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Lecture 1-2

1. How is the buoyancy term, ρgi, re-written in incompressible flow?

2. Show the principles how to derive the transport equation for v′iv
′

j , Eq. 11.11 (see

Section 11.2 on p. 111)

3. Derive the transport equation of v′iv
′

j , Eq. 11.11 (see Section 9)

4. Given the transport equation of v′iv
′

j , Eq. 11.11, derive the exact k equation

(Eq. 11.4)

5. Given the transport equation for the temperature, θ, and the transport equation

for θ̄, show the principles (in the same way as is done for the v′iv
′

j equation on

Section 11.2 on p. 111) how to derive the transport equation for v′iθ
′, Eq. 11.22.

Discuss the physical meaning of the different terms. Which terms need to be

modeled?

6. What is the expression for the total heat flux that appears in the θ̄ equation?

7. Which terms in the v′iv
′

j equation need to be modeled? Explain the physical

meaning of the different terms in the v′iv
′

j equation.

8. Show how the turbulent diffusion (i.e. the term which includes the triple corre-

lation) in the k equation is modeled.

9. How is the production term modeled in the k − ε model? Show how it can be

expressed in s̄ij

10. Given the modeled k equation, derive the modeled ε equation.

11. Derive the Boussinesq assumption (see Section 11.6). How is the turbulent heat

flux, v′iθ
′, modeled in the Boussinesq approach?

12. Discuss and show how the dissipation term, εij , is modeled.

13. Use physical reasoning to derive a model for the diagonal components of the

pressure-strain term (slow part).

14. Using physical reasoning, the model for the pressure-strain term above is for-

mulated only for the normal streses. Show that if the model is expressed in the

principal directions, then a model for the shear stress is also obtained.

15. The slow pressure-strain model reads Φij,1 = −c1ρ
ε
k

(

v′iv
′

j −
2

3
δijk

)

. The

anisotropy tensor is defined as aij =
v′

i
v′

j

k − 2

3
δij . Show that for decaying grid

turbulence, the model for the slow pressure-strain model indeed acts as to make

the turbulence more isotropic if c1 > 1.

16. Derive the exact Poisson equation for the pressure fluctuation, Eq. 11.65.
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Lecture 3.4

1. For a Poisson equation
∂2ϕ

∂xj∂xj
= f

there exists an exact analytical solution

ϕ(x) = −
1

4π

∫

V

f(y)dy1dy2dy3
|y − x|

(AA.1)

Use Eqs. 11.65 and AA.1 to derive the exact analytical solution (Eq. 11.68) for

the fluctuating pressure. Which are the “slow” and “rapid” terms? Why are they

called “slow” and “rapid”?

2. Derive the algebraic stress model (ASM). What main assumption is made?

3. Show the physical reasoning leading to the modeled slow pressure strain term,

Φ22,1w, for wall effects. What sign does it have? Give also the expressions for

Φ11,1w and Φ33,1w

4. The modeled slow and rapid pressure strain term readΦij,1 = −c1ρ
ε
k

(

v′iv
′

j −
2

3
δijk

)

and Φij,2 = −c2
(
Pij −

2

3
δijP

k
)
, respectively. Give the expression for the pro-

duction terms, modeled pressure-strain terms and modeled dissipation terms for

a simple boundary layer. In some stress equations there is no production terms

nor any dissipation term. How come? Which is the main source term (or sink

term) in these equations?

5. Describe the physical effect of stable stratification and unstable stratification on

turbulence.

6. Consider buoyancy-dominated flow with x3 vertically upwards. The production

term for the v′iv
′

j and the v′iθ
′ equations read

Gij = −giβv′jθ
′ − gjβv′iθ

′, Piθ = −v′iv
′

k

∂θ̄

∂xk

respectively (we assume that the velocity gradient is negligible). Show that the

Reynolds stress model dampens and increases the vertical fluctuation in stable

and unstable stratification, respectively, as it should. Show also that k in the

k − ε model is affected in the same way.

7. Watch the on-line lecture Turbulence (20 minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. Consider the flow in the channel where the fluid on the top (red) and the

bottom (yellow) are separated by a horizontal partition. The two fluids are

identical. Study how the two fluids mix downstream of the partition. In the

next example, the fluid on the top is hot (yellow) and light, and the one at

the bottom (dark blue) is cold (heavy); how do the fluids mix downstream

of the partition, better or worse than in the previous example? This flow

situation is called stable stratification. In the last example, the situation is

reversed: cold, heavy fluid (dark blue) is moving on top of hot, light fluid

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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(yellow). How is the mixing affected? This flow situation is called unstable

stratification. Compare in meteorology where heating of the ground may

cause unstable stratification or when inversion causes stable stratification.

8. Consider streamline curvature for a streamline formed as a circular arc (convex

curvature). Show that the turbulence is dampened if ∂vθ/∂r > 0 and that it is

enhanced if the sign of ∂vθ/∂r is negative.

9. Streamline curvature: now consider a boundary layer where the streamlines are

curved away from the wall (concave curvature). Show that the Reynolds stress

model gives an enhanced turbulence production (as it should) because of positive

feedback between the production terms. Why is the effect of streamline curvature

in the k − ε model much smaller?

10. Consider stagnation flow. Show that in the Reynolds stress model, there is only a

small production of turbulence whereas eddy-viscosity models (such as the k − ε
model) give a large production of turbulence.

11. What is a realizability constraint? There are two main realizability constraints,

one on the normal and one on the shear stresses: give the form of these con-

straints.

12. Show that the Boussinesq assumption may give negative normal stresses. In

which coordinate system is the risk largest for negative normal stresses? Derive

an expression (2D) how to avoid negative normal stresses by reducing the turbu-

lent viscosity (Eq. 13.12).

Hint: the eigenvalues,λ1, λ2, are obtained from |s̄ij − δijλ| = 0, I2D2 = 1

2
(CiiCjj−

CijCij)

13. What is a non-linear eddy-viscosity model? When formulating a non-linear

model, the anisotropy tensor aij = −2νts̄ij/k is often used. The three terms

read

c1τ
2

(

s̄iks̄kj −
1

3
s̄ℓks̄ℓkδij

)

+c2τ
2
(
Ω̄iks̄kj − s̄ikΩ̄kj

)

+c3τ
2

(

Ω̄ikΩ̄jk −
1

3
Ω̄ℓkΩ̄ℓkδij

)

Show that each term has the same properties as aij , i.e. non-dimensional, trace-

less and symmetric (see Exam 2017-05-30, Answers, Question T3a).
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Week 3

1. Which equations are solved in the V2F model?

2. The transport equation for v′2
2

reads (the turbulent diffusion term is modeled)

∂ρv̄1v′22
∂x1

+
∂ρv̄v′2

2

∂x2

=
∂

∂x2

[

(µ+ µt)
∂v′2

2

∂x2

]

−2v′
2
∂p′/∂x2

︸ ︷︷ ︸

ρΦ22

−ρε22

Show how this equation is re-written in the V2F model.

3. The f equation in the V2F model reads

L2
∂2f

∂x2
2

− f = −
Φ22

k
−

1

T

(

v′2
2

k
−

2

3

)

, T ∝
k

ε
, L ∝

k3/2

ε

Explain how the magnitude of the right side and L affect f (Fig 15.1). How

does f enter into the v′2
2

equation? Show that far from the walls, the V2F model

(i.e. the f and the v′2
2

equation) returns to the v′2
2

equation in the Reynolds stress

model. In the V2F model, the v2 equation is solved: what is the difference

between v′2
2

and v2 (see the discussion in connection to Eq. 15.9)?

4. What does the acronym SST mean? The SST model is a combination of the

k − ε and the k − ω model. In which region is each model used and why? How

is ω expressed in k and ε?

5. Derive a transport equation for ω from the k and ε transport equations; you only

need to do the production, the destruction and the viscous diffusion terms.

6. In the SST model, two blending function, F1 and F2, are used; explain what is

the object of F1 or F2.

7. What is the purpose of the shear stress limiter in the SST model? Show that the

eddy-viscosity assumption gives too high a shear stress in APG since P k/ε ≫ 1
(Eq. 16.15).

8. Show the difference between volume averaging (filtering) in LES and time-

averaging in RANS. Show that avereging once or twice is different in RANS

and LES.

9. Consider the spatial derivative of the pressure in the filtered Navier-Stokes: show

that the derivative can be moved outside the filtering integral (it gives an addi-

tional second-order term).

10. The filtered non-linear term has the form

∂vivj
∂xj

Show that it can be re-written as

∂v̄iv̄j
∂xj
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giving an additional term

−
∂

∂xj
(vivj) +

∂

∂xj
(v̄iv̄j) = −

∂τij
∂xj

on the right side.

11. Consider a 1D finite volume grid. Carry out a second filtering of v̄ at node I and

show that v̄I 6= v̄I .

12. Consider the energy spectrum. Show the three different regions (the large energy-

containing scales, the −5/3 range and the dissipating scales). Where should the

cut-off be located? Show where the SGS scales, grid (i.e resolved) scales and the

cut-off, κc are located in the spectrum.

13. Show how a sinus wave sin(κcx) corresponding to cut-off is represented on a

grid with two and four cells, respectively. How is κc related to the grid size ∆x
for these cases?

14. Watch the on-line lecture Turbulence at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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Week 5

1. Taking guidance from the RANS k equation, formulate the one-equation ksgs
equation

2. Consider the energy spectrum and discuss the physical meaning of Pksgs
and

εsgs.

3. Discuss the energy path in connection to the source and sink terms in the k̄, K̄
and the ksgs equations, see Figs. Q.4 and Q.5. How are k̄ and ksgs computed

from the energy spectrum?

4. What is a test filter? Grid and test filter Navier-Stokes equation and derive the

relation
︷ ︷

v̄iv̄j −
︷︷

v̄ i

︷︷

v̄ j +
︷︷
τ ij = Lij +

︷︷
τ ij = Tij (AA.2)

Draw an energy spectrum and show which wavenumber range k̄, ksgs, ksgs,test
cover.

5. Formulate the Smagorinsky model for the grid filter SGS stress, τij , and the test

filter SGS stress, Tij . Use Eq. AA.2 and derive the relation 12

Lij −
1

3
δijLkk = −2C

(
︷︷

∆
2

|
︷︷

s̄ |
︷︷

s̄ ij −
︷ ︷

∆2|s̄|s̄ij

)

6. The equation you derived above is a tensor equation for C. Use this relation and

derive the final expression for the dynamic coefficient, C, Eq. 18.41.

7. Show that when a first-order upwind schemes is used for the convection term,

an additional diffusion term and dissipation terms appear because of a numerical

SGS viscosity

12note that the test filter here covers ∆2 (which is correct); Eq. 18.38 is not correct
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Week 6

1. What are the five main differences between a RANS finite volume CFD code

and a LES finite volume CFD code? What do you need to consider in LES when

you want to compute time-averaged quantities? (see Fig. 18.12). How can the

integral time scale, Tint, be used?(see Section M.3)

2. Derive the Smagorinsky model in two different ways (Sections 18.6 and 18.22)

3. When doing LES, how fine does the mesh need to be in the near-wall region?

Why does it need to be that fine?

4. Describe URANS. How is the instantaneous velocity decomposed? What turbu-

lence models are used? What is scale separation?

5. Mention four different ways to estimate the resolution of an LES that you have

made; see Section 18.26 Which method is good/bad? Which is best?

6. What is DES? The destruction term in the RANS S-A model reads

(
ν̃t
d

)2

; how

is it computed in the S-A DES model?

7. How is the length scale computed in a k − ε two-equation DES model? Where

in a boundary layer does the DES model switch from RANS to LES?

8. The modified (reduced) length scale in two-equation DES models can be intro-

duced in different ways. It it usually introduced in one transport equation. Which

one and which term? Apart from this transport equation, it is sometimes used in

a another equation. Which one? What is the effect on the modeled, turbulent

quantities?

9. What is DDES? Why was it invented?

10. Describe hybrid LES-RANS based on a one-equation model.

11. What is the physical meaning of fk in PANS?

12. The PANS equations are given in Eqs. 23.19. Assume that fε = 1. Consider the

destruction term in the ε equation and the coefficient C∗

ε2. Explain what happens

if fk is reduced from 1 (RANS mode) to fk = 0.4 (LES mode).

13. Describe the SAS model. How is the von Kármán length scale defined? An

additional source term is introduced in the ω equation: what is the form of this

term? Describe how this source reduces the turbulent viscosity. When is the term

large and small, respectively?
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Week 7

1. Give a short description of the method to generate synthetic turbulent inlet fluc-

tuations; see Chapter 27 and first 13 slides in

http://www.tfd.chalmers.se/˜lada/slides/slides inlet.pdf

What form on the spectrum is assumed? How is the wavenumber, κe, for the

energy-containing eddies, determined? How are the maximum and minimum

wavelengths, κmax, κmin, determined? With this method, the generated shear

stress is zero: why? How is the correlation in time achieved?

2. What is embedded LES? Give an example when we may use it.

3. Consider the PANS model: in the derivation, we assumed that fk is constant.

Relaxing that condition is useful when presccribing k and ε prescribed at inlet

and at embedded RANS/LES interfaces. Derive the additional term in the k
equation (Eq. 23.24). Show that the the sign of the gradient at the inlet (and

embedded interface) does indeed give a reduction of k as it should.

http://www.tfd.chalmers.se/~lada/slides/slides_inlet.pdf
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AB.1 On-line Lecture 1

¶See Section 11.1.1, Flow equations

◮Boussinesq approximation: density vari-

ation only in gravitation (buoyancy) term

∂ρ0v̄i
∂t

+
∂

∂xj
(ρ0v̄iv̄j) = −

∂p̄

∂xi
+µ

∂2v̄i
∂xj∂xj

−
∂τij
∂xj

−ρ0β(θ̄−θ0

http://www.tfd.chalmers.se/~lada/comp\protect _turb\protect _model/
http://www.tfd.chalmers.se/~lada/comp_turb_model/
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∂xj
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p̄ is hydrodynamic pressure: ρfi → (ρ−ρ0)gi

If we let density depend on pressure and

temperature, differentiation gives

dρ =

(
∂ρ

∂θ

)

p

dθ +

(
∂ρ

∂p

)

θ

dp

http://www.tfd.chalmers.se/~lada/comp_turb_model/
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β = −
1

ρ0

(
∂ρ

∂θ

)

p

⇒

http://www.tfd.chalmers.se/~lada/comp_turb_model/
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