CHALMERS TEKNISKA HÖGSKOLA Inst. för tillämpad mekanik
 Avd. för strömningslära
 41296 Göteborg

Lars Davidson
100524

MTF270 Turbulence Modelling

Tentamen torsdagen den 27 maj 2010, f.m.
No means of assistance, i.e. no calculator, no mathematical
OBS! handbook etc. (Inga hjälpmedel) except the formula sheet appended to this exam

T1. a) Derive the transport equation for the $\overline{v_{i}^{\prime} \theta^{\prime}}$ equation. Explain the physical meaning of the different terms.
b) Use physical reasoning to derive a model for the pressure-strain term for the normal stress components. How is the model for the shear stress components obtained?
c) The exact equation for the fluctuating pressure p^{\prime} reads

$$
\frac{1}{\rho} \frac{\partial^{2} p^{\prime}}{\partial x_{j} \partial x_{j}}=-2 \frac{\partial \bar{v}_{i}}{\partial x_{j}} \frac{\partial v_{j}^{\prime}}{\partial x_{i}}-\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(v_{i}^{\prime} v_{j}^{\prime}-\overline{v_{i}^{\prime} v_{j}^{\prime}}\right)
$$

For a Poisson equation

$$
\frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{j}}=f
$$

there exists an exact analytical solution

$$
\varphi(\mathbf{x})=-\frac{1}{4 \pi} \int_{V} \frac{f(\mathbf{y}) d y_{1} d y_{2} d y_{3}}{|\mathbf{y}-\mathbf{x}|}
$$

Use these equations to derive the exact analytical solution for the pressure strain term

$$
\overline{p^{\prime}\left(\frac{\partial v_{i}^{\prime}}{\partial x_{j}}+\frac{\partial v_{j}^{\prime}}{\partial x_{i}}\right)}
$$

Which terms are called the "slow" and "rapid" terms? Why are they called slow and rapid?
d) One realizability constraint is that the normal Reynolds stresses should not go negative. Show that the Boussinesq assumption does allow negative normal stresses. In which coordinate system is that risk largest? Derive an expression how to avoid negative normal stresses by reducing the turbulent viscosity.

T2. a) Describe the SST model. The SST model is a combination of two models: which ones? In which region is each model being used and why? How is the switch between the two models done?
b) Consider the flow over a curved wall (see figure below), in which the turbulence is reduced by streamline curvature. Show that Reynolds stress models can reproduce this reduction.

c) By filtering the Navier-Stokes equations in two different ways the following formula is obtained

$$
{\overparen{\bar{v}} i \bar{v}_{j}}-\widehat{\bar{v}}_{i} \widehat{\bar{v}}_{j}+\widehat{\tau}_{i j}=T_{i j}, \quad \mathcal{L}_{i j}={\overparen{\bar{v}} i \bar{v}_{j}}-\widehat{\widehat{v}}_{i} \widehat{\bar{v}}_{j}
$$

Show how it is derived. Use the Smagorinsky model to derive the following expression

$$
\mathcal{L}_{i j}-\frac{1}{3} \delta_{i j} \mathcal{L}_{k k}=-2 C\left(\widehat{\Delta}^{2}|\widehat{\bar{s}}| \widehat{\bar{s}}_{i j}-\Delta^{2} \overparen{|\bar{s}| \bar{s}_{i j}}\right)
$$

T3. a) Discuss the energy path in connection to the source and sink terms in the \bar{k}, \bar{K} and the $k_{\text {sgs }}$ equations. Give the expressions for the source and sink terms. How are \bar{k} and $k_{\text {sgs }}$ computed from the energy spectrum?
b) Describe hybrid LES-RANS based on one-equation models. Give all equations related to the turbulence model.
c) In scale-similarity models in LES the subgrid stresses are modelled as

$$
\tau_{i j}=\overline{\bar{v}}_{i} \bar{v}_{j}-\overline{\bar{v}}_{i} \overline{\bar{v}}_{j}
$$

Assume you're using LES on an unstructured mesh, see figure below. All velocities, \bar{v}_{i}, are stored in the center of the control volumes (black large dots). Cell p has volume V_{p}, cell a has volume V_{a} etc. Suggest a way to filter the velocities to get the first part of τ_{12} for node P.

Under tentamen kan ansvarig lärare (Lars Davidson) nås på telefon: 7721404 eller 0730-791 161

During the exam the responsible teacher (Lars Davidson) can be reached at 7721404 or 0730-791 161

Maximal score is 50. For grade passed a score of 20 is required; for grade 4, 30 points are required; for grade 5,40 points are required.

MTF270 Turbulence modelling: Formula sheet

The continuity, Navier-Stokes and temperature equations for incompressible flow with constant viscosity read

$$
\begin{aligned}
\frac{\partial v_{i}}{\partial x_{i}} & =0 \\
\rho \frac{\partial v_{i}}{\partial t}+\rho \frac{\partial v_{i} v_{j}}{\partial x_{j}} & =-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}-\rho_{0} \beta\left(\theta-\theta_{0}\right) g_{i} \\
\frac{\partial \theta}{\partial t}+\frac{\partial \bar{v}_{i} \theta}{\partial x_{i}} & =\alpha \frac{\partial^{2} \theta}{\partial x_{i} \partial x_{i}}
\end{aligned}
$$

The time averaged continuity equation, Navier-Stokes equation temperature equations read

$$
\begin{aligned}
\frac{\partial \bar{v}_{i}}{\partial x_{i}} & =0 \\
\rho \frac{\partial \bar{v}_{i} \bar{v}_{j}}{\partial x_{j}} & =-\frac{\partial \bar{p}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu \frac{\partial \bar{v}_{i}}{\partial x_{j}}-\rho \overline{v_{i}^{\prime} v_{j}^{\prime}}\right)-\rho_{0} \beta\left(\bar{\theta}-\theta_{0}\right) g_{i} \\
\frac{\partial \bar{v}_{i} \bar{\theta}}{\partial x_{i}} & =\alpha \frac{\partial^{2} \bar{\theta}}{\partial x_{i} \partial x_{i}}-\frac{\partial \overline{v_{i}^{\prime} \theta^{\prime}}}{\partial x_{i}}
\end{aligned}
$$

The Boussineq assumption reads

$$
\overline{v_{i}^{\prime} v_{j}^{\prime}}=-\nu_{t}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)+\frac{2}{3} \delta_{i j} k=-2 \nu_{t} \bar{s}_{i j}+\frac{2}{3} \delta_{i j} k
$$

The modeled $\overline{v_{i}^{\prime} v_{j}^{\prime}}$ equation with IP model reads

$$
\begin{aligned}
\bar{v}_{k} \frac{\partial \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k}}= & \text { (convection) } \\
-\overline{v_{i}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{j}}{\partial x_{k}}-\overline{v_{j}^{\prime} v_{k}^{\prime}} \frac{\partial \bar{v}_{i}}{\partial x_{k}} & \text { (production) } \\
-c_{1} \frac{\varepsilon}{k}\left(\overline{v_{i}^{\prime} v_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k\right) & \text { (slow part) } \\
-c_{2}\left(P_{i j}-\frac{2}{3} \delta_{i j} P^{k}\right) & \text { (rapid part) } \\
+c_{1 w} \rho \frac{\varepsilon}{k}\left[\overline{v_{k}^{\prime} v_{m}^{\prime}} n_{k} n_{m} \delta_{i j}-\frac{3}{2} \overline{v_{i}^{\prime} v_{k}^{\prime}} n_{k} n_{j}\right. & \\
\left.-\frac{3}{2} \overline{v_{j}^{\prime} v_{k}^{\prime}} n_{k} n_{i}\right] f\left[\frac{\ell_{t}}{x_{n}}\right] & \text { (wall, slow part) } \\
+c_{2 w}\left[\Phi_{k m, 2} n_{k} n_{m} \delta_{i j}-\frac{3}{2} \Phi_{i k, 2} n_{k} n_{j}\right. & \\
\left.-\frac{3}{2} \Phi_{j k, 2} n_{k} n_{i}\right] f\left[\frac{\ell_{t}}{x_{n}}\right] & \text { (wall, rapid part) } \\
+\nu \frac{\partial^{2} \overline{v_{i}^{\prime} v_{j}^{\prime}}}{\partial x_{k} \partial x_{k}} & \text { (viscous diffusion) } \\
+\frac{\partial}{\partial x_{k}}\left[c_{k} \overline{v_{k}^{\prime} v_{m}^{\prime}} \frac{k}{\varepsilon} \frac{\partial v_{i}^{\prime} v_{j}^{\prime}}{\partial x_{m}}\right] & \text { (turbulent diffusion) } \\
-g_{i} \beta \overline{v_{j}^{\prime} \theta^{\prime}}-g_{j} \overline{\beta v_{i}^{\prime} \theta^{\prime}} & \text { (buoyancy production) } \\
-\frac{2}{3} \varepsilon \delta_{i j} & \text { (dissipation) }
\end{aligned}
$$

