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front of the integral in Eq. 18.11 (the Fourier par is symmetric); as a consequence it is

also absent in Eq. 18.12.

Note that it is physically meaningful to use Fourier transforms only in a homoge-

neous coordinate direction; in non-homogeneous directions the Fourier coefficients –

which are not a function of space – have no meaning. Using the convolution theorem

(saying that the integrated product of two functions is equal to the product of their

Fourier transforms), we can filter v̂ using Eqs. 18.10 and 18.8

v̂(κ) = ̂̄v(κ) =
∫

∞

0

v̄(η) exp(−2πıκη)dη

=

∫
∞

0

∫
∞

0

exp(−2πıκη)G(α)v(η − α)dαdη

=

∫
∞

0

∫
∞

0

exp(−2πıκα) exp(−2πıκ(η − α))G(α)v(η − α)dαdη

=

∫
∞

0

∫
∞

0

exp(−2πıκα) exp(−2πıκξ)G(α)v(ξ)dξdα = Ĝ(κ)v̂(κ)

(18.12)

(in the last line we used ξ = η − α). If we use the cut-off filter and filter twice we get

v̂ = ĜCĜC v̂ = ĜC v̂ (18.13)

since Ĝ2

C = ĜC , see Eq 18.9. Since ¯̂̄v = ¯̂v for the Fourier transform v̂, we know that

– when using the cuf-off fiter – ¯̄v = ¯̂v. Thus, contrary to the box-filter (see Eq. 18.7),

nothing happens when we filter twice in spectral space. The box filter is sharp in

physical space but not in wavenumber space; for the cut-off filter it is vice versa.

In finite volume methods box filtering is always used. Furthermore implicit filtering

is employed. This means that the filtering is the same as the discretization (=integration

over the control volume is equal to the filter volume, see Eq. 18.17).

18.5 Highest resolved wavenumbers

Any function can be expressed as a Fourier series such as Eq. 18.11 (see Section 5.3,

Eq. D.28 and Section E) provided that the coordinate direction is homogeneous. Let’s

choose the fluctuating velocity in the x1 direction, i.e. v′
1
, and let it be a function of x1.

We require it to be homogeneous, i.e. its RMS, v1,rms, does not vary with x1. Now we

ask the question: on a given grid, what is the highest wavenumber that is resolved? Or,

in other words, what is the cut-off wavenumber?

Consider Fig. 18.4 (cf. Section E). We assume that v′
2

is periodic which makes it

convenient to use Fourier transform. We construct v′
2

as a sum of four Fourier compo-

nents

v′
2
(x2) = b1 cos

(
2π

L/1
x2

)
+b2 cos

(
2π

L/2
x2

)
+b3 cos

(
2π

L/3
x2

)
+b4 cos

(
2π

L/4
x2

)

The thick line in Fig. 18.4 shows how v′
2

varies with x2. The blue circles show the

Fourier component with the highest wave number, m = 4. How many grid point does

it take to resolve this Fourier component?

Figure 18.5 shows an example how to resolve the highest Fourier component on

two different grids. The wave shown in Fig. 18.5a reads

v′
1
= 0.25 [1 + 0.8 sin(κ1x1)] (18.14)
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Figure 18.4: v′2 vs. x2/L. : term 1 (m = 1); : term 2 (m = 2); : term 3

(m = 3); ◦: term 4 (m = 4); thick line: v′2. Matlab code is given in Section E.3.
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Figure 18.5: Physical and wavenumber space. Sinus curves with different wavenumbers illus-

trated in physical space.

and it covers two cells (∆x1/L = 0.5). If we define this as the cut-off wavenumber

we get κ1,cL = κ1,c2∆x1 = 2π (i.e. sin(κ1,c2∆x1) = sin(2π); recall that 2π is one

period) so that

κ1,c = 2π/(2∆x1) = π/∆x1 (18.15)

It is of course questionable if v′1 in Fig. 18.5a really is resolved since the sinus wave

covers only two cells. However this is the usual definition of the cut-off wavenumber.

If we require that the highest resolved wavenumber should be covered by four cells

(∆x1/L = 0.25), as in Fig. 18.5b, then the cut-off wavenumber is given by κ1,c =
2π/(4∆x1) = π/(2∆x1).

18.6 Subgrid model

We need a subgrid model to model the turbulent scales which cannot be resolved by

the grid and the discretization scheme.

The simplest model is the Smagorinsky model [70]:

τij −
1

3
δijτkk = −νsgs

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
= −2νsgss̄ij

νsgs = (CS∆)
2
√
2s̄ij s̄ij ≡ (CS∆)

2
|s̄|

(18.16)

and the filter-width is taken as the local grid size

∆ = (∆VIJK)
1/3

(18.17)


