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M Part 1 of Assignment 2: Large Eddy Simulation

You can do the assignment on your own or in a group of two. Ydureteive data
from a DNS of fully developed flow in a channel. It is recommeddbut the not
required) that you use’TgX(an example of how to write inrATeXis available on the
course www page). It is available on Linux. On Windows you cae, for exam-
ple, Lyx (www.lyx.org ) or MikTex (www.miktex.org ) which are both free to
download.

The equations that have been solved are given inLEQ. The Re number based
on the friction velocity and the half channel widthRe, = u,h/v = 500 (h = p =
ur = 1sothaty = 1/Re;).

A 96 x 96 x 96 mesh has been used. The streamwise, wall-normal and sganwis
directions are denoted hy(z1), y (z2) andz (x3) respectively. The cell size inand
z directions areAz = 0.0654 andAz = 0.0164. Periodic boundary conditions were
applied in ther andz direction (homogeneous directions). The size of the dorisain
(L, hy Zimaz) in (x,y, 2), See Fig-.1.

M.1 Timehistory

At the www-page

http://www.tfd.chalmers.se/"lada/comp turb _model/
you find a fileu_v _time _4nodes.dat with the time history of: andv. The file has
eight columns of: andv at four nodesy/§ = 0.0039, y/6 = 0.0176, y/6 = 0.107
andy/d = 0.47. With . = 1 andv = 1/Re, = 1/500 this correspond tg* = 1.95,
yT =8.8,yT = 53.5andy™ = 235. The sampling time step 0033 (every second
time step).

Use Matlab or Octave. Octave is a Matlab clone which can bentimded for free.
Download the Matlab/Octave prograph -time.m which loads and plots the time
history ofu. Run the prograrmpl _time.m . Recall that the velocities have been scaled
with the friction velocityu,, and thus what you see is reallyu.. The time history
of waty/d = 0.0176 andy/J = 0.107 are shown. Study the time history of the blue
line (y/é = 0.0176) in greater detail. Make a zoom between, for exampte, 10 and
t = 11 andu,,;, = 3 andu,,;, = 21. This is conveniently done with the command

axis([10 11 3 21))
In order to see the value at each sampling time step, chaegeédhcommand to
plot(t,u2,’b-',t,u2,’'bo’)

Use this technique to zoom and to look at the details of the tiistory. Alterna-
tively, you can use the zoom buttons above the figure.

Plot v for all four nodes. How does the time variationwfary for different posi-
tions? Why? Plot also at the four different positions. What is the differencesssn
uandv?

M.2 Timeaveraging

Compute the average of thevelocity at node 2. Add the following code (before the
plotting section)


http://www.tfd.chalmers.se/~lada/comp_turb_model/
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umean=mean(u2)

Here the number of samplesris= 5000 (the entireu2 array). Find out how many
samples must be used to get a correct mean value. Start by tmth 100 samples as

umean_100=mean(u2(1:100))

Do the same exercise for the other three nodes.

M.3 Autocorreation

Auto correlation is defined in SectidtD.2 Compute the autocorrelation fof using
the Matlab command

imax=500;
two_uu_1 mat=autocorr(ul,imax);

where we set the maximum separation in timétma = 500 (i.e. we carry out the
integration in Eq10.11not to infinity, but toimax - At). Note that theautocorr
command returns the normalized autocorrelation, Bg>"™, see Eq10.1Q Plot the
autocorrelation as

plot(t(1:imax),two_uu_1_mat(1:imax), linew’,2)
xlabel(’t)

ylabel('u’)

handle=gca

set(handle,’fontsi’,[20])

Compute the integral time scalg ; as

dt=t(1);
int. T 1=trapz(two_uu_1 mat) *dt;

Plot the normalized autocorrelation and compute the ialdgne scales also for
the other three points.

In SectionM.1 you time averaged the velocities to get the mean value. Yeu in
vestigated how few samples you could use. In reality it isardy the number of
samples that is relevant, but also that theyiadependent. To find out if two samples
are independent, it is convenient to use the integral tira&est;,,;. If the samples are
separated b¥’;,,; seconds they are independent. Hence, re-do the averagirdjgym
SectionM.2 but use samples evefy,,; second.

Let us use Taylor's frozen turbulence hypothesis to compueintegral length
scale. This hypothesis assumes that — if the turbulencé ilevit too strong — the
velocity fluctuation at point: and timet is the same as that at tinte — 7) at point
(x—¢&) wherer = (z—&)/(u) (it takes timer for the particle to travel from poir{tz—¢)
to pointz with a velocity (u)). The hypothesis assumes that the turbulence is frozen
between pointx — ¢) andx. When we want to find the velocity fluctuation at point
(x— &) attime(t — 7) we can instead take it at pointat timet. The Taylor hypothesis
makes it possible to compute the integral lengthscale ftanirttegral timescale as

Lins = (1) /0 BYr™(#)dt = (u)Tine (M.1)

Compute the integral lengthscale.
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M.4 Probability density/histogram

Histogram (also called probability density function, POfan give additional useful
information, see Section. With a probability densityf,,, of thev velocity, the mean
velocity is computed as

(v) :/ vfy(v)dv (M.2)

Normalize the probability density function so that

/Oo fo(v)dv =1 (M.3)

Here we integrate ovar. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time averagepQte the PDF as

u3_fluct=u3-mean(u3);
[pdf3 u3_pdf]= hist(u3_fluct,20)

Here we have divideds into 20 bins which span the variation af, i.e. [min(ug), max(ug)].
The variablepdf3 is a vector of lengti20 whose elements gives the number of samples
in each bin. Plot the histogram as

norm3=sum(pdf3) = (u3_pdf(2)-u3_pdf(1));
plot(u3_pdf,pdf3/norm3,’linew’,2)
xlabel('u3’)

ylabel(PDF’)

handle=gca

set(handle,’fontsi’,[20])

wherenorm3 is the integral in Eq7.3. You find that the PDF is rather symmetric.
Compute and plot the PDFs of the points close to the wall andwith find that they
are more skewed. SkewnesSs s a variable that quantify the skewness and it is defined

as 1 o
S’U’ = ,U?ms [m Ulgfv/(vl)d’l)/

Compute it as

urms3=std(u3_fluct);
S=mean(u3_fluct."3)/urms3"3;

whereurms3 = (vi2)1/2. Verify that the magnitude of is large for the walls close to
the wall.

M.5 Frequency spectrum

One way to verify that the LES you have performed resolvesutmsilence properly,
is to look at the spectra of the resolved turbulence. One palyze the time history of
a variable at a point. You do a FFT of that signal to get the leowoefficients:; and
then plota?. Then you get the frequency spectrum, i.e. how much enesjges in
each frequency. The other way to do it is to look at the insta@bus velocity along a
grid line, and do a FFT of that signal. Then you get the enepgggum as a function
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of the wave number, i.e. the inverse of the wave length. k¢hse you must average
over many instants to get a reasonably smooth spectrum.

The Matlab filepl _spectrum.m does a FFT of the time history of fluctuating
velocity,/, (u = (u) +u') and plotsa?. The same data file as in the previous exercise
is used (_v_time _4nodes.dat ). It uses the Matlab functiopwelch . Run the
program by typing

pl _spectrum
As we mentioned in the Lecture Notes, in a well-resolved LESwant to have the
cut-off in the inertial subrange where the kinetic energgays as the wave number
(or frequency) up to the power 6f5/3. Thus we want the resolved turbulence to
have a behaviour like this for high frequencies. As you canfsem the plot, this is
the case. Actually, you find that for even higher frequenttiekinetic energy decays
even faster. The high frequencies exist because we oveliecis time compared to
the resolution in space. This is usually the case when thamuem CFL number
(Courant-Friedrichs-Lewy condition) is set to one, sindd.@h many points is much
smaller than one (CFL=1 in one cell means that a fluid parsdiensported across that
cell during one time step). Investigate this by using ordy, gvery4‘” of the samples,
ie.

% 4 dt

m=4;

i=1:m:n;

dt=m = t(1);
[px_L,f_L]=pwelch(u4(i),nmax,[],[],1/dt);
plot(f_L,px_L,r--",’linew’,2)

Has the region in which the energy spectrum decays fast ved® If not, use
even coarser sampling (set=8). You may note that the low region of the frequency
spectrum is also modified. The coarser sampling that is ukedpwer frequencies
appear in the spectrum. The reason is that we are usitax=256 samples, and the
coarser the sampling, the higher the lowest frequencies.

Look at the spectra for the three other points (make chamg#s spectrum.m ).

It should be mentioned that spectra may not be a reliableumea$resolution]02
103. Two-point correlations are usually better.



