2016-10-07 Exam in

Turbulence modeling, MTF270

- Time: 14.00-18.00 Location: V
- Teacher: Lars Davidson, phone 772 1404, 0730-791 161
- Aids
- Formula sheet, 2 pages, appended to the exam
- Checking the evaluation and results of your written exam: At 12-13: Oct 31 and Nov 1 in Room Euler
- Grading: 20-29p: 3, 30-39: 4, 40-50: 5.

T1. a) How is the buoyancy term, ρg_{i}, re-written in incompressible flow?
b) How is the production term modeled in the $k-\varepsilon$ model? Show how it can be expressed in $\bar{s}_{i j}$

T2. a) The exact Poisson equation for the pressure fluctuation reads

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial^{2} p^{\prime}}{\partial x_{j} \partial x_{j}}=-\underset{\text { rapid term }}{2 \frac{\partial \bar{v}_{i}}{\partial x_{j}} \frac{\partial v_{j}^{\prime}}{\partial x_{i}}}-\underbrace{\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(v_{i}^{\prime} v_{j}^{\prime}-\overline{v_{i}^{\prime} v_{j}^{\prime}}\right)}_{\text {slow term }} \tag{1}
\end{equation*}
$$

Derive this equation.
b) Consider streamline curvature for a streamline formed as a circular arc (convex curvature). Show that the turbulence is dampened if $\partial v_{\theta} / \partial r>0$ and that it is enhanced if the sign of $\partial v_{\theta} / \partial r$ is negative.

T3. a) What is a realizability constraint? Give the main realizability constraint for the normal stress and the shear stress. The Boussinesq assumption may violate one of those two constraints: show which one.
b) Show how a sinus wave $\sin \left(\kappa_{c} x\right)$ corresponding to cut-off is represented on a grid with two and four nodes, respectively. How is κ_{c} related to the grid size Δx for these cases?

T4. a) Consider the energy spectrum. Show the three different regions (the large energycontaining scales, the $-5 / 3$ range and the dissipating scales). In which region should the cut-off be located? How are $k, k_{r e s}$ and $k_{\text {sgs }}$ computed from the energy spectrum?
b) Consider a 1D finite volume grid. Carry out a second filtering of \bar{v} at node I and show that $\bar{v}_{I} \neq \bar{v}_{I}$.

T5. a) Explain what is DES. The length scale in the RANS S-A model reads $\left(\frac{\tilde{\nu}_{t}}{d}\right)^{2}$; how is it computed in the corresponding DES model?
b) Consider the SAS model. How is the von Kármán length scale defined? An additional source term is introduced in the ω equation: what is the form of this term? What is the object of this term? When is it large and small, respectively?

MTF270 Turbulence modeling: Formula sheet

The continuity, Navier-Stokes and temperature equations for incompressible flow with constant viscosity read (conservative form)

$$
\begin{aligned}
\frac{\partial v_{i}}{\partial x_{i}} & =0 \\
\rho_{0} \frac{\partial v_{i}}{\partial t}+\rho_{0} \frac{\partial v_{i} v_{j}}{\partial x_{j}} & =-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}-\rho_{0} \beta\left(\theta-\theta_{0}\right) g_{i} \\
\frac{\partial \theta}{\partial t}+\frac{\partial v_{i} \theta}{\partial x_{i}} & =\alpha \frac{\partial^{2} \theta}{\partial x_{i} \partial x_{i}}
\end{aligned}
$$

-The Navier-Stokes equation for incompressible flow with constant viscosity read (non-conservative form, p denotes the hydrostatic pressure, i.e. $p=0$ if $v_{i}=0$)

$$
\rho_{0} \frac{\partial v_{i}}{\partial t}+\rho_{0} v_{j} \frac{\partial v_{i}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}
$$

The time averaged continuity equation, Navier-Stokes equation temperature equations read

$$
\begin{aligned}
\frac{\partial \bar{v}_{i}}{\partial x_{i}} & =0 \\
\rho_{0} \frac{\partial \bar{v}_{i} \bar{v}_{j}}{\partial x_{j}} & =-\frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu \frac{\partial \bar{v}_{i}}{\partial x_{j}}-\rho_{0} \overline{v_{i}^{\prime} v_{j}^{\prime}}\right)-\rho_{0} \beta\left(\bar{\theta}-\theta_{0}\right) g_{i} \\
\frac{\partial \bar{v}_{i} \bar{\theta}}{\partial x_{i}} & =\alpha \frac{\partial^{2} \bar{\theta}}{\partial x_{i} \partial x_{i}}-\frac{\partial \overline{v_{i}^{\prime} \theta^{\prime}}}{\partial x_{i}}
\end{aligned}
$$

The Boussinesq assumption reads

$$
\overline{v_{i}^{\prime} v_{j}^{\prime}}=-\nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)+\frac{2}{3} \delta_{i j} k=-2 \nu_{t} \bar{s}_{i j}+\frac{2}{3} \delta_{i j} k
$$

The modeled $\overline{v_{i}^{\prime} v_{j}^{\prime}}$ equation with IP model reads

$$
\begin{aligned}
\bar{v}_{k} \frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k}}= & \text { (convection) } \\
-\overline{v_{i}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{j}}{\partial x_{k}}-\overline{v_{j}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{k}} & \text { (production) } \\
-c_{1} \frac{\varepsilon}{k}\left(\overline{v_{i}^{\prime} v_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k\right) & \text { (slow part) } \\
-c_{2}\left(P_{i j}-\frac{2}{3} \delta_{i j} P^{k}\right) & \text { (rapid part) } \\
+c_{1 w} \rho_{0} \frac{\varepsilon}{k}\left[\overline{v_{k}^{\prime} v_{m}^{\prime}} n_{k} n_{m} \delta_{i j}-\frac{3}{2} \overline{v_{i}^{\prime} v_{k}^{\prime}} n_{k} n_{j}\right. & \\
\left.-\frac{3}{2} \overline{v_{j}^{\prime} v_{k}^{\prime}} n_{k} n_{i}\right] f\left[\frac{\ell_{t}}{x_{n}}\right] & \text { (wall, slow part) } \\
+c_{2 w}\left[\Phi_{k m, 2} n_{k} n_{m} \delta_{i j}-\frac{3}{2} \Phi_{i k, 2} n_{k} n_{j}\right. & \\
\left.-\frac{3}{2} \Phi_{j k, 2} n_{k} n_{i}\right] f\left[\frac{\ell_{t}}{x_{n}}\right] & \text { (wall, rapid part) } \\
+\nu \frac{\partial^{2} \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k} \partial x_{k}} & \text { (viscous diffusion) } \\
+\frac{\partial}{\partial x_{k}}\left[c_{k} \overline{v_{k}^{\prime} v_{m}^{\prime}} \frac{k}{\varepsilon} \frac{\partial v_{i}^{\prime} v_{j}^{\prime}}{\partial x_{m}}\right] & \text { (turbulent diffusion) } \\
-g_{i} \beta \overline{v_{j}^{\prime} \theta^{\prime}}-g_{j} \beta \overline{v_{i}^{\prime} \theta^{\prime}} & \text { (buoyancy production) } \\
-\frac{2}{3} \varepsilon \delta_{i j} & \text { (dissipation) }
\end{aligned}
$$

-The exact transport equation for turbulent heat heat flux vector $\overline{v_{i}^{\prime} \theta^{\prime}}$ reads

$$
\begin{aligned}
& \frac{\partial \overline{v_{i}^{\prime} \theta^{\prime}}}{\partial t}+\frac{\partial}{\partial x_{k}} \bar{v}_{k} \overline{v_{i}^{\prime} \theta^{\prime}}=\underset{P_{i \theta}}{-\overline{v_{i}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{\theta}}{\partial x_{k}}-\overline{v_{k}^{\prime} \theta^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{k}}-\overline{\frac{\theta^{\prime}}{\rho} \frac{\partial p^{\prime}}{\partial x_{i}}}-\frac{\partial}{\Pi_{i \theta}} \overline{\Pi_{i}} \overline{v_{k}^{\prime} v_{i}^{\prime} \theta^{\prime}}}
\end{aligned}
$$

-The exact k equation reads

$$
\frac{\partial k}{\partial t}+\frac{\partial \bar{v}_{j} k}{\partial x_{j}}=-\overline{v_{i}^{\prime} v_{j}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{j}}-\frac{\partial}{\partial x_{j}}\left[\frac{1}{\rho} \overline{v_{j}^{\prime} p^{\prime}}+\frac{1}{2} \overline{v_{j}^{\prime} v_{i}^{\prime} v_{i}^{\prime}}-\nu \frac{\partial k}{\partial x_{j}}\right]-\nu \overline{\frac{\partial v_{i}^{\prime}}{\partial x_{j}} \frac{\partial v_{i}^{\prime}}{\partial x_{j}}}
$$

- The exact $\overline{v_{i}^{\prime} v_{j}^{\prime}}$ equation reads

$$
\begin{array}{r}
\frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial t}+\frac{\partial}{\partial x_{k}}\left(\bar{v}_{k} \overline{v_{i}^{\prime} v_{j}^{\prime}}\right)=-\overline{v_{j}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{k}}-\overline{v_{i}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{j}}{\partial x_{k}} \\
-\frac{\partial}{\partial x_{k}}\left(\overline{v_{i}^{\prime} v_{j}^{\prime} v_{k}^{\prime}}+\frac{1}{\rho} \delta_{j k} \overline{v_{i}^{\prime} p^{\prime}}+\frac{1}{\rho} \delta_{i k} \overline{v_{j}^{\prime} p^{\prime}}-\nu \frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k}}\right) \\
+\frac{1}{\rho} \overline{p^{\prime}} \overline{\left(\frac{\partial v_{i}^{\prime}}{\partial x_{j}}+\frac{\partial v_{j}^{\prime}}{\partial x_{i}}\right)}-g_{i} \beta \overline{v_{j}^{\prime} \theta^{\prime}}-g_{j} \overline{v_{i}^{\prime} \theta^{\prime}}-2 \nu \overline{\frac{\partial v_{i}^{\prime}}{\partial x_{k}} \frac{\partial v_{j}^{\prime}}{\partial x_{k}}}
\end{array}
$$

-The modeled k and ε equations

$$
\begin{aligned}
\frac{\partial k}{\partial t}+\bar{v}_{j} \frac{\partial k}{\partial x_{j}} & =\nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right) \frac{\partial \bar{v}_{i}}{\partial x_{j}}+g_{i} \beta \frac{\nu_{t}}{\sigma_{\theta}} \frac{\partial \bar{\theta}}{\partial x_{i}} \\
-\varepsilon & +\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{j}}\right] \\
\frac{\partial \varepsilon}{\partial t}+\bar{v}_{j} \frac{\partial \varepsilon}{\partial x_{j}} & =\frac{\varepsilon}{k} c_{\varepsilon 1} \nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right) \frac{\partial \bar{v}_{i}}{\partial x_{j}} \\
& +c_{\varepsilon 1} g_{i} \frac{\varepsilon}{k} \frac{\nu_{t}}{\sigma_{\theta}} \frac{\partial \bar{\theta}}{\partial x_{i}}-c_{\varepsilon 2} \frac{\varepsilon^{2}}{k}+\frac{\partial}{\partial x_{j}}\left[\left(\nu+\frac{\nu_{t}}{\sigma_{\varepsilon}}\right) \frac{\partial \varepsilon}{\partial x_{j}}\right]
\end{aligned}
$$

