MTF271 TURBULENCE MODELLING
ASSIGNMENT 1, PART II: MACHINE LEARNING

Lars Davidson

Division of Fluid Dynamics, Dept. Mechanics and Maritime Sciences
Chalmers University of Technology, Gothenburg, Sweden.

The Assignment, slides and recorded lecture can be found at

https://www.tfd.chalmers.se/~lada/comp_turb_model /assignment_1/index.html

https://www.tfd.chalmers.se/~lada/comp_turb_model/assignment_1/index.html

MACHINE LEARNING

® Machine learning (ML) is a method where known data are used for teaching the algorithm
to classify another set of data.

® Photographs where the machine learning algorithm should recognize, e.g., traffic lights [4].

® ECG signals where the machine learning algorithm should recognize certain unhealthy
conditions of the heart [2].

¢ Detecting fraud for credit card payments [3].

® Machine learning methods such as Support Vector Machines (SVM) and neural networks are
used for solving this type of problems.

® Through as much data as possible at ML?

® In my case, input and output are numerical values. Regression methods should then be
used [2]; | use support vector regression (SVR) methods available in Python.

CHALM ERS Assignment 1, Part Il: Machine Learning 2/21

TRAINING: I NEED A TARGET DATABASE

8V,' o

o 0
ov; 0 B op A%v;
ot + Ox; (vivi) = X + 0x;0x;

¢ Fully-developed Channel flow
e Database can be found here. Reynolds number is 5200.

® The DNS data are averaged in time, x; and xs.

CHALMERS

Assignment 1, Part Il: Machine Learning 3/21

http://turbulence.ices.utexas.edu

SVR (SUPPORT VECTOR REGRESSION)
At this site you find the figure below slack

SVR data
predictions

pper and lower data points)

X
F1cURE: Hyperplane, € tube and slack, &. -: predicted (SVR) data point

® How close to the Hyperplane should the predicted data points be? Answer: ¢
® How far outside of the ¢ tube can a predicted point be? Answer: ¢ (large C, promotes
small £)

CHALM ERS Assignment 1, Part Il: Machine Learning 4/21

https://www.section.io/engineering-education/support-vector-regression-in-python/

TESTING SVR

FOR A LINE

« target
21 + predicted

..

0.00 0.25 0.50 0.75 1.00

X
(A) C=01,e=01

« target
24 + predicted

0.00 0.25

0.50 0.75 1.00
X

(c) C=01,e=04
MTF271 Turbulence Modelling

CHALMERS

y = 2x% +sin(2n) - rand(—0.4,0.4)

+ target
21 + predicted

() s

0.00 0.25 0.50 0.75 1.00

X
() C=0.1,e=10

-+ target
24 + predicted

>1

0rs

0.00 0.25 0.50 0.75 1.00
X

(D) C=10,e=04

Assignment 1, Part II: Machine Learning

5/21

CHANNEL FLOW

® We will use DNS data of channel flow to develop C, in k — w model based on SVR
® Note that the standard kK — w models gives very good velocity profiles but a less good k,

see below
6 0.0
i —— RANS
\ DNS ~0.2
4
. —0.4
>
> 06
-0.8
5 3 0 -1.0
10 10 500 1000 1500 2000 2000 4000
y* y* y*
(A) Velocity (B) Turbulent kinetic energy (C) Turbulent shear stress

. —— ov:
® The k —w model predicts accurate Reynolds shear stress, —v| v} = Vg
X2
models predict a linear total shear stress, see Eq. 6.20 in the eBook)
® The velocity profile above is correct; hence also the turbulent viscosity is correct.

CHALM ERS Assignment 1, Part Il: Machine Learning 6/21

(all turbulence

CHANNEL FLOW

® Now we will create our SVR.

Since we know that k and w cannot be correctly predicted by the kK — w model (only their
ratio k/w is) we should not use them as input parameters.

Recall than in the standard kK — w model then v; = —
w

ov .
We choose vy and 8—1 as input parameters.
X2

® The target is the shear stress —v;vj.

k
We then compute C, where C, is defined from v; = C —

Download the Python script ML-channel.py and all dataflles. (in ML-channel.py | use
0v1/0xz as input and —vj v} as output)

CHALM ERS Assignment 1, Part Il: Machine Learning 7/21

ML MODEL (SVR)

® The main difference to the script ML-python.py is that we have two influence parameters
instead of one i.e. two StandardScaler

1 # scale input data

> scaler_dudy=StandardScaler ()

3 scaler_vist=StandardScaler ()

4 dudy_in=scaler_dudy.fit_transform (dudy_in)
5 vist_in=scaler_vist.fit_transform (vist_in)

® and higher dimension of X, i.e.

setup X (input) and y (output)
X=np.zeros((n_svr,2))

y=uv_out

X[:,0]=dudy_in[:,0]
X[:,1]=vist_in [:,0]

[I N S I

CHALM ERS Assignment 1, Part Il: Machine Learning 8/21

ML MODEL (SVR)

1 # output uv

> uv_all_data=uv_DNS

3 # input dudy

4 dudy_all_data=dudy_DNS
5 # input vist

6 vist_all_data=vist_.DNS

* Now pick 20% as test data

1 # create indices for all data

2 index= np.arange(0,len(uv_all_data), dtype=int)

3 # number of elements of test data, 20 \%

4 n_test=int (0.2xlen(uv_all_data))

5 # pick 20\% elements randomly (test data)

6 index_test=np.random.choice(index, size=n_test, replace=False)
7 # pick every b5th elements

8 #index_test=index [::5]

1 dudy_test=dudy_all_data[index_test]
> vist_test=vist_all_data[index_test]
3 uv_out_test=uv_all_data[index_test]

CHALM ERS Assignment 1, Part Il: Machine Learning 9/21

ML MODEL (SVR)

® The remaining 80% are used as training data

1 # delete testing data from 'all data
> dudy_in=np.delete(dudy_all_data ,index_test)
3 vist_in=np.delete(vist_all_data ,index_test)
4 uv_out=np.delete(uv_all_data ,index_test)

=> training data

® The input arrays to svr must be reshaped
1 # re—shape
> dudy_in=dudy_in.reshape(—1, 1)
3 vist_in=vist_in .reshape(—1, 1)

® |t's a good habit to re-scale input variables because different inputs may have widely
different magnitudes
1 # scale input data
> scaler_dudy=StandardScaler ()
3 scaler_vist=StandardScaler ()
4
5

dudy_in=scaler_dudy . fit_transform (dudy_in)
vist_in=scaler_vist.fit_transform (vist_in)

CHALM ERS Assignment 1, Part |l: Machine Learning 10/21

ML MODEL (SVR)

® Next, | create the input array to be sent to the SVR

setup X (input) and y (output)
X=np.zeros ((n_svr,2))

y=uv_out

X[:,0]=dudy_in[:,0]
X[:,1]=vist_in [:,0]

[N N I

¢ | choose type of SVR

1 # choose Machine Learning model

> C=1

3 eps=0.001

4 model = SVR(kernel="rbf"', epsilon = eps, C = C)

* and then | train (fit) the SVR

1 # Fit the model
> svr = model. fit (X, y.flatten())

CHALM ERS Assignment 1, Part Il: Machine Learning 11/21

ML MODEL (SVR)

Now | will use the SVR model to predict v} vj.

| will use the test data (20% of the DNS data of dU/dy and 1)

The target will be the corresponding v{v} of DNS (20%), i.e. uv_out_test
| reshape test data OU/9y and v;

1 # re—shape test data

> dudy_test=dudy_test.reshape(—1, 1)
3 vist_test=vist_test.reshape(—1, 1)

* | re-scale it (note: the same StandardScaler that | used when | trained the SVR)

1 # scale test data
> dudy_test=scaler_dudy .transform (dudy_test)
3 vist_test=scaler_vist.transform(vist_test)

® and setup the X_test array

setup X (input) for testing (predicting)
X_test=np.zeros((n_test ,2))
X_test[:,0]=dudy_test[:,0]
X_test[:,1]=vist_test [:,0]

CHALM ERS Assignment 1, Part II: Machine Learning 12/21

AW =

ML MODEL (SVR)

¢ and then | make the prediction

1 # predict uv
> uv_predict= model. predict (X_test)

® Then | find the difference between target (uv_out_test) and prediction (uv_predict)

1 # find difference between ML prediction and target

> uv_error=np.std(uv_predict—uv_out_test)/\

3 (np.mean(uv_predict*x2))*%0.5

4 print ('\nRMS error using ML turbulence model’,uv_error)

® The errors with ML-channel.py are large; when we here add v; as input and use |v; vj|
as output, it gets much better.

® One way to improve the accuracy is to use data only where the flow is fully turbulent, e.g.
100 < y™ < 1000

1 index=np.nonzero ((yplus.DNS > 100) & (yplus-DNS< 2000))

CHALM ERS Assignment 1, Part II: Machine Learning 13 /21

ML MODEL (SVR)

* Now I'll export the model to disk. Export the model, the scalers and min/max of QU/dy
and vy.

dump(model, 'model—svr.bin")

dump(scaler_dudy , "scalar—dudy—svr.bin")

dump(scaler_vist , "scalar—vist—svr.bin")

np.savetxt ('min—max—svr.txt ', [dudy_max, dudy_min, vist_.max, vist_min])

B W N =

* Next step is to import the SVR model into your Python CFD code (either
rans-k-omega.py, pyCALC-RANS or your own)

CHALM ERS Assignment 1, Part |l: Machine Learning 14 /21

http://www.tfd.chalmers.se/~lada/pyCALC-RANS.html

ML MODEL (SVR)

1 from sklearn.preprocessing import StandardScaler

2 from sklearn.svm import SVR

3 from joblib import dump, load

4

5 folder="./"

6 filename=str (folder)+ model—svr.bin"’

7 model = load(tr(folder)+ model—svr.bin")

8 scaler_.dudy = load(str(folder)+'scalar—dudy—svr.bin")

9 scaler_vist = load(str(folder)+'scalar—vist—svr.bin")

10 dudy_max, dudy_min , vist_max , vist_min = np.loadtxt(str(folder)+ min—max—svr .
txt)

® Then you insert the SVR coding corresponding to the test/predict part in the previous
slides. Note: you should NOT include the transform fitting,
scaler_dudy.fit_transform(dudy_in)

* You may find some useful Python coding at p. 14 in my report [1]

CHALM ERS Assignment 1, Part II: Machine Learning 15/21

ML MmoDEL: CFD CODE

¢ In the CFD code, we predict the shear stress in exactly the same way as in the testing
phase above

® Then we get C, as cmu_omega=uv_predict/dudy/vist

¢ Note that you must invert the scaling for vist and dudy in the expression above, e.g.
scaler_vist.inverse_transform(vist)

CHALM ERS Assignment 1, Part Il: Machine Learning 16 /21

ML MODEL: PROBLEM 1

e Below | list some problems you're likely to encounter
* The figure below show the predicted C,, (computed as |v{v}|svr/(0V1/0x2)/ve where
0v1/0xa and vy cover the entire parameter space).

® When small 9v1 /0x; and v; are used

300 | (lower left corner), large C,, are predicted.
2501 ® This may occur at the beginning of the
200] CFD simulation and the solution is
2 150, “stuck” (the product v+0v1/0x> is correct
B 1001 but both v¢ and 9vy/0xy are incorrect)
0. ® The reason is poor/incorrect initial b.c.
You can, e.g., use the profiles of a
% % s 7 100 1% solution without ML/SVR as initial b.c.

al
ay

CHALM ERS Assignment 1, Part II: Machine Learning 17 /21

PROBLEM 1 HOW TO PLOT THE FIGURE AT THE PREVIOUS SLIDE

1 figl ,ax1l = plt.subplots();ax=plt.gca()

2> # Set Increments between points in a meshgrid

3 mesh_size = 0.05

4 # ldentify min and max values for input variables
5 x-min, x_max = X[:,0].min(), X[:,0].max()

6 y-min, y_max = X[:,1].min(), X[:,1].max()

7 # Return evenly spaced values based on a range between min and max
8 xrange = np.arange(x_-min, x_max, mesh_size)

9 yrange = np.arange(y-min, y-max, mesh_size)

10 # Create a meshgrid

11 XX, yy= np.meshgrid(xrange, yrange)

12 # Use model to create a prediction plane SVR

13 pred_svr = model.predict(np.c_-[xx.ravel (), yy.ravel()])

14 pred_svr = pred_svr.reshape(xx.shape)

15 xx_no_scale=scaler_dudy.inverse_transform (xx)

16 yy-no_scale=scaler_vist.inverse_transform (yy)

17 # Make the color plot (excl. figl ,haxl = plt.subplots() ...)

e ax_plot=plt.pcolormesh(xx_no_scale ,yy_no_scale/viscos, pred_svr, vmin=0.8,vmax
=1,cmap=plt.get_cmap(' hot'),shading="'gouraud ')

CHALM ERS Assignment 1, Part Il: Machine Learning 18 /21

ML MODEL: PROBLEM 2

110
L4 Svr
.] DNS
® Make sure that predicted C, 1.05
agrees well with the target . .
. . 1.00 w
(that is not that case in the N M
figure to the right) 0,95/
0.90

0 1000 2000 3000 4000 5000
y+

CHALM ERS Assignment 1, Part |I: Machine Learning 19 /21

ML MODEL NUMBER 2

® Now you should improve the mixing length model in which the turbulent viscosity is
oy

8X2

¢ We take the mixing length L., as the wall distance and then let our function f,, adapt to
get a reasonable lengthscale.

* Use f, as output and |0V1/Oxo| and L2, as input.

® You could also try v; as output instead of f,.

expressed as v; = f, Lfn

CHALM ERS Assignment 1, Part Il: Machine Learning 20/21

https://en.wikipedia.org/wiki/Mixing_length_model

REFERENCES

[1] L. Davidson. Using Machine Learning for formulating new wall functions for Large Eddy
Simulation: A second attempt[#". Technical report, Division of Fluid Dynamics, Dept. of
Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, 2022.

[2] Andreas Lindholm, Niklas Wahlstrom, Fredrik Lindsten, and Thomas Schon. Machine
Learning: A First Course for Engineers and Scientists. Cambridge University Press, 2022.

[3] Menneni Rachana, Jegadeesan Ramalingam, Gajula Ramana, Adigoppula Tejaswi, Sagar
Mamidala, and G Srikanth. Fraud detection of credit card using machine learning.
GIS-Zeitschrift fiir Geoinformatik, 8:1421-1436, 10 2021.

[4] Sudarshana S Rao and Santosh R Desai. Machine learning based traffic light detection and
ir sensor based proximity sensing for autonomous cars. In Proceedings of the International
Conference on loT Based Control Networks & Intelligent Systems — ICICNIS, 2021.

CHALM ERS Assignment 1, Part Il: Machine Learning 21/21

http://www.tfd.chalmers.se/~lada/postscript_files/Using-Machine-Learning-for-formulating-new-wall-functions-for-Large-Eddy-Simulation-A-Second-Attempt.pdf

	References

