30 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 1

See Section 11.1.1, Flow equations

► Boussinesq approximation: density variation only in gravitation (buoyancy) term

$$\frac{\partial \rho_0 \bar{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho_0 \bar{v}_i \bar{v}_j \right) = -\frac{\partial \bar{p}}{\partial x_i} + \mu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} - \rho_0 \frac{\partial \overline{v'_i v'_j}}{\partial x_j} - \rho_0 \beta (\bar{\theta} - \theta_0) g_i$$

 $\bar{p}~~{\rm is~hydrodynamic~pressure:}~\rho f_i \rightarrow (\rho - \rho_0)g_i$

If we let density depend on pressure and temperature, differentiation gives

$$d\rho = \left(\frac{\partial\rho}{\partial\theta}\right)_p d\theta + \left(\frac{\partial\rho}{\partial p}\right)_\theta dp$$

Incompressible flow: $\Rightarrow \partial \rho / \partial p = 0$

$$\beta = -\frac{1}{\rho_0} \left(\frac{\partial \rho}{\partial \theta} \right)_p \Rightarrow$$

$$d\rho = -\rho_0\beta d\theta \Rightarrow \rho - \rho_0 = -\beta\rho_0(\theta - \theta_0)$$

$$\rho_0 f_i = (\rho - \rho_0) g_i = -\rho_0 \beta (\bar{\theta} - \theta_0) g_i$$

See Section 11.1.2, Temperature equationTemperature equation

$$\frac{\partial \theta}{\partial t} + \frac{\partial v_i \theta}{\partial x_i} = \alpha \frac{\partial^2 \theta}{\partial x_i \partial x_i}$$

where $\alpha = k/(\rho c_p)$.

Introducing $\theta = \overline{\theta} + \theta'$ gives the mean temperature equation

$$\frac{\partial \bar{v}_i \bar{\theta}}{\partial x_i} = \alpha \frac{\partial^2 \bar{\theta}}{\partial x_i \partial x_i} - \frac{\partial \overline{v'_i \theta'}}{\partial x_i}$$

(30.1)

► Total (viscous plus turbulent) flux: momentum and temperature equation

$$-\frac{q_{2,tot}}{\rho c_p} = -\frac{q_{2,visc}}{\rho c_p} - \frac{q_{2,turb}}{\rho c_p} = \alpha \frac{\partial \theta}{\partial x_2} - \overline{v'_2 \theta'}, \quad \alpha = \frac{k}{\rho c_p}$$
$$\tau_{tot} = \tau_{visc} + \tau_{turb} = \mu \frac{\partial \overline{v}_1}{\partial x_2} - \rho \overline{v'_1 v'_2}$$

Reynolds shear stress. $-: -\rho \overline{v'_1 v'_2} / \tau_w$ $-: \mu (\partial \overline{v}_1 / \partial x_2) / \tau_w.$

- ¶See Section 11.2, The exact $\overline{v'_i v'_i}$ equation
- Set up the momentum equation for the instantaneous velocity $v_i = \bar{v}_i + v'_i \rightarrow \text{Eq.}$ (A)
- Time average \rightarrow equation for \bar{v}_i , Eq. (B)
- Subtract Eq. (B) from Eq. (A) \rightarrow equation for v'_i , Eq. (C)
- Do the same procedure for $v_j \rightarrow$ equation for v'_j , Eq. (D)
- Multiply Eq. (C) with v'_j and Eq. (D) with v'_i , time average and add them together \rightarrow equation for $\overline{v'_i v'_j}$

In Section 9 these steps are given in some detail.

The final $\overline{v'_i v'_j}$ -equation (Reynolds Stress equation) reads (see Eq. 9.12)

$$\frac{\overline{v}_{k}\frac{\partial\overline{v_{i}'v_{j}'}}{\partial x_{k}}}{C_{ij}} = -\overline{v_{i}'v_{k}'}\frac{\partial\overline{v}_{j}}{\partial x_{k}} - \overline{v_{j}'v_{k}'}\frac{\partial\overline{v}_{i}}{\partial x_{k}} + \frac{\overline{p'}\left(\frac{\partial v_{i}'}{\partial x_{j}} + \frac{\partial v_{j}'}{\partial x_{i}}\right)}{\Pi_{ij}} \\
-\frac{\partial}{\partial x_{k}}\left[\overline{v_{i}'v_{j}'v_{k}'} + \frac{\overline{p'v_{j}'}}{\rho}\delta_{ik} + \frac{\overline{p'v_{i}'}}{\rho}\delta_{jk}\right] + \nu\frac{\partial^{2}\overline{v_{i}'v_{j}'}}{\partial x_{k}\partial x_{k}} \\
-\frac{D_{ij,t}}{D_{ij,t}} - \frac{D_{ij,t}}{G_{ij}} - 2\nu\frac{\overline{\partial v_{i}'}\frac{\partial v_{j}'}{\partial x_{k}\partial x_{k}}}{\varepsilon_{ij}}$$

(30.2)

• Unknown terms

 Π_{ij} Pressure-strain

 $D_{ij,t}$ Turbulent diffusion

 ε_{ij} Dissipation

¶See Section 11.3, The exact $\overline{v'_i \theta'}$ equation $\overline{v'_i \theta'}$ equation

$$\frac{\partial \theta'}{\partial t} + \frac{\partial}{\partial x_k} (v'_k \bar{\theta} + \bar{v}_k \theta' + v'_k \theta') = \alpha \frac{\partial^2 \theta'}{\partial x_k \partial x_k} - \frac{\partial \overline{v'_k \theta'}}{\partial x_k}$$
(30.3)

$$\frac{\partial v'_i}{\partial t} + \frac{\partial}{\partial x_k} (v'_k \bar{v}_i + \bar{v}_k v'_i + v'_k v'_i) = -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} + \nu \frac{\partial^2 v'_i}{\partial x_k \partial x_k} - \frac{\partial v'_i v'_j}{\partial x_k} - g_i \beta \theta'$$
(30.4)

Multiply Eq. 30.3 with v'_i and multiply Eq. 30.4 with θ' , add them together and time average

$$\overline{v_i'\frac{\partial}{\partial x_k}(v_k'\bar{\theta} + \bar{v}_k\theta' + v_k'\theta') + \theta'\frac{\partial}{\partial x_k}(\bar{v}_iv_k' + \bar{v}_kv_i' + v_i'v_k')} = -\frac{\overline{\theta'}\frac{\partial p'}{\partial x_i} + \alpha\overline{v_i'\frac{\partial^2 \theta'}{\partial x_k\partial x_k}} + \nu\overline{\theta'}\frac{\partial^2 v_i'}{\partial x_k\partial x_k} - g_i\beta\overline{\theta'}\overline{\theta'}}{\frac{\partial}{\partial x_k}\bar{v_k}\bar{v_i}\theta'} = -\overline{v_i'v_k'\frac{\partial\bar{\theta}}{\partial x_k}} - \overline{v_k'\theta'\frac{\partial\bar{v}_i}{\partial x_k}} - \frac{\overline{\theta'}\frac{\partial p'}{\partial x_i}}{\frac{\partial}{\partial x_k}} - \frac{\partial}{\partial x_k}\overline{v_k'v_i'\theta'}}{\frac{P_{i\theta}}{P_{i\theta}}} + \frac{(\nu + \alpha)\frac{\partial^2\overline{v_i'\theta'}}{\partial x_k\partial x_k}}{D_{i\theta,\nu}} - \frac{(\nu + \alpha)\frac{\partial v_i'\frac{\partial\theta'}{\partial x_k}}{\partial x_k}}{\frac{e_{i\theta}}{P_{i\theta}}} - \frac{g_i\beta\overline{\theta'}^2}{G_{i\theta}}}{\frac{e_{i\theta}}{P_{i\theta}}}$$

• Unknown terms

 $\Pi_{i\theta}$ Scramble

 $D_{i\theta,t}$ Turbulent diffusion

 $\varepsilon_{i\theta}$ Dissipation

The original derivation of the k equation is shown in Section 8.2.

In 11.4, The k equation, we derive the k equation as follows

Take the trace of the $\overline{v'_i v'_j}$ equation and divide by two

$$\begin{split} \bar{v}_{k} \frac{\partial \overline{v'_{i}v'_{j}}}{\partial x_{k}} &= -\overline{v'_{i}v'_{k}} \frac{\partial \bar{v}_{j}}{\partial x_{k}} - \overline{v'_{j}v'_{k}} \frac{\partial \bar{v}_{i}}{\partial x_{k}} + \frac{\overline{p'}\left(\frac{\partial v'_{i}}{\partial x_{j}} + \frac{\partial v'_{j}}{\partial x_{i}}\right)}{\rho} - \frac{\partial}{\partial x_{k}} \left[\overline{v'_{i}v'_{j}v'_{k}} + \frac{\overline{p'v'_{j}}}{\rho} \delta_{ik} + \frac{\overline{p'v'_{i}}}{\rho} \delta_{jk} \right] \\ &+ \nu \frac{\partial^{2} \overline{v'_{i}v'_{j}}}{\partial x_{k} \partial x_{k}} - g_{i}\beta \overline{v'_{j}\theta'} - g_{j}\beta \overline{v'_{i}\theta'} - 2\nu \frac{\partial v'_{i}\partial v'_{j}}{\partial x_{k} \partial x_{k}} \\ \bar{v}_{k} \frac{\partial \overline{v'_{i}v'_{i}}}{\partial x_{k}} &= -\overline{v'_{i}v'_{k}} \frac{\partial \bar{v}_{i}}{\partial x_{k}} - \overline{v'_{i}v'_{k}} \frac{\partial \bar{v}_{i}}{\partial x_{k}} + \frac{\overline{p'}\left(\frac{\partial v'_{i}}{\partial x_{i}} + \frac{\partial v'_{i}}{\partial x_{k}}\right)}{\rho} - \frac{\partial}{\partial x_{k}} \left[\overline{v'_{i}v'_{i}v'_{k}} + \frac{\overline{p'v'_{i}}}{\rho} \delta_{ik} + \frac{\overline{p'v'_{i}}}{\rho} \delta_{ik} \right] \\ &+ \nu \frac{\partial^{2} \overline{v'_{i}v'_{i}}}{\partial x_{k} \partial x_{k}} - g_{i}\beta \overline{v'_{i}\theta'} - g_{i}\beta \overline{v'_{i}\theta'} - 2\nu \frac{\partial v'_{i}}{\partial x_{k}} \frac{\partial v'_{i}}{\partial x_{k}} \delta_{k} \\ \\ \overline{v}_{j} \frac{\partial k}{\partial x_{j}} &= -\overline{v'_{j}v'_{k}} \frac{\partial \bar{v}_{j}}{\partial x_{k}} - \frac{\partial}{\partial x_{k}} \left[\overline{v'_{k}\left(\frac{1}{2}v'_{i}v'_{i} + \frac{p'}{\rho}\right)} \right] + \nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}} - g_{i}\beta \overline{v'_{i}\theta'} - \nu \frac{\partial v'_{i}}{\partial x_{k}} \frac{\partial v'_{i}}{\varepsilon} \\ \\ \\ \overline{v}_{j} \frac{\partial k}{\partial x_{j}} &= -\overline{v'_{j}v'_{k}} \frac{\partial \bar{v}_{j}}{\partial x_{k}} - \frac{\partial}{\partial x_{k}} \left[\overline{v'_{k}\left(\frac{1}{2}v'_{i}v'_{i} + \frac{p'}{\rho}\right)} \right] + \nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}} - g_{i}\beta \overline{v'_{i}\theta'} - \nu \frac{\partial v'_{i}}{\partial x_{k} \partial x_{k}} \\ \\ \\ \\ \overline{v}_{k} \frac{\partial k}{\partial x_{j}} &= -\overline{v'_{j}v'_{k}} \frac{\partial \bar{v}_{j}}{\partial x_{k}} - \frac{\partial}{\partial x_{k}} \left[\overline{v'_{k}\left(\frac{1}{2}v'_{k}v'_{i} + \frac{p'}{\rho}\right)} \right] + \nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}} - g_{i}\beta \overline{v'_{i}\theta'} - \nu \frac{\partial v'_{i}}{\partial x_{k} \partial x_{k}} \\ \\ \\ \\ \\ \overline{v}_{k} \frac{\partial v_{k}}{\partial x_{k}} - \overline{v'_{k}} \frac{\partial v_{k}}{\partial x_{k}} - \frac{\partial}{\partial x_{k}} \left[\overline{v'_{k}\left(\frac{1}{2}v'_{k}v'_{i} + \frac{p'}{\rho}\right)} \right] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right]$$

(30.5)

• Unknown terms

 $\overline{v'_i v'_j} \text{ Reynolds stress in } P^k$ $D^k_t \text{ Turbulent diffusion}$ $\varepsilon \text{ Dissipation}$

¶See Section 11.6, The Boussinesq assumption The Boussinesq assumption: a model for $\overline{v'_i v'_j}$ The diffusion term of time-averaged Navier-Stokes

$$\frac{\partial}{\partial x_j} \left\{ \nu \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) - \overline{v'_i v'_j} \right\} \Rightarrow \frac{\partial}{\partial x_j} \left\{ (\nu + \nu_t) \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) \right\}$$
$$\overline{v'_i v'_j} = -\nu_t \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right)$$

When this equation is contrated, the LHS is not zero $(\overline{v'_i v'_i})$ whereas the RHS is zero due to continuity $(v\overline{v}/\partial x_i = 0)$

Add $(2/3)\delta_{ij}k$ on the RHS:

$$\overline{v'_i v'_j} = -\nu_t \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) + \left[\frac{2}{3} \delta_{ij} k \right]$$

The turbulent viscosity: $\nu_t \propto v'\ell = k^{1/2} \frac{k^{3/2}}{\varepsilon} = c_\mu \frac{k^2}{\varepsilon}$

31 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 2

- See Section 11.7.1, Production terms
- First let's repeat the definition of the strain-rate and vorticity tensors, see Eq. 1.11

$$\frac{\partial \bar{v}_i}{\partial x_j} = \bar{s}_{ij} + \bar{\Omega}_{ij}, \quad \bar{s}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right), \quad \bar{\Omega}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{v}_j}{\partial x_i} - \frac{\partial \bar{v}_j}{\partial x_i} \right)$$

Recall that the product s
 *s*_{ij}Ω
 *Ω*_{ij} = 0 (product of symmetric and anti-symmetric tensor, see Section 1.5)
 ▶ Production term in k equation needs to be modeled.

$$P^{k} = -\overline{v_{i}'v_{j}'}\frac{\partial \bar{v}_{i}}{\partial x_{j}} = \nu_{t} \left[\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}} + \frac{\partial \bar{v}_{j}}{\partial x_{i}} \right) - \frac{2}{3}\delta_{ij}k \right] \frac{\partial \bar{v}_{i}}{\partial x_{j}} \\ = \nu_{t} \left[\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}} + \frac{\partial \bar{v}_{j}}{\partial x_{i}} \right) \right] \frac{\partial \bar{v}_{i}}{\partial x_{j}} - \frac{2}{3}\nu_{t}\delta_{ij}k \frac{\partial \bar{v}_{i}}{\partial x_{j}} \\ = \nu_{t} \left[\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}} + \frac{\partial \bar{v}_{j}}{\partial x_{i}} \right) \right] \frac{\partial \bar{v}_{i}}{\partial x_{j}} - \frac{2}{3}\nu_{t}\frac{\partial \bar{v}_{i}}{\partial x_{i}} \\ = 2\nu_{t}\bar{s}_{ij}(\bar{s}_{ij} + \bar{\Omega}_{ij}) = 2\nu_{t}\bar{s}_{ij}\bar{s}_{ij}$$

Diffusion term in k eq, Eq. 30.5, must be modelled.
The exact k equation:

$$\bar{v}_j \frac{\partial k}{\partial x_j} = -\overline{v'_j v'_k} \frac{\partial \bar{v}_j}{\partial x_k} - \frac{\partial}{\partial x_k} \left[\overline{v'_k \left(\frac{1}{2} v'_i v'_i + \frac{p'}{\rho} \right)} \right] + \nu \frac{\partial^2 k}{\partial x_k \partial x_k} - g_i \beta \overline{v'_i \theta'} - \nu \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k} - \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k} - \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k} - \frac{\partial v'_i}{\partial x_k} - \frac{\partial v'_i}{\partial x_k} \frac{\partial v'_i}{\partial x_k$$

► The constitutive model for heat conduction, Fourier's law, (see Section 2.2)

$$q_i = -k \frac{\partial \bar{\theta}}{\partial x_i}$$

Flux of *k*:

$$d_{j,t}^{k} = \frac{1}{2} \overline{v_{j}' v_{i}' v_{i}'} = -\frac{\nu_{t}}{\sigma_{k}} \frac{\partial k}{\partial x_{j}}$$

$$\Rightarrow -\frac{1}{2} \frac{\partial v'_j v'_i v'_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\nu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right)$$

The heat flux is an unknown both in the mean temperature equation, Eq. 30.1, and in the exact k equation above. Taking guidance from Fourier's law. It is modeled as

$$\overline{v'_i\theta'} = -\alpha_t \frac{\partial\theta}{\partial x_i}, \quad \alpha_t = \frac{\nu_t}{\sigma_t}$$

See Section 11.8, The $k - \varepsilon$ model Modeled k equation

$$\bar{v}_j \frac{\partial k}{\partial x_j} = 2\nu_t \bar{s}_{ij} \bar{s}_{ij} + \frac{\partial}{\partial x_j} \left\{ \left(\nu + \frac{\nu_t}{\sigma_k}\right) \frac{\partial k}{\partial x_j} \right\} + g_i \beta \frac{\nu_t}{\sigma_\theta} \frac{\partial \bar{\theta}}{\partial x_i} - \varepsilon$$

Exact k equation

$$\frac{\bar{v}_{j}\frac{\partial k}{\partial x_{j}}}{C^{k}} = -\frac{\bar{v}_{j}^{\prime}v_{k}^{\prime}\frac{\partial \bar{v}_{j}}{\partial x_{k}}}{P^{k}} - \frac{\partial}{\partial x_{k}}\left[\frac{v_{k}^{\prime}\left(\frac{1}{2}v_{i}^{\prime}v_{i}^{\prime} + \frac{p^{\prime}}{\rho}\right)}{D_{t}^{k}}\right] + \frac{\nu\frac{\partial^{2}k}{\partial x_{k}\partial x_{k}}}{D_{\nu}^{k}} - \frac{g_{i}\beta\overline{v_{i}^{\prime}t\theta^{\prime}}}{G^{k}} - \frac{\nu\frac{\partial v_{i}^{\prime}}{\partial x_{k}}\frac{\partial v_{i}^{\prime}}{\partial x_{k}}}{\varepsilon}$$

¶See Section 11.5, The ε equation $\triangleright \varepsilon$ equation

$$C^{\varepsilon} = P^{\varepsilon} + D^{\varepsilon} + G^{\varepsilon} - \Psi^{\varepsilon}$$

Use the same source terms as in k equation and add turbulent time-scale ε/k to get the right dimensions:

$$P^{\varepsilon} + G^{\varepsilon} - \Psi^{\varepsilon} = \frac{\varepsilon}{k} \left(c_{\varepsilon 1} P^k + c_{\varepsilon 3} G^k - c_{\varepsilon 2} \varepsilon \right)$$

The final form modelled ε equation

$$\frac{\partial \varepsilon}{\partial t} + \bar{v}_j \frac{\partial \varepsilon}{\partial x_j} = c_{\varepsilon 1} \frac{\varepsilon}{k} P^k + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + c_{\varepsilon 3} \frac{\varepsilon}{k} G^k - c_{\varepsilon 2} \frac{\varepsilon}{k} \varepsilon^k$$

¶See Section 11.7.3, Dissipation term, ε_{ij}

$$\frac{\bar{v}_{k}\frac{\partial \overline{v_{i}'v_{j}'}}{\partial x_{k}}}{C_{ij}} = -\overline{v_{i}'v_{k}'}\frac{\partial \bar{v}_{j}}{\partial x_{k}} - \overline{v_{j}'v_{k}'}\frac{\partial \bar{v}_{i}}{\partial x_{k}} + \frac{\overline{p'}\left(\frac{\partial v_{i}'}{\partial x_{j}} + \frac{\partial v_{j}'}{\partial x_{i}}\right)}{\Pi_{ij}} \\
-\frac{\partial}{\partial x_{k}}\left[\overline{v_{i}'v_{j}'v_{k}'} + \frac{\overline{p'v_{j}'}}{\rho}\delta_{ik} + \frac{\overline{p'v_{i}'}}{\rho}\delta_{jk}\right] + \nu\frac{\partial^{2}\overline{v_{i}'v_{j}'}}{\partial x_{k}\partial x_{k}} \\
-\frac{D_{ij,t}}{D_{ij,t}} - g_{i}\overline{\beta \overline{v_{j}'\theta'}} - g_{j}\overline{\beta \overline{v_{i}'\theta'}} - 2\nu\frac{\overline{\partial v_{i}'}}{\partial x_{k}}\frac{\partial v_{j}'}{\partial x_{k}} \\
\overline{\varepsilon_{ij}}$$

The dissipation term, ε_{ij} , in the $\overline{v'_i v'_j}$ equation (eq. 30.2), is modeled as follows: Small-scale turbulence is isotropic

 $1. \ \overline{v_1'^2} = \overline{v_2'^2} = \overline{v_3'^2}.$

2. All shear stresses are zero (if we flip one coordinate axis the sign will change: hence not isotropic) \Rightarrow 2

$$\varepsilon_{ij} = \frac{2}{3} \varepsilon \delta_{ij} \tag{31.1}$$

See Section 11.7.2, Diffusion terms

$$\frac{\bar{v}_{k}\frac{\partial \overline{v_{i}'v_{j}'}}{\partial x_{k}}}{C_{ij}} = -\overline{v_{i}'v_{k}'}\frac{\partial \bar{v}_{j}}{\partial x_{k}} - \overline{v_{j}'v_{k}'}\frac{\partial \bar{v}_{i}}{\partial x_{k}} + \frac{\overline{p'}\left(\frac{\partial v_{i}'}{\partial x_{j}} + \frac{\partial v_{j}'}{\partial x_{i}}\right)}{\Pi_{ij}} \\
-\frac{\partial}{\partial x_{k}}\left[\overline{v_{i}'v_{j}'v_{k}'} + \frac{\overline{p'v_{j}'}}{\rho}\delta_{ik} + \frac{\overline{p'v_{i}'}}{\rho}\delta_{jk}\right] + \nu\frac{\partial^{2}\overline{v_{i}'v_{j}'}}{\partial x_{k}\partial x_{k}} \\
-\frac{-g_{i}\beta\overline{v_{j}'\theta'} - g_{j}\beta\overline{v_{i}'\theta'}}{G_{ij}} - 2\nu\frac{\overline{\partial v_{i}'}}{\partial x_{k}\partial x_{k}} \\
\frac{\overline{v_{i}'v_{j}'v_{j}'}}{\varepsilon_{ij}}$$

Flux of $\overline{v'_i v'_j}$:

$$D_{ij,t} = \overline{v'_i v'_j v'_k} = -\frac{\nu_t}{\sigma_k} \frac{\partial \overline{v'_i v'_j}}{\partial x_k}$$

$$\Rightarrow -\frac{\partial \overline{v'_i v'_j v'_k}}{\partial x_k} = \frac{\partial}{\partial x_k} \left(\frac{\nu_t}{\sigma_k} \frac{\partial \overline{v'_i v'_j}}{\partial x_k} \right)$$

If this happens then

$$\overline{v_1'^2} > \overline{v_2'^2}, \overline{v_1'^2} > \overline{v_3'^2}$$

$$\overline{p'\frac{\partial v_1'}{\partial x_1}} \propto -\frac{\rho}{2t} \left[\left(\overline{v_1'^2} - \overline{v_2'^2} \right) + \left(\overline{v_1'^2} - \overline{v_3'^2} \right) \right] = -\frac{\rho}{t} \left[\overline{v_1'^2} - \frac{1}{2} \left(\overline{v_2'^2} + \overline{v_3'^2} \right) \right]$$

$$= -\frac{\rho}{t} \left[\frac{3}{2} \overline{v_1'^2} - \frac{1}{2} \left(\overline{v_1'^2} + \overline{v_2'^2} + \overline{v_3'^2} \right) \right] = -\frac{\rho}{t} \left(\frac{3}{2} \overline{v_1'^2} - k \right)$$

$$\Phi_{ij,1} \equiv \overline{p'\left(\frac{\partial v'_i}{\partial x_j} + \frac{\partial v'_j}{\partial x_i}\right)} = -c_1 \rho \frac{\varepsilon}{k} \left(\overline{v'_i v'_j} - \frac{2}{3} \delta_{ij} k\right)$$
(31.2)

see Eq. 11.57

$$\bar{v}_1 \frac{d\bar{v}'_i v'_j}{dx_1} = \frac{\overline{p'}\left(\frac{\partial v'_i}{\partial x_j} + \frac{\partial v'_j}{\partial x_i}\right)}{\rho} - \varepsilon_{ij}$$
(31.3)

An anisotropy stress tensor is defined as

$$a_{ij} = \frac{v'_i v'_j}{k} - \frac{2}{3} \delta_{ij} \quad \Rightarrow \quad \overline{v'_i v'_j} = k a_{ij} + \frac{2k}{3} \delta_{ij} \tag{31.4}$$

In isotropic turbulence, $a_{ij} = 0$.

We insert Eq. 31.4 into Eq. 31.3 and use the models for the pressure strain term, $\phi_{ij,1}$ (Eq. 31.2) and dissipation, $\varepsilon_{ij} = (2/3)\delta_{ij}$ (Eq. 31.1) so that

$$\bar{v}_1\left(\frac{d(ka_{ij})}{dx_1} + \frac{2}{3}\delta_{ij}\frac{dk}{dx_1}\right) = \frac{-c_1\varepsilon a_{ij} - \frac{2}{3}\delta_{ij}\varepsilon}{2}$$

$$\bar{v}_1 \left(\frac{d(ka_{ij})}{dx_1} + \frac{2}{3} \delta_{ij} \frac{dk}{dx_1} \right) = \underline{-c_1 \varepsilon a_{ij} - \frac{2}{3} \delta_{ij} \varepsilon}$$
$$\bar{v}_1 \left(k \frac{da_{ij}}{dx_1} + a_{ij} \frac{dk}{dx_1} + \frac{2}{3} \delta_{ij} \frac{dk}{dx_1} \right) = \underline{-c_1 \varepsilon a_{ij} - \frac{2}{3} \delta_{ij} \varepsilon}$$

Using the k equation, $\bar{v}_1 \frac{dk}{dx_1} = -\varepsilon$, and dividing by k give

$$\bar{v}_1 \frac{da_{ij}}{dx_1} = \underline{-c_1 \frac{\varepsilon}{k} a_{ij} - \frac{2}{3} \delta_{ij} \frac{\varepsilon}{k} + \frac{\varepsilon}{k} a_{ij} + \frac{2}{3} \delta_{ij} \frac{\varepsilon}{k} = \frac{\varepsilon}{k} a_{ij} (1 - c_1)$$

 $da_{ij}/dx < 0$ (the turbulence becomes isotropic). Hence we find that c_1 must be larger than one.

32 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 3

- See Section 11.7.5, Rapid pressure-strain term
 - Pressure strain: rapid part

- 1. Take the divergence of the incompressible Navier-Stokes equation assuming constant viscosity (see Eq. 6.6) i.e. $\frac{\partial}{\partial x_i} \left(v_j \frac{\partial v_i}{\partial x_j} \right) = \frac{\partial}{\partial x_i} \left(-\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_j \partial x_j} \right) \dots \Rightarrow$ Equation A.
- 2. Take the divergence of the incompressible time-averaged Navier-Stokes equation assuming constant viscosity (see Eq. 6.10) i.e. $\frac{\partial}{\partial x_i} \left(\bar{v}_j \frac{\partial \bar{v}_i}{\partial x_j} \right) = \frac{\partial}{\partial x_i} \left(-\frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} \frac{\partial \bar{v}'_i v'_j}{\partial x_j} \right) \dots \Rightarrow$ Equation **B**.
- Eq. A Eq. B gives

$$\frac{1}{\rho} \frac{\partial^2 p'}{\partial x_j \partial x_j} = -\frac{2}{\frac{\partial \bar{v}_i}{\partial x_j} \frac{\partial v'_j}{\partial x_i}}{\frac{\partial v_j}{\partial x_i}} - \frac{\frac{\partial^2}{\partial x_i \partial x_j} \left(v'_i v'_j - \overline{v'_i v'_j}\right)}{\frac{\partial v_i \partial x_j}{\partial x_i}}$$
(32.1)

$$\frac{1}{\rho} \frac{\partial^2 p'}{\partial x_j \partial x_j} = -\frac{2}{\frac{\partial \bar{v}_i}{\partial x_j} \frac{\partial v'_j}{\partial x_i}}{\frac{1}{\text{rapid term}}} - \frac{\frac{\partial^2}{\partial x_i \partial x_j} \left(v'_i v'_j - \overline{v'_i v'_j}\right)}{\frac{1}{\text{slow term}}}$$
(32.1)
$$\frac{\partial^2 \varphi}{\partial x_j \partial x_j} = f$$

► There exists an exact analytical solution given by Green's formula (derived from Gauss divergence law). The derivation is shown in an Appendix in the eBook.

$$\varphi(\mathbf{x}) = -\frac{1}{4\pi} \int_{V} \frac{f(\mathbf{y}) dy_1 dy_2 dy_3}{|\mathbf{y} - \mathbf{x}|}$$

where $dy_1 dy_2 dy_3 = dV = dy^3$. The integral is carried out for all points, y, in volume V.

$$p'(\mathbf{x}) = \frac{\rho}{4\pi} \int_{V} \left[\underbrace{2\frac{\partial \bar{v}_i(\mathbf{y})}{\partial y_j} \frac{\partial v'_j(\mathbf{y})}{\partial y_i}}_{\text{rapid term}} + \underbrace{\frac{\partial^2}{\partial y_i \partial y_j} \left(v'_i(\mathbf{y})v'_j(\mathbf{y}) - \overline{v'_i(\mathbf{y})v'_j(\mathbf{y})} \right)}_{\text{slow term}} \right] \frac{d\mathbf{y}^3}{|\mathbf{y} - \mathbf{x}|}$$
(32.2)

▶ Now make two assumptions in Eq. 32.2:

$$p'(\mathbf{x}) = \frac{\rho}{4\pi} \int_{V} \left[\underbrace{2 \frac{\partial \bar{v}_i(\mathbf{y})}{\partial y_j} \frac{\partial v'_j(\mathbf{y})}{\partial y_i}}_{\text{rapid term}} + \underbrace{\frac{\partial^2}{\partial y_i \partial y_j} \left(v'_i(\mathbf{y}) v'_j(\mathbf{y}) - \overline{v'_i(\mathbf{y}) v'_j(\mathbf{y})} \right)}_{\text{slow term}} \right] \frac{d\mathbf{y}^3}{|\mathbf{y} - \mathbf{x}|}$$
(32.2)

i) the turbulence is homogeneous which means that the last term in square brackets is zero. ii) the variation of $\partial \bar{v}_i / \partial x_j$ in space is small because $\partial \bar{v}_i / \partial x_j$ varies much more slowly $\partial v'_j(\mathbf{y}) / \partial y_i$ Assumption *i*) \Rightarrow last term in the integral in Eq. 11.68 is zero, i.e.

$$\frac{\partial^2 \overline{v'_i v'_j}}{\partial y_i \partial y_j} = 0$$

Assumption ii) \Rightarrow mean velocity gradient moved outside the integral.

$$p'(\mathbf{x}) = \frac{\rho}{2\pi} \frac{\partial \bar{v}_i(\mathbf{x})}{\partial x_j} \int_V \frac{\partial v'_j(\mathbf{y})}{\partial y_i} \frac{d\mathbf{y}^3}{|\mathbf{y} - \mathbf{x}|} - \frac{\rho}{4\pi} \int_V \frac{\partial^2}{\partial y_i \partial y_j} \left(v'_i(\mathbf{y}) v'_j(\mathbf{y}) \right) \frac{d\mathbf{y}^3}{|\mathbf{y} - \mathbf{x}|}$$

Multiply Eq. 32.2 with $\frac{\partial v'_i}{\partial x_j} + \frac{\partial v'_j}{\partial x_i} + \frac{\partial v'_j}{\partial x_i}$ and average:

$$\frac{\overline{p'(\mathbf{x})}}{\rho} \left(\frac{\partial v'_{i}(\mathbf{x})}{\partial x_{j}} + \frac{\partial v'_{j}(\mathbf{x})}{\partial x_{i}} \right) = \frac{\partial \overline{v}_{k}(\mathbf{x})}{\partial x_{\ell}} \frac{1}{2\pi} \int_{V} \overline{\left(\frac{\partial v'_{i}(\mathbf{x})}{\partial x_{j}} + \frac{\partial v'_{j}(\mathbf{x})}{\partial x_{i}} \right) \frac{\partial v'_{\ell}(\mathbf{y})}{\partial y_{k}} \frac{d\mathbf{y}^{3}}{|\mathbf{y} - \mathbf{x}|}}{M_{ijk\ell}} + \frac{1}{4\pi} \int_{V} \overline{\left(\frac{\partial v'_{i}(\mathbf{x})}{\partial x_{j}} + \frac{\partial v'_{j}(\mathbf{x})}{\partial x_{i}} \right) \frac{\partial^{2}}{\partial y_{k} \partial y_{\ell}} (v'_{k}(\mathbf{y})v'_{\ell}(\mathbf{y}))} \frac{d\mathbf{y}^{3}}{|\mathbf{y} - \mathbf{x}|}}{A_{ij}}$$
(32.3)

Short form of Eq. 32.3:

$$\overline{\frac{p'}{\rho}\left(\frac{\partial v'_i}{\partial x_j} + \frac{\partial v'_j}{\partial x_i}\right)} = A_{ij} + M_{ijk\ell}\frac{\partial \bar{v}_k}{\partial x_\ell} = \Phi_{ij,1} + \Phi_{ij,2}$$

• First term=slow term, $\Phi_{ij,1}$,

• second term=rapid term, $\Phi_{ij,2}$ (index 2 denotes the rapid part).

$$\Phi_{ij,2} = -c_2 \rho \left(P_{ij} - \frac{2}{3} \delta_{ij} P^k \right) \quad \text{IP model}$$

See Section 11.7.6, Wall model of the pressure-strain termWall models of pressure-strain:

$$\Phi_{ij} = \Phi_{ij,1} + \Phi_{ij,2} + \Phi_{ij,1w} + \Phi_{ij,2w}$$

$$\Phi_{22,1w} = -2c_{1w}\frac{\varepsilon}{k}\overline{v_2'^2}f, \quad f \propto \frac{L_t}{|x_i - x_{i,wall}|} = \frac{k^{\frac{3}{2}}}{2.55|n_{i,w}(x_i - x_{i,w})|\varepsilon}, \quad 0 < f < 1$$

 $Traceless \Rightarrow$

$$\Phi_{11,1w} = \Phi_{33,1w} = c_{1w} \frac{\varepsilon}{k} \overline{v_2'^2} f$$

The wall model for the shear stress is set as

$$\Phi_{12,1w} = -\frac{3}{2}c_{1w}\frac{\varepsilon}{k}\overline{v_1'v_2'}f$$

The general form reads:

$$\Phi_{ij,1w} = c_{1w} \frac{\varepsilon}{k} \left(\overline{v'_k v'_m} n_{k,w} n_{m,w} \delta_{ij} - \frac{3}{2} \overline{v'_k v'_i} n_{k,w} n_{j,w} - \frac{3}{2} \overline{v'_k v'_j} n_{i,w} n_{k,w} \right) f$$

The analogous wall model for the rapid part reads

$$\Phi_{ij,2w} = c_{2w} \left(\Phi_{km,2} n_{k,w} n_{m,w} \delta_{ij} - \frac{3}{2} \Phi_{ki,2} n_{k,w} n_{j,w} - \frac{3}{2} \Phi_{kj,2} n_{i,w} n_{k,w} \right) f$$

¶See Section 11.9, The modeled $\overline{v'_i v'_j}$ equation with IP model

We can finally formulate the modelled $\overline{v'_i v'_j}$ equation (with IP model), the Reynolds Stress Model

(RSM)

$$\begin{aligned} \frac{\partial \overline{v'_i v'_j}}{\partial t} + & (\text{unsteady term}) \\ \overline{v}_k \frac{\partial \overline{v'_i v'_j}}{\partial x_k} &= & (\text{convection}) \\ -\overline{v'_i v'_k} \frac{\partial \overline{v}_i}{\partial x_k} - \overline{v'_i v'_k} \frac{\partial \overline{v}_i}{\partial x_k} & (\text{production}) \\ -\overline{c_1 \frac{\varepsilon}{k}} \left(\overline{v'_i v'_j} - \frac{2}{3} \delta_{ij} R^k \right) & (\text{slow part}) \\ -c_2 \left(P_{ij} - \frac{2}{3} \delta_{ij} P^k \right) & (\text{rapid part, IP model}) \\ +c_{1w} \rho \frac{\varepsilon}{k} \left[\overline{v'_k v'_m} n_k n_m \delta_{ij} - \frac{3}{2} \overline{v'_i v'_k} n_k n_j - \frac{3}{2} \overline{v'_j v'_k} n_k n_i \right] f & (\text{wall, slow part}) \\ +c_{2w} \left[\Phi_{km,2} n_k n_m \delta_{ij} - \frac{3}{2} \Phi_{ik,2} n_k n_j - \frac{3}{2} \Phi_{jk,2} n_k n_i \right] f & (\text{wall, rapid part, IP model})) \\ + \frac{\partial 2^2 \overline{v'_i v'_j}}{\partial x_k \partial x_k} & (\text{viscous diffusion}) \\ + \frac{\partial 2}{\partial x_k} \left[\frac{\nu_i}{\sigma_k} \frac{\partial \overline{v'_i v'_j}}{\partial x_m} \right] & (\text{turbulent diffusion}) \\ -g_i \overline{\rho v'_j \theta'} - g_j \overline{\rho v'_j \theta'} & (\text{buoyaney production}) \\ -\frac{2}{3} \varepsilon \delta_{ij} & (\text{dissipation}) \end{aligned}$$

See Section 11.10, Algebraic Reynolds Stress Model (ASM)

► The <u>Algebraic Reynolds Stress Model (ASM)</u> is a simplified Reynolds Stress Model (RSM)

$$RSM : C_{ij} - D_{ij} = P_{ij} + \Phi_{ij} - \varepsilon_{ij}$$
$$k - \varepsilon : C^k - D^k = P^k - \varepsilon$$

Assumption in ASM:

$$C_{ij} - D_{ij} = \left(C^k - D^k\right) \frac{\overline{v'_i v'_j}}{k}$$

$$\Rightarrow P_{ij} + \Phi_{ij} - \varepsilon_{ij} = \frac{\overline{v'_i v'_j}}{k} \left(P^k - \varepsilon \right)$$

This gives

$$\overline{v'_i v'_j} = \frac{2}{3} \delta_{ij} k + \frac{k \left(1 - c_2\right) \left(P_{ij} - \frac{2}{3} \delta_{ij} P^k\right) + \Phi_{ij,1w} + \Phi_{ij,2w}}{\varepsilon_1 + P^k / \varepsilon - 1}$$

See Section 11.13, Boundary layer flow

► We will consider source terms in the modelled $\overline{v'_i v'_j}$ equation for boundary layer flow. We have $\bar{v}_2 \simeq 0$, $\partial \bar{v}_1 / \partial x_2 \gg \partial \bar{v}_1 / \partial x_1$. The production term reads:

$$P_{ij} = -\overline{v'_i v'_k} \frac{\partial \bar{v}_j}{\partial x_k} - \overline{v'_j v'_k} \frac{\partial \bar{v}_i}{\partial x_k}$$

In this special case we get (all velocity gradients except $\partial \bar{v}_1 / \partial x_2$ are negligible):

$$P_{11} = -2\overline{v_1'v_2'}\frac{\partial \bar{v}_1}{\partial x_2}$$
$$P_{12} = -\overline{v_2'^2}\frac{\partial \bar{v}_1}{\partial x_2}$$
$$P_{22} = 0, \quad P_{33} = 0$$

No production term in $\overline{v_2'^2}$ and $\overline{v_3'^2}$! How are they produced? Answer: the pressure strain (Robin Hood)

$$\Phi_{22,1} = c_1 \frac{\varepsilon}{k} \left(\frac{2}{3} k - \overline{v_2'^2} \right) > 0, \quad \frac{2}{3} k = (\overline{v_1'^2} + \overline{v_2'^2} + \overline{v_3'^2})/3$$

$$\Phi_{22,2} = c_2 \frac{1}{3} P_{11} = -c_2 \frac{2}{3} \overline{v_1' v_2'} \frac{\partial \bar{v_1}}{\partial x_2} > 0$$

 $\varepsilon_{12} = 0$: No sink term in $\overline{v'_1v'_2}$ eq? Answer: the pressure strain terms $\Phi_{12,1}$ and $\Phi_{12,2}$ act as sink terms.

See Section 12.1, Stable and unstable stratification

► Assume there is a non-constant temperature field and that the natural convection is important (no forced convection). We have then two different flow conditions, stable or unstable conditions.

► We start with stable stratification for which $\partial \bar{\theta} / \partial x_3 > 0$.

$$G_{ij} = -g_i \beta \overline{v'_j \theta'} - g_j \beta \overline{v'_i \theta'}, \quad g_i = (0, 0, -g) \qquad \Rightarrow \overline{v'_3}^2 \text{ eq.:} \quad G_{33} = 2g \beta \overline{v'_3 \theta'}$$

which is the source term in the $\overline{v_3'^2}$ eq due to buoyancy.

Now we need $\overline{v'_3\theta'}$.

The main source term in this equation is (see Eq 30.3)

$$P_{3\theta} = -\overline{v_3'v_k'}\frac{\partial\bar{\theta}}{\partial x_k} - \overline{v_k'\theta'}\frac{\partial\bar{v}_3}{\partial x_k} = -\overline{v_3'v_k'}\frac{\partial\bar{\theta}}{\partial x_k} - \overline{v_k'\theta'}\frac{\partial\bar{v}_3}{\partial x_k} = -\overline{v_3'^2}\frac{\partial\bar{\theta}}{\partial x_3} < 0$$

So

- $P_{3\theta} < 0$
- $\bullet \Rightarrow \overline{v_3' \theta'} < 0$
- $\Rightarrow G_{33} = 2g\beta \overline{v'_3 \theta'} < 0$
- which dampens $\overline{v_3'^2}$ (but not $\overline{v_1'^2}, \overline{v_2'^2}$) as it should.
- Above, we assumed stable conditions, $\partial \theta / \partial x_3 > 0$, which gives reduced vertical fluctuations.

► If we assume un-stable conditions, $\partial \theta / \partial x_3 < 0$, we can in the same manner show that we get increased vertical fluctuations.

 $k - \varepsilon$ model. The buoyancy term reads (Eq. 30.5)

$$G^{k} = 0.5G_{ii} = -g_{i}\beta \overline{v_{i}'\theta'}, \qquad \overline{v_{i}'\theta'} = -\frac{\nu_{t}}{\sigma_{\theta}}\frac{\partial\theta}{\partial x_{i}}$$

For $g_i = (0, 0, -g)$ it reads

$$G^k = g\beta \overline{v'_3 \theta'}$$

which gives, using Section 11.6,

$$G^k = -g\beta \frac{\nu_t}{\sigma_\theta} \frac{\partial \theta}{\partial x_3}$$

Hence $G^k < 0$ which dampens k (i.e. $\overline{v_1'^2}, \overline{v_2'^2}, \overline{v_3'^2}$).

Note that the $k - \varepsilon$ model incorrectly dampens all normal stress, not only the vertical one

33 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 4

See Section 12.2, Curvature effectsStreamline curvature affects the turbulence.

Flow aligned with the θ axis. $\partial v_{\theta}/\partial r > 0$

► We assume inviscid flow ($\mu = 0$) and express the Navier-Stokes eq. in polar coordinates:

$$v_r \text{ eq. with } \mu = 0: \quad \frac{\rho v_{\theta}^2}{r} - \frac{\partial p}{\partial r} = 0$$

$$(33.1)$$

$$(33.1)$$

$$(v_{\theta})_A > (v_{\theta})_0, \text{ which from Eq. 33.1 gives } (\partial p/\partial r)_A > (\partial p/\partial r)_0.$$

► The streamline curvature stabilized (decreases) the turbulence

Change sign of velocity gradient $\partial v_{\theta}/\partial r < 0$: now streamline curvature will increase the turbulence Now we will find out how well the effect of streamline curvature is modeled by RSM (and ASM). ► We choose a boundary layer flow as below

$$\begin{array}{c} x_{2} \\ \hline v_{1}^{\prime 2} \simeq 5\overline{v_{2}^{\prime 2}} \quad \overline{v_{1}} \\ \hline v_{1} \hline v_{1} \\ \hline v_{1} \hline v_{1} \\ \hline v_{1} \hline v_{1} \\ \hline v_{1} \hline v_$$

$$\begin{split} RSM, \ \overline{v_1'^2} - eq.: \quad P_{11} &= -2\overline{v_1'v_2'}\frac{\partial\overline{v_1}}{\partial x_2} \\ RSM, \ \overline{v_1'v_2'} - eq.: \quad P_{12} &= \boxed{-\overline{v_1'^2}\frac{\partial\overline{v_2}}{\partial x_1}} - \overline{v_2'^2}\frac{\partial\overline{v_1}}{\partial x_2} \\ RSM, \ \overline{v_2'^2} - eq.: \quad P_{22} &= \boxed{-2\overline{v_1'v_2'}\frac{\partial\overline{v_2}}{\partial x_1}} \\ &\quad k - \varepsilon \quad P^k = \nu_t \left\{ \left(\frac{\partial\overline{v_1}}{\partial x_2}\right) + \left[\left(\frac{\partial\overline{v_2}}{\partial x_1}\right)\right] \right\}^2 \\ \frac{\partial\overline{v_1}}{\partial x_2} > 0, \ \frac{\partial\overline{v_2}}{\partial x_1} > 0, \ \mathbf{v_1''^2}\frac{\partial\overline{v_2}}{\partial x_1} \text{ increases } |P_{12}| \text{ (recall that } \overline{v_1'^2} \gg \overline{v_2''^2}), \ \mathbf{v_1'v_2'}| \text{ increases } \\ \Rightarrow v_1'^2 \text{ and } v_2'^2 \text{ increase }, \ \mathbf{v_1} = |P_{12}| \text{ increases even more (a positive feedback loop)} \\ \end{split}$$
 Hence: the turbulence increases (as it should). \ We have a de-stabilizing streamline curvature. \\ \bullet \text{Change the sign of } \frac{\partial\overline{v_1}}{\partial x_2} \text{ gives decreased turbulence (stabilizing streamline curvature)} \\ \bullet k - \varepsilon \text{ model: it does react to streamline curvaturve but much less \ Why? \\ \text{Contrary to RSM, the two velocity gradients are multiplied by the same coefficient} \\ \end{split}

The flow pattern for stagnation flow.

Near the plate, strong deceleration, i.e. large $\frac{\partial \bar{v}_1}{\partial x_1}$. Continuity equation \Rightarrow large $\frac{\partial \bar{v}_2}{\partial x_2}$ The velocity gradient $\frac{\partial \bar{v}_1}{\partial x_2}$ and $\frac{\partial \bar{v}_2}{\partial x_1}$ are in this flow negligible.

$$RSM/ASM : 0.5 (P_{11} + P_{22}) = -\overline{v_1'^2} \frac{\partial \bar{v}_1}{\partial x_1} - \overline{v_2'^2} \frac{\partial \bar{v}_2}{\partial x_2} = -\frac{\partial \bar{v}_1}{\partial x_1} (\overline{v_1'^2} - \overline{v_2'^2})$$
$$k - \varepsilon : P^k = 2\nu_t \left\{ \left(\frac{\partial \bar{v}_1}{\partial x_1} \right)^2 + \left(\frac{\partial \bar{v}_2}{\partial x_2} \right)^2 \right\}$$

For RSM/ASM, $\overline{v_1'^2} - \overline{v_2'^2}$ nearly cancels whereas for $k - \varepsilon$ they don't since the sum of squared velocity gradients is used.

See Section 13, RealizabilityRealizability

$$\frac{\overline{v_i'^2}}{\left(\overline{v_i'^2} \overline{v_j'^2}\right)^{1/2}} \leq 1 \text{ no summation over } i \text{ and } j, i \neq j$$

$$\overline{v_1'^2} = \frac{2}{3}k - 2\nu_t \frac{\partial \bar{v}_1}{\partial x_1} = \frac{2}{3}k - 2\nu_t \bar{s}_{11}$$

 \bar{s}_{11} largest in the principal coordinate directions. Hence, let's find the eigenvalues of \bar{s}_{ij}

$$|\bar{s}_{ij} - \delta_{ij}\lambda| = 0$$

which gives in 2D

$$\begin{vmatrix} \bar{s}_{11} - \lambda & \bar{s}_{12} \\ \bar{s}_{21} & \bar{s}_{22} - \lambda \end{vmatrix} = 0$$

The resulting equation characteristic equation is

$$\lambda^{2} - I_{1}^{2D}\lambda + I_{2}^{2D} = 0$$

$$I_{1}^{2D} = \bar{s}_{ii} = 0 \quad \text{continuity equation}$$

$$I_{2}^{2D} = \frac{1}{2}(\bar{s}_{ii}\bar{s}_{jj} - \bar{s}_{ij}\bar{s}_{ij}) = \det(C_{ij}) = -\bar{s}_{ij}\bar{s}_{ij}/2$$

$$\lambda^{2} + I_{2}^{2D} = 0$$
$$\lambda_{1,2} = \pm \left(-I_{2}^{2D}\right)^{1/2} = \pm \left(\frac{\bar{s}_{ij}\bar{s}_{ij}}{2}\right)^{1/2}$$
$$\overline{v_{1}^{\prime 2}} = \frac{2}{3}k - 2\nu_{t}\bar{s}_{11}$$

$$\left(\overline{v_1'^2}\right)_{\lambda_1} = \frac{2}{3}k - 2\nu_t\lambda_1 = \frac{2}{3}k - 2\nu_t\left(\frac{\bar{s}_{ij}\bar{s}_{ij}}{2}\right)^{1/2} > 0$$

$$\Rightarrow \nu_t \le \frac{k}{3|\lambda_1|} = \frac{k}{3} \left(\frac{2}{\bar{s}_{ij}\bar{s}_{ij}}\right)^{1/2}$$

In 3D

$$|\lambda_k| = k \left(\frac{2\bar{s}_{ij}\bar{s}_{ij}}{3}\right)^{1/2}$$
See Section 14, Non-linear Eddy-viscosity Models

► It is non-linear in velocity gradients.

► The advantage is better normal stresses and a certain ability to handle streamline curvature.

$$a_{ij} \equiv \frac{\overline{v'_i v'_j}}{k} - \frac{2}{3} \delta_{ij}$$

$$a_{ij} \equiv \left[-2c_\mu \tau \overline{s}_{ij} \right] + c_1 \tau^2 \left(\bar{s}_{ik} \bar{s}_{kj} - \frac{1}{3} \bar{s}_{mk} \bar{s}_{mk} \delta_{ij} \right) + c_2 \tau^2 \left(\bar{\Omega}_{ik} \bar{s}_{kj} - \bar{s}_{ik} \bar{\Omega}_{kj} \right)$$

$$+ c_3 \tau^2 \left(\bar{\Omega}_{ik} \bar{\Omega}_{jk} - \frac{1}{3} \bar{\Omega}_{mk} \bar{\Omega}_{mk} \delta_{ij} \right) + c_4 \tau^3 \left(\bar{s}_{ik} \bar{s}_{km} \bar{\Omega}_{mj} - \bar{\Omega}_{im} \bar{s}_{mk} \bar{s}_{kj} \right)$$

$$+ c_5 \tau^3 \left(\bar{\Omega}_{im} \bar{\Omega}_{mm} \bar{s}_{mj} + \bar{s}_{im} \bar{\Omega}_{mm} \bar{\Omega}_{mj} - \frac{2}{3} \bar{\Omega}_{mn} \bar{\Omega}_{nm} \bar{s}_{mm} \delta_{ij} \right) + c_6 \tau^3 \bar{s}_{km} \bar{s}_{km} \bar{s}_{ij} + c_7 \tau^3 \bar{\Omega}_{km} \bar{\Omega}_{km} \bar{s}_{ij}$$

$$\bar{s}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right), \quad \bar{\Omega}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{v}_i}{\partial x_j} - \frac{\partial \bar{v}_j}{\partial x_i} \right), \quad \tau = \frac{k}{\varepsilon} \text{ or } \tau = \frac{1}{c_\mu \omega}$$

$$(33.2)$$

Symmetric, Frace-less, only linear \bar{s}_{ij} and quadratic $\bar{s}_{ik}\bar{s}_{kj}$ terms (no cubic terms, $\bar{s}_{ik}\bar{s}_{km}\bar{s}_{mj}$). Why no cubic terms? Caley-Hamilon theorem which is based on the characteristic equation in 3D

$$\lambda^3 + I_1^{3D}\lambda^2 - I_2^{3D}\lambda + I_3^{3D} = 0$$

Let's verify that the three first terms are indeed symmetric and traceless
 Term 1

Term 3

$$-2c_{\mu}\tau\bar{s}_{ij}$$
 symmetric: $\bar{s}_{ij}=\bar{s}_{ji}$, traceless: $\bar{s}_{ii}=0$

Firm 2

$$\begin{pmatrix} \bar{s}_{ik}\bar{s}_{kj} - \frac{1}{3}\bar{s}_{mk}\bar{s}_{mk}\delta_{ij} \end{pmatrix} \text{ symmetric } : \bar{s}_{ik}\bar{s}_{kj} = \bar{s}_{jk}\bar{s}_{ki} = \bar{s}_{kj}\bar{s}_{ik} \quad \delta_{ij} = \delta_{ji}$$

$$\text{traceless } : \bar{s}_{ik}\bar{s}_{ki} - \frac{1}{3}\bar{s}_{mk}\bar{s}_{mk}\delta_{ii} = \bar{s}_{ik}\bar{s}_{ki} - \bar{s}_{mk}\bar{s}_{mk} = \bar{s}_{ik}\bar{s}_{ki} - \bar{s}_{ik}\bar{s}_{ik} = 0$$

$$\begin{pmatrix} \bar{\Omega}_{ik}\bar{\Omega}_{jk} - \frac{1}{3}\bar{\Omega}_{mk}\bar{\Omega}_{mk}\delta_{ij} \end{pmatrix} \text{ symmetric } : \bar{\Omega}_{ik}\bar{\Omega}_{jk} = \bar{\Omega}_{jk}\bar{\Omega}_{ik} \quad \delta_{ij} = \delta_{ji} \\ \text{ traceless } : \bar{\Omega}_{ik}\bar{\Omega}_{ik} - \frac{1}{3}\bar{\Omega}_{mk}\bar{\Omega}_{mk}\delta_{ii} = \bar{\Omega}_{ik}\bar{\Omega}_{ik} - \bar{\Omega}_{mk}\bar{\Omega}_{mk} = 0$$

With constants c_1, c_2, \dots Eq. 33.2 read for a boundary layer flow

$$\overline{v_1'^2} = \frac{2}{3}k + \frac{0.82}{12}k\tau^2 \left(\frac{\partial \overline{v}_1}{\partial x_2}\right)^2$$
$$\overline{v_2'^2} = \frac{2}{3}k - \frac{0.5}{12}k\tau^2 \left(\frac{\partial \overline{v}_1}{\partial x_2}\right)^2$$
$$\overline{v_3'^2} = \frac{2}{3}k - \frac{0.16}{12}k\tau^2 \left(\frac{\partial \overline{v}_1}{\partial x_2}\right)^2$$

We find that the normal stresses are indeed not equal (coontrary to the standard linear $k - \varepsilon$ model)

34 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 5

See Section 15, The V2F Model

1

- Four equations are solved, k, ε (or ω), $\overline{v_2'^2}$ and f.
- f is proportional to the pressure-strain term in the eq. for the wall-normal fluctuation $(\overline{v_1'^2}, \overline{v_2'^2} \text{ or } \overline{v_3'^2})$
- Strength: better in modeling damping of the turbulence near walls, e.g. stagnation flow

The exact $\overline{v_2'^2}$ equation (see Eq. 30.2) – modeling the turbulent diffusion – reads for a boundary layer

$$\frac{\partial \rho \bar{v}_1 \overline{v_2'^2}}{\partial x_1} + \frac{\partial \rho \bar{v} \overline{v_2'^2}}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(\mu + \mu_t) \frac{\partial \overline{v_2'^2}}{\partial x_2} \right] \underbrace{-2 \overline{v_2' \partial p' / \partial x_2}}_{\Phi_{22}} - \rho \varepsilon_{22}$$

Re-formulate and introduce a model for the dissipation, $\varepsilon_{22} = \frac{\overline{v_2'^2}}{k}\varepsilon$, and the pressure-strain, Φ_{22} ,

$$\frac{\partial\rho\bar{v}_1\overline{v_2'^2}}{\partial x_1} + \frac{\partial\rho\bar{v}_2\overline{v_2'^2}}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(\mu + \mu_t)\frac{\partial\overline{v_2'^2}}{\partial x_2} \right] + \underbrace{\Phi_{22} - \rho\varepsilon_{22} + \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} - \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} + \underbrace{\Phi_{22} - \rho\varepsilon_{22} + \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} - \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} + \underbrace{\Phi_{22} - \rho\varepsilon_{22} + \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'^2}}{k}\varepsilon}_{fk} + \underbrace{\Phi_{22} - \rho\varepsilon_{22} + \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} + \underbrace{\Phi_{22} - \rho\varepsilon_{22} + \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'^2}}{k}\varepsilon}_{fk} + \underbrace{\Phi_{22} - \rho\varepsilon_{22} + \rho\frac{\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2'^2}}{k}\varepsilon}_{fk} - \frac{\rho\overline{v_2$$

An equation is formulated for f, where Φ_{22} is taken from the RSM (see Eq. 32.4)

$$L^2 \frac{\partial^2 f}{\partial x_2^2} - f = -\frac{\Phi_{22}}{k} - \frac{1}{T} \left(\frac{\overline{v_2'^2}}{k} - \frac{2}{3} \right), \quad T \propto \frac{k}{\varepsilon}, \quad L \propto \frac{k^{3/2}}{\varepsilon}$$

$$L^2 \frac{\partial^2 f}{\partial x_2^2} - f = -\frac{\Phi_{22}}{k} - \frac{1}{T} \left(\frac{\overline{v_2'^2}}{k} - \frac{2}{3} \right), \quad T \propto \frac{k}{\varepsilon}, \quad L \propto \frac{k^{3/2}}{\varepsilon}$$

Let's try to understand the f equation.

• Far from the wall
$$\frac{\partial^2 f}{\partial x_2^2} \simeq 0 \Rightarrow -f \to -\frac{\Phi_{22}}{k} - \frac{1}{T} \left(\frac{\overline{v_2'^2}}{k} - \frac{2}{3} \right)$$
 i.e. $f = \frac{\Phi_{22}}{k} - \frac{1}{T} \left(\frac{\overline{v_2'^2}}{k} - \frac{2}{3} \right)$

• Insert this f into the $\overline{v_2'^2}$ equation on the previous slide gives

$$\frac{\partial \rho \bar{v}_1 \overline{v_2'^2}}{\partial x_1} + \frac{\partial \rho \bar{v} \overline{v_2'^2}}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(\mu + \mu_t) \frac{\partial \overline{v_2'^2}}{\partial x_2} \right] + \Phi_{22} - \rho \varepsilon_{22}$$

We see that the $\overline{v_2'^2}$ eq. in the V2F model reverts back to the origonal $\overline{v_2'^2}$ equation. Good. Next, let's see how the *f* equation behaves near the wall.

We formulate a simplified f in one dimension

$$L^2 \frac{\partial^2 f}{\partial x_2^2} - f = -S \tag{34.1}$$

Now solve it (with a 1D finite volume code) for different L and S

Solution of Eq. $\overline{34.1}$ for different L and S

► V2F model. Wall boundary conditions Near the wall, the $\overline{v_2'^2}$ equation reads (viscos, dissipation and f source term)

$$0 = \nu \frac{\partial^2 \overline{v_2'^2}}{\partial x_2^2} + fk - \frac{\overline{v_2'^2}}{k} \varepsilon$$

Replace k using $\varepsilon = 2\nu k/x_2^2$ gives

$$0 = \frac{\partial^2 \overline{v_2'^2}}{\partial x_2^2} + \frac{f \varepsilon x_2^2}{2\nu^2} - \frac{2 \overline{v_2'^2}}{x_2^2}$$

Assume $f \simeq \text{ const}$ and $\varepsilon \simeq \text{ const}$ as $x_2 \to 0$.

$$\overline{v_2'^2} = Ax_2^2 + \frac{B}{x_2} - \varepsilon f \frac{x_2^4}{20\nu^2}$$

Since $\overline{v_2'^2} = \mathcal{O}(x_2^4)$ as $x_2 \to 0$, A = B = 0, we get the b.c.

$$f = -\frac{20\nu^2}{\varepsilon} \frac{\overline{v_2'^2}}{x_2^4}$$

► Above, we have presented the V2F model in 1D. In 3D, it reads

$$\frac{\partial \rho \bar{v}_j v^2}{\partial x_j} = \frac{\partial}{\partial x_j} \left[(\mu + \mu_t) \frac{\partial v^2}{\partial x_j} \right] + \rho f k - \rho \frac{v^2}{k} \varepsilon$$
$$L^2 \frac{\partial^2 f}{\partial x_j \partial x_j} - f = -\frac{\Phi_{22}}{\rho k} - \frac{1}{T} \left(\frac{v^2}{k} - \frac{2}{3} \right)$$
$$\frac{\Phi_{22}}{\rho k} = \frac{C_1}{T} \left(\frac{2}{3} - \frac{v^2}{k} \right) + C_2 \frac{P^k}{k}$$

• P^k in the expression of Φ_{22} explains why v^2 is equal to $\overline{v_2'^2}$, $\overline{v_1'^2}$ or $\overline{v_3'^2}$ depending on orientation of the nearest wall (the largest velocity gradient).

See Section 16, The SST Model

- ► The SST (<u>Shear Stress Transport</u>) model
- 1. Combination of a $k \omega$ model (in the inner boundary layer) and $k \varepsilon$ model (in the outer region of the boundary layer as well as outside of it)
 - (a) $k \omega$ is good for near-wall turbulence (well-defined b.c., no additional near-wall terms)
 - (b) $k \omega$ has a problem with far-field boundary conditions; $k \varepsilon$ can handle these b.c.
- 2. A limitation of the shear stress in adverse pressure gradient regions

 $\blacktriangleright \omega = \varepsilon/(\beta^* k) = \varepsilon/(c_\mu k)$. Use this to obtain an eq. for ω

$$\frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{\varepsilon}{\beta^* k}\right) = \frac{1}{\beta^* k} \frac{d\varepsilon}{dt} - \frac{\varepsilon}{\beta^* k^2} \frac{dk}{dt} = \frac{1}{\beta^* k} \frac{d\varepsilon}{dt} - \frac{\omega}{k} \frac{dk}{dt}$$

Production term

$$P_{\omega} = \frac{1}{\beta^* k} P_{\varepsilon} - \frac{\omega}{k} P^k = \frac{1}{\beta^* k} C_{\varepsilon 1} \frac{\varepsilon}{k} P^k - \frac{\omega}{k} P^k = (C_{\varepsilon 1} - 1) \frac{\omega}{k} P^k$$

Destruction term

$$\Psi_{\omega} = \frac{1}{\beta^* k} \Psi_{\varepsilon} - \frac{\omega}{k} \Psi_k = \frac{1}{\beta^* k} C_{\varepsilon 2} \frac{\varepsilon^2}{k} - \frac{\omega}{k} \varepsilon = (C_{\varepsilon 2} - 1)\beta^* \omega^2$$

$$\frac{d\omega}{dt} = \frac{1}{\beta^* k} \frac{d\varepsilon}{dt} - \frac{\omega}{k} \frac{dk}{dt}$$

► Viscous diffusion term

$$D_{\omega}^{\nu} = \frac{\nu}{\beta^* k} \frac{\partial^2 \varepsilon}{\partial x_j^2} - \frac{\nu \omega}{k} \frac{\partial^2 k}{\partial x_j^2} = \frac{\nu}{k} \frac{\partial^2 \omega k}{\partial x_j^2} - \frac{\nu \omega}{k} \frac{\partial^2 k}{\partial x_j^2}$$
$$= \frac{\nu}{k} \left[\frac{\partial}{\partial x_j} \left(\omega \frac{\partial k}{\partial x_j} + k \frac{\partial \omega}{\partial x_j} \right) \right] - \nu \frac{\omega}{k} \frac{\partial^2 k}{\partial x_j^2} = \frac{2\nu}{k} \frac{\partial \omega}{\partial x_j} \frac{\partial k}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial \omega}{\partial x_j} \right)$$

The ω eq. (which really is an ε eq. when the $k - \varepsilon$ constants are used) reads

$$\frac{\partial}{\partial x_j}(\bar{v}_j\omega) = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_\omega}\right) \frac{\partial \omega}{\partial x_j} \right] + \alpha \frac{\omega}{k} P^k - \beta \omega^2 + \frac{2}{k} \left(\nu + \frac{\nu_t}{\sigma_\varepsilon}\right) \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}$$

$$\alpha = C_{\varepsilon 1} - 1 = 0.44, \beta = (C_{\varepsilon 2} - 1)\beta^* = 0.0828$$

Inner region: $k - \omega$ coefficients; outer region: $k - \varepsilon$ coefficients. Blending function reads

$$F_1 = \tanh(\xi^4), \quad \xi \propto \frac{L_t}{x_n} = \frac{k^{1/2}}{\omega x_n}$$

 $\triangleright F_1 = 1$ in the near-wall region and $F_1 = 0$ in the outer region. The β -coefficient, e.g., reads

$$\beta_{SST} = F_1 \beta_{k-\omega} + (1 - F_1) \beta_{k-\varepsilon}$$

SST model. Limitation of shear stress in adverse pressure gradient flow (APG).

The $k - \omega$ gives too high shear stress. The JK model $-\overline{v'_1v'_2} = a_1k$ $(a_1 = c_{\mu}^{1/2})$ gives good results.

Two formulas for ν_t . $\triangleright \Omega = \partial \bar{v}_1 / \partial x_2$. \triangleright Formulate JK model with Boussinesq.

JK Model:
$$\nu_t = \frac{-\overline{\nu_1' \nu_2'}}{\Omega} = \frac{a_1 k}{\Omega}$$

 $k - \omega \mod$: $\nu_t = \frac{k}{\omega} = \frac{a_1 k}{a_1 \omega}$
 $\begin{cases}
\nu_t = \frac{a_1 k}{\max(a_1 \omega, F_2 \Omega)} \\
\max(a_1 \omega, F_2 \Omega)
\end{cases}$

 F_2 is one near walls and zero elsewhere

► The purpose of the underlined term above is:

- the second part, $F_2\Omega$ (the Johnson-King model), should be used in APG flow (where $P^k > \varepsilon$)
- the first part, $a_1\omega$ (the usual Boussinesq model), should be in the remaining part of the flow domain
- F_2 makes sure that the Johnson-King model is used only near the wall

► Adverse pressure gradient flow (APG).

Flow around an airfoil. Angle of attack, $\alpha = 13^{\circ}$. Pressure contours.

35 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 6

¶See Section 5, Turbulence

 $v_i = \bar{v}_i + v'_i$, is irregular and consists of eddies of different size increases diffusivity

Difference between a laminar and turbulent boundary later

▶occurs at large Reynolds numbers. Pipes: $Re_D = \frac{VD}{\nu} \simeq 2300$; boundary layers: $Re_x = \frac{Vx}{\nu} \simeq 500\,000$.

▶ is three-dimensional

▶ is dissipative. Kinetic energy, $v'_i v'_i / 2$, in the small (dissipative) eddies are transformed into thermal energy (increases temperature).

spectral transfer of kinetic energy per unit time = ε

$$\ell_{\eta}$$

$$\ell_{\eta}$$

$$dissipative, small scales$$

$$large scales$$

$$large$$

We want to characterize the dissipation of kinetic energy at small scales in two relevant quantities: ε, ν

$$v_{\eta} = \nu^{a} \varepsilon^{b}$$

$$[m/s] = [m^{2}/s] [m^{2}/s^{3}]$$

$$[m] \quad 1 = 2a + 2b$$

$$[s] \quad -1 = -a - 3b$$

This gives the Kolmogorov scales, a = b = 1/4

$$v_{\eta} = (\nu \varepsilon)^{1/4}, \, \ell_{\eta} = \left(\frac{\nu^3}{\varepsilon}\right)^{1/4}, \, \tau_{\eta} = \left(\frac{\nu}{\varepsilon}\right)^{1/2}$$

At the next slide, we will look at energy spectra. It is based on Fourier series.

Any periodic function, f, can be expressed as a Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(\kappa_n x) + b_n \sin(\kappa_n x)), \quad f = v', \quad \kappa_n = \frac{n\pi}{L}$$
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\kappa_n x) dx, \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\kappa_n x) dx$$

Parseval's formula states that the kinetic energy can be computed as

$$\int_{-L}^{L} v'^2(x) dx = \frac{L}{2} a_0^2 + L \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$
(35.1)

► Hence, you can compute the kinetic energy by:

- integrating in Fourier (wavenumber) space (right-hand side)
- or integrating in physical space over all fluctuations (left-hand side)

Spectrum for turbulent kinetic energy, k

 $\blacktriangleright E(\kappa_n) \propto a_n^2 + b_n^2$, see the Fourier series on the previous slide \blacktriangleright

$$k = \int_0^\infty E(\kappa) d\kappa = \sum_0^\infty E(\kappa_n) \Delta \kappa_n$$
(35.2)

▶ which corresponds to Parseval's formula

► The turbulence spectrum is divided into three regions:

I. Large eddies carry most of the turb. kinetic energy. They extract energy from the mean flow, P^k .

II. Inertial subrange. Independent of both large eddies (mean flow) and viscosity. Isotropic eddies.

II. Dissipation range. Isotropic eddies ($\overline{v'_i v'_j} = c_1 \delta_{ij}$) described by the Kolmogorov scales.

► Turb. kinetic energy in Region II

► Turb. kinetic energy in Region II depends on: $\triangleright \varepsilon$ and $\triangleright eddy size 1/\kappa \text{ Recall: } \triangleright k = \int_0^\infty E(\kappa) d\kappa$

$$E = \kappa^{a} \quad \varepsilon^{b}$$

$$[m^{3}/s^{2}] = [1/m] \quad [m^{2}/s^{3}$$

$$[m] \quad 3 = -a+2b$$

$$[s] \quad -2 = -3b$$

$$b = 2/3, a = -5/3 \text{ so that} \qquad \blacktriangleright E(\kappa) = C_{K} \varepsilon^{\frac{2}{3}} \kappa^{-\frac{5}{3}}$$

This is called von Kármán spectrum or -5/3 law

Energy transfer from eddy-to-eddy

Find relation between largest and smallest scales: $Re = v_0\ell_0/\nu$, $v_\eta = (\nu\varepsilon)^{1/4}$, $\varepsilon = v_0^3/\ell_0$

$$\begin{aligned} \frac{v_0}{v_\eta} &= (\nu \varepsilon)^{-1/4} v_0 = \left(\nu v_0^3 / \ell_0\right)^{-1/4} v_0 = \left(v_0 \ell_0 / \nu\right)^{1/4} = Re^{1/4} \\ \frac{\ell_0}{\ell_\eta} &= \left(\frac{\nu^3}{\varepsilon}\right)^{-1/4} \ell_0 = \left(\frac{\nu^3 \ell_0}{v_0^3}\right)^{-1/4} \ell_0 = \left(\frac{\nu^3}{v_0^3 \ell_0^3}\right)^{-1/4} = Re^{3/4} \\ \frac{\tau_o}{\tau_\eta} &= \left(\frac{\nu \ell_0}{v_0^3}\right)^{-1/2} \tau_0 = \left(\frac{v_0^3}{\nu \ell_0}\right)^{1/2} \frac{\ell_0}{v_0} = \left(\frac{v_0 \ell_0}{\nu}\right)^{1/2} = Re^{1/2} \end{aligned}$$

► We do a DNS (Direct Numerical Simulation) at a certain Reynolds number.

▶Now if we double the Re number, how much finer must the grid be?

$$\frac{2^{3/4}}{x_1 \, dir} \times \frac{2^{3/4}}{x_2 \, dir} \times \frac{2^{3/4}}{x_3 \, dir} \times \frac{2^{1/2}}{time} = 2^{11/4} \simeq 7$$

► Hence, doubling the Re number requires 7 times more computational effort

► This explains why DNS (Direct Numerical Simulation) is too expensive at high Re numbers:

► Why dissipation only at small scale/eddies?

• Let's show that $\varepsilon = \nu \frac{\partial v'_i}{\partial x_j} \frac{\partial v'_i}{\partial x_j}$ gets larger the smaller the scales/eddies.

• The velocity gradient for an eddy can be estimated as

$$\left(rac{\partial v}{\partial x}
ight)_{\kappa} \propto rac{v_{\kappa}}{\ell_{\kappa}} \propto \left(v_{\kappa}^2
ight)^{1/2} \kappa$$

Energy spectrum: recall that k for wavenumber κ is $k \propto E \Delta \kappa$ (see Eq. 35.2). We get

$$E(\kappa) \propto k_{\kappa}/\kappa \propto v_{\kappa}^2/\kappa \propto \kappa^{-5/3} \Rightarrow v_{\kappa}^2 \propto \kappa^{-2/3}$$

We get

$$\left(\frac{\partial v}{\partial x}\right)_{\kappa} \propto \left(\kappa^{-2/3}\right)^{1/2} \kappa \propto \kappa^{-1/3} \kappa \propto \kappa^{2/3}$$

Hence ε increases as κ increases, i.e. ε gets larger for small eddies.

36 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 7

See Section 18, Large Eddy Simulations in RANS:

$$\langle \Phi \rangle = \frac{1}{2T} \int_{-T}^{T} \Phi(t) dt, \quad \Phi = \langle \Phi \rangle + \Phi', \quad \langle \Phi' \rangle = 0 \quad \Rightarrow \langle \Phi \rangle = \langle \langle \Phi \rangle \rangle$$

in LES:

$$\bar{\Phi}(x,t) = \frac{1}{\Delta x} \int_{x-0.5\Delta x}^{x+0.5\Delta x} \Phi(\xi,t) d\xi, \quad \Phi = \bar{\Phi} + \Phi'', \quad \overline{\Phi''} \neq 0 \quad \Rightarrow \overline{\bar{\Phi}} \neq \bar{\Phi}$$

Momentum equations in DNS:

$$\frac{\partial v_i}{\partial t} + \frac{\partial}{\partial x_j} (v_i v_j) = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_j \partial x_j}$$
(36.1)

Momentum equations in LES:

$$\frac{\partial \bar{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{v}_i \bar{v}_j \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}, \quad \tau_{ij} = \overline{v_i v_j} - \bar{v}_i \bar{v}_j \tag{36.2}$$

Momentum equations in LES:

$$\frac{\partial \bar{v}_i}{\partial t} + \frac{\partial}{\partial x_j} (\bar{v}_i \bar{v}_j) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}, \quad \tau_{ij} = \overline{v_i v_j} - \bar{v}_i \bar{v}_j \tag{36.3}$$

► Filter pressure gradient in Eq. 36.1

$$\frac{\overline{\partial n}}{\overline{\partial x_i}} = \frac{1}{v} \frac{f}{J_V} \frac{\partial n}{\partial x_i} = \frac{2}{v} \frac{\partial f}{\partial x_i} \frac{f}{v} \frac{\partial n}{\partial x_i} \frac{\partial n}{\partial x_i}$$

$$\frac{\partial p}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{1}{V} \int_V p dV \right) + \mathcal{O}\left((\Delta x)^2 \right) = \frac{\partial \bar{p}}{\partial x_i} + \mathcal{O}\left((\Delta x)^2 \right)$$

► Filter non-linear term in Eq. 36.1

$$\frac{\overline{\partial v_i v_j}}{\partial x_j} = \frac{\partial}{\partial x_j} (\overline{v_i v_j}) + \mathcal{O}\left((\Delta x)^2 \right)$$

Left side :
$$\frac{\partial}{\partial x_j} (\overline{v_i v_j}) - \frac{\partial}{\partial x_j} (\overline{v_i v_j}) + \frac{\partial}{\partial x_j} (\overline{v_i v_j}) = \frac{\partial}{\partial x_j} (\overline{v_i v_j})$$

Right side : $-\frac{\partial}{\partial x_j} (\overline{v_i v_j}) + \frac{\partial}{\partial x_j} (\overline{v_i v_j}) = -\frac{\partial \tau_{ij}}{\partial x_j}$

$$\blacktriangleright \frac{\partial \bar{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{v}_i \bar{v}_j \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}, \quad \tau_{ij} = \overline{v_i v_j} - \bar{v}_i \bar{v}_j$$

Filtering twice (used for turbulence modeling)

See Section 18.3, Resolved & SGS scales (GS & SGS)

 $\kappa \leq \kappa_c$: <u>G</u>rid (=resolved) <u>S</u>cales; $\kappa > \kappa_c$ = <u>S</u>ub-<u>G</u>rid <u>S</u>cales

¶See Section 18.5, Highest resolved wavenumbers

► A Fourier series (see Appendix H)

$$v'_1(x) = \sum_{n=-\infty}^{\infty} c_n \exp(i\kappa_n x_1))$$
 only symmetric part, i.e. real

 v'_2 vs. x_2/L . —: term 1 (m = 1); --: term 2 (m = 2); --: term 3 (m = 3); \circ : term 4 (m = 4); —: v'_2 Matlab code is given in Section I.3.

We construct v'_2 as a sum of four Fourier components

$$v_2'(x_2) = b_1 \cos\left(\frac{2\pi}{L/1}x_2\right) + b_2 \cos\left(\frac{2\pi}{L/2}x_2\right) + b_3 \cos\left(\frac{2\pi}{L/3}x_2\right) + b_4 \cos\left(\frac{2\pi}{L/4}x_2\right)$$

► On the previous slide, we showed a couple of different wave number (Fourier) modes.

 $v_1' = \sin(\kappa_c x_1)$

How large wave numbers (i.e. how short wavelengths) can we resolve in an LES?

two cells : $\kappa_c 2\Delta x_1 = 2\pi \Rightarrow \kappa_c = 2\pi/(2\Delta x_1) = \pi/\Delta x_1$ four cells : $\kappa_c 4\Delta x_1 = 2\pi \Rightarrow \kappa_c = 2\pi/(4\Delta x_1) = \pi/(2\Delta x_1)$ See Section 18.6, Subgrid modelSmagorinsky Subgrid model

$$\tau_{ij} - \frac{1}{3} \delta_{ij} \tau_{kk} = -\nu_{sgs} \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) = -2\nu_{sgs} \bar{s}_{ij}$$

$$\nu_{sgs} \propto v' \ell \propto \left(\Delta x_1 \frac{\partial \bar{v}_1}{\partial x_1} \right) \Delta x_1 \propto \Delta x_1^2 \left(\frac{\partial \bar{v}_1}{\partial x_1} \right) \propto (C_S \Delta)^2 \sqrt{2\bar{s}_{ij} \bar{s}_{ij}} = (C_S \Delta)^2 |\bar{s}|$$

$$\Delta = (\Delta V_{IJK})^{1/3}$$

 $|\bar{s}|$ stems from the production term in the k eq., $|\bar{s}^2| = 2\bar{s}_{ij}\bar{s}_{ij}$

¶See Section 18.21, One-equation k_{sgs} model

$$\frac{\partial k_{sgs}}{\partial t} + \frac{\partial}{\partial x_j} (\bar{v}_j k_{sgs}) = \frac{\partial}{\partial x_j} \left[(\nu + \nu_{sgs}) \frac{\partial k_{sgs}}{\partial x_j} \right] + P_{k_{sgs}} - \varepsilon$$
$$\nu_{sgs} \propto \ell v' = c_k \Delta k_{sgs}^{1/2}, \quad P_{k_{sgs}} = 2\nu_{sgs} \bar{s}_{ij} \bar{s}_{ij}, \quad \varepsilon \propto \frac{v'^3}{\ell} = C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta}$$

See Section 18.8, Energy path

See Section 18.9, SGS kinetic energy

$$v_{i} = \langle v_{i} \rangle + v_{i}', \quad v_{i} = \bar{v}_{i} + v_{i}'' = \langle \bar{v}_{i} \rangle + \bar{v}_{i}' + v_{i}''$$

$$k \equiv \frac{1}{2} \langle v_{i}' v_{i}' \rangle = \int_{0}^{\infty} E(\kappa) d\kappa, \quad k_{sgs} \equiv \frac{1}{2} \langle v_{i}'' v_{i}'' \rangle = \int_{\kappa_{c}}^{\infty} E(\kappa) d\kappa$$

$$\bar{k} \equiv \frac{1}{2} \langle \bar{v}_{i}' \bar{v}_{i}' \rangle = \int_{0}^{\kappa_{c}} E(\kappa) d\kappa, \quad \bar{K} \equiv \frac{1}{2} \langle \bar{v}_{i} \rangle \langle \bar{v}_{i} \rangle$$

37 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 8

See Section 18.11, The dynamic model

The dynamic model. C is computed. Test filter, $\widehat{\Delta} = 2\Delta$

Control volume for grid and test filter.

First, grid and test filter the Navier-Stokes (DNS)

$$\frac{\partial \widehat{v}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\widehat{v_{i}} \widehat{v_{j}} \right) = -\frac{1}{\rho} \frac{\partial \widehat{p}}{\partial x_{i}} + \nu \frac{\partial^{2} \widehat{v}_{i}}{\partial x_{j} \partial x_{j}}$$
Left side : $\frac{\partial}{\partial x_{j}} \left(\widehat{v_{i}} \widehat{v_{j}} \right) - \frac{\partial}{\partial x_{j}} \left(\widehat{v_{i}} \widehat{v_{j}} \right) + \frac{\partial}{\partial x_{j}} \left(\widehat{v}_{i} \widehat{v}_{j} \right) = \frac{\partial}{\partial x_{j}} \left(\widehat{v}_{i} \widehat{v}_{j} \right)$
Right side : $-\frac{\partial}{\partial x_{j}} \left(\widehat{v_{i}} \widehat{v_{j}} \right) + \frac{\partial}{\partial x_{j}} \left(\widehat{v}_{i} \widehat{v}_{j} \right)$

► We get

$$\frac{\partial \widehat{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\widehat{v}_i \widehat{v}_j \right) = -\frac{1}{\rho} \frac{\partial \widehat{p}}{\partial x_i} + \nu \frac{\partial^2 \widehat{v}_i}{\partial x_j \partial x_j} - \frac{\partial T_{ij}}{\partial x_j}, \quad T_{ij} = \widehat{v_i v_j} - \widehat{v}_i \widehat{v}_j \tag{37.1}$$

$$\frac{\partial \widehat{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\widehat{v}_i \widehat{v}_j \right) = -\frac{1}{\rho} \frac{\partial \widehat{p}}{\partial x_i} + \nu \frac{\partial^2 \widehat{v}_i}{\partial x_j \partial x_j} - \frac{\partial T_{ij}}{\partial x_j}, \quad T_{ij} = \widehat{v_i v_j} - \widehat{v}_i \widehat{v}_j \tag{37.1}$$

Second, we test filter the LES equations

$$\frac{\partial \overline{v}_{i}}{\partial t} + \frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}} = -\frac{1}{\rho}\frac{\partial \overline{p}}{\partial x_{i}} + \nu\frac{\partial^{2}\overline{v}_{i}}{\partial x_{j}\partial x_{j}} - \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}}$$
Left side : $\frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}} - \frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}} + \frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}} = \frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}}$
Right side : $-\frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}} + \frac{\partial \overline{v}_{i}\overline{v}_{j}}{\partial x_{j}}$

$$\frac{\partial \widehat{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\widehat{v}_i \widehat{v}_j \right) = -\frac{1}{\rho} \frac{\partial \widehat{p}}{\partial x_i} + \nu \frac{\partial^2 \widehat{v}_i}{\partial x_j \partial x_j} - \frac{\partial \widehat{\tau}_{ij}}{\partial x_j} - \frac{\partial \mathcal{L}_{ij}}{\partial x_j}$$
(37.2)

Identification of Eqs. 37.1 and 37.2 gives

$$T_{ij} = \overline{v_i}\overline{v_j} - \overline{v}_i\overline{v}_j + \overline{\tau}_{ij} = \mathcal{L}_{ij} + \overline{\tau}_{ij}, \quad \frac{1}{3}\delta_{ij}T_{kk} = \frac{1}{3}\delta_{ij}\mathcal{L}_{kk} + \frac{1}{3}\delta_{ij}\overline{\tau}_{kk}$$
(37.3)

$$T_{ij} - \frac{1}{3}\delta_{ij}T_{kk} + \hat{\tau}_{ij} - \frac{1}{3}\delta_{ij}\hat{\tau}_{kk} = \mathcal{L}_{ij} - \frac{1}{3}\delta_{ij}\mathcal{L}_{kk}$$
(37.4)

Smagorinsky model for both grid and test level SGS stresses:

$$\tau_{ij} - \frac{1}{3} \delta_{ij} \tau_{kk} = -2C\Delta^2 |\bar{s}| \bar{s}_{ij}$$
(37.5)

$$T_{ij} - \frac{1}{3}\delta_{ij}T_{kk} = -2C\widehat{\Delta}^2 |\widehat{s}|\widehat{s}_{ij}$$
(37.6)

where

$$\widehat{s}_{ij} = \frac{1}{2} \left(\frac{\partial \widehat{v}_i}{\partial x_j} + \frac{\partial \widehat{v}_j}{\partial x_i} \right), \ |\widehat{s}| = \left(2\widehat{s}_{ij}\widehat{s}_{ij} \right)^{1/2}$$

► Three equations, three unknowns!

► Eqs. 37.5. 37.6 into Eq. 37.4 gives

$$\mathcal{L}_{ij} - \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} = -2 \left(\mathbf{C} \widehat{\Delta}^2 | \widehat{s} | \widehat{s}_{ij} - \mathbf{C} \Delta^2 | \overline{s} | \overline{s}_{ij} \right)$$

► We need to yank C out of the test filter; ► If not, it's very difficult to solve for C. ► We get

$$\mathcal{L}_{ij} - \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} = -2C \left(\widehat{\Delta}^2 |\widehat{s}| \widehat{s}_{ij} - \widehat{\Delta}^2 |\overline{s}| \overline{s}_{ij} \right)$$

$$\mathcal{L}_{ij} - \frac{1}{3}\delta_{ij}\mathcal{L}_{kk} + 2C\left(\Delta^2 |\widehat{s}|\widehat{s}_{ij} - \Delta^2 \widehat{|\overline{s}|\overline{s}_{ij}}\right) = 0$$

$$M_{ij}$$

$$\mathcal{L}_{ij} - \frac{1}{3}\delta_{ij}\mathcal{L}_{kk} + 2CM_{ij} = 0 \tag{37.7}$$

This cannot be satisfied for all $i, j \ge$ Least-square problem:

$$Q = \left(\mathcal{L}_{ij} - \frac{1}{3}\delta_{ij}\mathcal{L}_{kk} + 2CM_{ij}\right)^2$$

Find a minimum of Q which best satisfies Eq. 37.7 for all i, j

$$\frac{\partial Q}{\partial C} = 4M_{ij} \left(\mathcal{L}_{ij} - \frac{1}{3} \delta_{ij} \mathcal{L}_{kk} + 2CM_{ij} \right) = 4M_{ij} \left(\mathcal{L}_{ij} + 2CM_{ij} \right) = 0$$
(37.8)

since $\frac{1}{3}\delta_{ij}\mathcal{L}_{kk}M_{ij} = \frac{1}{3}\mathcal{L}_{kk}M_{ii} = 0$ since $\widehat{s}_{ii} = \overline{s}_{ii} = 0$ thanks to continuity.

Eq. 37.8: Minimum or maximunm?

► $\partial^2 Q / \partial C^2 = 8M_{ij}M_{ij} > 0$ ► Hence, minimum (fortunately)

$$\frac{\partial Q}{\partial C} = 4M_{ij} \left(\mathcal{L}_{ij} + 2CM_{ij} \right) = 0$$

►We get

 $C = -\frac{\mathcal{L}_{ij}M_{ij}}{2M_{ij}M_{ij}}$, stability problems: needs smoothing

$$\widehat{\boldsymbol{v}}_{P} = \frac{1}{2\Delta x} \int_{W}^{E} \bar{\boldsymbol{v}} dx = \frac{1}{2\Delta x} \left(\int_{W}^{T} \bar{\boldsymbol{v}} dx + \int_{P}^{E} \bar{\boldsymbol{v}} dx \right)$$
$$= \frac{1}{2\Delta x} \left(\bar{\boldsymbol{v}}_{w} \Delta x + \bar{\boldsymbol{v}}_{e} \Delta x \right) = \frac{1}{2} \left(\frac{\bar{\boldsymbol{v}}_{W} + \bar{\boldsymbol{v}}_{P}}{2} + \frac{\bar{\boldsymbol{v}}_{P} + \bar{\boldsymbol{v}}_{E}}{2} \right) = \frac{1}{4} \left(\bar{\boldsymbol{v}}_{W} + 2\bar{\boldsymbol{v}}_{P} + \bar{\boldsymbol{v}}_{E} \right)$$
$$C = -\frac{\mathcal{L}_{ij}M_{ij}}{2M_{ij}M_{ij}}, \quad \nu_{sgs} = C\Delta^2 |\bar{s}|$$

► Is C positive? ► Do we want it to stay positive? ► Limits on C?

$$\nu_{tot} = \nu + \nu_{sgs} = \nu + C\Delta^2 |\bar{s}| > 0 \quad \Rightarrow \nu_{sgs} > -\nu$$

$$\varepsilon_{sgs} = 2\nu_{sgs}\bar{s}_{ij}\bar{s}_{ij} = \varepsilon_{sgs}^+ + \varepsilon_{sgs}^-$$

See Section 18.13, Stresses on grid, test and intermediate level

See Section 18.20, Numerical method

$$\bar{v}_{I} \leftarrow I + 1$$

$$I - 1 \qquad I + 1$$

$$\bar{v}_{I} \left(\frac{\partial \bar{v}}{\partial x}\right)_{exact} = \bar{v}_{I} \left(\frac{\bar{v}_{I} - \bar{v}_{I-1}}{\Delta x} + \mathcal{O}\left(\Delta x\right)\right)$$
(37.9)

$$\bar{v}_{I-1} = \bar{v}_I - \Delta x \left(\frac{\partial \bar{v}}{\partial x}\right)_I + \frac{1}{2} (\Delta x)^2 \left(\frac{\partial^2 \bar{v}}{\partial x^2}\right)_I + \mathcal{O}\left((\Delta x)^3\right)$$
(37.10)

▶ Insert Eq. 37.9 into Eq. 37.9

$$\bar{v}\left(\frac{\partial\bar{v}}{\partial x}\right)_{exact} = \bar{v}\frac{\partial\bar{v}}{\partial x} - \frac{1}{2}\Delta x\bar{v}\frac{\partial^2\bar{v}}{\partial x^2} + \bar{v}\mathcal{O}\left((\Delta x)^2\right)$$

 $\blacktriangleright \Delta x \bar{v}/2$ acts as an additional numerical viscosity

► The total diffusion now consists of

diffusion term =
$$\frac{\partial}{\partial x} \left\{ (\nu + \nu_{sgs} + \nu_{num}) \frac{\partial \bar{v}}{\partial x} \right\}$$

And the total dissipation

$$\varepsilon_{tot} = 2(\nu + \nu_{sgs} + \nu_{num})\bar{s}_{ij}\bar{s}_{ij}$$

38 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 9

¶See Section 18.15, Scale-similarity Models

$$\tau_{ij} = \overline{v_i v_j} - \overline{v}_i \overline{v}_j = \overline{(\overline{v}_i + v_i'')(\overline{v}_j + v_j'')} - \overline{v}_i \overline{v}_j$$
$$= \underbrace{(\overline{v}_i \overline{v}_j - \overline{v}_i \overline{v}_j)}_{L_{ij}} + \underbrace{\left[\overline{v}_i v_j'' + \overline{v}_j v_i''\right]}_{C_{ij}} + \underbrace{\overline{v}_i'' v_j''}_{R_{ij}}$$

 $\triangleright C_{ij}$ denotes <u>scale-similar</u> stresses

$$v_i = \overline{v}_i + v_j'' \quad \Rightarrow \overline{v_j''} = \overline{v}_i - \overline{\overline{v}}_i$$

► Scale-similarity model

$$C_{ij}^{M} = c_r (\bar{v}_i \bar{v}_j - \bar{\bar{v}}_i \bar{\bar{v}}_j), \quad R_{ij} = 0$$
(38.1)

The $C_{ij} = \overline{v_i v_j''} + \overline{v_j v_i''}$ and $L_{ij} = \overline{v_i \overline{v_j}} - \overline{v_i \overline{v_j}}$ stresses are not Galilean invariant (but $C_{ij} + L_{ij}$ is).

► This is shown in an Appendix in the eBook.

See Section 18.16, The Bardina Model

The Bardina model reads (since C_{ij}^M was not sufficiently dissipative, a Smagorinsky model is added)

$$C_{ij}^{M} = c_r(\overline{v_i}\overline{v_j} - \overline{v_i}\overline{v_j}), \quad L_{ij} = \overline{v_i}\overline{v_j} - \overline{v_i}\overline{v_j}, \quad R_{ij}^{M} = -2C_S^2\Delta^2|\overline{s}|\overline{s_{ij}}$$
 This is called a mixed model

► The Bardina model is not Galielan invariant

Germano, proposed redefined terms in the Bardina Model (which are Galielan invariant)

$$\tau_{ij}^{m} = \tau_{ij} = C_{ij}^{m} + L_{ij}^{m} + R_{ij}^{m}$$

$$L_{ij}^{m} = c_{r} \left(\overline{v_{i}} \overline{v_{j}} - \overline{v}_{i} \overline{v}_{j} \right)$$

$$C_{ij}^{m} = 0$$

$$R_{ij}^{m} = R_{ij} = \overline{v_{i}'' v_{j}''}$$

The modified Leonard stresses is the same as the "unmodified" one plus the modeled cross term C_{ij}

¶See Section 18.22, Smagorinsky model derived from the k_{sgs} equation

• Small isotropic scales: production = dissipation (convection and diffusion are negligible)

$$P_{k_{sgs}} = 2\nu_{sgs}\bar{s}_{ij}\bar{s}_{ij} = \nu_{sgs}|\bar{s}|^2 = \varepsilon$$

Replace ε by ν_{sgs} and Δ .

$$\nu_{sgs} = \varepsilon^a (C_S \Delta)^b \quad \Rightarrow a = 1/3, b = 4/3 \quad \Rightarrow \nu_{sgs} = (C_S \Delta)^{4/3} \varepsilon^{1/3} \quad \Rightarrow \varepsilon = \nu_{sgs}^3 \Delta^{-4}/C_S$$

which gives

$$\nu_{sgs} = (C_s \Delta)^2 |\bar{s}|$$

- See Section 18.26, Resolution requirements
- In LES we resolve large scales.
- Near the wall, the "large" scales are not that large
- \Rightarrow very expensive to resolve these "large" scales.

$$\Delta x_1^+ \simeq 100, \quad \Delta x_{2,min}^+ \simeq 1, \quad \Delta x_3^+ \simeq 30$$

- ► There are many ways to estimate resolution (see Assignment 2a & 2b):
- Energy spectra: does they show a -5/3 range or not? NO GOOD
- Ratio between viscous and modelled turbulent viscosity (not recommended in [128, 129]). This quantity does not say much about how good the LES resolution is. It tells us how close the LES is to a DNS.
- Ratio between modeled and total shear stress (recommended in [128, 129]).
- Ratio between modeled and total turbulent kinetic energy (recommended in [205]).
- Ratio of integral lengthscale to cell size.
 - The integral lengthscale is computed from two-point correlations (they are explained below).
 - If the ratio is larger than, say, 16, the resolution is sufficient.
 - This is recommended in [128, 129].
- Ratio of boundary-layer thickness, δ to Δx and Δz . This is a measure of the resolution in the log-law region.

$$\delta/\Delta x_1 = 10 - 20, \quad \delta/\Delta x_3 = 20 - 40, \quad x_2^+ < 1$$

See Section 10.1, Two-point correlations

► The integral lengthscale is computed from two-point correlations which is defined as:

$$B_{11}(x_1^A, x_1^C) = \overline{v_1'(x_1^A)v_1'(x_1^C)}$$

Often, expressed as

$$B_{11}(x_1^A, \hat{x}_1) = \overline{v_1'(x_1^A)v_1'(x_1^A + \hat{x}_1)}$$

where $\hat{x}_1 = x_1^C - x_1^A$ is the separation distance between point A and C.

 $B_{11}(x_1^A, \hat{x}_1) = \overline{v_1'(x_1^A)v_1'(x_1^C)}$. Two-point corr, the largest eddies (thick lines), L_0 .

- When we move point A and C closer to each other, B_{11} increases; when A=C, then $B_{11} = \overline{v'^2}(x_1^A)$
- When C moves further and further away from $A, \Rightarrow B_{11} \rightarrow 0$
- The normalized two-point correlation reads

$$B_{11}^{norm}(x_1^A, \hat{x}_1) = \frac{1}{v_{1,rms}(x_1^A)v_{1,rms}(x_1^A + \hat{x}_1)} \overline{v_1'(x_1^A)v_1'(x_1^A + \hat{x}_1)}$$

• Integral length scale is then computed as: $L_{int} = \int_0^\infty B_{11}^{norm}(\hat{x}_1) d\hat{x}_1$

See Section 10.2, Auto correlation

► Auto correlation is a "two-point correlation in time" which reads

$$B_{11}(t^A, \hat{t}) = \overline{v_1'(t^A)v_1'(t^A + \hat{t})}$$

 $\hat{t} = t^C - t^A$ is time separation between time A and C.

In analogy to L_{int} , the *integral time scale*, T_{int} , is defined

$$T_{int} = \int_0^\infty B_{11}^{norm}(\hat{t}) d\hat{t}$$

▶Integral timescale is used an Assignment 2a for finding time samples that are *independent* (i.e. the time between the samples is at least one integral timescale).

See Section 18.20.1, RANS vs. LES

Numerical method: RANS vs. LES

	RANS	LES
Domain	2D or 3D	always 3D
Time domain	steady or unsteady	always unsteady
Space discretization	2nd order upwind	central differencing
Time discretization	1st order	2nd order (e.g. C-N)
Turbulence model	\geq two-equations	zero- or one-equation

Start and end time averaging. $t_{end} - t_{start} \simeq 100 H / \langle \bar{v} \rangle_{center}$

- Say that we want to store 3D inst. fields \Rightarrow we can post-proc, e.g., two-point corr anywhere
- Then we want to store as few 3D fields as possible (otherwise our disk space will quickly be saturated)
- Answer: store only every T_{int} second: 100 independent samples gives a statistical error 0.01

See Section 19, URANS: Unsteady RANS

► The usual Reynolds decomposition is employed note that we now change notation (again!)

$$\bar{v}(t) = \frac{1}{2T} \int_{t-T}^{t+T} v(t) dt, \quad v = \bar{v} + v''$$

► URANS eqns=RANS, but with the unsteady term retained

- Decomposition of velocities: $v = \bar{v} + v'' = \langle \bar{v} \rangle + \bar{v}' + v''$.
- In theory, T should be \ll resolved time scale. This is called "scale separation".
- In practice, it is seldom satisfied.

- RANS turbulence models are used in URANS
- We should choose a model with small dissipation (i.e. small ν_t) in order to not kill/dampen resolved turbulence.
- Reynolds-stress turbulence models best (but very expensive).
- The EARSM (Section 11.11) and non-linear eddy-viscosity models (Section 14) also seem to give less dissipation. Probably because the weaker connection between \bar{s}_{ij} and $\bar{v}'_i v'_j$ which reduces P^k .
- Modelled dissipation (turbulence model) and numerical dissipation (discretization scheme) may be of equal importance

See Section 20, DES: Detached-Eddy-Simulations

►DES=Detached Eddy Simulations:►Use RANS near walls and LES away from walls

►S-A one-equation model (RANS) reads

$$\frac{d\rho\tilde{\nu}_t}{dt} = \frac{\partial}{\partial x_j} \left(\frac{\mu + \mu_t}{\sigma_{\tilde{\nu}_t}} \frac{\partial\tilde{\nu}_t}{\partial x_j} \right) + \text{cr. term} + P - C_{w1}\rho f_w \left(\frac{\tilde{\nu}_t}{d} \right)^2, \quad d = x_n$$

Replace d with \tilde{d} :

$$\left(\frac{\tilde{\nu}_t}{d}\right)^2 \Rightarrow$$

$$\tilde{d} = \min\{C_{DES}\Delta, d\}, \quad \Delta = \max\{\Delta x_1, \Delta x_3, \Delta x_3\}$$
(38.2)

► This is the S-A DES one-equation model

¶See Section 20.1, DES based on two-equation models $k - \varepsilon$ RANS

$$C^{k} = D^{k} + P^{k} - \varepsilon, \quad C^{\varepsilon} = D^{\varepsilon} + P^{\varepsilon} - \Psi$$

► $k - \varepsilon$ DES I (modify ε_T)

$$C^{k} = D^{k} + P^{k} - \varepsilon \quad \Rightarrow \quad C^{k} = D^{k} + P^{k} - \varepsilon_{T}, \quad \varepsilon_{T} = \max\left(\varepsilon, C_{\varepsilon} \frac{k^{3/2}}{\Delta}\right), \quad \nu_{t} = C_{\mu} \frac{k^{2}}{\varepsilon}$$

ε_T ↑ in LES region
 ⇒ k ↓ in LES region
 ν_t ↓ in LES region
 ν_t ↓ in LES region
 κ − *ε* DES II (modify *ν_T* and *ε_T*)
 ε_T ε_T ε_T

$$C^{k} = D^{k} + P^{k} - \varepsilon_{T}, \quad C^{\varepsilon} = D^{\varepsilon} + P^{\varepsilon} - \Psi^{\varepsilon}, \quad \ell_{t} = \min\left(C_{\mu}\frac{k^{3/2}}{\varepsilon}, C_{DES}\Delta\right), \quad \nu_{T} = k^{1/2}\ell_{t}$$

 $\triangleright \varepsilon_T \uparrow \text{ in LES region} \quad \triangleright \Rightarrow k \downarrow \text{ in LES region}$

► $\ell_t \downarrow$ in LES region ► $\Rightarrow \nu_t \downarrow$ in LES region

39 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 10

¶See Section 20.2, DES based on the $k - \omega$ SST model $k - \omega$ SST DES (modify $\beta^* k \omega$)

$$C^{k} = D^{k} + P^{k} - F_{DES}\beta^{*}k\omega, \quad F_{DES} = \max\left\{\frac{L_{t}}{C_{DES}\Delta}, 1\right\} = \max\left\{\frac{k^{1/2}}{\beta^{*}\omega C_{DES}\Delta}, 1\right\}$$

Grid (solid lines) and a velocity profile (dotted line). RANS-LES interface: dashed line. $C_{DES} = 0.67$

- Consider the S-A DES (see Eq. 38.2). It may occur that the d switches to LES in the boundary layer because Δx_1 is too small (Δx_3 is usually smaller than Δx_1). Recall: $\Delta = \max{\{\Delta x_1, \Delta x_3, \Delta x_3\}}$
- Hence boundary layer is treated in LES mode with too a coarse mesh ⇒ poorly resolved LES ⇒ inaccurate predictions.
- The left grid above is a good DES mesh because at the RANS-LES interface $\tilde{d} = \min(d, C_{DES}\Delta) = C_{DES}\Delta = C_{DES}\Delta x_1 \simeq \delta$ (see dashed line) \Rightarrow the entire boundary layer is modeled by RANS.
- Right grid is a poor DES grid: $\tilde{d} = \min(d, C_{DES}\Delta) = C_{DES}\Delta x_1 \ll \delta$ (dashed line) \Rightarrow the outer part of the boundary layer is in LES mode (and the LES resolution requirements, $\delta/\Delta x_1 > 10$, is not satisfied)

► The solution is DDES (Delayed DES)

►In DDES

$$F_{DES} = \max\left\{\frac{L_t}{C_{DES}\Delta}, 1\right\}$$

is replaced by

$$F_{DDES} = \max\left\{\frac{L_t}{C_{DES}\Delta}(1 - F_S), 1\right\}$$

where F_S ($F_S = 1$ in the boundary layer) is taken as F_1 or F_2 of the SST model.

 $\blacktriangleright F_S$ is called the shielding function: \blacktriangleright it protects the boundary layer from LES

See Section 21, Hybrid LES-RANS

► DES: The entire boundary layer is modelled with URANS

Hybrid LES-RANS: Only the inner part of the log region is modelled with URANS.

► Hybrid LES-RANS is also called WM-LES (WM=Wall-Modelled)

► One-equation model in both URANS and LES region

$$\frac{\partial k_T}{\partial t} + \frac{\partial}{\partial x_j} (\bar{v}_j k_T) = \frac{\partial}{\partial x_j} \left[(\nu + \nu_T) \frac{\partial k_T}{\partial x_j} \right] + P_{k_T} - C_{\varepsilon} \frac{k_T^{3/2}}{\ell}$$
$$P_{k_T} = 2\nu_T \bar{s}_{ij} \bar{s}_{ij}, \quad \nu_T \propto k^{1/2} \ell$$

► Inner region ($x_2 \le x_{2,ml}$): $\ell \propto \kappa x_2$ ► outer region: $\ell = \Delta$ See Section 22, The SAS model

This is a method to improve URANS. \blacktriangleright Why URANS? \blacktriangleright It does not involve \triangle

If the flow tries to go unsteady in URANS: $\triangleright P^k$ increases

 $\Rightarrow \nu_t$ increases $\triangleright \Rightarrow$ the flow goes back to steady state.

The objective of SAS is to reduce ν_t when the equations want to go into unsteady, resolving turbulence mode (LES mode).

$$L_t \propto \frac{k^{1/2}}{\omega}, \quad L_{vK,3D} = \kappa \frac{|\bar{s}|}{|U''|}, \quad U'' = \left(\frac{\partial^2 \bar{v}_i}{\partial x_j \partial x_j} \frac{\partial^2 \bar{v}_i}{\partial x_k \partial x_k}\right)^{\circ n}$$

$$C^{k} = P^{k} + D^{k} - \beta^{*} k \omega$$

$$C^{\omega} = P^{\omega} + D^{\omega} - \Psi^{\omega} + P_{SAS}, \quad \nu_{t} = \frac{k}{\omega}, \quad P_{SAS} \propto \frac{L_{t}}{L_{vK,3D}}$$

► The von Kármán length scale is used to detect unsteadiness.

- $L_{vK,3D}$ detects fluctuations (i.e. it gets small)
- \Rightarrow the P_{SAS} term increases
- $\Rightarrow \omega$ increases
- \Rightarrow k decreases
- $\Rightarrow \nu_t$ decreases
- \Rightarrow mom.eqns go into (or stay in) unsteady mode
- In URANS (without SAS), resolved fluctuations are damped.

40 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 11

- See Section 23, The PANS Model
- PANS: Partial-Averaging Navier-Stokes. It is a hybrid LES-RANS model based on the $k \varepsilon$ model.
- $f_k = k/k_{tot}$ and $f_{\varepsilon} = \varepsilon/\varepsilon_{tot}$: ratio of modelled to total $k_{tot} = k + k_{res}$, $\varepsilon_{tot} = \varepsilon + \varepsilon_{res}$.
- $f_{\varepsilon} < 1$ means that part of the dissipation is resolved.
 - This occurs only for DNS-like resolution.
 - Hence, in practice $f_{\varepsilon} = 1$

• $0 < f_k \le 1$

- DNS: $f_k \rightarrow 0$
- **– RANS**: $f_k = 1$
- LES: it is in-between $ightarrow 0 < f_k \lesssim 0.5$

Derivation of PANS k equation

• Multiply the RANS k_{RANS} equation ($k_{tot} = k_{RANS} = k + k_{res}$) by f_k

Left side, $f_k k_{tot} = k$ (\bar{V}_j is the RANS velocity, f_k assumed constant)

$$f_k \left\{ \frac{\partial k_{tot}}{\partial t} + \bar{V}_j \frac{\partial k_{tot}}{\partial x_j} \right\} = \frac{\partial k}{\partial t} + \bar{V}_j \frac{\partial k}{\partial x_j} \simeq \frac{\partial k}{\partial t} + \bar{v}_j \frac{\partial k}{\partial x_j}$$

► Right side, diffusion term

$$f_k \left\{ \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_{t,tot}}{\sigma_k} \right) \frac{\partial k_{tot}}{\partial x_j} \right] \right\} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_{t,tot}}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{ku}} \right) \frac{\partial k}{\partial x_j} \right]$$

where $\sigma_{ku} = \sigma_k f_k^2 / f_{\varepsilon}$, $\nu_t = c_\mu k^2 / \varepsilon$, $\nu_{t,tot} = c_\mu k_{tot}^2 / \varepsilon_{tot}$

► Right side, production and dissipation term

 $\triangleright P^{k,tot}$ and ε_{tot} are replaced by P_k and ε , i.e.

$$f_k\left(P^{k,tot} - \varepsilon_{tot}\right) = P^k - \varepsilon \quad \Rightarrow \quad P^{k,tot} = \frac{1}{f_k}(P^k - \varepsilon) + \frac{\varepsilon}{f_\varepsilon}$$

$$P^{k,tot} = \frac{1}{f_k} (P^k - \varepsilon) + \frac{\varepsilon}{f_{\varepsilon}}$$
(40.1)

The k equation can now be written

$$\frac{\partial k}{\partial t} + \frac{\partial (k\bar{v}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{ku}} \right) \frac{\partial k}{\partial x_j} \right] + P^k - \varepsilon$$

Derivation of ε equation

Left side (f_{ε} assumed constant, $f_{\varepsilon}\varepsilon_{tot} = \varepsilon$)

$$f_{\varepsilon} \left\{ \frac{\partial \varepsilon_{tot}}{\partial t} + \bar{V}_j \frac{\partial \varepsilon_{tot}}{\partial x_j} \right\} = \frac{\partial \varepsilon}{\partial t} + \bar{V}_j \frac{\partial \varepsilon}{\partial x_j} \simeq \frac{\partial \varepsilon}{\partial t} + \bar{v}_j \frac{\partial \varepsilon}{\partial x_j}$$

► Right side, diffusion term

$$f_{\varepsilon}\left\{\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t,tot}}{\sigma_{\varepsilon}}\right)\frac{\partial\varepsilon_{tot}}{\partial x_{j}}\right]\right\} = \frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t,tot}}{\sigma_{\varepsilon}}\right)\frac{\partial\varepsilon}{\partial x_{j}}\right] = \frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{\varepsilon u}}\right)\frac{\partial\varepsilon}{\partial x_{j}}\right]$$

Production and destruction terms

is
$$\blacktriangleright$$
 use Eq. 40.1, $k_{tot} = k/f_k$, $\varepsilon_{tot} = \varepsilon/f_{\varepsilon}$

$$P^{k,tot} = \frac{1}{f_k} (P^k - \varepsilon) + \frac{\varepsilon}{f_{\varepsilon}}$$
(40.1)

$$f_{\varepsilon} \left\{ C_{\varepsilon 1} P^{k, tot} \frac{\varepsilon_{tot}}{k_{tot}} - C_{\varepsilon 2} \frac{\varepsilon_{tot}^2}{k_{tot}} \right\} = f_{\varepsilon} C_{\varepsilon 1} \frac{\varepsilon_{tot}}{k_{tot}} \left(\frac{1}{f_k} (P^k - \varepsilon) + \frac{\varepsilon}{f_{\varepsilon}} \right) - f_{\varepsilon} C_{\varepsilon 2} \frac{\varepsilon_{tot}^2}{k_{tot}}$$

$$C_{\varepsilon 1} \frac{\varepsilon f_k}{k} \left(\frac{1}{f_k} (P^k - \varepsilon) + \frac{\varepsilon}{f_{\varepsilon}} \right) - C_{\varepsilon 2} \frac{\varepsilon^2 f_k}{f_{\varepsilon} k} = C_{\varepsilon 1} \frac{\varepsilon}{k} P^k - C_{\varepsilon 1} \frac{\varepsilon^2}{k} + C_{\varepsilon 1} \frac{\varepsilon^2 f_k}{k_{\varepsilon}} - C_{\varepsilon 2} \frac{\varepsilon^2 f_k}{f_{\varepsilon} k} = C_{\varepsilon 1} \frac{\varepsilon}{k} P^k - C_{\varepsilon 2} \frac{\varepsilon^2}{k_{\varepsilon}} \right\}$$

where

$$C_{\varepsilon 2}^* = C_{\varepsilon 1} + \frac{f_k}{f_{\varepsilon}} (C_{\varepsilon 2} - C_{\varepsilon 1}) = 1.5 + \frac{f_k}{f_{\varepsilon}} (1.9 - 1.5)$$

The ε eqn can now be written

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial (\varepsilon \bar{v}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\varepsilon u}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} P^k \frac{\varepsilon}{k} - C_{\varepsilon 2}^* \frac{\varepsilon^2}{k}$$

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial (\varepsilon \bar{v}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_t}{\sigma_{\varepsilon u}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + C_{\varepsilon 1} P^k \frac{\varepsilon}{k} - C_{\varepsilon 2}^* \frac{\varepsilon^2}{k}$$

$$C_{\varepsilon 2}^* = C_{\varepsilon 1} + \frac{f_k}{f_{\varepsilon}}(C_{\varepsilon 2} - C_{\varepsilon 1}) = 1.5 + \frac{f_k}{f_{\varepsilon}}(1.9 - 1.5), \quad f_{\varepsilon} = 1, \quad \nu_t = c_\mu \frac{k^2}{\varepsilon}$$

When $f_k = 1$, the PANS eqns are in RANS mode

• When $f_k < 1$ (say, $f_k = 0.4$) then:

 $C_{\varepsilon^2}^* \frac{\varepsilon^2}{k} \text{ is reduced}$ $\Rightarrow \varepsilon \text{ is increased}$ $\Rightarrow k \text{ is decreased}$ $\Rightarrow \nu_t \text{ is decreased (both small k and large } \varepsilon)$ $\Rightarrow \text{ the momentum eqns go into LES mode.}$ ¶See Section 23.2, Zonal PANS: different treatments of the RANS-LES interface In the previous slides we assumed that f_k is constant. ($f_k = k/k_{tot}$, $k_{tot} = k_{res} + k$)

$$f_k \frac{dk_{tot}}{dt} = \frac{d(f_k k_{tot})}{dt} = \frac{dk}{dt}$$
(40.2)

▶ PANS as a hybrid RANS-LES model ($f_k = 1$ in RANS region, and $0 < f_k < 0.5$ in LES region)

LES, $f_k = 0.4$ or computed

Embedded LES. RANS-LES interface at x_I .

RANS-LES interface at inlet.

A gradient of f_k at RANS-LES interface since f_k varies in space; Eq. 40.2 replaced by

$$f_k \frac{dk_{tot}}{dt} = \frac{d(f_k k_{tot})}{dt} - k_{tot} \frac{df_k}{dt} = \frac{dk}{dt} - k_{tot} \frac{df_k}{dt}$$
(40.3)

An extra term, $-k_{tot}df_k/dt$, appears on the left side. Right side: $k_{tot}\frac{df_k}{dt} = k_{tot}\bar{v}_1\frac{\partial f_k}{\partial r_1}$

- Since $df_k/dt < 0$, this is a sink term \rightarrow reduction of k
- Since we add a sink term to the k equation, we must add a source term to the k_{res} equation
- This is done by adding a term to the mom. eq.

$$-(0.5 + \langle k \rangle / \langle \bar{v}'_m \bar{v}'_m \rangle) \bar{v}'_i \frac{df_k}{dt}$$

$$-\langle k+0.5\bar{v}_i'\bar{v}_i'\rangle)\frac{df_k}{dt}$$

which agrees with $-k_{tot}\frac{df_k}{dt}$ on right side of k_{res} eq.

¶See Section 23.3, A new formulation of f_k for the PANS model

How to compute f_k ?

First, some old formulations.

1,2:
$$f_k = C_{\mu}^{-1/2} \left(\frac{\Delta}{L_t}\right)^{2/3}, L_t = \frac{k_{tot}^{3/2}}{\varepsilon} \text{ using } \Delta = \Delta_{min} \text{ or } \Delta = (\Delta V)^{1/3}.$$

$$3: \quad f_k = \frac{\Delta}{L_t}$$

►A formula derived an expression from the Kolmogorov energy spectrum

4:
$$f_k = 1 - \left[\frac{(\Lambda/\Delta)^{2/3}}{0.23 + (\Lambda/\Delta)^{2/3}}\right]^{9/2}$$

 $C^{k} = P^{k} + D^{k} - \psi \varepsilon$ $C^{\varepsilon} = C_{\varepsilon 1} \frac{\varepsilon}{k} P^{k} + D^{\varepsilon} - C_{\varepsilon 2} \frac{\varepsilon^{2}}{k}$ $\psi = \max\left(1, \frac{k^{3/2}/\varepsilon}{C_{DES}\Delta_{max}}\right)$

► PANS

$$C^{k} = P^{k} + D^{k} - \varepsilon$$

$$C^{\varepsilon} = C_{\varepsilon 1} \frac{\varepsilon}{k} P^{k} + D^{\varepsilon} - C_{\varepsilon 2}^{*} \frac{\varepsilon^{2}}{k}$$

$$C_{\varepsilon 2}^{*} = C_{\varepsilon 1} + \frac{f_{k}}{f_{\varepsilon}} (C_{\varepsilon 2} - C_{\varepsilon 1})$$

$$f_{k,obs} = \frac{k_{model}}{k_{model} + k_{res}}, \quad f_{\varepsilon} \simeq 1$$

Spectrum of velocity fluctuations.

$$C^{k} - D^{k} \simeq C^{\varepsilon} - D^{\varepsilon} \simeq 0, \quad \gamma = \frac{P^{k}}{Sk}, \quad S = (2\bar{s}_{ij}\bar{s}_{ij})^{1/2}, \quad T = \frac{k}{\varepsilon}$$
$$\psi = \max\left(1, \frac{k^{3/2}/\varepsilon}{C_{DES}\Delta_{max}}\right), \quad C^{*}_{\varepsilon^{2}} = C_{\varepsilon^{1}} + \frac{f_{k}}{f_{\varepsilon}}(C_{\varepsilon^{2}} - C_{\varepsilon^{1}})$$

► DES

► PANS

$$TP^{\varepsilon} - P^{k} = TC_{\varepsilon 2}^{*} \frac{\varepsilon^{2}}{k} - \varepsilon \Rightarrow$$
$$\gamma(C_{\varepsilon 1} - 1)Sk = (C_{\varepsilon 2}^{*} - 1)\varepsilon$$

► Differentiation yields:

$$\frac{\delta\gamma}{\gamma} + \frac{\delta S}{S} + \frac{\delta k}{k} = \frac{\delta C_{\varepsilon 2}^* \varepsilon}{(C_{\varepsilon 1} - 1)\gamma S k}$$
$$= \frac{\delta C_{\varepsilon 2}^*}{C_{\varepsilon 2}^* - 1}$$

$$\frac{TP^{\varepsilon} - P^{k}}{\gamma(C_{\varepsilon 1} - 1)Sk} = \frac{TC_{\varepsilon 2}\frac{\varepsilon^{2}}{k} - \psi\varepsilon}{(C_{\varepsilon 2} - \psi)\varepsilon}$$

Differentiation yields:

$$\begin{aligned} \frac{\delta\gamma}{\gamma} &+ \frac{\delta S}{S} + \frac{\delta k}{k} = -\frac{\delta\psi\varepsilon}{(C_{\varepsilon 1} - 1)Sk\gamma} \\ &= -\frac{\delta\psi}{C_{\varepsilon 2} - \psi} \end{aligned}$$

► DES and PANS II

$$\frac{dC_{\varepsilon 2}^*}{C_{\varepsilon 2}^* - 1} = \frac{-d\psi}{C_{\varepsilon 2} - \psi}$$

Integrate from RANS (C_{ε^2} and $\psi = 1$) to LES ($C^*_{\varepsilon^2}$ and ψ) conditions

$$\int_{C_{\varepsilon^2}}^{C_{\varepsilon^2}} \frac{dC_{\varepsilon^2}}{C_{\varepsilon^2} - 1} = \int_1^{\psi} -\frac{d\psi}{C_{\varepsilon^2} - \psi} \Rightarrow \\ \ln\left(\frac{C_{\varepsilon^2}}{C_{\varepsilon^2} - 1}\right) = \ln\left(\frac{C_{\varepsilon^2} - \psi}{C_{\varepsilon^2} - 1}\right)$$

By using the expression for $C^*_{\varepsilon 2}$ with requirement $0 < f_k \le 1$ we get

$$f_k = \max\left[0, \min\left(1, 1 - \frac{\psi - 1}{C_{\varepsilon 2} - C_{\varepsilon 1}}\right)\right], \quad \psi = \max\left(1, \frac{k^{3/2}/\varepsilon}{C_{DES}\Delta_{max}}\right)$$

- It gives much better results than the old formulations of f_k
- It gives very similar results to the DES model
- Advantage of the new PANS model vs. the DES model
 - The PANS model is based on a rigorous derivation whereas DES is based on an ad-hoc modification of RANS models

41 MTF271 Turbulence modeling, On-line Lecture Notes, Lars Davidson, www.tfd.chalmers.se/~lada/comp_turb_model/

On-line Lecture 12

- ¶See Section 27.1, Synthesized turbulence
- ► In LES, large-scale turbulence is resolved
- ► Hence, turbulent fluctuations should be provided as inlet boundary conditions

No inlet fluctuations, large x_{tr} .

Realistic, synthetic inlet fluctuations, small x_{tr} .
Synthetic fluctuations is one method. The fluctuating inlet velocity can be written as a Fourier serie

Spectrum of velocity fluctuations.

► Usually we generate energy spectra from turbulent fluctuations. ► Here we prescribe a spectrum and generate turbulent fluctuations. ► -5/3 spectrum: ► this gives the amplitude \hat{u}^n for wavenumber κ_n

See Section 27.2, Random angles

 2π

 2π

 (2π)

 $2\sin(\theta)$

=

=

= 1

 $p(\alpha^n)$

$$\mathbf{v}'(\mathbf{x}) = 2\sum_{n=1}^{N} \hat{u}^n \cos(\boldsymbol{\kappa}^n \cdot \mathbf{x} + \psi^n) \boldsymbol{\sigma}^n, \qquad \text{Fourier serie}$$

$$\boxed{\begin{array}{c}0 \leq \varphi^n \leq 2\pi\\0 \leq \psi^n \leq 2\pi\\0 \leq \varphi^n \leq 2\pi\\0 \leq \alpha^n \leq 2\pi\end{array}}$$

Probability distributions of the random variables. α^n is the angle for σ^n .

The probability of a wave in wave-space is the same for all dA_i on the shell of a sphere.

 κ_2

► Randomize the angles according to the table. The figure above gives

$$\kappa_1^n = \sin(\theta^n) \cos(\varphi^n)$$

$$\kappa_2^n = \sin(\theta^n) \sin(\varphi^n)$$

$$\kappa_3^n = \cos(\theta^n)$$

$$\mathbf{v}'(\mathbf{x}) = 2 \sum_{n=1}^{N} \hat{u}^n \cos(\boldsymbol{\kappa}^n \cdot \mathbf{x} + \psi^n) \boldsymbol{\sigma}^n,$$
 Fourier serie

Amplitude \hat{u}^n related to energy spectrum: $\hat{u}^n = (E(\kappa)\Delta\kappa)^{1/2}$

For each wavenumber κ_n the energy specrum above gives the amplitude \hat{u}^n

► Highest wave number: $\kappa_{max} = 2\pi/2\Delta$ from the cell size, $\Delta = \min(\Delta x_2)$

Most energetic wave number: $\kappa_e \propto 1/L_t$: integral turbulent length scale. $\mathbf{k}_e = 0.75/L_t$

Smallest wave number: $\kappa_{min} = \kappa_1 = \kappa_e/5$, $\Delta \kappa = (\kappa_{max} - \kappa_{min})/N$

► Number of wave numbers: N ▶150

Now the fluctuations, $\mathbf{v}'(\mathbf{x})$, can be computed

$$v_{1}' = 2 \sum_{n=1}^{N} \hat{u}^{n} \cos(\beta^{n}) \sigma_{1}$$
$$v_{2}' = 2 \sum_{n=1}^{N} \hat{u}^{n} \cos(\beta^{n}) \sigma_{2}$$
$$v_{3}' = 2 \sum_{n=1}^{N} \hat{u}^{n} \cos(\beta^{n}) \sigma_{3}$$
$$\beta^{n} = k_{1}^{n} x_{1} + k_{2}^{n} x_{2} + k_{3}^{n} x_{3} + \psi^{n}$$

Synthetic turbulent isotropic fluctuations at the inlet plane for all time steps.

► With a specified integral lengthscale

►BUT: ► no correlation between the timesteps ► i.e. white noise in time

See Section 27.8, Introducing time correlation

► The synthetic fluctuations are not correlated in time. An asymmetric time filter is used

$$(\mathcal{V}'_1)^m = a(\mathcal{V}'_1)^{m-1} + b(v'_1)^m$$

The coefficient a is related to the turbulent integral timescale, \mathcal{T} , as

$$a = \exp(-\Delta t/\mathcal{T}) \tag{41.1}$$

Finally, the turbulent synthetic fluctuations are superimposed to the inlet mean velocity.

See Section 23.2.1, The Interface Condition

Embedded LES and inlet b.c. for k and ε using PANS

Vehicle geometry (from [116]). Colored rectangle shows embedded LES region

An LES region (e.g. the side mirror, see figure above) is embedded in a steady RANS simulation.

- ►LES is used around the mirror in order to compute aeroacoustic sources (wind noise)
- Synthetic fluctuations are needed at the inlet region of LES.
- Mean velocity, k and ε at the LES inlet region are taken from the RANS simulation

- Add synthetic fluctuations at inlet or embedded surfaces with prescribed integral length and timescale
- \bullet Use RANS values of k and ε
- The source terms in the k equation (see Eq. 40.3) quickly reduces k from RANS values to LES values
- No source terms are needed for ε because it is the same for RANS and LES
- For more detail, see Section 5 in [183]