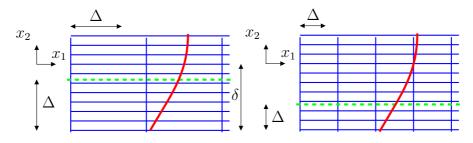
H.9 Lecture 9

 $k - \omega$ SST DES (modify $\beta^* k \omega$)


$$C^{k} = D^{k} + P^{k} - F_{DES}\beta^{*}k\omega, \quad F_{DES} = \max\left\{\frac{L_{t}}{C_{DES}\Delta}, 1\right\} = \max\left\{\frac{k^{1/2}}{\beta^{*}\omega C_{DES}\Delta}, 1\right\}$$

Dissip. term $\beta^{*}k\omega \propto \frac{k^{3/2}}{L_{t}} \Rightarrow \beta^{*}k\omega \propto \frac{k^{3/2}}{C_{DES}\Delta}$ in LES region

See Section 20.3, DDES

► It may occur that the F_{DES} term switches to DES in the boundary layer because Δx_1 is too small (Δx_3 is usually smaller than Δx_1)

Hence boundary layer is treated in LES mode with too a coarse mesh \Rightarrow poorly resolved LES \Rightarrow inaccurate predictions.

► The solution is DDES (Delayed DES)

Grid (in blue) and a velocity profile (in red). RANS-LES interface is shown by the dashed-green line.

- The left grid above is a good DES mesh because (see Eq. 20.4) $\ell_t = \min\left(C_{\mu}\frac{k^{3/2}}{\varepsilon}, C_{DES}\Delta\right) = C_{DES}\Delta = C_{DES}\Delta x_1 \simeq \delta (C_{DES} = 0.67) \rightarrow$ the entire boundary layer is modeled by RANS.
- The grid on the right is a poor DES grid because the outer part of the boundary layer is in LES mode (and the LES resolution requirements are not satisfied)

▶ In DDES, F_{DES} is computed as (see Eq. 20.9)

$$F_{DDES} = \max\left\{\frac{L_t}{C_{DES}\Delta}(1-F_S), 1\right\}$$

where F_S ($F_S = 1$ in the boundary layer) is taken as F_1 or F_2 (see Eqs. 16.12 and 16.18) of the SST model.