T. 7 SAS turbulent length scales

Compute the 1D von Kármán length scale defined as

$$
\begin{equation*}
L_{v K, 1 D}=\kappa\left|\frac{\partial\left\langle\bar{v}_{1}\right\rangle / \partial x_{2}}{\partial^{2}\left\langle\bar{v}_{1}\right\rangle / \partial x_{2}^{2}}\right| \tag{T.1}
\end{equation*}
$$

Note that you should take the derivatives of the averaged \bar{v}_{1} velocity, i.e. of $\left\langle\bar{v}_{1}\right\rangle$. Zoom up near the wall. How does it behave (i.e. what is n in $\mathcal{O}\left(x_{2}^{n}\right)$? What should n be?

Compare that with the von Kármán length scale defined from instantaneous \bar{v}_{1}, i.e.

$$
\begin{equation*}
L_{v K, 1 D, \text { inst }}=\kappa\left|\left\langle\frac{\partial \bar{v}_{1} / \partial x_{2}}{\partial^{2} \bar{v}_{1} / \partial x_{2}^{2}}\right\rangle\right| \tag{T.2}
\end{equation*}
$$

How does it compare with $L_{v K, 1 D}$?
When we're doing real 3D simulations, the first and second derivative must be defined in 3D. One way of defining the von Kármán length scale in 3D is $[158,159]$

$$
\begin{align*}
L_{v K, 3 D, i n s t} & =\kappa\left|\frac{S}{U^{\prime \prime}}\right| \\
S & =\left(2 \bar{s}_{i j} \bar{s}_{i j}\right)^{0.5} \tag{T.3}\\
U^{\prime \prime} & =\left(\frac{\partial^{2} \bar{v}_{i}}{\partial x_{j} \partial x_{j}} \frac{\partial^{2} \bar{v}_{i}}{\partial x_{j} \partial x_{j}}\right)^{0.5}
\end{align*}
$$

The second derivative is then computed as

$$
\begin{align*}
U^{\prime \prime 2} & =\left(\frac{\partial^{2} \bar{v}_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} \bar{v}_{1}}{\partial x_{2}^{2}}+\frac{\partial^{2} \bar{v}_{1}}{\partial x_{3}^{2}}\right)^{2} \\
& +\left(\frac{\partial^{2} \bar{v}_{2}}{\partial x_{1}^{2}}+\frac{\partial^{2} \bar{v}_{2}}{\partial x_{2}^{2}}+\frac{\partial^{2} \bar{v}_{2}}{\partial x_{3}^{2}}\right)^{2} \tag{T.4}\\
& +\left(\frac{\partial^{2} \bar{v}_{3}}{\partial x_{1}^{2}}+\frac{\partial^{2} \bar{v}_{3}}{\partial x_{2}^{2}}+\frac{\partial^{2} \bar{v}_{3}}{\partial x_{3}^{2}}\right)^{2}
\end{align*}
$$

Plot the von Kármán length scale using Eqs. T. 3 and T.4. Compare them with Eq. T.1. What's the difference? What effect do the different length scales give for $P_{S A S}$ (i.e. T_{1} in Eq. 22.5) and what effect does it give to ω ?

Another way to compute the second derivative is [204]

$$
\begin{equation*}
U^{\prime \prime}=\left(\frac{\partial^{2} \bar{v}_{i}}{\partial x_{j} \partial x_{k}} \frac{\partial^{2} \bar{v}_{i}}{\partial x_{j} \partial x_{k}}\right)^{0.5} \tag{T.5}
\end{equation*}
$$

