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M Part 1 of Assignment 2: Large Eddy Simulation

You can do the assignment on your own or in a group of two. You will receive data
from a DNS of fully developed flow in a channel. It is recommended (but the not
required) that you use LATEX(an example of how to write in LATEXis available on the
course www page). It is available on Linux. On Windows you canuse, for exam-
ple, Lyx (www.lyx.org ) or MikTex (www.miktex.org ) which are both free to
download.

The equations that have been solved are given in Eq.L.1. TheRe number based
on the friction velocity and the half channel width isReτ = uτh/ν = 500 (h = ρ =
uτ = 1 so thatν = 1/Reτ ).

A 96 × 96 × 96 mesh has been used. The streamwise, wall-normal and spanwise
directions are denoted byx (x1), y (x2) andz (x3) respectively. The cell size inx and
z directions are∆x = 0.0654 and∆z = 0.0164. Periodic boundary conditions were
applied in thex andz direction (homogeneous directions). The size of the domainis
(L, h, Zmax) in (x, y, z), see Fig.L.1.

M.1 Time history

At the www-page
http://www.tfd.chalmers.se/˜lada/comp turb model/

you find a fileu v time 4nodes.dat with the time history ofu andv. The file has
eight columns ofu andv at four nodes:y/δ = 0.0039, y/δ = 0.0176, y/δ = 0.107
andy/δ = 0.47. With uτ = 1 andν = 1/Reτ = 1/500 this correspond toy+ = 1.95,
y+ = 8.8, y+ = 53.5 andy+ = 235. The sampling time step is0.0033 (every second
time step).

Use Matlab or Octave. Octave is a Matlab clone which can be downloaded for free.
Download the Matlab/Octave programpl time.m which loads and plots the time
history ofu. Run the programpl time.m . Recall that the velocities have been scaled
with the friction velocityuτ , and thus what you see is reallyu/uτ . The time history
of u at y/δ = 0.0176 andy/δ = 0.107 are shown. Study the time history of the blue
line (y/δ = 0.0176) in greater detail. Make a zoom between, for example,t = 10 and
t = 11 andumin = 3 andumin = 21. This is conveniently done with the command

axis([10 11 3 21])

In order to see the value at each sampling time step, change the plot command to

plot(t,u2,’b-’,t,u2,’bo’)

Use this technique to zoom and to look at the details of the time history. Alterna-
tively, you can use the zoom buttons above the figure.

Plot u for all four nodes. How does the time variation ofu vary for different posi-
tions? Why? Plot alsov at the four different positions. What is the differences between
u andv?

M.2 Time averaging

Compute the average of theu velocity at node 2. Add the following code (before the
plotting section)

http://www.tfd.chalmers.se/~lada/comp_turb_model/
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umean=mean(u2)

Here the number of samples isn = 5000 (the entireu2 array). Find out how many
samples must be used to get a correct mean value. Start by trying with100 samples as

umean_100=mean(u2(1:100))

Do the same exercise for the other three nodes.

M.3 Auto correlation

Auto correlation is defined in Section10.2Compute the autocorrelation forv′1 using
the Matlab command

imax=500;
two_uu_1_mat=autocorr(u1,imax);

where we set the maximum separation in time toimax = 500 (i.e. we carry out the
integration in Eq.10.11not to infinity, but toimax · ∆t). Note that theautocorr
command returns the normalized autocorrelation, i.e.Bnorm

11 , see Eq.10.10. Plot the
autocorrelation as

plot(t(1:imax),two_uu_1_mat(1:imax),’linew’,2)
xlabel(’t’)
ylabel(’u’)
handle=gca
set(handle,’fontsi’,[20])

Compute the integral time scaleB11 as

dt=t(1);
int_T_1=trapz(two_uu_1_mat) * dt;

Plot the normalized autocorrelation and compute the integral time scales also for
the other three points.

In SectionM.1 you time averaged the velocities to get the mean value. You in-
vestigated how few samples you could use. In reality it is notonly the number of
samples that is relevant, but also that they areindependent. To find out if two samples
are independent, it is convenient to use the integral time scale,Tint. If the samples are
separated byTint seconds they are independent. Hence, re-do the averaging you did in
SectionM.2 but use samples everyTint second.

Let us use Taylor’s frozen turbulence hypothesis to computethe integral length
scale. This hypothesis assumes that – if the turbulence level is not too strong – the
velocity fluctuation at pointx and timet is the same as that at time(t − τ) at point
(x−ξ) whereτ = (x−ξ)/〈u〉 (it takes timeτ for the particle to travel from point(x−ξ)
to pointx with a velocity〈u〉). The hypothesis assumes that the turbulence is frozen
between point(x − ξ) andx. When we want to find the velocity fluctuation at point
(x− ξ) at time(t− τ) we can instead take it at pointx at timet. The Taylor hypothesis
makes it possible to compute the integral lengthscale from the integral timescale as

Lint = 〈u〉

∫
∞

0

Bnorm
11 (t̂)dt̂ = 〈u〉Tint (M.1)

Compute the integral lengthscale.



M.4. Probability density/histogram 267

M.4 Probability density/histogram

Histogram (also called probability density function, PDF)can give additional useful
information, see Section7. With a probability density,fv, of thev velocity, the mean
velocity is computed as

〈v〉 =

∫
∞

−∞

vfv(v)dv (M.2)

Normalize the probability density function so that
∫

∞

−∞

fv(v)dv = 1 (M.3)

Here we integrate overv. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time average. Compute the PDF as

u3_fluct=u3-mean(u3);
[pdf3 u3_pdf]= hist(u3_fluct,20)

Here we have dividedu3 into20 bins which span the variation ofu3, i.e. [min(u3), max(u3)].
The variablepdf3 is a vector of length20 whose elements gives the number of samples
in each bin. Plot the histogram as

norm3=sum(pdf3) * (u3_pdf(2)-u3_pdf(1));
plot(u3_pdf,pdf3/norm3,’linew’,2)
xlabel(’u3’)
ylabel(’PDF’)
handle=gca
set(handle,’fontsi’,[20])

wherenorm3 is the integral in Eq.7.3. You find that the PDF is rather symmetric.
Compute and plot the PDFs of the points close to the wall and you will find that they
are more skewed. Skewness,S, is a variable that quantify the skewness and it is defined
as

Sv′ =
1

v3
rms

∫
∞

−∞

v′3fv′(v′)dv′

Compute it as

urms3=std(u3_fluct);
S=mean(u3_fluct.ˆ3)/urms3ˆ3;

whereurms3 = 〈v′23 〉1/2. Verify that the magnitude ofS is large for the walls close to
the wall.

M.5 Frequency spectrum

One way to verify that the LES you have performed resolves theturbulence properly,
is to look at the spectra of the resolved turbulence. One can analyze the time history of
a variable at a point. You do a FFT of that signal to get the Fourier coefficientsai and
then plota2

i . Then you get the frequency spectrum, i.e. how much energy resides in
each frequency. The other way to do it is to look at the instantaneous velocity along a
grid line, and do a FFT of that signal. Then you get the energy spectrum as a function
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of the wave number, i.e. the inverse of the wave length. In this case you must average
over many instants to get a reasonably smooth spectrum.

The Matlab filepl spectrum.m does a FFT of the time history of fluctuating
velocity,u′, (u = 〈u〉+ u′) and plotsa2

i . The same data file as in the previous exercise
is used (u v time 4nodes.dat ). It uses the Matlab functionpwelch . Run the
program by typing

pl spectrum
As we mentioned in the Lecture Notes, in a well-resolved LES we want to have the
cut-off in the inertial subrange where the kinetic energy decays as the wave number
(or frequency) up to the power of−5/3. Thus we want the resolved turbulence to
have a behaviour like this for high frequencies. As you can see from the plot, this is
the case. Actually, you find that for even higher frequenciesthe kinetic energy decays
even faster. The high frequencies exist because we over-resolve in time compared to
the resolution in space. This is usually the case when the maximum CFL number
(Courant-Friedrichs-Lewy condition) is set to one, since CFL in many points is much
smaller than one (CFL=1 in one cell means that a fluid partcle is transported across that
cell during one time step). Investigate this by using only, say, every4th of the samples,
i.e.

% 4* dt
m=4;
i=1:m:n;
dt=m * t(1);
[px_L,f_L]=pwelch(u4(i),nmax,[],[],1/dt);
plot(f_L,px_L,’r--’,’linew’,2)

Has the region in which the energy spectrum decays fast vanished? If not, use
even coarser sampling (setm=8). You may note that the low region of the frequency
spectrum is also modified. The coarser sampling that is used,the lower frequencies
appear in the spectrum. The reason is that we are usingnmax=256 samples, and the
coarser the sampling, the higher the lowest frequencies.

Look at the spectra for the three other points (make changes in pl spectrum.m ).
It should be mentioned that spectra may not be a reliable measure of resolution [102,

103]. Two-point correlations are usually better.


