-TSee Section 19, URANS: Unsteady RANS

- URANS. The usual Reynolds decomposition is employed

$$
\bar{v}(t)=\frac{1}{2 T} \int_{t-T}^{t+T} v(t) d t, v=\bar{v}+v^{\prime \prime}
$$

URANS eqns=RANS, but with the unsteady term retained

$$
v, \quad \bar{v},\langle\bar{v}\rangle
$$

- Decomposition of velocities: $v=\bar{v}+v^{\prime \prime}=\langle\bar{v}\rangle+\bar{v}^{\prime}+v^{\prime \prime}$. - : \bar{v}; - - : v;-- $\langle\bar{v}\rangle$.
- In theory, T should be \ll resolved time scale. This is called scale separation. In practice, it is seldom satisfied.
- RANS turbulence models are used: one should choose a model with small dissipation (i.e. small ν_{t}) in order to not kill/dampen resolved turbulence
- Modelled dissipation (turbulence model) and numerical dissipation (discretization scheme) may be of equal importance

- See Section 20, DES: Detached-Eddy-Simulations

\rightarrow DES $=\underline{\text { Detached Eddy }} \underline{\text { Simulations: Use RANS near walls and LES }}$ away from walls
The S-A one-equation model (RANS) reads
$\frac{d \rho \tilde{\nu}_{t}}{d t}=\frac{\partial}{\partial x_{j}}\left(\frac{\mu+\mu_{t}}{\sigma_{\tilde{\nu_{t}}}} \frac{\partial \tilde{\nu}_{t}}{\partial x_{j}}\right)+$ cr. term $+P-C_{w 1} \rho f_{w}\left(\frac{\tilde{\nu}_{t}}{d}\right)^{2}, \quad d=x_{n}$
-Replace d with \tilde{d} :

$$
\left(\frac{\tilde{\nu}_{t}}{d}\right)^{2} \Rightarrow\left(\frac{\tilde{\nu}_{t}}{\tilde{d}}\right)^{2}, \quad \tilde{d}=\min \left\{C_{D E S} \Delta, d\right\}, \quad \Delta=\max \left\{\Delta x_{1}, \Delta x_{3}, \Delta x_{3}\right\}
$$

