
V.7. Different ways to evaluate resolution 508

V.7.1 Anisotropic errors (optional)

You plotted this error estimate also for the channel flow, see Section U.8. You can use

the first and second-order derivatives that you computed in Section V.6. The ∆x and

∆y needed in Eq. U.6 can be computed as

dx=diff(xp2d);

dx=repmat(dx,[1 1 nk-1]);

dx(ni,:)=dx(ni-1,:);

dy=diff(yp2d,1,2);

dy(:,nj)=dy(:,nj-1);

dy=repmat(dy,[1 1 nk-1]);

(∆z is constant). Only two sets of velocity fields are loaded, u1 pans iddes.mat,

. . .w2 pans iddes.mat. When everything works, use more velocity fields (possi-

bly all eight) in order to get better statistics.

V.7.2 Two-point correlations

In Item 5 in Section V.7 you should compute two-point correlation. To do that, you will

use data from another simulation of the hump flow presented in [171, 174]. Download

the

• Pythons file pl twocorr computed fk.py or

• the Matlab/Octave file pl twocorr computed fk.m.

They load a new grid with 305× 109 grid points. The 3D grid has 32 cells in the span-

wise direction (zmax = 0.2). pl twocorr computed fk will also load time histo-

ries of the spanwise velocity v̄3 at x = 0.65, 0.8, 1.1 and x = 1.3 (files w time z65,

w time z80, w time z110 and w time z130). These files include time histories

at cell center j = 10, 30, 50, 70, 90 in the wall-normal direction at 16 positions in the

x3 direction. The time series are re-arranged into 3D arrays w y z t 65(j,k,t),

w y z t 80(j,k,t), w y z t 110(j,k,t) and w y z t 130(j,k,t) where

index j, k, t denote wall-normal direction, spanwise direction and time, respectively.

Now, use the time series to compute two-point correlations using the formulas given

in Section 10.1. Equation 10.3 gives the two-point correlation of v′
1

at two points

separated in the x1 direction. In your case, you will compute the two-point correlation

of v′
3

at two points separated in the x3 direction, i.e. Bnorm
33

(xA
3
, x̂3). Plot it at all x1

positions (x1 = 0.65, 0.8, 1.1 and 1.3) and at a couple of x2 locations. Then compute

the integral lengthscale, see Eq. 10.6. A good approximation of the integral lengthscale

is usually the point in the two-point correlation whereBnorm
33

≃ 0.2 (i.e. L ≃ x̂3 where

Bnorm
33

≃ 0.2). Check if it is good approximation.

In [128, 129] it is recommended that in a good LES (or in the LES region of a

DES/hybrid LES-RANS), the integral lengthscale should cover 8-16 cells, depending

on how accurate the user wants her/his LES/DES to be.

Here are some hints on how to compute the two-point correlation. Start by comput-

ing it for one y location (=0 in Python and =2 in Matlab/Octave) and one z separation,

ẑ = 2∆z). In Python

B33=0



V.7. Different ways to evaluate resolution 509

k=2

for n in range(1,N): # time average

B33=B33+w[0,0,n]*w[0,0+k,n]/N

and in Matlab/Octave

B33=0;

k=2;

for n=1:N % time average

B33=B33+w(2,1,n)*w(2,1+k,n)/N;

end

where k = 2 (because the separation is ẑ = 2∆z) and N is the number of time steps.

This gives B33(2∆z). Next, do it for ẑ = 3∆z, i.e. (in Python)

B33=0

k=3

for n in range(1,N): # time average

B33=B33+w[0,0,n]*w[0,0+k,n]/N

This gives B33(3∆z). Now, do it for all k = 0, 1, . . . 15. And then normalize by

w2

rms (or, easier, simply by B33[0] (Python) or B33(1) (Matlab/Octave)). Check

that it is correct by plotting B33(ẑ) versus ẑ. It should look someting like the two-

point correlation in Fig. 10.1. Finally, compute the two-point correlation for all five y

locations and four x locations and compute the integral length scale.


