V.7.1 Anisotropic errors (optional)

You plotted this error estimate also for the channel flow, see Section U.8. You can use the first and second-order derivatives that you computed in Section V.6. The Δx and Δy needed in Eq. U. 6 can be computed as

```
dx=diff(xp2d);
dx=repmat (dx,[11 1 nk-1]);
dx(ni,:)=dx(ni-1,:);
dy=diff(yp2d,1,2);
dy(:, nj) = dy (:, nj-1);
dy=repmat(dy,[1 1 nk-1]);
```

(Δz is constant). Only two sets of velocity fields are loaded, u1_pans_iddes.mat, ...w2_pans_iddes.mat. When everything works, use more velocity fields (possibly all eight) in order to get better statistics.

V.7.2 Two-point correlations

In Item 5 in Section V. 7 you should compute two-point correlation. To do that, you will use data from another simulation of the hump flow presented in [171, 174]. Download the

- Pythons file pl_twocorr_computed_fk.py or
- the Matlab/Octave file pl_twocorr_computed_fk.m.

They load a new grid with 305×109 grid points. The 3 D grid has 32 cells in the spanwise direction $\left(z_{\max }=0.2\right.$). pl_twocorr_computed_fk will also load time histories of the spanwise velocity \bar{v}_{3} at $x=0.65,0.8,1.1$ and $x=1.3$ (files w_t ime_z65, w_time_z80, w_time_z110 and w_time_z130). These files include time histories at cell center $j=10,30,50,70,90$ in the wall-normal direction at 16 positions in the x_{3} direction. The time series are re-arranged into 3 D arrays $\mathrm{w}_{-} \mathrm{y}_{-} \mathrm{z}_{-} \mathrm{t}-65(j, \mathrm{k}, \mathrm{t})$, w-y_z_t_80 (j,k,t), w-y_z_t_110 (j,k,t) and w-y_z_t_130 (j, k, t) where index j, k, t denote wall-normal direction, spanwise direction and time, respectively.

Now, use the time series to compute two-point correlations using the formulas given in Section 10.1. Equation 10.3 gives the two-point correlation of v_{1}^{\prime} at two points separated in the x_{1} direction. In your case, you will compute the two-point correlation of v_{3}^{\prime} at two points separated in the x_{3} direction, i.e. $B_{33}^{\text {norm }}\left(x_{3}^{A}, \hat{x}_{3}\right)$. Plot it at all x_{1} positions ($x_{1}=0.65,0.8,1.1$ and 1.3) and at a couple of x_{2} locations. Then compute the integral lengthscale, see Eq. 10.6. A good approximation of the integral lengthscale is usually the point in the two-point correlation where $B_{33}^{\text {norm }} \simeq 0.2$ (i.e. $\mathcal{L} \simeq \hat{x}_{3}$ where $B_{33}^{\text {norm }} \simeq 0.2$). Check if it is good approximation.

In $[128,129]$ it is recommended that in a good LES (or in the LES region of a DES/hybrid LES-RANS), the integral lengthscale should cover 8-16 cells, depending on how accurate the user wants her/his LES/DES to be.

Here are some hints on how to compute the two-point correlation. Start by computing it for one y location ($=0$ in Python and $=2$ in Matlab/Octave) and one z separation, $\hat{z}=2 \Delta z$). In Python

B33 $=0$

```
k=2
for n in range(1,N): # time average
    B33=B33+w[0,0,n]*W[0,0+k,n]/N
```

and in Matlab/Octave

```
B33=0;
k=2;
for n=1:N % time average
    B33=B33+w (2,1,n)*W (2,1+k,n)/N;
end
```

where $k=2$ (because the separation is $\hat{z}=2 \Delta z$) and N is the number of time steps. This gives $B_{33}(2 \Delta z)$. Next, do it for $\hat{z}=3 \Delta z$, i.e. (in Python)

```
B33=0
k=3
for n in range(1,N): # time average
    B33=B33+w[0,0,n]*w[0,0+k,n] /N
```

This gives $B_{33}(3 \Delta z)$. Now, do it for all $k=0,1, \ldots 15$. And then normalize by $w_{r m s}^{2}$ (or, easier, simply by B33 [0] (Python) or B33 (1) (Matlab/Octave)). Check that it is correct by plotting $B_{33}(\hat{z})$ versus \hat{z}. It should look someting like the twopoint correlation in Fig. 10.1. Finally, compute the two-point correlation for all five y locations and four x locations and compute the integral length scale.

