to explainaturbulence
creates &eynolds shear stress

vi. Two turbulent jet flows are shown, one at low Reynolds nemdnd one at
high Reynolds number. They look very similar in one way any different
in another way.

vii. The two turbulent jet flows have the same energy inputlagice the same
dissipation. Use this fact to explain why the smallest scatethe high
Reynolds number jet must be smaller that those in the low Bldgmumber
jet.

viii. Explain the analogy of a water wall and the cascade pssc

11. Use the decompositian = ©; + v, to derive the time-averaged Navier-Stokes
equation. A new terms appears: what is it called? Simplig/time-averaged
Navier-Stokes equation for boundary layer. What is thel shear stress? How
is the friction velocityu., defined? Define andov*.

12. The wall region is divided into an inner and outer regidine inner region is
furthermore divided into a viscous sublayer, buffer layed dog-layer. Make a
figure and show where these regions are valid (6ig)

13. Consider fully developed channel flow. The total she@sstconsists of a vis-
cous and turbulent shear stress: show how they vary acresshémnel (show
also a zoom near the wall). In which region (viscous sublayeffer layer or
log-layer) does the viscous stress dominate? In which regdhe turbulent
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shear stress large? Integrate the boundary layer equatimhshow that the total
shear stress varies as- x5/4.

14. What are the relevant velocity and length scales in theovis-dominated region?
Derive the linear velocity law in this region (E§.17). What are the suitable
velocity and length scales in the inertial region? Deriveltg-law.
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TME225 Learning outcomes: week 5

1. In fully developed channel flow, the time-averaged NaBtakes consists only
of three terms. Make a figure and show how the velocity andrs$tesss vary
across the channel. After that, show how the three terms (heir gradients
plus the pressure gradient) vary across the channel. Whichdrms balance
each other in the outer region? Which terms drives (“pushibg’flow in thex;
direction? Which two terms are large in the inner region? &ilierm drives the
flow?

2. Derive the exact transport equation for turbulent kinetiergy k. Discuss the
physical meaning of the different terms in thequation. Which terms do only

transport?
3. In the cascade process, we assume that the dissipatanmyést at the smallest
—2/3
scales, i.e.7; ! = i—; 79, See Eq8.18at p.62 Show this. For which

eddies is the production largest? Why?

4. Watch the on-line lecturéurbulence part &t
http://www.tfd.chalmers.se/"lada/flow viz.html

i. The film says that there is a similarity of the small scatea ichannel flow
and in a jet flow. What do they mean?

ii. What happens with the small scales when the Reynolds eusincreased?
What happens with the large scales? Hence, how does thefdlkie large
scales to the small scales change when the Reynolds nuntbeases (see
Eq.5.19

ii. In decaying turbulence, which scales dies first? Thensseof the clouds
show this in a nice way.

iv. Even though the Reynolds number may be large, there aveie of phys-
ical phenomena which may inhibit turbulence and keep the fewinar:
mention three.

v. Consider flow in a channel where the fluid on the top (red) thedbottom
(yellow) are separated by a horizontal partition. Study hbe/two fluids
mix downstream of the partition. In the next example, thedflui the top is
hot (yellow) and the one at the bottom (dark blue) is cold: ldowhe fluids
mix downstream of the partition, better or worse than in thevjpus exam-
ple? This flow situation is callestable stratification In the last example,
the situation is reversed: hot fluid (dark blue) is moving op of light fluid
(yellow). How is the mixing affected? This flow situation islledunstable
stratification Compare in meteorology where heating of the ground may
cause unstable stratification or whiemersioncauses stable stratification.

5. Giventhe exadt equation, give the equation for boundary-layer flow. Alltigpla
derivatives are kept in the dissipation term: why? In thétlent region of the
boundary layer, thé equation is dominated by two terms. Which ones? Which
terms are non-zero at the wall?

6. Where is the production ter?* = —v/v,0v, /0z, largest? In order to explain
this, show how-v} v} anddv, /0x4 vary near the wall.
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7. Discuss the difference of spatial transportadnd spectral transfer df. Give
an example of how they are combined in non-homogeneouslamtel How is
homogeneous turbulence defined?
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TME225 Learning outcomes: week 6

1. Derive the exact transport equation for mean kinetic gnek’. Discuss the
physical meaning of the different terms. One term appeatsoth thek and
the K equations: which one? Consider the dissipation terms irkthad the
K equations: which is largest? Why? Show where they appedreirebergy
spectrum.

2. Derive the exact transport equation for turbulent Regiastressy;v;. Take the
trace of thev;v’ equation to obtain the equation.

3. Show that the role of the convection and diffusion ternmiigely to transport the
guantiy ¢ for example) and that they give no net effect except at thentaries
(use the Gauss divergence theorem)

4. Discuss the physical meaning of the different terms infa& equation.

5. Consider the pressure-strain term in the equation. Theneannormal stress
can be defined ag2, = v/v//3; what sign will the pressure-strain term have for

normal stresses, respectively, larger and smaller ta® What role doe$l,,
has? What sign? Why do we call the pressure-strain terrRtten Hoodterm?

6. Consider the dissipation term,, for the shear stress: how large is it?

7. Consider fully developed channel flow: how are the expoassfor the produc-
tion terms simplified? Which production terms are zero and-nero, respec-
tively? Consider the production term fofv}: which sign does it have in the
lower and upper part of the channel, respectively? Why isetim® pressure-
strain term in thek equation?

8. Consider the fully turbulent region in fully developedacimel flow: which are

the main source and sink terms in thg, v%?, v§? andv{ v}, equations? Which
terms are the largest terms at the wall? Which terms are z¢he avall?

9. Consider channel flow and use physical reasoning to shatwih/, must be
negative and positive in the lower and upper half of the cefmaspectively. Is
this consistent with the sign d?5?
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TMEZ225 Learning outcomes: just for fun!

1. Watch the on-line lecturi@ressure field and acceleration pariat
http://www.tfd.chalmers.se/"lada/flow viz.html

i. The water flow goes through the contraction. What happétistive veloc-
ity and pressure. Why?

ii. Fluid particles become thinner and elongated in the @mion. Explain
why.

. . dVs .
iii. They show that the acceleration alorgi.e. Vsd—, is related to the pres-
S

. d . . . . .
sure gradlent—p. Compare this relation with the three-dimensional form of
S
Navier-Stokes equations for incompressible flow, Eq.

2. Watch the on-line lectureressure field and acceleration parg2
http://www.tfd.chalmers.se/"lada/flow viz.html

i. Water flow in a manifold (a pipe with many outlets) is preteeh The pres-
sure decreases slowly downstream. Why?

ii. The bleeders (outlets) are opened. The pressure nowases in the down-
stream direction. Why?

iii. What is the stagnation pressure? How large is the velagi a stagnation
point?

iv. What is the static pressure? How can it be measured? Wlia difference
between the stagnation and the static pressures?

v. Aventuri meter is a pipe that consists of a contractionaméxpansion (i.e.
a diffuser). The bulk velocities at the inlet and outlet agea, but still the
pressure at the outlet is lower than that at the inlet. Treeeiressure drop.
Why?

vi. What happens with the pressure drop when there is a spama the dif-
fuser?

vii. They increase the speed in the venturi meter. The presdifference in
the contraction region and the outlet increases. Since tisetmospheric
pressure at the outlet, this means that the pressure in titeaction region
must decrease as we increase the velocity of the water. I¥ital water
starts to boil, although the water temperature may be araand. This is
called cavitation (this causes large damages in waterntas)i

viii. Explain how suction can be created by blowing in a pipe.
3. Watch the on-line lectur@ressure field and acceleration parg3
http://www.tfd.chalmers.se/ lada/flow viz.html
i. What is the Coanda effect?

ii. The water from the tap hitting horizontal pipe followsathes to the surface
of the pipe because of the Coanda effect. How large is thesprest the
surface of the pipe relative to the surrounding pressure.

iii. Explain the relation between streamline curvature gmelssure (cf. Sec-
tion 3.2.7).
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iv. Atthe end of the contraction, there is an adverse pressadientdp/dx >
0). Explain why.
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G MTF270: Some properties of the pressure-strain term

In this Appendix we will investigate some propertiesafi, in Eq. 11.70at p. 93.
Introduce the two-point correlation function

Bj(r) = v’ (x)vy(x+1)

Define the poink’ = x + r so that

Bj(r) = U} (x' —r)vy(x') = vé(x’)vé (x/ —r) = Bgj(-r)

We get
8ng(r) _ 78ng(7r) - aQng(I‘) _ 823@-(71') (Gl)
or; or; Oror; Or0r;
Since EqG.1in the definition ofa; jx, in Eq.11.70is integrated over® covering both
r and—r (recall thatvy andv are separated by), a;;i, is symmetric with respect to
indexj and/, i.e.

Qijke = Qitkj (G.2)

Green’s third formula (it is derived from Gauss divergerag) reads

1 Vigp o
px) =—— dy G.3
(x) 4 /V ly — x| ©3)

where the boundary integrals have been omitted. Saﬁi&g@ in Eq.G.3gives

1 D2l dy3 1
— L = Caiie (G.4)
dr |y Ox;0x; |y — x| 2

ol —
U]-’Ue—

where the last equality is given by Equatibh.7Q
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H MTF270: Galilean invariance

In [64] he found that the Leonard terth;; and the cross termd;; are not Galilean
invariant by themselves, but only the suy + C;; is. As a consequence, if the cross
term is neglected, the Leonard stresses must not be comexgdiditly, because then
the modelled momentum equations do not satisfy Galileasriaxce.

Below we repeat some of the details of the derivation givge4h Galilean invari-
ance means that the equations do not change if the coordiysttsam is moving with a
constant speetl,. Let’s denote the moving coordinate systemsbpy.e.

xy =xp + Vit, t* =1, v; = 0, + Vi (H.1)
By differentiating a variable = ¢(t*, =) we get
Op(wit) _ %@Jr ot 9¢ _ 9¢
Oz, Oxp 8x;7 dxy Ot oz}
0p(xs,t)  Oxp, 0p Ot Do v op 0o

ot ot oz, T ot ot ‘ow, ot

(H.2)

From Eq.H.2 is it easy to show that the Navier-Stokes (both with and witHdter)
is Galilean invariant§4, 159. Transforming the material derivative from thig z;)-
coordinate system to thg*, =} )-coordinate system gives

99 99 _ 09 9¢ .1y 99
ot T ¥ ay 8t*+Vk8$Z+(0k Vk)axz
_ 99 99
= o T ouy

It shows that the left hand side does not depend on whetherabedinate system
moves or not, i.e. it is Galilean invariant.

Now, let’s look at the Leonard term and the cross term. Sihediltering operation
is Galilean invariant§4], we havev; = v, + V), and consequently alsn;’* =vy. For

the Leonard and the cross term we get (note that sifiég constant/; = V)
Ly =505 — 070 = (0 + Vi) (05 + Vj) — (03 + Vi) (05 + V)

= ﬁiﬁj + T)i‘/j + 17jV- — Uﬂ)j — vi‘/j - ‘/i@j
=005 — 0,05 + V(U — 0;) + Vi(v; — 9;)

— Lij _ Vjvg/ _ Vi'Ué'/ (H.3)

C* _ * //* +'U*U”* — (T)z + ‘/;)U}/ + (T)J + ‘/j)vg/ —
— vivé’ + vj VZ- + vjvz’.’ +U_7{/‘/] = Cjyj +v_3»'Vi Jrv_;’Vj
From Eqg.H.3 we find that the Leonard term and the cross term are differettita two

coordinate systems, and thus the terms are not GalileaniamfaHowever, note that

the sum is, i.e.
L;‘j + ij =L;; + Cy;. (H.4)

The requirement for the Bardina model to be Galilean invdiigthat the constant
must be one¢, = 1 (see Eq17.39. This is shown by transforming both the exact
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Ci; (Eqg.17.39 and the modelled oné}’% (i.e. Eq.17.37. The exact form ofC;;
transforms as in EdH.3. The Bardina term transforms as

M = ¢, (00 —T.070)

= ¢ [(@ 4+ V(5 + Vi) = 0 1 VT + V) )
= ¢ [0i0; — 005 — (U — ) V; — (U; — 0;)Vi]
=CY + ¢ [V7:V; +07;V].
As is seenC;M # CJ, but here this does not matter, because provigee 1 the
modelled stressf;’%, transforms in the same way as the exact @ng, Thus, as for the
exact stress(;; (see EqH.4), we haveC; + L;; = G} + L;;. Note that in order
to make the Bardina model Galilean invariant the Leonaressimustbe computed
explicitly.
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| MTF270: Computation of wavenumber vector and

angles
For each mode:, create random angles®, o™ andd™ (see Figsl.1 and24.1) and
random phase@™. The probability distributions are given in Talld. They are cho-

sen so as to give a uniform distribution over a sphericall gfehe direction of the
wavenumber vector, see Figl.

.1 The wavenumber vector,f@;@

x3

L2

I

Figure I.1: The probability of a randomly selected direntaf a wave in wave-space
is the same for all A; on the shell of a sphere.

Compute the wavenumber vectef;, using the angles in Sectidnaccording to
Fig.1.1, i.e.

Ky = sin(0"™) sin(™) (1.1)

(™) =1/(2n) 0<¢p"<2rm

(W) =1/Gn) | 0<¢" <o
p(0")=1/2sin(@) | 0< 6" <=

(a™) =1/(2m) 0<a™<2m

Table I.1: Probability distributions of the random variesl



I.2. Unit vectoro}! 211

n n

Ky o] o
(1,0,0) | (0,0,-1) 0
(1,0,0) (0,1,0) 90
(0,1,0) | (0,0,—1) 0
(0,1,0) | (-1,0,0) | 90
(0,0,1) (0,1,0) 0
(0,0,1) | (—-1,0,0) | 90

Table I.2: Examples of value af}, o7 anda™ from Egs.l.1 andl.3.

1.2 Unit vector o7

Continuity requires that the unit vecter;’, andx are orthogonal. This can be seen
by taking the divergence of EG4. 3wh|ch gives

N
= 2211” cos(k" - x+¢")o" - K" (1.2)
n=1

i.e. o'k = 0 (superscript denotes Fourier mode). Hence ¢ will lie in a plane
normal to the vectok], see Fig24.1 This gives

o1 = cos(™) cos(0™) cos(a™) — sin(e"™) sin(a™)
oy =sin(¢™) cos(0™) cos(a™) + cos(¢™) sin(a™) (1.3)
oy = —sin(0"™) cos(a™)

The direction ofs}" in this plane (th&} — &5 plane) is randomly chosen througfi.
Tablel.2 gives the direction of the two vectors in the case thas along one coordinate
direction andy = 0 anda = 90°.
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J MTF270: 1D and 3D energy spectra

The general two-point correlatioB;; of v; andv’; (see Eq10.2 can be expressed by
the energy spectrum tensor &/[ Chapter 3] (cf. Eql7.9

—+00
Bij(z1,x2,23)) = / U, (K) exp(thmEm )dr1dradks (J.2)

— 00

wherezi,, andx,, are the separation vector the two points and the wavenunetztory
respectively. The complex Fourier transfoesp (1., 2, ) is defined in Appendix.

The two-point correlation3;;, and the energy spectrum tensdr,;, form a Fourier-
transform pair

+oo
\I/ij(li) = (271T)3 /_OO Bij (Ii?) GXp(—ZHme)djld@deg (JZ)
The separation between the two points is described by a glketieee-dimensional
vector, ,,. Both in experiments and in LES it is usually sufficient todstuhe two-
point correlation and the energy spectra along a line. Hemee-dimensional energy
spectraf;;(x), which are a function adcalarwavenumbers (x1, x2 Or k3), are often
used. They are formed by integrating over a wavenumber ptheesnergy spectrum
for the wavenumbet , for example, reads

1 [T
Eij(k1) = 5/ U, (k)dradrs (J.3)

A factor of two is included becausB «x V;;/2 is used to define a energy spectrum
for the turbulent kinetic energy = v/v./2, see EgsJ.8 andJ.10 Note that the
maximum magnitude of the wavenumber vector contributing’ (1) is very large
since it includes alky and ks, i.e. —co < kg < oo and—oo < k3 < +oo. The
one-dimensional two-point correlatioB;; (Z1 ), for example, and the one-dimensional
spectrumFE;; (1), form a Fourier-transform pair, i.e.

Y A
Bij(xl) = 5/ Eij(nl)exp(zmxl)dm (J4)
2 [T o
Eij(lil) = %/ Bij(zl)exp(fmlxl)d:rl (JS)

whereE;; is twice the Fourier transform of3;; because of the factor two in E4.3
The diagonal components of the two-point correlation temse real and symmetric
and hence the antisymmetric partedp(—:x1%1) — i.e. the sinus part — is zero and
Eqgs.J.4andJ.5are simplified as

N 1 [T N > .
Bij(l’l) = 5 Eij(ﬁl)COS(/ill’l)dlil = /0 Eij (Iil)COS(Iilml)dﬁl
1 +o0 92 +o0 (J6)
Eij(/il) = — Bij(fl)COS(Hlfl)djl = ; . Bij (@1)008(%1@1)6&71

The Reynolds stres,ﬂ)?, for example, is equal to the two-point correlation tensor
pB;; with with zero separation distance. Thg can be computed both from the three-
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dimensional spectrum (Ed.1) and one-dimensional spectrum (B

J— +oo
vi2 = Bi11(21,0,0) = / Ui (k)dr1dredEs

o J3.7)
’Ul2 = BH(O) = / Ell(/il)d/il
0
Hence the turbulent kinetic energy~ v/v//2, an be written as
1 [t
k= 5/ ‘I’ii(li)dﬁldﬁgdﬁg (JB)
I L[ 1 [
k = 5 Ell(“l)“l + 5 EQQ(HQ)HQ + 5 Egg(lig)dlfg (Jg)
0 0 0

The integral in EqJ.8has no directional dependence: it results in a scalamstead
of integrating overlx;drodrs We can integrate over a shell with radissnd letting
the radius go from zero to infinity, i.e.

1 o0
k= 3 / A2 dk (J.10)
0

wheredrx? is the surface area of the shell. We now define an energy spedii(x) =
472 ,; so that

k= /0"i E(k)dr (J.12)

whereE (k) = 2mk2 W4 (k).
The energy spectr&;; (x1) and E(x), for example, correspond to the square of
the Fourier coefficient of the velocity fluctuation (see [Raed's formula, EqC.4), i.e.

Eq1(k1) = @%(“1) J.12)
1 (03 (k) + 05 (k) + 03 (x)) |

Below the properties of the three energy spectra are suraethri

¢ The three-dimensional spectrum tensby; (), is a tensor which is a function
of the wavenumber vector.

e The one-dimensional spectrurf;;(x1), is a tensor which is a function of a
scalar (one component af,,).

e The energy spectrunt;(x), is a scalar which is a function of the length of the
wavenumber vectotk| = .

J.1 Energy spectra from two-point correlations

In connection to Eqsl.4 J.5andJ.6we stated that the one-dimensional energy spectra
and the two-point correlations form Fourier-transformrpail he proof is given in this
section. The energy spectrum is given by the square of thedraroefficients, see
Parseval’s formula, EqC.4. Let 4 be the Fourier coefficient of the velocity fluctuation
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v in thez direction which is periodic with period. Take the covariance of the Fourier
coefficientsi(x’) andd(x) wherex andx’ denote two different wavenumbers and
andz’ denote two points separated in thélirections so that

(a(r)a(x")) = <%/ u(m)exp(—mx)dx%/ w(x') exp(—wx'z")dz’

—L

_i P (3.13)
=5 [ [ uutaesp(-atne + nfxf>dxdx/>

where(-) denotes averaging over time; this equation correspondg td.Eexcept the
factor of two. Since we are performing a Fourier transform:iwe must assume that
this direction is homogeneous, i.e. all averaged turbidenmntities are independent
of z and the two-point correlation is not dependentofor ') but only on the separa-
tion distancer — 2/, see discussion in connection to B§.5 Hence we replace’ by

y + z” so that

L L—x
(a(w)a(k")) = <% / </ w(z)u(x + 2") exp(—1(kz + &' (z + :E”))da:”) dz>

—L —L—=zx

L L—x
= <% [L exp(—(k + k')x) (% /7fo Bn(m”)exp(—m’m”))dm”) d:c>

(J.14)

The second integral (in parenthesis) is the Fourier transfaf the two-point correla-
tion By4, i.e.

L

—L

(a(r)a(x")) = <B11($")%/ exp(—u(k + n')z))dz> (J.15)

whereB;; denotes the Fourier transform Bf; (cf. J.12 and since it does not depends
on the spatial coordinate it has been moved out of the inIte@narthermoreBu is
real and symmetric sincB1; is real and symmetric. The remaining integral includes
trigonometric function with wavelengthsandx’. They are orthogonal functions, see
AppendixC, and the integral of these functions is zero unless «’. This integral in
Eq.J.15for k = &’ is evaluated as (see “length off” in AppendixC, Eq.C.13 and
useyy = cos(2wxz/L))

L
nlin) =l = [ cos? (52 ) o

T L . [4drx L
= |-+ —sin|{ — =1L
2 87 L L

EquationJ.15can now be written
(a(r)i(r)) = (Bu(x)) (3.17)

Hence, it is seen that the Fourier transform of a two-poimtedation (in this example
(B11(z1))) indeed gives the corresponding one-dimensional energgtspm (in this
exampleEy; (x1) = ((a(k))?)).

(J.16)
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K MTF270, Assignment 1. Reynolds averaged Navier-
Stokes

K.1 Two-dimensional flow

You can do the assignment on your own or in a group of two. leemmended (but
the not required) that you usélEX(an example of how to write irfIpXis available
on the course www page). It is available on Linux. On Windows gan use, for
example, Lyx www.lyx.org ) or MikTex (www.miktex.org ) which are both free
to download.

You'll use data from a coarse DNS. Although some of the dagapaobably not
fully accurate, in this exercise we consider the data to laeexyou will use Matlab to

read data files of the mean flow( o2, p) and turbulent quantitiesv?, v/2, v2, vjv},
ande). You will analyze one of the following flows:

Case 1: Flow over a 2D hillRe = 10595 (v = 9.44 - 1075, p = 1) based on the bulk
velocity in the channel and the hill height.

Case 2: Flow over two small hillsRe = 10595 (v = 9.44- 107>, p = 1) based on the
bulk velocity bulk velocity in the channel and the height loé thill at the lower
wall.

Case 3: Flow in a diverging/converging sectiia = 18 000 (v = 5.56 - 107°, p = 1)
based on the bulk velocity in the channel and the width of leechannel.

Periodic boundary conditions are imposed in streamwis¢ énd spanwisea(s)
directions in all flows.

The work should be carried out in groups of two (if you want torkvon you own
that is also possible) . Contact the teacher to get a Case dlenbbad the data from
http://www.tfd.chalmers.se/"lada/comp turb _model . At the www-
page you can download a M-filpl( _vect.m ) which reads the data and plots the vec-
tor field and the pressure contours. You must also downlaafitictiondphidx _dy.m
which computes the gradients. Make sure you put this fundtighe directory where
you executgl _vect.m .

The report, along with the Matlab files(s), should be suledittlectronically at
the Student Portalvww.student.portal.se ; the deadline can be found at the
Student Portal.

K.2 Analysis

Study the flow. In which regions do you expect the turbuleedag important?
Now let’s find out. The two-dimensional time-averaged Nes8&okes for ther;
momentum reads (the density is set to one.e- 1)

o1 00109 op 0%vy Qv 0%y Oyl

0x1 drs Oz v or?  Oxy v 0x3 0z

(K.1)

Recall that all the terms on the right-hand side represecttmponents of forces per
unit volume.
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K.2.1 The momentum equations

The filepl _vect.m loads the data file and plots the profiles/f at somer stations,
the velocity vector field and a contour plot of velocity g 0v, /0xz2. Compute

all terms in Eq.K.1. You will need to compute the derivatives of e.g, andp. In

pl _vect.m the functiondphidx _dy.m is used to comput8s,/dx, anddv, /dxs.
Use this function to compute all derivatives that you neethd Rwo (or more)z;
locations (vertical grid lines) where thé* stress is large and small, respectively. One
way to find these locations is to use the Mattabf command.

Assignment 1.1. Plot the stresses along vertical grid latebese two locations using the Matlab
commandlot(x,y) . Please make sure that in your report the numbering on
the axis and the text in the legend is large enough; you cathessommand

hl=gca;
set(hl,'fontsize’,[20]) %the number '20’ gives the fontsi ze

The size of the labels and the title is similarly controllgd b

xlabel(’x/H’,’fontsize’,[20])
ylabel('y/H’,'fontsize’,[20])
title('velocity’,'fontsize’,[20])

Assignment 1.2. Plot also all terms in B§.1. To enhance readability you may omit the small
terms or use two plots per vertical grid line. Make also a zowar the walls.
For example, for a — y plot

plot(u,y,’linew’,2) % linewidth=2

you may wantto zoominoy=[0 0.01] andu=[-0.1 0.4] ; thisis achieved
by

axis([-0.1 0.4 0 0.01)])

The 'axis’ command can be used together with any plot, e.gh isurf’ and
‘quiver’.
Which terms are negligible? Can you explain why they areigéaié?

What about the viscous terms: where do they play an importée® Which terms
are non-zerat the wall? (you can show that on paper).

So far we have looked at thg-momentum equation. The database corresponds to
a two-dimensional flow. Now let’s think of the forces as vestolrhe normal stresses
in thex; — x5 plane represent the vector

o o
==, == K.2
™ < 8$1 ’ 8$2 ( )
and the corresponding vector due to the shear stresses reads
ovivh  Ovjvh
= -——2,-——= K.3
TS < 8$2 ’ (’)xl ( )

This is theforceper unit volume [V /m3]) by which the normal stresses affect the flow.



K.2. Analysis 217

Assignment 1.3. Plot the vector fiefely to find out some features. Zoom-in on interesting re-
gions.

Assignment 1.4. Plot also vector fields of the shear streggsee EgqK.3), the pressure gradient
and the viscous terms. Zoom up in interesting regions. Aingtinteresting?
WhenvZ? reaches a maximum or a minimum along a grid line normal to the
wall, what happens with the vector field? Zoom-in on intérgstegions.

K.2.2 The turbulent kinetic energy equation

The exact transport equation for for the turbulent kinetiergy, k, reads

0 0%k
(ﬁjk)il/ + P+ Dy —¢
8acj (’)xjamj
7 (K.4)
_ 7 /avi
Py —V;; p

The diffusion term,D;, needs to be modelled.

Assignment 1.5. Plot the production term along the two gridd. Explain why it is large at some
locations and small at others. The production term consistse sum of four
terms, two of which involve the shear stress while the otheluide the normal
stresses. Compare the contributions due the shear strétlseanormal stresses.

Assignment 1.6. Plot the dissipation and compare it withpifeeluction. Do you have local equi-
librium (i.e. P* ~ ¢) anywhere?

K.2.3 The Reynolds stress equations

The modelled transport equation for the Reynolds stressebe written as

8 204/ 0/
D (vfer) = R RACRE (K.5)
ﬁaﬁj 77 Jv; .
Py = —vjvy — VU

8:ck ik 8:ck

The pressure-strain terr;;, and the diffusion termD;;, need to be modelled. Here
we use the models in Eq$1.84 11.50 11.83 11.88and11.89

1. Inthe damping functiory, (see Eq11.89, z,, denotes the distance to the nearest
wall. If, for example, the lower wall is the closest wall todey(/, J), then

12 (K.6)

Tn = {(x(la J) - :E(Iv 1))2 + (y(Iv ‘]) - y(Iv 1))2}

2. n,; 4, denotes the unit normal vector of the wall to which the distar, is com-

puted. If we assume, again, that the lower wall is the closedtto cell (1, J)

and that the lower wall is horizontal, then ,, = (0, 1). The computer; ,, for

the general case, compute first the vector which is parallgie wall,s; ,,, and
compute them; ,, from s, ,, (See EqK.11)
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3. The diffusion term®;; andD® can be modelled using the Generalized Gradient
Diffusion Hypothesis GGDH of][6(

!0
k 8vivj

0

This diffusion model can cause numerical problems, and &8 is then re-
placed by a simple eddy viscosity model

'
Dij = a (i Ulvj) s Vg = CMkQ/E (KS)

O0xm \ o Oxp,

The following constants should be used:
(cus €1, €2, Cru, C2w, k) = (0.09,1.5,0.6,0.5,0.3,1)

Assignment 1.7. Choose two stresses. Plot the differentsén the equations for one vertical
grid line fairly close to the inlet (not too close!). Use tlimple eddy viscosity
model for the turbulent diffusion term. If the figure becontes crowdy, use
two plots per vertical grid line or simply omit terms that aregligible. Try to
explain why some terms are large and vice versa. Usuallyeassis large in
locations where its production (or pressure-strain) tesaige. Is that the case
for you?

Assignment 1.8. Compute the stresses using the Boussissamqation, i.ejv; = —2143;; +
(2k/3)6;; wherer, = ¢, k? /e. Compare the eddy-viscosity stresses with two of
the Reynolds stresses from the database. Make also a zooaainvalls.

When using the Boussinesq assumption the production adifembkinetic energy

Pk = 2Vt§ij§ij (K9)

is always positive. The exact production of turbulent kinenergy (see EK.4) is
usually positive. It can however become negative.

Assignment 1.9. Compute the exact production in Edl in the entire domain to investigate if
the production is negative anywhere. If so, explain why.

The reason why the eddy-viscosity production in Eg® must be positive is of
course that neither; nor 5;;5;; can go negative. Another way to explain this fact is
that the modelled Reynolds stres&,’, and the strain rate tensory; /0x; are parallel.
To find out to what degree the exact Reynolds stress and tie site are parallel, one
can compute the eigenvectors.

Assignment 1.10. Compute the eigenvalues and eigenveafttine strain tensofs;;. The eigen-
values correspond to the normal strain in the direction efalgenvectors (see
Section13). If the shear strains (i.e. the off-diagonal componentshithate,
you will get eigenvectors in the directiehr /4 + 7/2 and if the normal strains
(i.e. the diagonal components) dominate the direction efdigenvectors will
be along ther; andx, axes (explain why!). Plot the eigenvectors as a vector
field. Our flow is 2D; thus we get two eigenvectors and two eigéres. Since
the two eigenvectors are perpendicular to each other ifffic@nt to plot one of
them ( for example, the eigenvectdrs/4, 7/4), (—w/4,7/4), (—7 /4, —7/4)
and(w/4,—m/4), all represent the same principal coordinate system). Zoom
on interesting regions.
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N
°
ne
nw
Se = (3167528)
P
. 1. = (11e,M2¢ ) o
° E
w
sw
se
¢ g

Figure K.1: Control volume. The velocity; is stored at the corners (ne, nw, ...).
Coordinatesr,, 2 are given at the corners (ne, nw, ...).

Assignment 1.11. Compute the eigenvalues and eigenvedttine Reynolds stresses;TJg. The
eigenvalues correspond to the normal stresses in the idinagdtthe eigenvectors.
Zoom in on interesting regions. In which regions are the migetors of the
Reynolds stress tensor and those of the strain tensor naligd@r This should
indicate regions in which an eddy-viscosity model wouldfgen poorly. Zoom
in on interesting regions.

K.3 Compute derivatives on a curvi-linear mesh

In this appendix we describe how the derivatives on a cungdr grid are computed
in the provided Matlab functiodphidx _dy.m. On a Cartesian grid it is more con-
venient to use the built-in Matlab functigradient , but the approach used below
works for all meshes, including Cartesian ones.

The data you have been given, andz, and all variables are stored at the grid
pOintS, ie. at(xl,sw;:EQ,sw)y (-Tl,se;ZEQ,se)v (ml,nunxQ,nw) and («Tl,nesz,ne)- When
you need a variable, say, at the center of the cell, compute it as

1
v1,p = Z(Ul,sw + V1,se + V1,nw + Ul,ne) (KlO)

Let's computedv; /0x1. In order to do that we use Gauss’ law over a control
volume centered at face(dashed control volume in Figc.1). To computelv, /dxy
we use ther;-component of the normal vectar= (n1, na), i.e.

@wvz/mmﬂ
v 011 A

Assuming thabv, /0z, is constant in the volumE we obtain

81}1 1 "
ekt . dA
8551 14 /A vim
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In discrete form we can write (see Fig.1)

<g—;i> - % > (umA), =

1=e,n,w,w

1
% {(v1An1)e + (V1AN)p + (V1 AN )y + (V1 ANT)s}

K.3.1 Geometrical quantities

It is useful to first compute the unit vectassalong the control volume. For the east
face, for example, we get

o T1,ne — T1,se
Sle =

S2¢

de = \/(wl,ne - wl,se)2 + (x2,ne - x2,se)2

(note that the area of the east fade is equal tod. sinceAz = 1). The relation
between the normal vectar, s and the unit vector in the-direction

s-n=0

S X zZ =n,
gives us the normal vector for the east face as

N1e = S2¢
tem ™ (K.11)

N2e = —Sle-
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L MTF270, Assignment 2: LES

You can do the assignment on your own or in a group of two. Ydureteive data
from a DNS of fully developed flow in a channel. It is recommeddbut the not
required) that you use’IgX(an example of how to write inrATeXis available on the
course www page). It is available on Linux. On Windows you cae, for exam-
ple, Lyx (www.lyx.org ) or MikTex (www.miktex.org ) which are both free to
download.

The equations that have been solved are

81}1- _ 0
avi—i-i(v-v-)—é- —@—i- L& *
ot Oxj i Oz;  Re; Ox;0x;

The Re number based on the friction velocity and the half channdthvis Re, =
urh/v =500 (h = p =u, = 1sothatr = 1/Re.).

A 96 x 96 x 96 mesh has been used. The streamwise, wall-normal and sganwis
directions are denoted hy(z1), y (z2) andz (x3) respectively. The cell size inand
z directions areAz = 0.0654 andAz = 0.0164. Periodic boundary conditions were
applied in ther andz direction (homogeneous directions).

At the www-page fittp://www.tfd.chalmers.se/lada/comp turb _model)
you find data files with three instantaneous flow fields (gtesily independent). The
data files include the instantaneous variablg$), v (v2), w (vs)andp (made non-
dimensional byu., andp). Use Matlab to analyze the data. You find a Matlab program
at the www-page which reads the data and computes the meagityellhe data files
are Matlab binary files. Since the data files are rather largerecommended that you
do all tasks using only data files '1’. When everything wortk&en use also data files
'2" and '3’ averaging by use of the three files.

L.1 Task2.1

We decompose the instantaneous variables in time-aveeagkfiuctuating quantities
as

vi = (vi) + v, v = (p) + 9/
The symbol(.) denotes averaging in the homogeneous directioradz. Note that
in reality (.) always denote time averaging. It is only in this special acaid test case
where we haveéhreehomogeneous directiong (2, t) where we can — in addition to
time averaging — also can usexndz averaging. Compute the six stresses of the stress
tensor,(v;v}). Use the definition to compute the stresses, for example

(W) = (01 — (01))%) = (V1) — 2(v1 (V1)) + ((v1))?
= (v]) = 2(01)* + (01)* = (v7) — (01)*.

Wait with analysis of the results till you have done next part
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L.2 Task2.2
Compute the production term and the pressure-strain terms
a(v
P = —(u3) 2
(v
P11 = 72<’U£Ul2> <ay1>
O(v1)

Prp = —(vyv5) —
e ) (2
s

Do the production terms and the pressure-strain term agsegou had expected? (see
the previous course MTF256)

Now analyze the fluctuations in the previous subsection. cWitresses do you
think are symmetric with respect to the centerline? or aptiimetric? What's the
reason?

When averaging, we use only three time steps (three filesye Mvould use many
more time steps — or, in general, if we [Bt— oo when time averaging, e.g.

T
() = lim i/+ Gt

then some of the stresses would be zero: which ones? Why?

L.3 Task2.3

Plotv; andvs alongz; at two differentrs values ates = 3 mas/2-

1. Filterv, andwvs to getv andw, using a 1D box-filter (in the:; direction) with
filter width A = 2Ax, (this corresponds to a test filter, see E@.26 Compare
v1 andvy with v andws.

2. Do the same thing again but with a filter width &f = 4Az; (now you must
derive the expression on your own!). Discuss the differsrimsween no filter,
A= 2A$1 andA = 4A£L‘1

In LES we almost always assume that the filter width is equiidéaontrol volume
(i.e. we use aimmplicit filter). Above, in Iltem 1 and 2 you have just carried explicit
filtering.

Repeat Item 1, but now for a 2D filter.{ andx3 direction); the formula for a 3D
filter is given in Eq.17.27 Compare the results along the same lines as in Item 1 and
2.
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cut-off

E(r)

Figure L.1: Spectrum with cut-off.

L.4 Task?2.4

Compute the SGS stress, from the Smagorinsky model, which reads

Tij = —2WagsBij, Vsgs = (Csfuld)? /251545

1 (0 O
Sij = = L.2
5 J 2 <8$J + 8$1> ( )
fu=1—exp(—x3/26)

The filtered velocitiesy;, are taken from Task 2.3 using the 2D filter @ andz3);
we should really have used a 3D filter, but in order to keepnitpde, we use the 2D
filter. Before doing the 2D filter, look in the Lecture Notesaha 3D filter is done. The
constant’; = 0.1.

Compare the SGS stregs ) with the resolved stresg/'v') and compare the SGS
viscosity with the physical one. Plot them across the chlamegy thoughts?

As an alternative to the damping functiof),, compute the filter length as

A = min{xn, A} (L.3)

wheren is the distance to the nearest wall ane- 0.4 (von Karman constant). In this
case you should s¢f, = 1.
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L5 Task2.5
Repeat the Task 2.4, but now for the WALE model &g ]], which reads
07v; 2
Gij = a—xja 9i; = Gik9kj
_ 1 1
5§ = 3 (g7 +97:) — g@'jgik (L.4)

(—d =d )3/2

57585
(5:;5,5)°" + (s0.5¢)*

17°17
with C,,, = 0.106 which correspond t6’; = 0.1.

Vegs = (CrnA)?

L.6 Task2.6

Compute the dissipation
ov} O}
e=v <8£17] axj >

and plote across the channel.

In LES we introduce a filter which is assumed to cut off the spee atx. in the in-
ertial region, see Figd..1. At cut-off, kinetic energy is extracted from the resolvemfl
by the SGS dissipatioss,. Since the cut-off is assumed to be located in the inertial
sub-range (ll), the SGS dissipation is at high numbers equal to the dissipation.

Introduce a 2D filter{Ax; and2Ax3) as in Tasks 2.3 & 2.4 and filter all velocities
to obtainvy, 2 andvs. Compute the SGS stresses from the definition

Tij = ViU — Vij (L.5)
and compute the SGS dissipation

ov;
€sgs = 7<Tz]%> (L6)
J

Now, what is the relation between,; ande? Considering the cascade process, what
did you expect?

Recall that when we do traditional Reynolds decompositiba,production term
in the equation for turbulent kinetic energy appears as lkatenm in the equation for
the mean kinetic energy, see B335 This is the case also in LES, but now we have
a decomposition into time-averaged filtered velogjty), resolved fluctuation,;, and
SGS fluctuationy?, i.e.

v; = () +v; = (B;) + T} + vy (L.7)
Now we have three equations for kinetic enerdy: = 1 (7;)(v;), k = % (v,v;) and
ksgs = 3(v/v!). The flow of kinetic energy can be illustrated as in Rig2 (cf. Fig.
20in [73)

The transport equation fofl v;v;) is derived in [L4]. (can be downloaded from
www.tfd.chalmers.se/"lada ).

When deriving thek,,, equation, no decomposition into time-averagggl, and
resolved fluctuationsy}, is made. Hence the SGS dissipation in Eg.appears as an
instantaneous production term in the equationkfQy [74, 75, ] (can be downloaded
from www.tfd.chalmers.se/"lada ).

Plot (alongxs), compare and discuss the four dissipations (seelFR).
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Figure L.2: Transfer of kinetic turbulent energys = 1(v;)(7;) andk = 1 (v}v})
denote time-averaged kinetic and resolved turbulent kireatergy, respectivelyAT
denotes increase in internal energy, i.e. dissipation.

(17’117@68(@1): dissipation (minus production) by resolved turbulencé@i equation
T2

s5gs

ov; 9v;\’ ov,; 91, .
/ _ Y 4 ~ ov; OU; | .. . . )
el .= <(ysgs oz, 8:1:]-) ~ (Vsgs oz, 8xj>' SGS dissipation term in thie equa
tion. This is themodelledSGS dissipation; compare it with the exact SGS dissi-
pation—(r;; §2-) + (Tij>66<§;>, cf. Eq.L.6
< v, 0]
v

%j(’)xj

>: viscous dissipation term in theequation

_ _ _ 2
<1/ 00 > o) (Vsgs) (8<v1>) : SGS dissipation term in th& equation.

593 8x2 8x2 8:172

L.7 Task2.7

Above the filtered velocities were computed using the filtédttw A = 2Az;. In
dynamic models, we often define the test filter as twice thaludter, i.e. A = 2A.

Use this definition (1D filter, e = 4Ax1) to compute the dynamic Leonard stress
(L12) from the definition

ﬁij =ViV; — V0V (L8)
and compare it (across the channel) with the resolved strés$) and the SGS stress
(T12) defined in EqL.5. Do you expect the magnitude of stresses to be similar?
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L.8 Task2.9

What is the near-wall behavior ¢f; ), (v{?) and(v?) (i.e., forvy, whatism in (v;) =
O(z4")). In order to estimaten, plot the quantities in log-log coordinates. Do the
guantities exhibit the near-wall behaviour that you expdet

L.9 Task2.10

The two-point correlation for’

96 96

Z Z vi(m{,xg,xé()v’l(x{,xg,xé( - Cm) (L.9)

I=1 K=1

1

Bu (@2, m) = 55596
wherezX and¢,, are the spanwise locations of the two points. Take advamtbthe
fact that the flow is periodic, but be careful when integratine correlation above in
the z3 direction. We havé6 cells in thexs direction. If, for example(,,, = 2Azs,
and one of the pointsef) is at K = 1 then the others} — 2A) is at K = 95.

Plot the two-point correlation at a coupleof positions. When plotting two-point
correlations, it is no point showing both symmetric partspw only half of it (cf. the
two-point correlations in Sectioh0.1and Fig.D.1).

Compute and plot the integral length scalg, which is defined by

La(as) = — /0 " Bu(as, O)d¢ (L.10)

’Ul,rms

Compute alsaCs. What'’s the difference betweefy andL3?

L.10 Task2.11

The energy spectrum of any second moment can be obtainedting the FFT of the
corresponding two-point correlation. The energy spectafimny second moment can
be obtained by taking the FFT of the corresponding two-pmntelation. You can find
some details on how to use Matlab’s FFT in Appenidix

If you have computed the Fourier coefficients properly, thim ®f all coefficients
should give the energy. The reason is that the Fourier caegifie correspond to the
energy spectrum, and if we integrate the energy spectrumalveiave numbers we
get the total energy. When we take the FFT of E§, for example, we get

Bll("iz) = FFT(Bll)

and summation gives
N
0} s = 3 Bui/N (L.11)
1

see AppendiD

Plot the energy spectra at a couplergflocations. Confirm that Ed..11 is satis-
fied. When plotting two energy spectrum, it is no point shaylith symmetric parts;
show only half of it (cf. the energy spectrum in FIg.5b).

L.11 Task2.12
Think of an interesting turbulent quantity and plot it ancze it!
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M  MTF270, Assignment 4: Hybrid LES-RANS

In this exercise you will use data from a Hybrid LES-RANS foity developed channel
flow. The turbulence model is the same as8][(no forcing), but the domain and
Reynolds number is taken from46. The Re number based on the friction velocity
and the half channel width iBe, = w.h/v = 8000. 28 cells (29 nodes including the
boundary) are located in the URANS region at each wall. Thiehiag line is located
atz; ~ 500, x2/d = 0.06.

A 64 x 96 x 64 mesh has been used. The cell sizecinand z3 directions are
Az; = 0.05 andAzz = 0.025. Periodic boundary conditions were applied in the
andzx3 direction (homogeneous directions). All data have beenenmaxh-dimensional
by u, andp.

At the course www page you find data files with instantaneows fields (statis-
tically independent) of The data files include the instaatars variables, v, w and
kr (made non-dimensional by, andp). Use Matlab to analyze the data. You find
a Matlab program at the www page which reads the data and desthe mean ve-
locity. The data files are Matlab binary files. Since the daés fare rather large, it is
recommended that you do all tasks using only data files '1’ eWéverything works,
then use also data files '2’, '3’ and '4’, averaging by use & tbur files.

You will also find a file with time history of:.

M.1 Time history

At the www page you find a filei_v_time _4nodes _hybrid.dat with the time
history of v; andv,. The file has nine columns af andw, at four nodes (and time):
x9/d = 0.0028, x2/5 = 0.015, 22/6 = 0.099 andz,/6 = 0.35. Hence, two nodes
are located in the URANS region and two nodes in the LES regWith «, = 1
andv = 1/Re, = 1/8000, this correspond ta;j = 22, 2 = 120, 25 = 792 and
x4 = 2800, respectively. The sampling time steg6i@50F — 4 (every time step). Use
the Matlab progranpl _time _hybrid to load and plot the time history af; .

Recall that the velocities have been scaled with the frictielocity u.., and thus
what you see is really; /u.. The time history of; atzs/6 = 0.015 andxs/§ = 0.35
are shown. To study the profiles in closer detail, useatkis -command in the same
way as when you studied the DNS data.

Plot v; for all four nodes. How does the time variation @f differ for different
positions? Recall that the two points closest the wall acatied in the URANS region
and the other two are located in the LES region. In the URANftorethe turbulent
viscosity is much larger than in the LES region. How do youestgthat the difference
in v, affects the time history of;. Does the time history af; behave as you expect?
What abouti;?

Compute the autocorrelation of the four points

imax=500;
two_uu_1 mat=autocorr(ul,imax);

Above we See the maximum separation in timé@6 samples. Then compute the
integral timescale

dt=t(1);
int. T 1=trapz(two_uu_1 mat) *dt;
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Plot the autocorrelation.

plot(t(1:imax),two_uu_1_mat(1:imax), linew’,2)
xlabel(’t)

ylabel('B_{uu})

handle=gca

set(handle,’fontsi’,[20])

How does it compare to the integral timescale. Compute thecaurelation and
integral timescale also for the other three points. Do yauay difference between
the points in the URANS region and the LES region?

M.2 Mean velocity profile

After having performed a hybrid LES-RANS, we want to looklze time-averaged re-
sults. Use the filpl _uvw_hybrid.m to look at the mean velocity profilepl _uvw_hybrid.m
reads the instantaneotisfield and performs an averaging in the homogeneous direc-
tionsz; andxs. The time averaged velocity profile is compared with the logfife
(markers). There are four files with instantaneous valueg of/lse more than one file

to perform a better averaging.

M.3 Resolved stresses

We want to find out how much of the turbulence that has beervwedand how much
that has been modelled. Compute firstean (this quantity should be very small, but
if you use only one file this may not be the case due to too fevpsssh Now compute
(vivh). Here’s an example how to do:

uv=zeros(nj,1);

for k=1:nk

for j=1:nj

for i=1:ni
ufluct=u3d(i,j,k)-umean(j);
vfluct=v3d(i,j,k)-vmean(j);
uv(j)=uv(j)+ufluct * Vfluct;

end

end

end

uv=uv/ni/nk;

Plot it in a new figure (a figure is created by the comm#fgdre(2) ).
Compute also the resolved turbulent kinetic energy

kres = 0.5 (<U12> + <U§> + <Ué2>)

and plot it in a new figure.

M.4 Turbulent kinetic energy

Now plot and compare the resolved and modelled turbulergtidarenergies. Which is
largest? Which is largest in the URANS region and in the LEgam®, respectively?
What about the sum? The magnitude of resolved and modeiibdl&nt kinetic ener-
gies is discussed in the last subsection/ig [
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URANS region LES region
1 2.5n[1 — exp(—0.2k'/2y /v)] =A=(§V)/3
vp | 0.09-2.5kY2n[1 — exp(—0.014k/2y /v)] 0.07k%20

Table M.1: Expressions faf andvy in the LES and URANS regions: denotes the
distance from the wall.

M.5 The modelled turbulent shear stress

We have computed the resolved shear stress. Let's find thelieddhear stress.

Load a file with the modelled turbulent kinetic energy,(file tel _hybrid.mat ).
Recall thatr = 1/8000. Compute the turbulent viscosity according to Talkld and
do the usual averaging. When computiigyou need the volume\V/, of the cells. It
is computed asV = (AxziAzyAxs); Az andAzs are constant andix, is stored
in the arraydy(j) , look at the beginning of the m-file. Plgtr) /v. Where is it large
and where is it small? (Recall that the URANS region is lodatethe first ten cells).
Is it smooth? Do you need more samples? If so, use more files.

Compute the modelled shear stress from the Boussinesq pgsam

00y 0o >

Ti2 = —2UT812 = —VUT <% T
2 1

Plot it and compare with the resolved shear stress. Are theyoth across the in-
terface? (recall that forcing is used) Is the resolved skrass large in the URANS
region? Should it be large? Why/why not?

M.6 Turbulent length scales

Compute and plot the turbulent length scales given in Tahte Plot thelsss and
lurans length scales in both regions. Which is largest? Any suegfis Compare
them with Az, and(Axz; AzyAzz)'/3. One would expect thathz; AzsAxs)/3 <
Lurans everywhere. Is this the case?

M.7 SAS turbulent length scales

Compute the 1D von Karman length scale defined as

8(171>/(’)x2

52(0n) /022 M.

Lykip =k

Note that you should take the derivatives of #werageds; velocity, i.e. of(71). Zoom
up near the wall. How does it behave (i.e. what i O(z%)? What shoulc: be?
Compare that with the von Karman length scale defined fristantaneous, i.e.

< 0v1 /0o >‘ M.2)

LUK 1D,inst — K
T 82@1/811%

How does it compare witlh,, i 1 p?
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When we're doing real 3D simulations, the first and secondvdiive must be
defined in 3D. One way of defining the von Karman length sta8D is [141, 142

S
LvK,BD,inst =R W
S = (2w45i;5,5)"" (M.3)

U — 6217i 8217i 0-5
- a$jal'j axjal'j

The second derivative is then computed as

_ _ _ 2
U2 — (627}1 + 82Ul + 821)1)

2 2 2
Oxzy  Ox;  Oxj

020, 0%, 0Py’
M.4
+<ax%+ax§+8$§) (M-4)
" 82ﬂ)3 82ﬂ)3 82ﬂ)3 2
Ox? 3 2%

Plot the von Karman length scale using E§63 and M.4. Compare them with
Eqg. M.1. What's the difference? What effect do the different lengthles give for
Psas (i.e. Ty in Eg.21.5 and what effect does it give to?

Another way to compute the second derivative is

225\°>  [9%5\°> [9%%\°
"2 __
v (@) +(a—y2) *(@)
?v\>  [0%\ [9%v\°
+(5) +(5) + (53) )
2w\ [92w\® [9%w\>
\oz) "\a7) T\o=

Plot and compare the von Karman length scales using ttomdeterivatives defined in
Eqgs.M.4 andM.5.
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N MTF270, Assignment 5: Embedded LES with PANS

Interface

9 RANS, fy =1.0 LES, fi = [FF5 <1

€2

X1 :
0.95 2.25

B S E—

Figure N.1: Channel flow configuration. The interface sefgsréhe RANS and the
LES regions.

In this exercise you will use data from an embedded PANS ohcbkflow. The
data are taken fromlgg. The k,, (Eq.22.1Q and thee, (Eqg.22.1§ equations are
solved. The turbulent viscosity is computed from 2§.12 The PANS model is a
modifiedk — ¢ model which can operate both in RANS mode and LES mode.

The Reynolds number for the channel flowRg, = 950 based on the friction
velocity, u-, and half the channel width,. In the present simulations, we have set
p=1,6 =1andu, ~ 1, see FigN.1l. With a3.2 x 2 x 1.6 domain, a mesh with
64 x 80 x 64 cells is used in, respectively, the streamwisg the wall-normal )
and the spanwise] direction, see FigN.1. The resolution is approximately (the wall
shear stress varies slightly along the waB)x (0.6 — 103) x 24 in viscous units. Inlet
conditions atr = 0 are created by computing fully developed channel flow with th
LRN PANS model in RANS mode (i.e. witlf, = 1). The RANS part extends up to
z1 = 0.95; downstream the equations operate in LES mode ((j.e= 0.4).

Anisotropic synthetic fluctuations are added at the interfarhe interface condi-
tion for ¢,, is computed with the baseline valdg = 0.07, wherekrans is taken at
x = 0.5, see FigN.1. The modelled dissipatioB;, .., is set fromk;,,;.,- and an SGS
length scale/,,,, which is estimated from the Smagorinsky model as

lsgs = CsA (N.2)
and the interface condition fdr, is computed as

kinter = f]fESk/)RANS (N2)

with kaES = 0.4. The interface conditions ok, ande, will make the turbulent
viscosity steeply decrease from its large values in the RAd&tton to much smaller
values appropriate for the LES region.

N.1 Time history

At the www-page you find a filei_time _interior.dat with the time history of
U2. The file has eight columns of along two linesz,; = 0.0139 (x§r ~ 13) andz, =
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0.24 (x5 ~ 230); they are located at; = 0.775, 1.175, 1.675, 2.175. The sampling
time step i90.000625 (every time step). Use the Matlab prograin_time _pans to
load and plot the time history af,.

The time history ofs; atzo, = 0.0139 atz; = 0.775 andz; = 1.675 are shown.
To study the profiles in closer detail, use idds -command in the same way as when
you studied the DNS data. Why is there such a big differentledriluctuations?

If you're not interested in integral time scales, skip thetref this section and
proceed to SectioN.2.

In Matlab figure 2, the autocorrelation is plotted. The aatoglation is defined as

B(r) = /000 v(t)v(t — 7)dt (N.3)

Study the coding and try to understand it. When prescribiregtime correlation of
the synthetic fluctuations, the integral timesc@les used, see Eq. 11 ii4§. The
integral time scale is defined as

T= /0 B (r)dr (N.4)

whereB"°"™™ = B(r)/B(0) so thatB™*"™(0) = 1. The constant is in [14d set to
0.954 and from Eq. 11 in148 we can then compute the prescribed integral timescale.
In the Matlab file the integral timescale is computed fromahéocorrelation. Try to
understand the coding.

Plot o, for the other nodes and study the differences. Compute tleeauelations
and the integral timescales.

N.2 Resolved stresses

Now we will look at the time-averaged results. Use the file uuvwww_2d.m to
look at the mean quantities such as velocity, resolved ardeftenl stresses, turbulent
viscosities etcpl _uuvwww_2d.m reads the fields and transforms them into 2D arrays
such asi_2d, uu_2d. o

Runpl _uuvwww_2d. . The resolved stressés;?) are plotted vs» (figure 1) and
vs. z; (figure 2).

Two z; stations are shown in figure ; = 1.175 andz; = 2.925. Plot the
resolved stress also in the RANS region, i.e.for< 0.95. The(v{?) profiles are very
different in the RANS regionaf; < 0.95) and in the LES £, > 0.95), aren't they?
Why? This can also be seen in figure 2 wharg) is plotted vs.z;

Now plot the resolved shear stress@s,v5), both in the RANS region and in the
LES region. You find the same difference between RANS and leg#®n as for(v;?),
don’t you?

N.3 Turbulent viscosity

Plot the turbulent viscosity vsz, in both regions. Normalize it witv), i.e. plot
(vy)/v. Where is it large and where is it small? Why? Now plot it als0 w;.
Something drastically happensaat = 0.95, right?
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dissipating range

K
Ke

Figure N.2: Energy spectrum.

N.4 Modelled stresses

In SectionN.2 you looked at the resolved Reynolds stresses. Now let's &idke
modelledstresses. Computer the modelled Reynolds stresses froBotiesinesq as-
sumption

— i)  0;)\ | 2

{03V o) = —Wu) <a—xj Yo )T 3915 (ku) (N.5)
Compare the resolved and the modelled shear stress anohatianormal stresses in
the RANS region and in the LES region.

N.5 Turbulent SGS dissipation

In an LES the resolved turbulent fluctuations can be repteddry a energy spectrum
as in Fig.N.2. The resolved turbulence extracts kinetic energy via tioelpction term,
P*, which represents a source term in thequation (Eq8.14) and a sink term in the
K equation (Eq8.35. The energy flow is visualized in Fi¢.2 where the energy in
K mostly goes to resolved turbulende then to modelled turbulenck, (or k,,) and
finally to internal energy via dissipation,.

In RANS mode, however, there is no resolved turbulence. Elé&mekinetic energy
goes directly fromi to the modelled turbulence,,.

In the LES region, the production term in the equation includes both mean and
fluctuating strain rates since

0v; 81_}j 0v;
P = ag0 = <Vu (3_517; ’ 35171‘) 3$j>
which in the Matlab file is stored gsksgs _2d.

Now investigate the LES region the relation betwégn= ¢, and the production,
P*, due to the resolved turbulence

o)

Ph = =)
Zj

(]
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Compare alsd” in the LES region and in the RANS region.

In both the RANS and the LES region the process of viscougien takes place
via ¢,,. Hence, plot also this quantity. Is the turbulence in locpligbrium, i.e. does
the relationP, = ¢,, hold?
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O MTF270: Transformation of a tensor

The rotation of a vector from the;. coordinate system to; reads (see, e.g., Chapter
1lin[19)
U; = bij’LLj* (Ol)

whereb;; denotes the cosine between the axis

bij = cos (T4, Tjx) (0.2)
In Fig. O.1, theb;; is given by
b1y =cosa, big = cos'ﬁ = —sina 0.3)
bay = cos(m/2 — o) =sina, by = cosa
The relations;b,, = by;br; = 0;; are fulfilled as they should.
For a second-order tensor, the transformation reads
Wij = bikbjmUksms (0.4)

As an example, set = 7/4. EquationO.3gives
bit =1/V2, bio=—1/V2, by =1/V2, by =1/V2 (0.5)

Inserting EqO.5into Eq.0O.4 gives

U1 = b11b11Urs1x + D12011U2414 + b11b12U 1424 + D12D12U224 (O.6a)
1
= 5(1“*1* — U2s1x — ULx2+ + U2*2*)
U1z = b11b21Uts14 + bD12b21U24 14 + D11b22UTs24 + D12b2o U424 (O.6b)
1
= 5(“1*1* — U2s1x T Ulx2s — u2*2*)
U1 = b21b11U1s15 + D22b11U24154 + b21D12U 1424 + D22D12U2 24 (O.6¢c)
= 5(“1*1* + U2x1x — ULx2% — u2*2*)
U2 = b21bo1Us15 + D22b21 U241 + b21b22U 524 + D22b20U224 (0.6d)
1
= 5(1“*1* T+ U2x1x + Urs2s + U2*2*)
€2
A
T2 T1x
g
a

T1

Figure O.1: Transformation between the coordinate systems x»..) and(z1, 2).
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0.1 Rotation to principal directions

Consider fully developed flow in a channel, see ApperitlixThe strain-rate tensor,
i, reads

1 81}1

s11:=0, s12=-5—, 821 =512, S22=0 (0.7

2 81'2
Assume that the:; andzs coordinates in FigO.1 correspond to the streamwise and
wall-normal directions, respectively. Let the,. — x5, coordinate system denote the
eigenvectors. The transformation fram — x5 t0 1. — 2. reads

Sixjx — CikSkm, C;j = COs ($i*,117j) (08)
where

c11 = cosq, cC19 =cos(m/2 — o) =sina
, (n/2= ) ©9)
co1 = cosfB = —cosa, Coy =cCOS

see Fig.0.1L It can be seen that the relatiapy = b;; is satisfied as it should. The
eigenvectors for EqO.7 are any two orthogonal vectors with angles /4, +37/4.
Let us chooser /4 and3r /4 for which the transformation in E@.8reads & = 7/4)

S1x1x = C11C11S11 + C12C11821 + C11C12812 + C12C12522 (0.104a)
1
= 5(511 + S21 + S12 + S22)
S1x2x = C11€21511 + C12C21521 + C11C22812 + C12C22522 (0.10b)
1
= 5(—811 — S91 + S12 + S22)
S2x1x = C21C11511 + C22C11821 + €21C12812 + C22C12522 (0.10c)
= 5(*511 + 821 — S12 + S22)
S2x2x = C21C21511 + C22C21521 + €21C22812 + C22C22522 (0.10d)
1

= 5(*511 — S21 — S12 + S22)

The fully developed channel flow is obtained by inserting B
S1slx = 512, S1a2x = 0, S2414 = 0, S04 = —521 (0.11)

Since the diagonal elements are zero it confirms that thedawee systen,. — 2.
with o = /4 is indeed a principal coordinate system. The eigenvalhés, of 8ij
correspond to the diagonal elements in Eql], i.e.

1 0v; 1 0vy

A =5 q,=s0=c-—, M) =sp0.=—sp=—-—— 0.12
S1x1 S12 28@’ 52%2 S12 2 Oy ( )
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0.2 Transformation of a velocity gradient

Consider the velocity gradieM;; = 9dv;/0x;. Apply the transformation from the
x1 — x2 System to the:;, — xo, in Eqs.0.10a0.10dwith o = /4

1
Atiis = 5(1411 + Aoy + A1a + A22)
1
Ao = 5(—1411 — Ao + Ajo + Ago)
2 (0.13)
A1 = 5(—1411 + Aoy — Aia + Ag)
1
Agiox = 5(—1411 — Ao — Ajo + Ago)
Insert Eq.0.9with o = 7/4 and replaced;; by the velocity gradient
Ov1x B 014 B 1 0vy 0oy _ Ovay _ 71% (0.14)

8:51* 8:52*

58—@7 (’)xl* o al’g* 26.1’2,

It can be seen thalv;./0x1. = S1.14 @aNAOV1./OT2x + OV, /L1 = 281424 = 0
(see EgsO.12and0.14) as it should.
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P MTF270: Green’s formulas

In this appendix we will derive Green’s three formulas fromuss divergence law.
In the last section we will derive the analytical solutionth@ Poisson equation. The
derivations below are partly taken frorhg2.

P.1 Green’s first formula

Gauss divergence law reads

/ OF: Jy — / FinidS (P.1)
v 8531' S
whereS is the bounding surface of the volumi, andn; is the normal vector of
pointing out of V. ReplacingF; by gogw gives
Zq
0 oY " Oy
dV = —n,d P.2
/V (’)xl <<p8$i> V /Sspaxin S ( )
The left side is re-written as
0 oY\ 0% oY dp
(’)xi (SD(’)xl) N w@xl(’)xl + 8,%1' 8,%1' (PS)

which inserted in EqP.2gives

W9 v = [ 2%,.4s (P.4)
S

0%y
av + 0z,

% 908:1718:171 \a 8% 8%

This is Green’s first formula.

P.2 Green’s second formula
Switchingy andy in Eq. P.4gives

L0 0 Y Op
/vwaxiaxi v+ /v dx; Ox; v = /sd}awi nidS (P.5)

Subtract EqP.5from P.4gives

0% 9% B o .
/V (saaxiaxi - wawiaxi) dV = /S <<,08_$Z - wa—xl> n;dS (P.6)

This is Green’s second formula.

P.3 Green’s third formula
In Green’s second formula, EB.§ set
1

r)=——— P.7
o) = (P.7)
As usual we are considering a voluritewith bounding surfac& and normal vector

n;. Since functiomny(r) is singular forr = rp, consider a small sphere ¥, see
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%

€2

&

Figure P.1: Green'’s third formula. A volunié with bounding surfac& with normal
vectorn;. In V there is a small sphel¥® located ak p with radiuse and normal vector
€

ng.

Fig. P.1 In Eqg.P.6we need the first and the second derivative>ofl he first derivative
of 1/r; is computed as

0 (%) _  Or/0x; _ _:_; (P.8)

ox; r2

since the derivative of a distancéis a vector along the increment of the distance, i.e.
0X/0z; = X;/X whereX = | X;|. The second derivative is obtained as

0 (1y__0 (ﬁ)__am 1Y, 9 (3
Ox;0x; \r ) Oz; \r3) Ox; \r3 Ox; \ rt

_31 +ri 3ri_ 3+r23_0
B r3 r\rt) B o\t

To get the right side on the second line we used the factthat= 2. Now we replace
r; =rbyr—rp =r; —rp,; in Eqs.P.8andP.9which gives

0 1 T —TP
8_5171'(|1fI‘P|)__|IFI‘P|3
o () =

Ox;0x; \|r —rp|

forr; # rf, i.e. forV excluding the spheré<, see FigP.1 Apply Green’s second
formula for this volume which has the bounding surfa8esndS© with normal vectors
n,; (outwards) andi (inwards), respectively. We get

1 2 S 1 9
—/ 0% dV:/ — Hoh Ld n;dS
v_ge |t —rp| Ox;0x; s r—rpl3 |r—rp|0x;

ri —rF 1 Oy
—p—t — | (=n$)dS
+/E( SD|I‘*I‘P|3 |rrp|8xi)( ni)

(P.9)

(P.10)

(P.11)




P.3. Green'’s third formula 240

where the volume integral is taken over the voluméut excluding the spherg#, i.e.
V — S¢. Note the minus sign in front of the normal vector in th& integral; this is
because the normal vector must padot of the volumeV — S¢, i.e. into the sphere,
S¢. In the sphere the normal vectaf;, is the direction from pointp, i.e.

e r—rp T —TpPi

g - (P.12)

S r—rp|  fri—rpl

where we have normalized the vect@r rp; in order to make its length equal to one.
The length of the vectar; — rp; is the radius of spherg®, i.e.

r—rp|=¢ (P.13)
The surface area,S, for sphereS© can be expressed in spherical coordinates as
dS = £?Q = % sin OdOda (P.14)

where() is the solid angle. Inserting EgR.12 P.13andP.14in the last integral in
Eq.P.11gives

B o ri—TPi 09\ 5.0 0%
ISE/S<52+ e? axi)sdg/e<w+(rl TP’Z)awz‘)dQ (P-15)

To re-write this integral we will use thenean value theorerfor integrals. In one
dimension this theorem simply states that for the integiral function,g(z), over the
interval[a, b], there exists (at least) on point for which the the relation

b
| 9t@)dz = (@~ byg(aa) (P16)

holds, whererg denotes a point offu, b]. Applying this theorem to the integral in
Eq.P.15gives

0
Ige = (p(rQ)/ dQ) + |:’I“Q7i — TP,i)_a(p (I’Q):| / s} (P.l?)
Se ZT; Se

whererg = rg ; denotes a point oA°. As we let() — P, the radiusg, of sphereS®
goes to zero so that the integral in Bjl7reads

hH(l) Ise =4mp(rg) (P.18)
£—

since . dQ = 4x. Inserted in EqP.18gives

1 1 0%
= dv
#(rep) /v |r — rp| Ox;0x;

1 " i — P 1 1
et /gpumm / 0% 11.dS
s | P

4 Jg v —rp| Oz

(P.19)

This is Green'’s third formula.

The singularityl/|r — rp| in the volume integral in EgP.19is not a problem.
Consider a small sphere with raditts = |r — rp| centered at poinP. In spherical
coordinates the volume element can then be expressed as

dV = r?sinOdridfda = ridrid (P.20)

Hence it is seen that the volume elemét goes to zero faster than the singularity
1/|r —rpl.
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P.4 Analytical solution to Poisson’s equation
Poisson’s equation reads
0%
(’):cjaxj
where we assume that goes to zero at infinity and that the right side is limited.
Green's third formula, EgR.19 gives

=f (P.21)

|I‘*I‘P|

ri —rF 1 f 1 Jp
——=n;dS T S
47r/ |I'—I‘p|3n i 47r/ |r —rp] dz;

We choose the volume as a large sphere with ragfiugdsing EqsP.12 P.13andP.14
the first surface integral can be written as

1 / i g L / s = / ' d€) (P.23)
47 SSD|I‘—I'p|3 4T R? SSQ 4 SQO

usingn;n; = 1. This integral goes to zero singe— 0 asRk — oc.
The second integral in E€.22can be re-written using E&.13 Gauss divergence
law and EqP.21as

(P.22)

1 1 Oy 1 Jp

— i = — ldS
dr Jg |I‘*I‘P|8£17,L'n 4mR 8:171-71
) Py (P.24)
= / fdv
4R Jg 8:171-8:171 47TR

This integral also goes to zero for lardgesince we have assumed théis limited.
Hence the final form of ER.22reads

=—— P.25
4w Jy, |r —rp] ( )

This is the analytical solution to Poisson’s equation, I[Eg§1
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Q MTF270: Learning outcomes for 2011
Week 1

1. How is the buoyancy termpg;, re-written in incompressible flow?

2. Giventhe transport equation for the temperatéyelerive the transport equation
for 6. Derive the transport equation fof¢’ (Eq.11.19. Discuss the physical
meaning of the different terms. Which terms need to be medall

3. What is the expression for the total heat flux which appe#tied equation?

4. Which terms in theyjv; equation need to be modelled? Explain the physical
meaning of the different terms in thgv}; equation.
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Week 2

1.

2.

Discuss and show how the dissipation tesgy, is modelled.

How are the Reynolds stresgy’, and the turbulent heat flux;0’, modelled in
the Boussinesq approach?

. How is the turbulent diffusion flux fok modeled in thé& — ¢ model @Zt)? What

is the final expressions of the modelled diffusion terms &itlande equations?

. How is the production term in theequation modelled (Boussinesq)?
. Derive the transport equation foi(start from thek equation)

. Use physical reasoning to derive a model for the diagooaiponents of the

pressure-strain term (slow part).

. The slow pressure-strain model reabls; = —cipy ( "’ 6ijk:). The

J

U"U’

anisotropy tensor is defined &g = %6”». Show that for decaying grid
turbulence, the model for the slow pressure—strain moatidéal acts as to make
the turbulence more isotropicdf > 1.

. Derive the exact Poisson equation for the pressure fltioty&q.11.58 For a

Poisson equation
0%
(’)xjamj

there exists an exact analytical solution

_ / S (y)dy1dyadys
4w ly—x

=f

Q1)

Using Eq.Q.1, give the exact analytical solution for the pressure-sttarm.
What are the “slow” and “rapid” terms? Which two assumptians used to
simplify this equation? Give the simplified analytical swn for p’ (Eq.11.62.
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Week 3

1.
2.

Derive the algebraic stress model (ASM). What main assiams made?

Describe the physical effect of the pressure-strain tarthe near-wall region.
What sign must hencés; 1, have?

)

. The modelled slow and rapid pressure strain termfigad = —c1p3 (v-v} — %%k)

L)
and®;; » = —c; (Pij — 26, P*), respectively. Give the expression for the pro-
duction terms, modelled pressure-strain terms and matidilgsipation terms
for a simple shear flow. In some stress equations there is oduption terms
nor any dissipation term. How come? Which is the main sousom {or sink
term) in these equatiions?

. Describe the effect of stable stratification and unstabiatification on turbu-

lence

. Consider buoyancy-dominated flow with vertically upwards. The production

term for thev;v’ and thev;¢” equations read

NI o
Gl] = _9157}39/ - gjﬁv,£9/7 PZ@ = _'Ugv;ga—:rk

respectively. Show that the Reynolds stress model dampehareases the
vertical fluctuation in stable and unstable stratificati@spectively. Show also
thatk in thek — ¢ model is affected in the same way.

. Consider streamline curvature for a streamline formed eiscular arc (convex

curvature). Show that the turbulence is dampenegif/Or > 0 and that it

is enhanced if the sign dfug/0r is negative. Now consider a boundary layer
where the streamlines are curved away from the wall (concameature). Show
that the Reynolds stress model gives an enhanced turbuteadection (as it
should) because of positive feedback between the produtgions. Show that
the effect of streamline curvature in the- ¢ model is much smaller.

. Consider stagnation flow. Show that in the Reynolds strextel, there is only a

small production of turbulence whereas eddy-viscosity el®@such as the — ¢
model) give a large production of turbulence.
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Week 4

1.

What is a realizability constraint? There are two mairizahility constraints
on the normal and the shear stresses: which ones? Show &hBbtissinesq
assumption may give negative normal stresses. In whichdauete system is
the risk largest for negative normal stresses? Derive aresgfon (2D) how to
avoid negative normal stresses by reducing the turbulegbgity (Eq13.12.

. What is the two-component limit? What requirement dopsiton the pressure-

strain models? Show that the standard IP model and the Raitkelndo not
satisfy this requirement.

. What is a non-linear eddy-viscosity model? When forniotag non-linear

model, the anisotropy tenser; = —2u,5;;/k is often used. Show the three
first terms 62,02, SQ) in the non-linear model in the lecture notes. Show that
each term is traceless and symmetric4g3.

. What is the modeling idea of the V2F model? Which equatisesolved?

. The transport equation fm_52 reads (the turbulent diffusion terms are modelled)

dpuivl  dpwl 9 w2

- I —
= — —! / _
8351 8:1:2 8$2 [(M + Mt) 8:1:2 1 MQ/ pe22

Do2

Show how this equation is re-written in the V2F model.
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Week 5

1. Thef equation in the V2F model reads

2 f Doy 1 [V2 2 k k3/2
221 _fp=22_ (2 _Z2) T Loc—
0x3 / kT ’ = * e

Show how the magnitude of the right side ahdffect f. How doesf enter into
thev_é2 equation? What it the physical meaning 2 Show that far from the
walls, the V2F model (i.e. th¢ and thev/? equation) returns to the2 equation
in the Reynolds stress model.

2. Consider the boundary condition for tifeequation. Very close to the wall,
how is thev’? equation simplified? Use this equation to derive a wall baumpd
condition for f.

3. What does the acronym SST mean? The SST model is a conaircdtthe
k — ¢ and thek — w model. In which region is each model being used and why?
How isw expressed it ande?

4. Derive a transport equation farfrom the k. ande transport equations. In the
SST model, a blending functiaf, is used; what does this function do? In which
region is each model being used and why?

5. Describe the shear stress limiter. Show that the eddyesity assumption gives
too high shear stress in APG sinfé /s > 1.

6. Show the difference between volume averaging (filterimg.ES and time-
averaging in RANS.

7. Consider the spatial derivative of the pressure in therétl Navier-Stokes: show
that the derivative can be moved outside the filtering irgk(t gives an addi-
tional second-order term). The filtered non-linear termthasform

81)in
8acj
Show that it can be re-written as
a’ljiﬁj
8:1:]-
giving an additional term
(’) (’) o aTij
_a—zj(vzvj) + a—zj(vlvj) = - 3:17]-

on the right side.

8. Consider a 1D finite volume grid. Carry out a second filghv at nodel and
show thav; # v;.

9. Considerthe energy spectrum. Show the three differgidns (the large energy-
containing scales, the5/3 range and the dissipating scales). Where should the
cut-off be located? What does cut-off mean? Show where th& Kf@les, grid
(i.e resolved) scales and the cut-off,are located in the spectrum.



Q. MTF270: Learning outcomes for 2011 247

Week 6

1.

Show how a sinus wavén(x.x) corresponding to cut-off is represented on a
grid with two and four nodes, respectively. How<srelated to the grid siz&x
for these cases?

. Show the Smagorinsky model.

. Discuss the energy path in connection to the source akdesims in thek, K

and thek,,; equations. How are andk,,; computed from the energy spectrum?

. What is a test filter? Grid and test filter Naiver-Stokesatiun and derive the

relation
V;V; — ,1?;1:)\] —l—?ij =T;; (QZ)

Draw an energy spectrum and show which wavenumber rﬁn@@,s, ksgs, test
cover.

. Formulate the Smagorinsky model for the grid filter SG8s#rr;;, and the test

filter SGS stress[;;. Use EqQ.2and derive the relation
1 A2 ~ L~ —
Lij — §6U£kk =-2C <A |5 Sij — A? |§|§ij>

This equation is a tensor equation f0r Use this relation and derive the final
expression for the dynamic coefficiedt, Eq.17.33

. Show that when a first-order upwind schemes is used fordheection term,

an additional diffusion term and dissipation terms appeaglse of a numerical
SGS viscosity.

. What is a scale-similarity model? How are the cross te€fs,modelled? What

is the exact form of the the cross ter@r;; ?

. Show that the Bardina scale-similarity model is not @alil invariant. How is

the the model modified to make it Galilean invariant?

. What are the four main differences between a RANS finiteiwal CFD code

and a LES finite volume CFD code? What do you need to considdf $§when
you want to compute time-averaged quantities?
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Week 7

1.

When doing LES, how fine does the mesh need to be in the vgatirde? Why
does it need to be that fine?

. What is DES? The length scale in the RANS S-A model re{éﬁ}f; how is it

computed in the corresponding DES model? How is the lengtle somputed
in ak — e two-equation DES model?

. The modified (reduced) length scale in two-equation DE8etwcan be intro-

duced in either the dissipation term in thequation and/or in the expression for
the turbulent viscosity. Show the two different methods. aiMs the effect on
the modelled, turbulent quantities?

. Describe hybrid LES-RANS based on a one-equation modkat\i¢ the differ-

ence between DES and hybrid LES-RANS?

. Describe URANS. How is the instantaneous velocity deamsad? What turbu-

lence models are used? What is scale separation?

. Describe the SAS model. How is the von Karméan lengthesdafined? An

additional source term is introduced in theequation: what is the form of this
term? What is the object of this term? When is it large and Emedpectively?

. Give a short description of the method to generate syicthebulent inlet fluc-

tuations. What form on the spectrum is assumed? How are tlkémaen and
minimum wavelengthSs..q., £min, determined. With this method, the gener-
ated shear stress is zero: why? How is the correlation in siainéeved?
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