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Figure 11.2: Decaying grid turbulence. The circles (a) and the thin rectangles (b) illustrates part

of the grid which consists of a mesh of circular cylinders.

Let us investigate how Eq. 11.57 behaves for decaying grid turbulence, see Fig. 11.2.

Flow from left with velocity v̄1 passes through a grid. The grid creates velocity gra-

dients behind the grid which generates turbulence. Further downstream the velocity

gradients are smoothed out and the mean flow becomes constant. From this point and

further downstream the flow represents anisotropic turbulence (homogeneous in the x2

and x3 directions) which is slowly approaching isotropic turbulence; furthermore the

turbulence is slowly dying (i.e. decaying) due to dissipation. The exact v′iv
′

j equation

for this flow reads (no production or diffusion because of homogeneity)

v̄1
dv′iv

′

j

dx1

=
p′

ρ

(

∂v′i
∂xj

+
∂v′j
∂xi

)

− εij (11.58)

Rotta’s pressure-strain model is supposed to reduce anisotropy. Thus it should be in-

teresting to re-write Eq. 11.58 expressed in the normalized anisotropy Reynolds stress

tensor which is defined as

aij =
v′iv

′

j

k
−

2

3
δij (11.59)

Note that when the turbulence is isotropic, then aij = 0. We introduce aij (Eq. 11.59),

Rotta’s model (Eq. 11.57) and the model for the dissipation tensor (11.49) into Eq. 11.58

so that

v̄1

(

d(kaij)

dx1

+ δij
2

3

dk

dx1

)

= −c1εaij −
2

3
δijε (11.60)

Analogously to Eq, 11.58, the k equation in decaying grid turbulence reads

v̄1
dk

dx1

= −ε (11.61)
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Inserting Eq. 11.61 in Eq. 11.60, the left side reads

v̄1aij
dk

dx1

+ v̄1k
daij
dx1

+
2

3
δij v̄1

dk

dx1

=

(
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2

3
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)
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dx1

= −
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3
δij

)

ε+ kv̄1
daij
dx1

Dividing by k and inserting into Eq.Eq. 11.60 we get

v̄1
daij
dx1

= −c1
ε

k
aij −

2

3
δij

ε

k
+

ε

k
aij +

2

3
δij

ε

k
=

ε

k
aij(1− c1) (11.62)

Provided that c1 > 1 Rotta’s model does indeed reduce non-isotropy as it should.

The model of the slow pressure-strain term in Eq. 11.57 can be extended by in-

cluding terms which are non-linear in v′iv
′

j . To make it general it is enough to include

terms which are quadratic in v′iv
′

j , since according to the Cayley-Hamilton theorem, a

second-order tensor satisfies its own characteristic equation (see Section 1.20 in [28]);

this means that terms that are cubic in v′iv
′

j (i.e. v′iv
′

j

3

= v′iv
′

k v′kv
′

m v′mv′j) can be

expressed in terms that are linear and quadratic in v′iv
′

j . The most general form of Φij,1

can be formulated as [29]

Φij,1 = −c1ρ

[

εaij + c′
1

(

aikakj −
1

3
δijakℓaℓk

)]

aij =
v′iv

′

j

k
−

2

3
δij

(11.63)

aij is an anisotropy tensor whose trace is zero. In isotropic flow all its components are

zero. Note that the right side is trace-less (i.e. the trace is zero). This should be so

since the exact form of Φij is trace-less, i.e. Φii = 2p′∂v′i/∂xi = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain term was developed using phys-

ical arguments. Here we will carry out a mathematical derivation of a model for the

rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in turbulence called the rapid

distortion problem, where a very strong velocity gradient ∂v̄i/∂xj is imposed so that

initially the second term (the slow term) can be neglected, see Eq. 11.66. It is assumed

that the effect of the mean gradients is much larger than the effect of the turbulence,

i.e.
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/

(ε/k) → ∞ (11.64)

Thus in this case it is the first term in Eq. 11.66 which gives the most “rapid”

response in p′. The second “slow” term becomes important first at a later stage when

turbulence has been generated.

Now we want to derive an exact equation for the pressure-strain term, Πij . Since

it includes the fluctuating pressure, p′, we start by deriving an exact equation for p′

starting from Navier-Stokes equations.

1. Take the divergence of the incompressible Navier-Stokes equation assuming con-

stant viscosity (see Eq. 6.6) i.e.
∂

∂xi

(

vj
∂vi
∂xj

)

= . . . ⇒ Equation A.


