Equation T.3 corresponds to the original PANS model. Recall that the turbulent diffusion in, for example, the k equation reads

$$\frac{\partial}{\partial x_j} \left(\frac{\nu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) \tag{T.4}$$

Since $f_k = 0.4$, it means that the turbulent diffusion in the k and ε equations are $1/0.4^2 \simeq 6$ times larger in [173] than in [207]. The consequence is that peaks in k and ε (and also ν_t) are reduced in the former case compared to the latter (this is the physical role played by diffusion: it transports k from regions of high k to regions of low k). This explains why the peaks of k are much larger in [207] compared to in [173].

Hence, in the original PANS model (Eq T.3), the RANS turbulent viscosity appears in the turbulent diffusion of k (and ε), because the turbulent diffusion term reads (recall that $f_k = k/k_{total} = k/k_{RANS}$ where k_{RANS} denotes the turbulent kinetic energy in a RANS simulation)

$$\frac{\partial}{\partial x_{j}} \left(\frac{\nu_{t}}{f_{k}^{2} \sigma_{k}} \frac{\partial k}{\partial x_{j}} \right) = \frac{\partial}{\partial x_{j}} \left(\frac{c_{\mu} k^{2}}{\varepsilon f_{k}^{2} \sigma_{k}} \frac{\partial k}{\partial x_{j}} \right)
= \frac{\partial}{\partial x_{j}} \left(\frac{c_{\mu} k_{RANS}^{2}}{\varepsilon \sigma_{k}} \frac{\partial k}{\partial x_{j}} \right) = \frac{\partial}{\partial x_{j}} \left(\frac{\nu_{t,RANS}}{\sigma_{k}} \frac{\partial k}{\partial x_{j}} \right)$$
(T.5)

cf. Eqs. 18 and 19 in [145]. Thus the *total* (i.e. RANS) viscosity is responsible for the transport of the *modeled* turbulent kinetic energy.

T.4 Location of interface

The results analyzed above were from LES simulations [173, 207] (i.e. the PANS model was used in LES mode). Now we will analyze results from PANS where f_k is computed. In [169, 218] f_k is computed based on the DES model. We will use data obtained from this model but on a finer mesh and larger domain than in [169, 218]. Here we call the model D-PANS.

Run the file pl_vect_hump_fine.py (Python) or pl_vect_hump_fine.m (MAtlab/Octave) which loads the file vectz_fine.dat, xy_hump_fine.dat, and x065_off.dat. This mesh has $649\times110\times32$ cells with $Z_{max}=0.2$ (the mesh is plotted in pl_vect_hump_fine). Recall that $\Delta z=0.2/32$. Start by finding where the PANS model predicts the switch from RANS to LES (i.e where f_k goes from one down to, say, 0.4). f_k is computed in Eq. 16 in [169]. Plot location of the switch (the wall distance) versus x.

Plot f_k also at a couple of x_1 locations (0.65 ... 1.30). Is it bigger or smaller than the prescribed values (0.4 and 1)? Compare it also with the definition of $f_k = k/k_{total}$ (cf. Fig. 26 in [165]).

In [219], f_k is computed as

$$f_k = c_\mu^{-2/3} \frac{\Delta}{L_t}, \quad L_t = \frac{k_{total}^{3/2}}{\langle \varepsilon \rangle}$$
 (T.6)

Compare this f_k with f_k with D-PANS.

T.5 Location of interface in DES and DDES

Let's compare D-PANS with DES and DDES. In SA-DES, the interface is defined as the location where the wall distance is equal to $C_{DES}\Delta$ where $\Delta = \max\{\Delta_x, \Delta_y, \Delta_z\}$, see Eq. 20.3. How does this compare with switching locating defined by D-PANS?