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1. Motion, flow 13

T(Xi,t1)

T(x%, t2)

Figure 1.1: The temperature of a fluid particle described in Lagrangian, T'(Xj, ¢), or Eulerian,
T (z;,t), approach.

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative

SEE also [1], Chapt. 3.2.

Assume a fluid particle is moving along the line in Fig. 1.1. We can choose to study
its motion in two ways: Lagrangian or Eulerian. In the Lagrangian approach we keep
track of its original position (X;) and follow its path which is described by x;(X;, ).
For example, at time ¢; the temperature of the particle is T'(X;, t1), and at time ¢5 its
temperature is 7'(X;, t2), see Fig. 1.1. This approach is not used for fluids because it
is very tricky to define and follow a fluid particle. It is however used when simulating
movement of particles in fluids (for example soot particles in gasoline-air mixtures in
combustion applications). The speed of the particle is then expressed as a function of
time and its position at time zero, i.e. v; = v;(X;, ).

In the Eulerian approach we pick a position, e.g. x}, and watch the particle pass
by. This approach is used for fluids. The temperature of the fluid, 7', for example, is
expressed as a function of the position, i.e. T = T'(z;), see Fig. 1.1. It may be that the
temperature at position x;, for example, varies in time, ¢, and then T = T'(x;, t).

Now we want to express how the temperature of a fluid particle varies. In the
Lagrangian approach we first pick the particle (this gives its starting position, X;).
Once we have chosen a particle its starting position is fixed, and temperature varies
only with time, i.e. T'(¢) and the temperature gradient can be written d7'/dt.

In the Eulerian approach it is a little bit more difficult. We are looking for the
temperature gradient, d7'/dt, but since we are looking at fixed points in space we
need to express the temperature as a function of both time and space. From classical
mechanics, we know that the velocity of a fluid particle is the time derivative of its
space location, i.e. v; = dz;/dt. The chain-rule now gives

dr _or  dz; 0T _ 0T oT

@ o om0 Yom, (1-1)

Note that we have to use partial derivative on 7" since it is a function of more than one
(independent) variable. The first term on the right side is the local rate of change; by
this we mean that it describes the variation of 7" in time at position x;. The second term
on the right side is called the convective rate of change, which means that it describes

local rate
of change
Conv. rate
of change
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the variation of 1" in space when it passes the point x;. The left side in Eq. 1.1 is called
the material derivative and is in this text denoted by d7/dt.

Exercise 1 Write out Eq. 1.1, term-by-term.

d 0
1.2 What is the difference between % and %?

. . dv v
Students sometimes get confused about the difference between ~2 and —2. Here we

give a simple example. Figure 1.2 shows a flow path of fluid particles which can be
expressed in time as
x1 = exp(t), x2 =exp(—t) (1.2)

and hence 25 = 1/x1. The flow path is steady in time and it starts at (z1, 22) = (0.5, 2)
and ends at (21, z2) = (2,0.5). Equation 1.2 gives the velocities

dwg
v = —— =exp(t), vy = ar

= —exp(—t) (1.3)
and Eqgs. 1.2 and 1.3 give
le =z, v2E = —x9 (1.4)

(cf. Eq. 4.52). The superscripts E and L denote Eulerian and Lagrangian, respectively.
Note that v = v¥ and v} = vZ; the only difference is that v is expressed as function
of (t,x1,x2) and viL as function of ¢ (and in general also starting location, X7, X3).
Now we can compute the time derivatives of the vy velocity as

d L

o

dvlf ok ol o (1-5)
2 2 50V EOV)

dt ot U oz, "2 Oy o w2 (=1) = @2

dvy  dvF  dvk
We find, of ,that — = —— = —=
e find, of course, that — o p”
Consider, for example, the point (21, z2) = (1, 1) in Fig. 1.2. The difference bet-

= x9 = exp(—t).

d
ween 2 and 222 is now clearly seen by looking at Eq. 1.5. The velocity at the point

dt ot
L ov¥ . .

(z1,22) = (1,1) does not change in time and hence o = 0. However, if we sit on
a particle which passes the location (z1,22) = (1, 1), the velocity, v¥, increases by

dvk d
time, % = % = 1 (the velocity, v, gets less negative) . Actually it increases all

d

the time from the starting point where % = 2 and vo = —2 until the end point where
d
% = 0.5and vy = —0.5.

1.3 Viscous stress, pressure
See also [1], Chapts. 6.3 and 8.1.
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€2

T

Figure 1.2: Flow path 2 = 1/x1. The filled circle shows the point (z1,x2) = (1,1). </ start
(t =In(0.5)); A: end (t = In(2)).

We have in Part I [2] derived the balance equation for linear momentum which
reads

pii —0jig — pfi =0 (1.6)
Switch notation for the material derivative and derivatives so that
d’Ui (’)aji
= i 1.7
"ot = B, +rf 1.7

where the first and the second term on the right side represents, respectively, the net
force due to surface and volume forces (o;; denotes the stress tensor). Stress is force
per unit area. The first term on the right side includes the viscous stress tensor, 7;;. As
you have learnt earlier, the first index relates to the surface at which the stress acts and
the second index is related to the stress component. For example, on a surface whose
normal is n; = (1,0, 0) act the three stress components 011, 012 and 013, see Fig. 1.3a;
the volume force acts in the middle of the fluid element, see Fig. 1.3b.

In the present notation we denote the velocity vector by v = v; = (v1,v2,v3)
and the coordinate by x = z; = (x1,x2,x3). In the literature, you may find other
notations of the velocity vector such as u; = (u1, u2, ug). If no tensor notation is used
the velocity vector is usually denoted as (u, v, w) and the coordinates as (z, y, 2).

The diagonal components of ¢;; represent the normal stresses and the off-diagonal
components of ¢;; represent the shear stresses. In Part I [2] you learnt that the pressure
is defined as minus the sum of the normal stress, i.e.

P=—0/3 (1.8)

The pressure, P, acts as a normal stress. In general, pressure is a thermodynamic
property, p;, which can be obtained — for example — from the ideal gas law. In that
case the thermodynamics pressure, p;, and the mechanical pressure, P, may not be the



1.4. Strain rate tensor, vorticity 16

012

011
013

Z2 fi

€2

X1 z

(a) Stress components and stress vector on a surface. (b) Volume force, f; = (0, —g, 0), acting in
the middle of the fluid element.

Figure 1.3: Stress tensor, volume (gravitation) force and stress vector, tgél), see Eq. D.2.

same but Eq. 1.8 is nevertheless used. The viscous stress tensor, 7;;, is obtained by
subtracting the trace, ok /3 = — P, from 0;;; the stress tensor can then be written as

Uij = 7P5” + Tz’j (19)

7;; is the deviator of o;;. The expression for the viscous stress tensor is found in Eq. 2.4
at p. 26. The minus-sign in front of P appears because the pressure acts info the surface.
‘When there is no movement, the viscous stresses are zero and then of course the normal
stresses are the same as the pressure. In general, however, the normal stresses are the
sum of the pressure and the viscous stresses, i.e.

o011 =—P+m71, 02=—P+Tyn, o033=—P+733, (1.10)

Exercise 2 Consider Fig. 1.3. Show how 021,092, 023 act on a surface with normal
vector n; = (0, 1,0). Show also how o031, 032, 033 act on a surface with normal vector
n; = (0,0,1).

Exercise 3 Write out Eq. 1.9 on matrix form.

1.4 Strain rate tensor, vorticity
See also [1], Chapt. 3.5.3, 3.6.

We need an expression for the viscous stresses, 7;;. They are needed in the mo-
mentum equations, Eq. 1.7 (see also Eq. 1.9). They will be expressed in the velocity
gradients, g;? . Hence we will now discuss the velocity gradients.

J

The velocity gradient tensor can be split into two parts as

8vi 1 8vi 8vi 8vj (91)]'
- _ + — —_J4

(’)xj 2 axj (’)xj Iaxi (’)xil
20v; /0x; =0

1 a’l}i (’)vj 1 (’)vi an
= _ —_J - —_—J ) =4.. 0.,
2 (8$j + 8%) + 2 (al'] 8%) SU + *

(1.11)




1.4. Strain rate tensor, vorticity 17

where
Si; is a symmetric tensor called the strain-rate tensor
Q;; is a anti-symmetric tensor called the vorticity tensor

The vorticity tensor is related to the familiar vorticity vector which is the curl of
the velocity vector, i.e. w = V X v, or in tensor notation

Oy,
w; = eijk%"f (1.12)
J

where ¢;;;, is the permuation tensor, see lecture notes of Toll & Ekh [2] and Table C.1
in Appendix C. If we set, for example, i = 3 we get

w3 = 802/8$1 - (91)1/8$2. (113)
The vorticity represents rotation of a fluid particle. Inserting Eq. 1.11 into Eq. 1.12
gives

wi = €k (Skj + Nj) = €0k (1.14)

since €;;:5%; = 0 because the product of a symmetric tensor (Si;) and an anti-

symmetric tensor (€;5) is zero. Let us show this for + = 1 by writing out the full

equation. Recall that Sij = Sji (i.e. S12 = S91, S13 = S31, Soz3 = S39) and
€ijk = —€ikj = €jk; etc (1.e. €123 = —€132 = €231 ..., €113 = €221 = ...€331 = 0)

€1jkSk; = €111511 + €112521 + €113531
+ €121512 + €122522 + £123532
+¢€131513 + €132523 + €133 933
=0-511+0-S52 +0-S55; (1.15)
+0-S124+0-S32+1- 539
+0-513—1-533+0-533
= S32 —S23=0

Now let us invert Eq. 1.14. We start by multiplying it with ;¢,,, so that
EibmWi = EitmEijkSAkj (1.16)
The e-6-identity gives (see Table C.1 at p. 321)
€itm€ijk e = (0050mk — 00k0my)Qkj = QUme — Qe = 200 1.17)

This can easily be proved by writing out all the components, see Table C.1 at p. 321.
Now Eqgs. 1.16 and 1.17 give

1 1 1
Qe = SitmWi = 5EmiWi = — 5 Emeils (1.18)
or, switching indices
1
Qij = —§5ijkwk (1.]9)

It turns out that is is much easier to go from Eq. 1.14 to Eq. 1.19 by writing out the
components of Eq. 1.14 (here we do it for : = 1)

w1 = €1238232 + €132023 = 3y — Qo3 = =203 (1.20)

Strain-rate
tensor
vorticity ten-
sor
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and we get
1
923 = 75(4]1 (121)
which indeed is identical to Eq. 1.19.

Exercise 4 Write out the second and third component of the vorticity vector given in
Eq. 1.12 (i.e. wy and w3).

Exercise 5 Complete the proof of Eq. 1.15 fori =2 and 1 = 3.

Exercise 6 Write out Eq. 1.20 also for i = 2 and i = 3 and find an expression for Q15
and Q13 (cf. Eq. 1.21). Show that you get the same result as in Eq. 1.19.

Exercise 7 In Eq. 1.21 we proved the relation between );; and w; for the off-diagonal
components. What about the diagonal components of €;;? What do you get from
Eq. 1.117

Exercise 8 From your course in linear algebra, you should remember how to compute
a vector product using Sarrus’ rule. Use it to compute the vector product
€& € @&
_ - | o2 2 o
w=VXxv= dry  Ory  Ows
U1 U2 U3

Verify that this agrees with the expression in tensor notation in Eq. 1.12.

1.5 Product of a symmetric and antisymmetric tensor

In this section we show the proof that the product of a symmetric and antisymmetric
tensor is zero. First, we have the definitions:

e A tensor a;; is symmetric if a;; = aj;;
e A tensor b;; is antisymmetric if b;; = —bj;.

It follows that for an antisymmetric tensor all diagonal components must be zero;
for example, by; = —by1 can only be satisfied if b;; = 0.

The (inner) product of a symmetric and antisymmetric tensor is always zero. This
can be shown as follows

aijbij = ajibi; = —ajibyi,
where we first used the fact that a;; = a;; (symmetric), and then that b;; = —bj;
(antisymmetric). Since the indices ¢ and j are both dummy indices we can interchange
them in the last expression (—a;;b;; = —a;;b;;), which gives
aijbij = —aijbij
This expression says that A = — A which can be only true if A = 0 and hence a;;b;; =

0.
This can of course also be shown be writing out a;;b;; on component form, i.e.

ai;bi; = a11bi1 + a12biz + ai3bis
T 1
+ a21ba1 +a22b22 + a23bas
| SSE— — | I |
7 177;
+ a31b31 + az2bzz +azzbzz =0
—— | I )
173 TI1
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T
Figure 1.4: Rotation of a fluid particle during time At. Here Ov1/0x2 = —Ov2/dz1 so that

—Q12 = w3/2 = vz /dz1 > 0. The distance of the upper-left corner is negative because the
corner has moved with a negative vy velocity.

The underlined terms are zero (b1; = bgos = bz = 0); terms I cancel each other
(a12 = as1, bia = —ba1) as do terms II and II1.

1.6 Deformation, rotation
See also [1], Chapt. 3.3.

The velocity gradient can, as shown above, be divided into two parts: S;; and €2;;.
‘We have shown that the latter is connected to rotation of a fluid particle. During rotation ~rotation
the fluid particle is not deformed. This movement can be illustrated by Fig. 1.4. The
vertical movement (vo) of the lower-right corner (z1 + Ax1) of the particle in Fig. 1.4
is estimated as follows. The velocity at the lower-left corner is v2(x1). Now we need
the velocity at the lower-right corner which is located at z; + Axy. It is computed
using the first term in the Taylor series as'

va(z1 + Azxy) = vax1) + AJH%

61}1
It is assumed that the fluid particle in Fig. 1.4 is rotated the angle A« during the
time At. The angle rotation per unit time can be estimated as A« /At ~ da/dt =
—0v1 /029 = Qvg/Dxy; if the fluid element does not rotate as a solid body, the rotation
is computed as the average, i.e. da/dt = (Qva/dx1 — Ov1/0x2)/2. The vorticity
is computed as w3y = Jve/dx1 — Ov1/0x9 = —2012 = 2da/dt, see Eq. 1.13 and

Ithis corresponds to the equation for a straight line y = kx + £ where k is the slope which is equal to the
derivative of y, i.e. dy/dz, and £ = va(z1)
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A:L‘l

D A oA = AaAds
8:1:2

I

Aa

AZ‘Q

— Az At = AaAx;

Figure 1.5: Deformation of a fluid particle by shear during time At. Here Ov1 /Ox2 = Ova/dx1
so that S12 = Ov1 /8302 > 0.

Exercise 4. Hence, the vorticity ws can be interpreted as twice the average rotation per
unit time of the horizontal edge (Qv2/0x1) and vertical edge (—dv1/0x2).

Next let us have a look at the deformation caused by .S;;. It can be divided into two
parts, namely shear and elongation (also called extension or dilatation). The deforma-
tion due to shear is caused by the off-diagonal terms of S;;. In Fig. 1.5, a pure shear de-
formation by S12 = (Ov1/0x2 + Ova/dx1)/2 is shown. The deformation due to elon-
gation is caused by the diagonal terms of S;;. Elongation caused by S11 = dv1/0x; is
illustrated in Fig. 1.6.

In general, a fluid particle experiences a combination of rotation, deformation and
elongation as indeed is given by Eq. 1.11.

Exercise 9 Consider Fig. 1.4. Show and formulate the rotation by w;.
Exercise 10 Consider Fig. 1.5. Show and formulate the deformation by Sa3.

Exercise 11 Consider Fig. 1.6. Show and formulate the elongation by Sas.

1.7 Irrotational and rotational flow

In the previous subsection we introduced different types of movement of a fluid parti-
cle. One type of movement was rotation, see Fig. 1.4. Flows are often classified based
on rotation: they are rotational (w; # 0) or irrotational (w; = 0); the latter type is also
called inviscid flow or potential flow. We will talk more about that later on, see Sec-
tion 4.4. In this subsection we will give examples of one irrotational and one rotational
flow. In potential flow, there exists a potential, ®, from which the velocity components
can be obtained as

0P

Ve =
8:%

(1.22)
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Figure 1.6: Deformation of a fluid particle by elongation during time At.

t;dl
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x

Figure 1.7: The surface, S, is enclosing by the line ¢. The vector, ¢;, denotes the unit tangential
vector of the enclosing line, /.

Before we talk about the ideal vortex line in the next section, we need to introduce
the concept circulation. Consider a closed line on a surface in the ;1 — x5 plane, see
Fig. 1.7. When the velocity is integrated along this line and projected onto the line we
obtain the circulation

F:%%%M (1.23)

Using Stokes’s theorem we can relate the circulation to the vorticity as

r:fwmﬂz/%ﬁﬁwwz/wwﬁz/mw (1.24)
s Ox; s s

where n; = (0,0, 1) is the unit normal vector of the surface S. Equation 1.24 reads in
vector notation

F:%V~td€:/(v><v)~ndS:/w~ndS:/w3dS (1.25)
S S S



1.7. Irrotational and rotational flow 22

The circulation is useful in, for example, aeronautics and windpower engineering
where the lift of a 2D section of an airfoil or a rotorblade is expressed in the circulation
for that 2D section. The lift force is computed as (see Eqgs. 4.85 and 4.86)

L =pVI (1.26)

where V' is the velocity around the airfoil (for a rotorblade it is the relative velocity,
since the rotorblade is rotating). In an PhD project, an inviscid simulation method
(based on the circulation and vorticity sources) is used to compute the aerodynamic
loads for windturbine rotorblades [3].

Exercise 12 In potential flow w; = €;;,0v/0x; = 0. Multiply Eq. 1.22 by €;;, and
derivate with respect to xy, (i.e. take the curl of) and show that the right side becomes
zero as it should, i.e. £;;,0°®/(dxy0x;) = 0.

1.7.1 Ideal vortex line

The ideal vortex line is an irrotational (potential) flow where the fluid moves along
circular paths, see Fig. 1.8. The governing equations are derived in Section 4.4.5. The
velocity field in polar coordinates reads

r
vg=—, v, =0 (1.27)
27r
where I is the circulation. Its potential reads
re
P =— (1.28)
2
The velocity, vy, is then obtained as
100 r
— = - 1.29
v r o0 2nr ( )

To transform Eq. 1.27 into Cartesian velocity components, consider Fig. 1.9. The
Cartesian velocity vectors are expressed as

€2 €2

v] = —vgsin(f) = —vg— = —Vg—5—5—75
r (22 + x2)1/2 (130)
@) =wv Ty T .
vy =vgcos(f) =vg— = vp—5—573
2 0 0~ e(z%+$§)1/2
Inserting Eq. 1.30 into Eq. 1.27 we get
vy = _ T vy = _ Tm (1.31)

2m(2f + 23)’ 2m(2f +23)
To verify that this flow is a potential flow, we need to show that the vorticity, w; =
€4j60Vk /O is zero. Since it is a two-dimensional flow (v3 = 0/0z3 = 0), w1 =
wo = 0, we only need to compute ws = vg/Ox1 — dv1 /Dx2. The velocity derivatives
are obtained as
ovy r a?— 22 O0vg r % —a?

el " T R R (1.32)
Orz  2m(a}4a3)” Om 27 (a4 a3)’
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Figure 1.8: Ideal vortex. The fluid particle (i.e. its diagonal, see Fig. 1.4) does not rotate. The
locations of the fluid particle is indicated by black, filled squares. The diagonales are shown as
black dashed lines. The fluid particle is shown at = 0, w /4, 37 /4, 7, 57 /4, 37 /2 and —7 /6.

Vo

Figure 1.9: Transformation of v into Cartesian components.

and we get
r 1

3= 5= .
2 2
27 (2% + 23)
which shows that the flow is indeed a potential flow, i.e. irrotational (w; = 0). Note
that the deformation is not zero, i.e.

1 r 2
S = (am n (%2) S (1.34)

2 (on on) Ty

(23 — 23 +23 —23)=0 (1.33)

Hence a fluid particle in an ideal vortex does deform but it does not rotate (i.e. its
diagonal does not rotate, see Fig. 1.8).
It may be little confusing that the flow path forms a vortex but the flow itself has no
vorticity. Thus one must be very careful when using the words “vortex” and vorticity”. vortex vs.
By vortex we usually mean a recirculation region of the mean flow. That the flow has  vorticity
no vorticity (i.e. no rotation) means that a fluid particle moves as illustrated in Fig. 1.8.
As a fluid particle moves from position a to b — on its counter-clockwise-rotating path
— the particle itself is not rotating. This is true for the whole flow field, except at the
center where the fluid particle does rotate. This is a singular point as is seen from
Eq. 1.27 for which vy — oo.
Note that generally a vortex has vorticity, see Section 4.2. The ideal vortex is a very
special flow case.
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Figure 1.10: A shear flow. The fluid particle rotates. v; = cz3.
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Figure 1.11: A two-dimensional fluid element. Left: in original state; right: rotated to principal
coordinate directions. A1 and A2 denote eigenvalues; ¥1 and V2 denote unit eigenvectors.

1.7.2 Shear flow

Another example — which is rotational — is the lower half of fully-developed channel
flow for which the velocity reads (see Eq. 3.28)

U1 743@2 (1,E

22 h), vy =0 (1.35)

V1,max B h
where z2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads

Ovy Oy 4 2z
w1 =wy =0, ws Py B h < h ) (1.36)

When the fluid particle is moving from position a, via b to position c it is indeed
rotating. It is rotating in clockwise direction. Note that the positive rotating direction
is defined as the counter-clockwise direction, indicated by a in Fig. 1.10. This is why
the vorticity, ws, in the lower half of the channel (z2 < h/2) is negative. In the upper
half of the channel the vorticity is positive because dvy /dza < 0.

1.8 Eigenvalues and and eigenvectors: physical interpretation
See also [1], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure
it is oriented along the x; — x5 coordinate system. On the surfaces act normal stresses
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(011, 022) and shear stresses (012, 021). The stresses form a tensor, ;. Any tensor has
eigenvectors and eigenvalues (also called principal vectors and principal values). Since
0;; is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are
obtained from the characteristic equation, see [1], Chapt. 2.5.5 or Eq. 13.5 at p. 163.
When the eigenvalues have been obtained, the eigenvectors can be computed. Given
the eigenvectors, the fluid element is rotated o degrees so that its edges are aligned
with the eigenvectors, V1 = 21, and Vo = T/, see right part of Fig. 1.11. Note that the
sign of the eigenvectors is not defined, which means that the eigenvectors can equally
well be chosen as —V; and/or —V. In the principal coordinates 1, — xo/ (right part
of Fig. 1.11), there are no shear stresses on the surfaces of the fluid element. There
are only normal stresses. This is the very definition of eigenvectors. Furthermore, the
eigenvalues are the normal stresses in the principal coordinates, i.e. Ay = oy/1/ and
)\2 = 09/9/.
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2 Governing flow equations

SEE also [1], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation

2.1.1 The continuity equation

The first equation is the continuity equation (the balance equation for mass) which

reads [2]
p+pvi; =0 2.1)

Change of notation gives

dp v;
il =0 2.2
praa 0z, (2.2)
For incompressible flow (p = const) we get
a’l}i
=0 23
0z, (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have formulated the constitutive law
for Newtonian viscous fluids [2]

2
0ij = —P0ij + 21Sij — 5 115kk i
) 2.4)
Tij = 21855 — gﬂskkéij

Inserting Eq. 2.4 into the balance equations, Eq. 1.7, we get

dUi oP aTji oP 0 2 (’)vk
p dt Oz + Ox; +ofi= ox; + Ox; (Q'US” 3'u<9xk
where p denotes the dynamic viscosity. This is the Navier-Stokes equations (sometimes
the continuity equation is also included in the name “Navier-Stokes”). It is also called
the transport equation for momentum. Note that the stress tensor, 0;;, depends only on
the symmetric part (i.e. S;;, see Eq. 1.11) of the velocity gradient. It is only the part of
the velocity gradient that deforms the fluid (see Figs. 1.5 and 1.6) that appears in o;;.
The part of the the veocity gradient that rotates the fluid (i.e. 2;;, see Eq. 1.11 and
Fig. 1.4) does not appear in o;;.

If the viscosity, u, is constant it can be moved outside the derivative. Furthermore,
if the flow is incompressible the second term in the parenthesis on the right side is zero
because of the continuity equation. If these two requirements are satisfied we can also
re-write the first term in the parenthesis as

0 0 ov;  Ov; 0%v;
— (2u8;;) = p— d 20 =
8xj ( H J) M(?IL']' (81'] + axz) 'uaxjal'j

because of the continuity equation, i.e.

0 a’l}j 0 a’l}j
—_— = —_— = . 2-
M(?IL']' (81‘1) M(?:L'i (8%) 0 ( 7)

51’]‘) +pfi (2.5)

(2.6)
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Equation 2.5 can now — for constant ;. and incompressible flow — be written

d’l}i _ oP + 82%
p dt B 81‘1 'uaxjal'j

+rfi (2.8)

The viscous stress tensor then reads

ov;  Ov;
Tij =205 = b (895- + 8;) (2.9)
J 1

In inviscid (potential) flow, there are no viscous (friction) forces. In this case, the
Navier-Stokes equation reduces to the Euler equations

d’l)i 8 P

=——— 4 pf; 2.1
P B +pf (2.10)

Exercise 13 Equation 1.7 states that mass times acceleration is equal to the sum of
forces forces (per unit volume). Write out the momentum equation (without using the
summation rule) for the x1 direction and show the surface forces and the volume force
on a small, square fluid element (see lecture notes of Toll & Ekh [2]). Now repeat it for
the x5 direction.

Exercise 14 Formulate the Navier-Stokes equation for incompressible flow but non-
constant viscosity.

2.2 The energy equation
See also [1], Chapts. 6.4 and 8.1.

We have in Part I [2] derived the energy equation which reads

pU — ;04 + Gii = Pz (2.11)

where u denotes internal energy. ¢; denotes the conductive heat flux and z the net
radiative heat source. For simplicity, we neglect the radiation from here on. Change of
notation gives
du - 8vi aqi
P dt =i (’)xj axi
In Part I [2] we formulated the constitutive law for the heat flux vector (Fourier’s
law)

2.12)

oT
;= —k 2.13
q Bz, (2.13)
Inserting the constitutive laws, Eqgs. 2.4 and 2.13, into Eq. 2.12 gives
du ov; 2 0 oT
— = —P— 4+ 2uS5;;5:; — = i t+—=— 1k 2.14
pdt axi +l'quS] SMSkkS I+(’)xi < axz) ( )

[ii]

where we have used S;;0v;/0x; = S;;(Si; + ;) = S;;S;; because the product of a
symmetric tensor, S;;, and an anti-symmetric tensor, 2;;, is zero. Two of the viscous
terms (denoted by ®) represent irreversible viscous heating (i.e. transformation of

Euler
equations
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kinetic energy into thermal energy); these terms are important at high-speed flow? (for
example re-entry from outer space) and for highly viscous flows (lubricants). The first
term on the right side represents reversible heating and cooling due to compression and
expansion of the fluid. Equation 2.14 is the transport equation for (internal) energy, u.

Now we assume that the flow is incompressible (i.e. the velocity should be smaller
than approximately 1/3 of the speed of sound) for which

du = ¢, dT (2.15)
where ¢, is the heat capacity (see Part I) [2] so that Eq. 2.14 gives (¢, is assumed to be
constant)

dr 0 oT
— =0+ — | k— 2.16
Pep dt + 81‘1 ( 81‘1) ( )

The dissipation term is simplified to & = 211.5;;.5;; because S;; = Ov;/0z; = 0. If we
furthermore assume that the heat conductivity coefficient is constant and that the fluid
is a gas or a common liquid (i.e. not an lubricant oil) so that the viscous dissipaion is
negligible (i.e. & = 0), we get

dr o*T

E N aaxiaxi

2.17)

where o = k/(pcp) is the thermal diffusivity. The Prandtl number is defined as

v

Pr = (2.18)
a
where v = 11/ p is the kinematic viscosity. The physical meaning of the Prandtl number
is the ratio of how well the fluid diffuses momentum to how well it diffuses internal
energy (i.e. temperature).
The dissipation term, P, is neglected in Eq. 2.17 when one of two assumptions are
valid:

1. The fluid is a gas with low velocity (lower than 1/3 of the speed of sound); this
assumption was made when we assumed that the fluid is incompressible

2. The fluid is a common liquid (i.e. not an lubricant oil). In lubricant oils the
viscous heating (i.e. the dissipation, ®) is large. One example is the oil flow in a
gearbox in a car where the temperature usually is more than 100°C' higher when
the car is running compared to when it is idle.

Exercise 15 Write out and simplify the dissipation term, ®, in Eq. 2.14. The first term
is positive and the second term is negative; are you sure that ® > 0?

2.3 Transformation of energy

Now we will derive the equation for the kinetic energy, k¥ = v;v;/2. Multiply Eq. 1.7
with v;
d’l)i 80' i
V;—— — U;
P dt ox yi

—vipfi =0 (2.19)

2High-speed flows relevant for aeronautics will be treated in detail in the course “TME085 Compressible
flow” in the MSc programme.

thermal
diffusivity
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Using the product rule backwards (Trick 2, see Eq. 8.4), the first term on the left side
can be re-written

dvi 1 d(’l)i’l)i) dk
; =yt 2.20
Poar — 2P a P (&20)
(v;v;/2 = k) so that
dk 80]-1-
— = v ifi 2.21
T + pvif (2.21)
Re-write the stress-velocity term so that (Trick 1, see Eq. 8.2)
=T St poif (2.22)

PH T Tom,  Tiow,
This is the transport equation for kinetic energy, k. Adding Eq. 2.22 to Eq. 2.12 gives

d(u+ k) o 80]-1-1)1- _ 8qi
P dt N axj axi

+ pvifi (2.23)

This is an equation for the sum of internal and kinetic energy, v + k. This is the
transport equation for total energy, u + k.

Let us take a closer look at Eqs. 2.12, 2.22 and 2.23. First we separate the term
0;0v;/0z; in Egs. 2.12 and 2.22 into work related to the pressure and viscous stresses
respectively (see Eq. 1.9), i.e.

a’l}i c’)vi a’l}i
Gt =Pt 4t 2.24
9 8xj 8351 +TJ 835]- ( )
a b=

The following things should be noted.

e The physical meaning of the a-term in Eq. 2.24 — which includes the pressure, P
— is heating/cooling by compression/expansion. This is a reversible process, i.e.
no loss of energy but only transformation of energy.

e The physical meaning of the b-term in Eq. 2.24 — which includes the viscous
stress tensor, 7;; — is a dissipation, which means that kinetic energy is trans-
formed to thermal energy. It is denoted ®, see Eq. 2.14, and is called viscous
dissipation. It is always positive and represents irreversible heating.

e The dissipation, ®, appears as a sink term in the equation for the kinetic energy, k
(Eq. 2.22) and it appears as a source term in the equation for the internal energy,
u (Eq. 2.12). The transformation of kinetic energy into internal energy takes
place through this source term. In incompressible flow for which the viscous
term in Navier-Stokes can be simplified (see Eq. 2.8), the viscous term reads

% _Ov; Ov;
TJZ 836]- B Mal‘j axj

(2.25)

This quantity is very important in turbulent flow, cf. Eqs. 8.14 and 8.36.

e & does not appear in the equation for the total energy u—+ k& (Eq. 2.23); this makes
sense since ® represents a energy transfer between w and k and does not affect
their sum, v + k.
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Dissipation is very important in turbulence where transfer of energy takes place at
several levels. First energy is transferred from the mean flow to the turbulent fluctua-
tions. The physical process is called production of turbulent kinetic energy. Then we
have transformation of kinetic energy from turbulence kinetic energy to thermal en-
ergy; this is turbulence dissipation (or heating). At the same time we have the usual
viscous dissipation from the mean flow to thermal energy, but this is much smaller than
that from the turbulence kinetic energy. For more detail, see Section 5.

2.4 Left side of the transport equations

So far, the left sides in transport equations have been formulated using the material

derivative, d/dt. Let v denote a transported quantity (i.e. ¢ = v;,u, T ...); the left

side of the equation for momentum, thermal energy, total energy, temperature etc reads
dw oy o

a0 P (2.26)

This is often called the non-conservative form. Using the continuity equation, Eq. 2.2,

it can be re-written as
d1/) 81/) 81/} dp 81)]- B
Par =P TP “/’ Por ;)
—0 2.27)
81# oY _8/) dv;
Pat TP o “D( Vi 5w, P ox,

The two underlined terms will form a time derivative term, and the other three terms
can be collected into a convective term, i.e.
iy dpp  dpuj
— =0+ —F 2.28
p dt 8t + 8xj ( )
Thus, the left side of the temperature equation and the Navier-Stokes, for example, can
be written in three different ways (by use of the chain-rule and the continuity equation)

dv; ov; n ov; Opv;  Opujv;
— )— Vs — - J
Pat =Pt "%z, T ot T oy 220
dT oT oT  Opv; n Opv; T (2.29)

P = Par TP T Tar o,
The continuity equation can also be written in three ways (by use of the chain-rule)

dp dv; _ dp op ov; Op  Opv;
Yo~ ot T Vow, TPox, ot T om

(2.30)

The forms on the right sides of Eqs. 2.29 and 2.30 are called the conservative form.
When solving transport equations (such as the Navier-Stokes) numerically using finite
volume methods, the left sides in the transport equation are always written as the ex-
pressions on the right side of Eqs. 2.29 and 2.30; in this way Gauss law can be used
to transform the equations from a volume integral to a surface integral and thus ensur-
ing that the transported quantities are conserved. The results may be inaccurate due
to too coarse a numerical grid, but no mass, momentum, energy etc is lost (provided a
transport equation for the quantity is solved): “what comes in goes out”.

non-
conser-
vative

conser-
vative
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2.5 Material particle vs. control volume (Reynolds Transport The-
orem)

See also lecture notes of Toll & Ekh [2] and [1], Chapt. 5.2.

In Part I [2] we initially derived all balance equations (mass, momentum and en-
ergy) for a collection of material particles. The conservation of mass, d/dt [ pdV = 0,
Newton’s second law, d/dt f pv; = F; etc were derived for a collection of particles in
the volume V),q,-¢, where V4,4 is a volume that includes the same fluid particles all the
time. This means that the volume, V),4,+, must be moving and it may expand or contract
(if the density is non-constant), otherwise particles would move across its boundaries.
The equations we have looked at so far (the continuity equation 2.3, the Navier-Stokes
equation 2.8, the energy equations 2.14 and 2.22) are all given for a fixed control vol-
ume. How come? The answer is the Reynolds transport theorem, which converts the
equations from being valid for a moving, deformable volume with a collection of parti-
cles, Vpqrt, to being valid for a fixed volume, V. The Reynolds transport theorem reads

(first line)
4 BV = / 4@ 5% gy

dt VpaTt 1% dt 81‘1

0P 0P ov; od v ®
— il i— + d—L ) dV = il i A% 2.31
/V((?t—i_vaxi—’— 8zi) /V(Z%—’—a:ri) (23D

= a—(I)dV—l—/vini(I)dS
v Ot s

where V' denotes a fixed non-deformable volume in space. The divergence of the ve-
locity vector, Ov;/Ox;, on the first line represents the increase or decrease of Viart
during dt. The divergence theorem was used to obtain the last line and S' denotes the
bounding surface of volume V. The last term on the last line represents the net flow
of ® across the fixed non-deformable volume, V. & in the equation above can be p
(mass), pv; (momentum) or pu (energy). This equation applies to any volume at every
instant and the restriction to a collection of a material particles is no longer necessary.
Hence, in fluid mechanics the transport equations (Eqgs. 2.2, 2.5, 2.12, ...) are valid
both for a material collection of particles as well as for a volume; the latter is usually
fixed (this is not necessary).
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Figure 3.1: The plate moves to the right with speed V; for ¢t > 0.
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Figure 3.2: The vy velocity at three different times. t3 > t2 > t;.

3 Solutions to the Navier-Stokes equation: three exam-
ples

3.1 The Rayleigh problem

MAGINE the sudden incompressible motion of an infinitely long flat plate. For time

greater than zero the plate is moving with the speed V4, see Fig. 3.1. Because the
plate is infinitely long, there is no x; dependency. Hence the flow depends only on z2
and ¢, i.e. v; = v1(z2,t) and p = p(z2,t). Furthermore, Ov, /0x1 = Jvs/Oxs = 0 so
that the continuity equation gives Qvy/9xo = 0. At the lower boundary (22 = 0) and
at the upper boundary (xo2 — o0) the velocity component v = 0, which means that
vo = 0 in the entire domain. So, Eq. 2.8 gives (no body forces, i.e. f; = 0) for the vy
velocity component

8’01

ot

82’01

v
2
0x3

3.1

where we have divided the equation by density so that v = u/p. The boundary condi-
tions for Eq. 3.1 are
vi1(22,=0) =0, wvi(z2=0,¢)=V, vi(r2—00,t)=0 (3.2)
The solution to Eq. 3.1 is shown in Fig. 3.2. For increasing time (t3 > to > t;), the
moving plate affects the fluid further and further away from the plate.
It turns out that the solution to Eq. 3.1 is a similarity solution; this means that the
number of independent variables is reduced by one, in this case from two (z2 and ) to

one (). The similarity variable, n, is related to x5 and t as

=S (3.3)

similarity
solution



3.1. The Rayleigh problem 33

If the solution of Eq. 3.1 depends only on 7, it means that the solution for a given fluid
will be the same (“similar”) for many (infinite) values of x> and ¢ as long as the ratio
x2/+/vt is constant. Now we need to transform the derivatives in Eq. 3.1 from 9/0t
and 0/0x4 to d/dn so that it becomes a function of 7 only. We get

avl_dvl 517_ .Z’Qﬁ_s/2d’l)1_ 1ndv
ot dn ot 4y dnp 2t dp
Ovi _dvi On 1 duv
dry  dn Oz 2wt dn

o _ o0 (ou)_ 0 (1 du\_ 1 9 (dw)_ 1w
z3 © Oxy \Oxo ) Oxo \ 2wt dn ) 2wt Oxs \ dn )  4ut dn?

(3.4)
We introduce a non-dimensional velocity
(%1
== 35
v (35)
Inserting Egs. 3.4 and 3.5 in Eq. 3.1 gives
d’f df
—= +2n— =20 3.6
n? +2n dn (3.6)

‘We have now successfully transformed Eq. 3.1 and reduced the number of independent
variables from two to one. Now let us find out if the boundary conditions, Eq. 3.2, also
can be transformed in a physically meaningful way; we get

v1(22,6=0)=0= f(n > 00)=0
vi(ze =0,t) =V = f(n=0)=1 3.7)
vi(x2 > 00,t) =0= f(n > 00)=0
Since we managed to transform both the equation (Eq. 3.1) and the boundary conditions

(Eq. 3.7) we conclude that the transformation is suitable.
Now let us solve Eq. 3.6. Integration once gives

d
d_{7 = Cy exp(—n?) (3.8)
Integration a second time gives
n
f= Cl/ exp(—n"?)dn’ + Cy 3.9
0

The integral above is the error function

9 [
erf(n) = ﬁ/o exp(—n?)dn’ (3.10)

At the limits, the error function takes the values 0 and 1, i.e. erf(0) = 0 and erf(n —
oo) = 1. Taking into account the boundary conditions, Eq. 3.7, the final solution to
Eq. 3.9is (with Cy = 1 and C; = —2//7)

f(n) =1 —erf(n) (3.11)
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Figure 3.3: The velocity, f = v1/Vp, given by Eq. 3.11.
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Figure 3.4: The shear stress for water (v = 10~ °%) obtained from Eq. 3.12 at time ¢ = 100 000.

The solution is presented in Fig. 3.3. Compare this figure with Fig. 3.2 at p. 32; all
graphs in that figure collapse into one graph in Fig. 3.3. To compute the velocity, v,
we pick a time ¢ and insert 22 and ¢ in Eq. 3.3. Then f is obtained from Eq. 3.11 and
the velocity, vy, is computed from Eq. 3.5. This is how the graphs in Fig. 3.2 were
obtained.
From the velocity profile we can get the shear stress as
oy pwVo df — pWo

2
Tol = p—— = - = exp (—
21 'u(9$2 2/t dn VTt P ( K )

where we used v = u/p. Figure 3.4 presents the shear stress, 721. The solid line is
obtained from Eq. 3.12 and circles are obtained by evaluating the derivative, df /dn,
numerically using central differences (fj41 — fj—1)/(nj+1 — nj—1). As can be seen
from Fig. 3.4, the magnitude of the shear stress increases for decreasing 7 and it is
largest at the wall, 7, = —pVy/\/7t

The vorticity, w3, across the boundary layer is computed from its definition (Eq. 1.36)

(3.12)

81)1 Vo df Vo
W = —— — — —_ =
5T Oas wWwtdny vt
From Fig. 3.2 at p. 32 it is seen that for large times, the moving plate is felt further
and further out in the flow, i.e. the thickness of the boundary layer, ¢, increases. Often

exp(—12) (3.13)
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Figure 3.5: Flow in a horizontal channel. The inlet part of the channel is shown.

the boundary layer thickness is defined by the position where the local velocity, vy (22),
reaches 99% of the freestream velocity. In our case, this corresponds to the point where
v1 = 0.01V;. Find the point f = v1/V = 0.01 in Fig. 3.3; at this point ) ~ 1.8 (we
can also use Eq. 3.11). Inserting z2 = § in Eq. 3.3 gives

0
N
It can be seen that the boundary layer thickness increases with t!/2. Equation 3.14 can

also be used to estimate the diffusion length. After, say, 10 minutes the diffusion length
for air and water, respectively, are

n=18 = §=3.6Vut (3.14)

Ouir = 10.8cm

Owater = 2.8cm

(3.15)

The diffusion length can also be used to estimate the thickness of a developing bound-
ary layer, see Section 4.3.1.

Exercise 16 Consider the graphs in Fig. 3.3. Create this graph with Matlab.

Exercise 17 Consider the graphs in Fig. 3.2. Note that no scale is used on the xo axis
and that no numbers are given for t1, to and ts. Create this graph with Matlab for both
air and engine oil. Choose suitable values on t1, to and t3.

Exercise 18 Repeat the exercise above for the shear stress, To1, see Fig. 3.4.

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensional channel, see Fig. 3.5, with
constant physical properties (i.e. ;# = const).

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the velocity near the walls is larger
than in the center, see Fig. 3.5. The reason is that the flow (with velocity V') following
the curved wall must change its direction. The physical agent which accomplish this
is the pressure gradient which forces the flow to follow the wall as closely as possible
(if the wall is not sufficiently curved a separation will take place). Hence the pressure

diffusion
length
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Figure 3.6: Flow in a channel bend.

in the center of the channel, P, is higher than the pressure near the wall, P;. It is thus
easier (i.e. less opposing pressure) for the fluid to enter the channel near the walls than
in the center. This explains the high velocity near the walls.

The same phenomenon occurs in a channel bend, see Fig. 3.6. The flow V ap-
proaches the bend and the flow feels that it is approaching a bend through an increased
pressure. The pressure near the outer wall, P>, must be higher than that near the inner
wall, P, in order to force the flow to turn. Hence, it is easier for the flow to sneak
along the inner wall where the opposing pressure is smaller than near the outer wall:
the result is a higher velocity near the inner wall than near the outer wall. In a three-
dimensional duct or in a pipe, the pressure difference P, — P; creates secondary flow
downstream the bend (i.e. a swirling motion in the x5 — x3 plane).

3.2.2 Flat plates

The flow in the inlet section (Fig. 3.5) is two dimensional. Near the inlet the velocity is
largest near the wall and further downstream the velocity is retarded near the walls due
to the large viscous shear stresses there. The flow is accelerated in the center because
the integrated mass flow (from x5 = 0 to h) at each x; must be constant because of
continuity. The acceleration and retardation of the flow in the inlet region is “paid for
by a pressure loss which is rather high in the inlet region; if a separation occurs because
of sharp corners at the inlet, the pressure loss will be even higher. For large z; the flow
will be fully developed; the region until this occurs is called the entrance region, and
the entrance length can, for moderately disturbed inflow, be estimated as [4]
Ye _ .016Rep, = 0.01672"

h 14

(3.16)

where V' denotes the bulk (i.e. the mean) velocity, and D), = 4A/S, where Dy,
A and S, denote the hydraulic diameter, the cross-sectional area and the perimeter,
respectively. For flow between two plates we get Dy, = 2h.

Let us find the governing equations for the fully developed flow region; in this
region the flow does not change with respect to the streamwise coordinate, x; (i.e.
Ovy/0xy = Ovg/Ox1 = 0). Since the flow is two-dimensional, it does not depend
on the third coordinate direction, 23 (i.e. 8/0x3), and the velocity in this direction is
zero, i.e. v3 = (. Taking these restrictions into account the continuity equation can be
simplified as (see Eq. 2.3)

802

2 _ 17
s 0 (3.17)
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Integration gives vy = C and since vy = 0 at the walls, it means that
vy =0 (3.18)

across the entire channel (recall that we are dealing with the part of the channel where
the flow is fully developed; in the inlet section vy # 0, see Fig. 3.5).

Now let us turn our attention to the momentum equation for vs. This is the vertical
direction (z2 is positive upwards, see Fig. 3.5). The gravity acts in the negative x»
direction, i.e. f; = (0, —g, 0). The momentum equation can be written (see Eq. 2.8 at
p-27)

2
P%PM%JFPWS—Z;—ZJFM%PQ (3.19)
Since vy = 0 we get
g—i =—pg (3.20)
Integration gives
P = —pgxs + Cy (1) 3.21)

where the integration “constant” C; may be a function of z; but not of 5. If we denote
the pressure at the lower wall (i.e. at z2 = 0) as p we get

P = —pgzs + p(z1) (3.22)

Hence the pressure, P, decreases with vertical height. This agrees with our experience
that the pressure decreases at high altitudes in the atmosphere and increases the deeper
we dive into the sea. Usually the hydrodynamic pressure, p, is used in incompressible
flow. This pressure is zero when the flow is szatic, i.e. when the velocity field is zero.
However, when you want the physical pressure, the pgxo as well as the surrounding
atmospheric pressure must be added.

We can now formulate the momentum equation in the streamwise direction

don _  Ov o O dp 0w
Pt _plazl p28$2_ dx1 'u(?:rg

(3.23)

where P was replaced by p using Eq. 3.22. Since vy = 0v1 /021 = 0 the left side is
Z€ro SO
0%, dp
# 0r2  dry
Since the left side is a function of x5 and the right side is a function of x;, we conclude
that they both are equal to a constant (i.e. Eq. 3.24 is independent of x1 and z2) . The
velocity, vy, is zero at the walls, i.e

(3.24)

(% (0) =1 (h) =0 (325)
where h denotes the height of the channel, see Fig. 3.5. Integrating Eq. 3.24 twice and
using Eq. 3.25 gives
1——= (3.26)
The minus sign on the right side appears because the pressure is decreasing for increas-

ing x1; the pressure is driving the flow. The negative pressure gradient is constant (see
Eq. 3.24) and can be written as —dp/dx; = Ap/L.

hydrodynamic
pressure
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Figure 3.7: The velocity profile in fully developed channel flow, Eq. 3.28.

The velocity takes its maximum in the center, i.e. for 25 = h/2, and reads

h Aph 1 h? A
Vimae = — == (1-2) ==L (3.27)
’ 2u L 2 2 8u L
We often write Eq. 3.26 on the form
U1 4z T2
=—(1-— 3.28
V1, mazx h ( h ) ( )

The mean velocity (often called the bulk velocity) is obtained by integrating Eq. 3.28
across the channel, i.e.

U1,max

h
_ 2 _2
V1,mean = L /0 4.%'2 (1 h ) d-r2 = 3U1,ma$ (329)

The velocity profile is shown in Fig. 3.7
Since we know the velocity profile, we can compute the wall shear stress. Equa-

tion 3.26 gives
vy h dp h Ap
Tw = o= = =g —7— = 5
8$2 2 d$1 2 L
Actually, this result could have been obtained by simply taking a force balance of a
slice of the flow far downstream.

This flow is analyzed in Appendix D.

(3.30)

3.2.3 Force balance

‘We continue to consider fully developed flow between two parallel plates. To formulate
a force balance in the z; direction, we start with Eq. 1.7 which reads fori = 1

dvy _ ojn
p dt o axj

(3.31)

The left hand side is zero since the flow is fully developed. Forces act on a volume and
its bounding surface. Hence we integrate Eq. 3.31 over the volume of a slice (length
L), see Fig. 3.8

anl

0= A (3.32)

v 8:rj
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Figure 3.8: Force balance of the flow between two plates.

Recall that this is the form on which we originally derived the momentum balance
(Newton’s second law) in Part I. [2] Now use Gauss divergence theorem

\%4 J S

The bounding surface consists in our case of four surfaces (lower, upper, left and right)
so that

0: / lendeJr/
Steft S.

The normal vector on the lower, upper, left and right are 7; jower = (0,—1,0), N upper =
(0,1,0), 7 1efe = (—1,0,0), n4.righe = (1,0,0). Inserting the normal vectors and us-
ing Eq. 1.9 give

lende+/ lende (334)

SuppeT

O’jﬂ’bde‘i’/

right Slower

OZ—/ (—p+T11)dS+/ (—p+T11)dS— 721d5+/ To1dS
Steft Sright Stower Supper

(3.35)
711 = 0 because vy /0x1 = 0 (fully developed flow). The shear stress at the upper and
lower surfaces, 71, have opposite sign because (1(0v1 /022)10wer = —p(0V1/0%2)upper-

Using this and Eq. 3.22 give (p = p(z1) and 7, is constant and can thus be taken out
in front of the integration)

0=pWh — poWh — 21, LW (3.36)

where 7, = p(0v1/0%2)10wer and W is the width (in x5 direction) of the two plates
(for convenience we set W = 1). With Ap = p; — p2 we get Eq. 3.30.
3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic energy, Eq. 2.22. Let us integrate
this equation in the same way as we did for the force balance. The left side of Eq. 2.22
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is zero because we assume that the flow is fully developed; using Eq. 1.9 gives

- aviaﬁ c’)vi

0= — Ui iJ1
ox; ~ V'ax, +'pi_of'
dujp I OviTj; Ov; ov; (3.37)
- . i — Tii ~—
axj axj Pois axj J axj

[ii]

On the first line v; f; = v1 f1 + v2fo = 0 because vo = f; = 0. The third term on
the second line pd;;0v;/Ox; = pdv;/Ox; = 0 because of continuity. The last term
corresponds to the viscous dissipation term, ¢ (i.e. loss due to friction), see Eq. 2.24
(term b). Now we integrate the equation over a volume

Opv; | OTjiv
0/( p”3+ﬂq>)dv (3.38)
\a (’)xj (’)xj

Gauss divergence theorem on the two first terms gives

0= /(fpvj JFTjiUi)nde*/ ddV (3.39)
S 1%

where S is the surface bounding the volume. The unit normal vector is denoted by n;
which points out from the volume. For example, on the right surface in Fig. 3.8 it is
n; = (1,0,0) and on the lower surface it is n; = (0, —1,0). Now we apply Eq. 3.39
to the fluid enclosed by the flat plates in Fig. 3.8. The second term is zero on all
four surfaces and the first term is zero on the lower and upper surfaces (see Exercises
below). We replace the pressure P with p using Eq. 3.22 so that

/ (=pv1 + pgravi)nidS = —(p2 *pl)/ vin dS
Steft&Sright Steft&Sright
= Apvl,meanWh

because pgranivy on the left and right surfaces cancels; p can be taken out of the
integral as it does not depend on z2. Finally we get

1
Ap= ——— | ®dV 3.40
P Whvl,mean /V ( )

3.3 Two-dimensional boundary layer flow over flat plate

The equations for steady, two-dimensional, incompressible boundary layer flow reads
(z1 and x5 denote streamwise and wall-normal coordinates, respectively)

Oy Oon 0?v;

R T e
op
_E 3.41
5 =0 (3.41)
v, O _
(’)xl 8$2 o

where the pressure gradient is omitted in the v; momentum equation because Op/dx =
0 along a flat plate in infinite surroundings. The boundary conditions are
o =0:v; =vy =0 (at the wall)

(3.42)
Ty — 00 : V1 = Vi 0,2 =0 (far from the wall)
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Let’s introduce the streamfunction ¥, which is useful when re-writing the two-
dimensional Navier-Stokes equations. It is defined as

o, Y (3.43)
8$2

V1 -
8351

With the velocity field expressed in W, the continuity equations is automatically satis-

fied which is easily shown by inserting Eq. 3.43 into the continuity equation

ou  Ov, &Y T
(9%1 8362 B 83618352 8:7528:751 B

0 (3.44)

Inserting Eq. 3.43 into the streamwise momentum equation gives

ov 9%V ov 9*w 3w

il - = = 3.45
09 Ox10z2  Om1 O3 v o3 (3.45)
The boundary conditions for the streamfunction read
v
e =0:V = g— =0 (at the wall)
T2 (3.46)

ov
To —> 00 : — — Vi (far from the wall)
8$2 ’

As in Section 3.1 we want to transform the partial differential equation, Eq. 3.45,
into an ordinary differential equation. In Section 3.1 we replaced x; and ¢ with the new
non-dimensional variable . Now we want to replace x; and x» with a new dimension-
less variable, say £. At the same time we define a new dimensionless streamfunction,

9(§), as

v 1/2
g:( 1’°°> 2o, U =(Viem) g (3.47)

vxy
First we need the derivatives 9¢ /01 and 9 /O
o _ 1 (V_oo)/_ _ £

oxy 2\ v T1 211

ﬁ:(w_,m)”:g

Oxo v To

(3.48)

Now we express the first derivatives of ¥ in Eq. 3.45 as derivatives of g, i.e. (g’
denotes dg/d§)

ov _ 0 1/2 1/2 4 65
oxy  Oxy ((VV1,OO$1) )g + (Vi) g O0x;
1 Vi 1/2
) (L) g (Vi) g
T 2$1
o ” (3.49)
:§< z1°°> (9—¢&9")
oV o) o€

oY _ o 1/2) 12 95, _ ’
929 — D ((VV1,oow1) g+ (VW1 ,001) gY V1,009

stream-
function
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The second and third derivatives of ¥ read

82 ¢ Vi) /2 ¢
= Vied — = Vi 200 "=V o—=g"
(’)x% 1,009 D2 1, < > g 1, mg

rvxy
1/2 2
rv Vi Vi)Y g,,,ﬁ . Vl_.,oogm _— £ " (3.50)
o3 >\ vy 0z o >\ 2
92w o¢ ¢
B /A, S S VA
0x10x2 Lood o0x1 211 Lood

Inserting Egs. 3.49 and 3.50 into Eq. 3.45 gives

1 /i Y2 Vieo\ 2
7‘/1,oog/ivl,oog// o = (9—€9") | Vieo [ — g’
211 2 T VT

(3.51)
2
-y 1,00 1
vxy
Divide by V2 and multiply by z; gives
/g " 1 ! " 1
—959 —500-&)9" =9 (3.52)
so that 1
599” +9"=0 (3.53)

This equation was derived (and solved numerically!) by Blasius in his PhD thesis
1907 [5, 6]. The numerical solution is given in Table 3.1. The flow is analyzed in
Appendix E.

Exercise 19 For the fully developed flow, compute the vorticity, w;, using the exact
solution (Eq. 3.28).

Exercise 20 Show that the first and second terms in Eq. 3.39 are zero on the upper and
the lower surfaces in Fig. 3.8.

Exercise 21 Show that the second term in Eq. 3.39 is zero also on the left and right
surfaces in Fig. 3.8 (assume fully developed flow).

Exercise 22 Using the exact solution, compute the dissipation, @, for the fully devel-
oped flow.

Exercise 23 From the dissipation, compute the pressure drop. Is it the same as that
obtained from the force balance (if not, find the error; it should be!).
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£ g g g’

0 | 0.000000000E+00 | 0.000000000E+00 | 3.320573362E-01
0.2 | 6.640999715E-03 | 6.640779210E-02 | 3.319838371E-01
0.4 | 2.655988402E-02 | 1.327641608E-01 | 3.314698442E-01
0.6 | 5.973463750E-02 | 1.989372524E-01 | 3.300791276E-01
0.8 | 1.061082208E-01 | 2.647091387E-01 | 3.273892701E-01
1.0 | 1.655717258E-01 | 3.297800312E-01 | 3.230071167E-01
1.2 | 2.379487173E-01 | 3.937761044E-01 | 3.165891911E-01
1.4 | 3.229815738E-01 | 4.562617647E-01 | 3.078653918E-01
1.6 | 4.203207655E-01 | 5.167567844E-01 | 2.966634615E-01
1.8 | 5.295180377E-01 | 5.747581439E-01 | 2.829310173E-01
2.0 | 6.500243699E-01 | 6.297657365E-01 | 2.667515457E-01
2.2 | 7.811933370E-01 | 6.813103772E-01 | 2.483509132E-01
2.4 | 9.222901256E-01 | 7.289819351E-01 | 2.280917607E-01
2.6 | 1.072505977E+00 | 7.724550211E-01 | 2.064546268E-01
2.8 | 1.230977302E+00 | 8.115096232E-01 | 1.840065939E-01
3.0 | 1.396808231E+00 | 8.460444437E-01 | 1.613603195E-01
3.2 | 1.569094960E+00 | 8.760814552E-01 | 1.391280556E-01
3.4 | 1.746950094E+00 | 9.017612214E-01 | 1.178762461E-01
3.6 | 1.929525170E+00 | 9.233296659E-01 | 9.808627878E-02
3.8 | 2.116029817E+00 | 9.411179967E-01 | 8.012591814E-02
4.0 | 2.305746418E+00 | 9.555182298E-01 | 6.423412109E-02
4.2 | 2.498039663E+00 | 9.669570738E-01 | 5.051974749E-02
4.4 | 2.692360938E+00 | 9.758708321E-01 | 3.897261085E-02
4.6 | 2.888247990E+00 | 9.826835008E-01 | 2.948377201E-02
4.8 | 3.085320655E+00 | 9.877895262E-01 | 2.187118635E-02
5.0 | 3.283273665E+00 | 9.915419002E-01 | 1.590679869E-02
5.2 | 3.481867612E+00 | 9.942455354E-01 | 1.134178897E-02
5.4 | 3.680919063E+00 | 9.961553040E-0 | 17.927659815E-03
5.6 | 3.880290678E+00 | 9.974777682E-0 | 15.431957680E-03
5.8 | 4.079881939E+00 | 9.983754937E-0 | 1 3.648413667E-03
6.0 | 4.279620923E+00 | 9.989728724E-01 | 2.402039844E-03
6.2 | 4.479457297E+00 | 9.993625417E-01 | 1.550170691E-03
6.4 | 4.679356615E+00 | 9.996117017E-01 | 9.806151170E-04
6.6 | 4.879295811E+00 | 9.997678702E-01 | 6.080442648E-04
6.8 | 5.079259772E+00 | 9.998638190E-01 | 3.695625701E-04
7.0 | 5.279238811E+00 | 9.999216041E-01 | 2.201689553E-04
7.2 | 5.479226847E+00 | 9.999557173E-01 | 1.285698072E-04
7.4 | 5.679220147E+00 | 9.999754577E-01 | 7.359298339E-05
7.6 | 5.879216466E+00 | 9.999866551E-01 | 4.129031111E-05
7.8 | 6.079214481E+00 | 9.999928812E-01 | 2.270775140E-05
8.0 | 6.279213431E+00 | 9.999962745E-01 | 1.224092624E-05
8.2 | 6.479212887E+00 | 9.999980875E-01 | 6.467978611E-06
8.4 | 6.679212609E+00 | 9.999990369E-01 | 3.349939753E-06
8.6 | 6.879212471E+00 | 9.999995242E-01 | 1.700667989E-06
8.8 | 7.079212403E+00 | 9.999997695E-01 | 8.462841214E-07

Table 3.1: Blasius numerical solution of laminar flow along a flat plate.

43
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Figure 4.1: Surface forces acting on a fluid particle. The fluid particle is located in the lower
half of fully developed channel flow. The v1 velocity is given by Eq. 3.28 and vo = 0. Hence
Ti1 = T22 = O112/021 = 0 and 9721 /0x2 > 0. The v1 velocity field is indicated by dashed
vectors.

4 Vorticity equation and potential flow

4.1 Vorticity and rotation

ORTICITY, w;, was introduced in Eq. 1.12 at p. 17. As shown in Fig. 1.4 at p. 19,
Vvorticity is connected to rotation of a fluid particle. Figure 4.1 shows the surface
forces acting on a fluid particle in a shear flow. Looking at Fig. 4.1 it is obvious that
only the shear stresses are able to rotate the fluid particle; the pressure acts through the
center of the fluid particle and is thus not able to affect rotation of the fluid particle.
Note that the v momentum equation (see Eqgs. 2.4 and 3.32) requires that the vertical
viscous stresses in Fig. 4.1 are in balance. The v; momentum equation requires that
the horizontal viscous stresses balance the pressure difference.

Let us have a look at the momentum equations in order to show that the viscous
terms indeed can be formulated with the vorticity vector, w;. In incompressible flow
the viscous terms read (see Egs. 2.4, 2.5 and 2.6)

aTji 62%
= 4.1
8xj 'uaxj 81']' ( )
The right side can be re-written using the tensor identity
821)1' - 821)]‘ 621}3' 62%
8zj8xj o (9%]81'1 8:L'](9$1 81']'81']'
0 81)]- 821)k 821)k (42)
= o | “CinmEmijk 3 . — “EinmEmiky o5
Ox; \ Oz; i 0x;0xy, i 0x;0x,

=0
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where the first on the the second line is zero because of continuity. Let’s verify that

2,,. 2,,. 2
< 0%, 0%v; ) 0%y, @.3)

- = EinmEmjk
O0x;0x; Ox;0x; 0x;0xy,

Use the ¢ — J-identity (see Table C.1 at p. 321)

D2y, %y, & vy 0%v;
Emmsm]—km = (0ij0nk — OirOny) 0,0z,  Oxi0xy - dx;0r;

4.4

which shows that Eq. 4.3 is correct. At the right side of Eq. 4.3 we recognize the
vorticity, Wy, = €m;x0vi/0x;, so that

0%v; Owm,
— = i —= 4.5
a$jal'j ¢ axn ( )
In vector notation the identity Eq. 4.5 reads
Viv=V(V-v) - VXxVxv=-Vxuw (4.6)
Using Eq. 4.5, Eq. 4.1 reads
(97']'1' awm
= —HEinm 5 4.7
O0x; He Oz, 7

Thus, there is a one-to-one relation between the viscous term and vorticity: no viscous
terms means no vorticity and vice versa. An imbalance in shear stresses (left side of
Eq. 4.7) causes a change in vorticity, i.e. generates vorticity (right side of Eq. 4.7).
Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception is when
vorticity is transported info an inviscid region, but also in that case no vorticity is
generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called
irrotational flow (i.e. no rotation) or potential flow. The vorticity is always created at
boundaries, see Section 4.3.1.
The main points that we have learnt in this section are:

1. The viscous terms are responsible for creating vorticity; this means that the vor-
ticity can not be created or destroyed in inviscid (friction-less) flow

2. The viscous terms in the momentum equations can be expressed in w;; consider-
ing Item 1 this was to be expected.

Exercise 24 Prove the first equality of Eq. 4.5 using the £--identity.

Exercise 25 Write out Eq. 4.7 for © = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We have learnt that physically
it means rotation of a fluid particle and that it is only the viscous terms that can cause
rotation of a fluid particle. The terms inviscid (no friction), irrotational and potential
flow all denote frictionless flow which is equivalent to zero (change in) vorticity. There
is a small difference between the three terms because there may be vorticity in inviscid
flow that is convected into the flow at the inlet(s); but also in this case the vorticity is not

potential

friction-
less
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affected once it has entered the inviscid flow region. However, usually no distinction is
made between the three terms.

In this section we will derive the transport equation for vorticity in incompressible
flow. As usual we start with the Navier-Stokes equation, Eq. 2.8 at p. 27. First, we
re-write the convective term of the incompressible momentum equation (Eq. 2.8) as

, 1
= = 0 (S + Qij) = v; <Sij - §€ijkwk> (4.8)

where Eq. 1.19 on p. 17 was used. Inserting S;; = (dv;/0x; + Jv;/0x;)/2 and
multiplying by two gives

8vi < avi 81)]-
+

2 = O 61}) — EijkUVjWE (49)
J T

v =

J awj J

The second term on the right side can be written as (Trick 2, see Eq. 8.4)
_81)]' - lﬁ(vjvj) ok

= = — 4.10
Y (’)xl 2 (’)xl (’)xl ( )
where k = v;jv;/2. Equation 4.9 can now be written as
8vi 8l<:
Uj Oz = O — Eijk VWi (411)
J 4 rotation

no rotation

The last term on the right side is the vector product of v and w, i.e. v X w.

The trick we have achieved is to split the convective term into one term without
rotation (first term on the right side of Eq. 4.11) and one term including rotation (second
term on the right side). Inserting Eq. 4.11 into the incompressible momentum equation
(Eq. 2.8) yields

c’)vi ok 190P 821)1'
v = : 4.12
ot * 0x; .Eﬂ:#c. p O0x; * Vazj(?xj +f (4.12)

no rotation

The volume source is in most engineering flows represented by the gravity, i.e. f; = g;.
From Eq. 4.12 we get Crocco’s theorem for steady inviscid flow

EijkVjWh = oz, (g + k‘) - fi= 8(; (% +k+ ¢) (4.13)
Po/p
where 0¢/0x; = — f; is the potential of the body force. In vector notation, Eq. 4.13
reads
VXWw= %V(Po) (4.14)

These equations states that the gradient of stagnation pressure, Py, is orthogonal to
both the velocity and vorticity vector.

Since the vorticity vector in Eq. 1.12 is defined by the cross product &,,4;0v; /0z,
(V x v in vector notation, see Exercise 8), we start by applying the operator &,,4,0/9x,
to the Navier-Stokes equation (Eq. 4.12) so that

9%v; 0%k Ovjwy,
Epai O0tox, Epai O0x;0x, ~ Cpai€igh O0xq
Ler o oa )
P p Oz,0, P 9w ;0x 0z, " Oz,
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where the body force f; was replaced by g;. We know that €;;;, is anti-symmetric in
all indices, and hence the second term on line 1 and the first term on line 2 are zero
(product of a symmetric and an anti-symmetric tensor). The last term on line 2 is
zero because the gravitation vector, g;, is constant (it is zero even if it is non-constant,
because it can be expressed as a potential, see Eq. 4.31). The last term on line 1 is
re-written using the -9 identity (see Table C.1 at p. 321)

Ovjwy Oviwy Ov,w,  Ovgw
I ot D S S SNP S d Re hnd e b
Epqi€ijk oz, (0pj0q — Opkdag;) Dz, Dz Dz,
(4.16)
Owy, Ovp Owp O0vg
=Up— Wk — Vg —Wpa
Oxy, Oxy, O0xq 0xq
Using the definition of w; we find that its divergence
Ow; 0 vy, 0%y,
—=—|eiyjr=— ) =cijk=—=—=0 4.17
Oxz; Oz (E ik 8z-) c Jk@xjaxi 417)

is zero (product of a symmetric and an anti-symmetric tensor). Using the continuity
equation (Jv,/0x, = 0) and Eq. 4.17, Eq. 4.16 can be written

Ovjwy, Ovp owp

iEijk——— = W= — Vg = 4.18
“pai€ik 8xq Wk 8:L'k Uk 8xk ( )

The second term on line 2 in Eq. 4.15 can be written as

03v; 9? ov; 52wp

; = i— | = 4.19
Vere 0x;0x;0x, Vaxjaxj (qu axq) V@xjaxj (4.19)

Inserting Eqs. 4.18 and 4.19 into Eq. 4.15 gives finally
dop _ Owp Oy _ v Oy (4.20)

@~ ot oz “om. Von00

We recognize the usual unsteady term, the convective term and the diffusive term.
Furthermore, we have got rid of the pressure gradient term. That makes sense, because
as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the
vorticity) of a fluid particle since the pressure acts through its center. Equation 4.20
has a new term on the right-hand side which represents amplification and bending or
tilting of the vorticity lines. If we write it term-by-term it reads

ov ov ov
w1—1 +w2—1—|—w3—1, =1
B oo G G
wkaﬁ = wlﬂ +w2ﬂ+w3ﬂ, p=2 4.21)
Tk 0xq 012 Oxs3
w1 % +w2% + wg% =3
83@1 al’g (’)x3 ’

The diagonal terms in this matrix represent vortex stretching. Imagine a slender,
cylindrical fluid particle with vorticity w; and introduce a cylindrical coordinate system
with the z;-axis as the cylinder axis and 72 as the radial coordinate (see Fig. 4.2) so
that w; = (w1, 0,0). We assume that a positive Qv /Ox; is acting on the fluid cylinder;
it will act as a source in Eq. 4.20 increasing w; and it will stretch the cylinder. The vol-
ume of the fluid element must stay constant during the stretching (the incompressible

Vortex
stretching
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— U1 —_ U

T2
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. . . .0
Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching. 8—1)1 > 0.
ZT1

v1(72) g—;; >0

T2

L.

Z1

Figure 4.3: Vortex tilting. Dashed lines denote fluid element before bending or tilting.

continuity equation), which means that the radius of the cylinder will decrease. Hence
vortex stretching will either make a fluid element longer and thinner (as in the example
above) or shorter and thicker (when dv; /0x1 < 0).

The off-diagonal terms in Eq. 4.21 represent vortex tilting. Again, take a slender
fluid particle, but this time with its axis aligned with the x2 axis, see Fig. 4.3. Assume
is has a vorticity, wa, and that the velocity surrounding velocity field is v; = vy (x2).
The velocity gradient dvy /Dxo will tilt the fluid particle so that it rotates in clock-wise
direction. The second term wydv1 /dz4 in line one in Eq. 4.21 gives a contribution to
w1. This means that vorticity in the xo direction, through the source term wydv1 /9x2,
creates vorticity in the z; direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions:
fluid which initially is two dimensional becomes quickly three dimensional through
these phenomena. Vorticity is useful when explaining why turbulence must be three-
dimensional, see Section 5.4.

Vortex
tilting



4.3. The vorticity transport equation in two dimensions 49

4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no influence in two dimensions; in
this case the vortex stretching/tilting term vanishes because the vorticity vector is or-
thogonal to the velocity vector (for a 2D flow the velocity vector reads v; = (v1, v2,0)
and the vorticity vector reads w; = (0,0,ws) so that the scalar product is zero, i.e.
wiOvp/Oxy, = 0). Thus in two dimensions the vorticity equation reads

dw3 0 2w3

otV oraor., *422)

(Greek indices are used to indicate that they take values 1 or 2). This equation is exactly
the same as the transport equation for temperature in incompressible flow, see Eq. 2.17.
This means that vorticity is convected and diffused in the same way as temperature. In
fully developed channel flow, for example, the vorticity and the temperature equations
reduce to

82w3
0= V—[?x% (4.23a)
02T
0=k—5 4.23b
5 (4.23b)
For the temperature equation the heat flux is given by g = —k9T/Jxo; with a hot

lower wall and a cold upper wall (constant wall temperatures) the heat flux is constant
for all x5 and goes from the lower wall to the upper wall. We have the same situation for
the vorticity. Its gradient, i.e. the vorticity flux, 2 = —vdws/Ox2, is constant across
the channel (you have plotted this quantity in TME225 Assignment 1). Equation 4.23
is turned into relations for g and 2 by integration

Ywall = Y2 (4243)
Qwall = 42 (424b)

If the wall-normal temperature derivative 07'/0x2 = 0 at both walls (adiabatic
walls), the heat flux at the walls, g,,411, Will be zero and the temperature will be equal to
an arbitrary constant in the entire domain. It is only when the wall-normal temperature
derivative at the walls are non-zero that a temperature field is created in the domain.
The same is true for ws: if vOws /Oxe = —73 = 0 at the walls, the flow will not include
any vorticity. Hence, vorticity is — in the same way as temperature — generated at the
walls.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section 3.1 we studied the Rayleigh problem (unsteady diffusion). As shown above,
the two-dimensional unsteady temperature equation is identical to the two-dimensional
unsteady equation for vorticity. The diffusion time, ¢, or the diffusion length, J, in
Eq. 3.14 can now be used to estimate the thickness of a developing boundary layer
(recall that the limit between the boundary layer and the outer free-stream region can
be defined by vorticity: inside the vorticity is non-zero and outside it is zero).
In a boundary layer, the streamwise pressure gradient is zero, see Eq. 3.41. This
means that
8201 -0
K 03 B

wall
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Vo

T2 - =
Z1 ¢6
T ,

Figure 4.4: Boundary layer. The boundary layer thickness, ¢, increases for increasing stream-
wise distance from leading edge (z1 = 0).

because, at the wall, the only non-zero terms in the Navier-Stokes equation are the
streamwise pressure gradient and the wall-normal diffusion term (see, for example,
Egs. 2.8 and 3.23). Hence, the flux of vorticity

821)1

= —F
2
0x}

8w3

wall wall

(recall that (Ove /021 )waen = 0) along the wall which means that no vorticity is created
along the boundary. The vorticity in a developing boundary layer is created at the
leading edge of the plate (note that in channel flow, vorticity is indeed created along the
walls because in this case the streamwise pressure gradient is not zero). The vorticity
generated at the leading edge is transported along the wall by convection and at the
same time it is transported by diffusion away from the wall.

Below we will estimate the boundary layer thickness using the expression derived
for the Rayleigh problem. In a boundary layer there is vorticity and outside the bound-
ary layer it is zero (in the Rayleigh flow problem, the vorticity is created at time ¢t = 0™
when the plate instantaneously accelerates from rest to velocity Vj). Hence, if we can
estimate how far from the wall the vorticity diffuses, this gives us an estimation of the
boundary layer thickness.

Consider the boundary layer in Fig. 4.4. The boundary layer thickness at the end of
the plate is 6(L). The time it takes for a fluid particle to travel from the leading edge of
the plate to « = L is L/V} (in the Rayleigh problem this corresponds to the flow field
after time ¢ = L/V}). During this time vorticity will be transported by diffusion in the
2o direction the length ¢ according to Eq. 3.14. If we assume that the fluid is air with
the speed Vo = 3m/s and that the length of the plate L = 2m we get from Eq. 3.14
that §(L) = 1.2¢em.

Exercise 26 Note that the estimate above is not quite accurate because in the Rayleigh
problem we assumed that the convective terms are zero, but in a developing boundary
layer, as in Fig. 4.4, they are not (vo # 0 and Ovy/0x1 # 0). The proper way to
solve the problem is to use Blasius solution, see Section 3.3. Blasius solution gives (see
Eq. E.1)

1) 5 VoL
—=——. Rep,=— 4.26
L RelL/2 7 cL v ( )

Compute what 6(L) you get from Eq. 4.26.

Exercise 27 Assume that we have a developing flow in a pipe (radius R) or between
two flat plates (separation distance h). We want to find out how long distance it takes
for the the boundary layers to merge. Equation 3.14 can be used with § = R or h.
Make a comparison with this and Eq. 3.16.
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4.4 Potential flow

N potential flow, the velocity vector can be expressed as the gradient of its poten-
tial ®, see Eq. 1.22. The vorticity is then zero by definition since the curl of the
divergence is zero. This is easily seen by inserting Eq. 1.22 (v; = 9®/Jx;) into the
definition of the vorticity, Eq. 1.12, i.e.
(%k 82(1)

Wi = €ijk 5

=€ip——— = 4.27
O0x; ”’“axjaxk 0 (427)

since €y, is anti-symmetric in indices j and k and 9*® /9 ;0z), is symmetric in j and
k. Inserting Eq. 1.22 into the continuity equation, Eq. 2.3, gives
_Ovy; 0 (0D  0*0
N axi N (’)xl (’)xl N (’)xlc’)xl
i.e. the potential satisfies the Laplace equation. This is of great important since many
analytical methods exist for the Laplace equation.

(4.28)

4.4.1 The Bernoulli equation

The velocity field in potential flow is thus given by the continuity equation, Eq. 4.28

(together with Eq. 1.22). Do we have any use of the Navier-Stokes equation? The

answer is yes: this equation provides the pressure field. We use the Navier-Stokes

equation (Eq. 4.12) with the viscous term expressed as in Eq. 4.5

ov; n ok 10P Owm

—— — EijkVjWE = ———=— — V€ipnm 5 ——

ot " ow, IR B)

Since w; = 0 in potential (irrotational) flow, we get (with f; = ¢;) and using k =
v /2 =v2/2

o + fi (4.29)

n

o (0P 1 0v? 10P
ox; (8%) 20x;  poxy t i (4.30)
where v; in the unsteady term was replaced by its potential (Eq. 1.22). The gravity
force can be expressed as a force potential, g; = —0X /Jz; (see Eq. 4.13), because it is
conservative. The gravity force is conservative because when integrating this force, the
work (i.e. the integral) depends only on the starting and ending points of the integral:
in mathematics this is called an exact differential.
Inserting g; = —0X'/0z; in Eq. 4.30 gives

o (0 v P
—+—+—+X] =0 4.31
axi<8t+2+p+) (4.31)
Integration gives the famous Bernoulli equation
o 2 P
—+—+—+X=C(t 4.32
5 T3t ; + (t) (4.32)
where X = —g;z;. In steady flow, we get
v? P
2 p

where g; = (0,0, g3). Using the height, gh = —gsx3, we get the more familiar form

1)2

P
—+—+gh=C (4.34)
2

conservative
force
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4.4.2 Complex variables for potential solutions of plane flows

Complex analysis is a suitable tool for studying potential flow. We start this section by
repeating some basics of complex analysis. For real functions, the value of a partial
derivative, Of /Ox, at & = x is defined by making x approach zy and then evaluating
(f(x+x0)— f())/xo. The total derivative, df /dt, is defined by approaching the point
Z10, 20, T30, t as a linear combination of all independent variables (cf. Eq. 1.1).

A complex derivative of a complex variable is defined as (f(z + 2z0) — f(2))/20
where z = x4y and f = u+iv. We can approach the point zg both in the real coordi-
nate direction, x, and in the imaginary coordinate direction, y. The complex derivative
is defined only if the value of the derivative is independent of how we approach the
point zo. Hence

aj - f(z0 + Az) — f(20)
dz =~ Az=0 Az
f(zo,iyo + iAy) — f(xo,iyo)

f(zO + A‘Ta Zy()) - f(an ZyO) _

- Alggo Ax Alyl;go iAy '
(4.35)
The second line can be written as
1 .
of _1of _iof _ of (4.36)
or 10y 120y oy
since 12 = —1. Inserting f = u + v and taking the partial derivative of f we get
af Ou 0Ov
— = — 4 i—
Jdx Oz ox (4.37)
figffi@ff@f,i%jL@ '
gy oy dy 9y Oy
Using Eq. 4.36 gives
Ou v Ou v 4.38)

dor oy Oy Oz
Equations 4.38 are called the Cauchy-Riemann equations. Another way to derive
Eq. 4.38 is to require that f should depend only on z but not on Z [7] (Z is the complex
conjugate of 2, i.e. Z = x — 1y).
So far the complex plane has been expressed as z = x +iy. It can also be expressed
in polar coordinates (see Fig. 4.5)

z =re? = r(cosf + isinh) (4.39)

Now we return to fluid mechanics and potential flow. Let us introduce a complex
potential, f, based on the streamfunction, ¥ (Eq. 3.43), and the velocity potential, ®
(Eq. 1.22)

f=0+10 (4.40)

Recall that for potential (i.e. inviscid, ¥ = 0) two-dimensional, incompressible flow,
the velocity potential satisfies the Laplace equation, see Eq. 4.28. The streamfunction
also satisfies the Laplace equation in potential flow where the vorticity, w;, is zero. This
is easily seen by taking the divergence of the streamfunction, Eq. 3.43

82\11 82\11 802 (91)1

oV oW Ov  On 441
Ox? * x3 011 * 0z ws =0 (4.41)
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Figure 4.5: The complex plane in polar coordinates. Real and imaginary axes correspond to the
horizontal and vertical axes, respectively.

see Eq. 1.13. Hence the complex potential, f, also satisfies the Laplace equation.
Furthermore, f also satisfies the Cauchy-Riemann equations, Eq. 4.38, since
0 ov
oxr Oy

0 ov
V1 and a—y = *% = V2 (442)

see Egs. 3.43 and 1.22. Thus we can conclude that f defined as in Eq. 4.40 is differen-
tiable, i.e. df /dz exists. We have now defined a complex funtction, f = ® +4¥ which
satisfies Laplace equation and which has a physical meaning in fluid dynamics.

443 f x 2"

Now we will give some examples of f(z) which correspond to useful engineering
flows. The procedure is as follows:

e assume that f oc 2" is complex potential
o verify that this is true (see, e.g, Eqs. 4.43-4.47)
e choose an n and find out what physical flow the complex potential describes

We can choose any exponent n in f o< 2™ and multiply with any constant in order
to get a physical, meaningful flow. The solution

f=0C2" (4.43)

is one example. Let’s first verify that this is a solution of the Laplace equation (i.e. the
continuity equation, 4.28 and thet the flow is inviscid, ws = 0, Eq. 4.41). We write it
in polar coordinates

f=0C¢ (rei‘g)n = C1re™ = O (cos(nd) + isin(nd)) (4.44)

The Laplace operator in polar coordinates reads

2p 1O (O 10%f
vf_rar r@r +T2 002 (4.45)
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Figure 4.6: Parallel flow.

Taking the first and the second derivatives of Eq. 4.44 with respect to r and 6 gives

% = Cynr™ Y (cos(nb) + isin(nd))
182 (r%) = C1n2r""?(cos(nb) + isin(nh))
ror g (4.46)
8_£ = Cynr™(—sin(n#) + i cos(nf))
Pf Cun2pm 0) + i sin(nd
agz = —Cun’r (cos(nd) + isin(nb))

When we divide the fourth line with 72 and add it to the second line we find that the
Laplace equation (Eq. 4.45) is indeed zero, i.e.

10 of 1 0%f
e ) 5 = 4.47
Vi r Or <r6r> 72 002 0 ( )
4.4.3.1 Parallel flow
When we set n = 1 in Eq. 4.43 we get (C}] = Vo)
f=Veoz =Vlz+iy) (4.48)

The streamfunction, ¥, is equal to the imaginary part, see Eq. 4.40. Equation 4.42
gives the velocity components

1)1:8—\11:‘/Oo and vgz—a—\P:O (4.49)
dy Or

The flow is shown in Fig. 4.6.

4.4.3.2 Stagnation flow

When we set n = 2 in Egs. 4.43 and 4.44 we get (inviscid) stagnation flow onto a wall.
The streamfunction, ¥, corresponds to the imaginary part of f, see Eqs. 4.40 and 4.44,
so that (C; = 1)
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(a) Vector plot. (b) Streamlines.
Figure 4.7: Potential flow. Stagnation flow.
U = r?5in(26) (4.50)

The solution in form of a vector plot and contour plot of the streamfunction is given in
Fig. 4.7. The flow impinges at the wall at zo = 0. The streamfunction is zero along the
symmetry line, z; = 0, and it is negative to the left and positive to the right. The polar
velocity components are obtained as (see. Eq. 4.42)

10V
vy = Lov = 27 cos(20)
r 00
(4.51)
ov 27 sin(20)
vg = ——— = —2rsin
f or
and in Cartesian components (see Fig. 1.9)
v1 = vy cos @ — vg sin @ = 2r cos 0 cos(260) + 2r sin 6 sin(260)
= 2rcos (1 — 2sin® @) + 4rsin? fcosl = 2r cos O = 2z,
(4.52)

vy = v, sin @ + vg cos @ = 27 sin 6 cos(260) — 2r cos 6 sin(260)

= 2rsinf(2cos® 0 — 1) — 4rsinfcos® = —2rsinh = 2

Recall that since the flow is inviscid (no friction), the boundary condition on the wall is
slip, i.e. a frictionless wall (same as a symmetric boundary). Note that this flow is the
same as we looked at in Section 1.2 except that the velocities are here twice as large
because we chose C; = 1 (see Eq. 1.4).

Figure 4.7 was generated in Matlab by evaluating Eqs. 4.50, 4.51 and 4.52 on a
polar grid.

4.4.3.3 Flow over a wedge and flow in a concave corner

Next we set n = 6/5 in Eqgs. 4.43 and 4.44. This gives us (inviscid) flow over a
wedge and flow over a concave corner (n should be in the interval 1 < n < 2). The
streamfunction, the imaginary part of f, is given by (Egs. 4.40 and 4.44)

U = 7% 5in(66/5) (4.53)
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T
(a) Vector plot. (b) Streamlines.

Figure 4.8: Potential flow. The lower boundary for 1 < 0 can either be a wall (concave corner)
or symmetry line (wedge).

(C1 = 1) and the velocity components read (see Fig. 4.51)

19
U = —2—9 = §7“(:05(66’/5)
r 5 (4.54)
= S Gnenys)
YT T 58

The velocity vector field and the streamfunction are presented in Fig. 4.8. The stream-
function is zero along the lower boundary. The angle, «, in Fig. 4.8a is given by

-1
_(-Dr _ = (4.55)
n 6
4.4.4 Analytical solutions for a line source
The complex potential for a line source reads
f=—lnz (4.56)

21

where m is the strength of the source; the physical meaning of 71 is volume flow
assuming that the extent of the domain in the third coordinate direction, z3, is one.
Writing Eq. 4.56 on polar form gives

T o . i ,
f:%ln(re‘g):%(lnTlen(e‘g)):%(lnrer) (4.57)

First, we need to make sure that this solution satisfies the Laplace equation, Eq. 4.45.
The first and second derivatives read

of m
ar  2mr
19 (Tﬂ) ~0
ror \' Or . 4.58)
af .m
20 'on
0%f

a0z =0
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Figure 4.9: Line source. 7 > 0

which shows that Eq. 4.47 is satisfied.
The streamfunction corresponds to the imaginary part of f and we get (see Eq. 4.51)

10v m
Vp = ——— = ——
r 00 27r
o i (4.59)
v = —— =
o or

We find that the physical flow is in the radial direction, see Fig. 4.9. If 12 > 0, the flow
is outwards directed and for 7 < 0 it is going inwards toward origo. When origo is
approached, the velocity, v,., tends to infinity. Hence, Eq. 4.59 gives nonphysical flow
near origo. The reason is that the inviscid assumption (zero viscosity) is not valid in
this region.

It was mentioned above that the physical meaning of 7 is volume flow. This is
easily seen by integrating v, (Eq. 4.59) over a cylindrical surface as

2 2m m 2
/d:cg/ vrrde/ dzg/ —T df = — // dxsdf = m. (4.60)

4.4.5 Analytical solutions for a vortex line

A line vortex is another example of a complex potential; it is very similar to Eq. 4.56
and reads

r
f=—i—Inz (4.61)
27
which on polar form reads (cf. Eq. 4.57)

f= —Lﬂ (ilnr —0) (4.62)
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Figure 4.10: Vortex line.

From the streamfunction (the imaginary part of f) we get (cf. Eq. 4.59)

10v
Vp = ——— =
r 00
o1 69
vo = or  2mr

This flow was introduced in Section 1.7.1 (where we called it an ideal vortex line) as an
example of a flow with no vorticity. The flow is in the positive 6 direction along lines
of constant radius, see Fig. 4.10. The circulation, I', appears in the expression of vg. It
was introduced in Section 1.7. It is defined as a closed line integral along line C, see
Eq. 1.23 and can be expressed as an integral of the vorticity over surface .S bounded by
line C, see Eq. 1.25 and Fig. 1.7.

4.4.6 Analytical solutions for flow around a cylinder

The complex potential for the flow around a cylinder can be found by combining a
doublet and a parallel flow. A doublet consists of a line source (strength 1) and sink
(strength —rh) separated by a distance ¢ in the z; direction (line sources were intro-
duced in Section 4.4.4). Imagine that we move the source and the sink closer to each
other and at the same time we increase their strength |ri2| so that the product p = rhe
stays constant. The resulting complex potential is

=2 (4.64)
Tz

When adding the complex potential of parallel flow, see Eq. 4.48, we get
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Figure 4.11: Flow around a cylinder of radius r¢.
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Figure 4.12: Flow around a cylinder of radius r¢. Integration of surface pressure.
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(a) CFD of unsteady laminar flow [8]. The mark- (b) Potential flow, Eq. 4.73
ers show the time-averaged location of separation.

Figure 4.13: Pressure coefficients.
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f=E v (4.65)
Tz
Now we define the radius of a cylinder, 7, as

o = p/(7Va) (4.66)

so that
_ VooTd

f

+ Va2 (4.67)

On polar form it reads

2
_ Ver

2
f + Vaore®® =V (T—Oew + rew)
T

ret?
9 (4.68)
=V <T—O(c059 —isinf) + r(cos + i sin@))
r
The streamfunction reads (imaginary part)
r2
U=V <r - —0> sinf (4.69)
r
Now we can compute the velocity components (see Eq. 4.51)
10V r3
vT:;@: Oo(l—r—Q)cose w0
ov AN .
Vg = —E = _Voo (1 + 7’_2) sin 0

We find that v, = 0 for r = rg as intended (thanks to the definition in Eq. 4.66). We
are not interested in the solution inside the cylinder (r < rg). Furthermore, we see
that the tangential velocity is zero at § = 0 and m; hence these points correspond to
the stagnation points, see Fig. 4.11. The velocity field at the cylinder surface, r = ro,
reads

Ups =0

’ . 4.71)
vg,s = —2Vo sind

where index s denotes surface. Note that the local velocity gets twice as large as the
freestream velocity at the top (8 = 7/2) and the bottom (§ = —x/2) of the cylinder.
The surface pressure is obtained from Bernoulli equation (see Eq. 4.34)

V2 P ,UQ) 2 2)
Joo p foo O P pg e O 4.72)
2 p 2 p 2

where we neglected the gravitation term. The surface pressure is usually expressed as
a pressure coefficient
2
DPs — P 0o UH,s

— _ _ 102

using Eq. 4.71.
It should be stressed that although Eqgs. 4.71 and 4.73 are exact they are not realistic
because of the strict requirement that the flow should be inviscid. This requirement is
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valid neither in the boundary layers nor in the wake; the boundary layers may be thin
but the wake is a large part of the domain. Figure 4.13 presents the pressure coefficient
for potential flow and accurate unsteady CFD of two-dimensional viscous flow [8] (the
Reynolds number is sufficiently low for the flow to be laminar); Eqs. 2.3 and 2.8 are
solved numerically [8]. The potential solution agrees rather well with viscous flow up
to 6 ~ 20°.

How do we find the lift and drag force? The only force (per unit area) that acts
on the cylinder surface is the pressure (in viscous flow there would also be a viscous
stress, but it is usually much smaller). To find the lift force, Fr,, we simply integrate
the pressure over the surface. Usually the lift force is expressed as a lift coefficient,
C',, which is scaled with the dynamic pressure pV.2 /2. The lift coefficient is obtained
as

Fy, ! o Ds .
V23 = /0 dxg/o V23 sin Orqdo

L
1 27
= —7o / dxs / (1 — 4sin? ) sin 0d6 (4.74)
0 0
= 0—4 L (36) 3 9 2W—o
= —-To CcOoS T CcoS 4cos . =

The sin 0 on the first line appears because we project the pressure force in the vertical
direction (see Fig. 4.12) and minus sign is because pressure acts inwards, see Eq. 1.9
and Fig. 4.1. We assume in Eq. 4.74 that the length of the cylinder in the 3 direction
is one. The drag coefficient is computed as

FD 1 27
= = — dx 1 — 4sin? 6) cos Orodo
e A Jeostra

1 2m 4 27
= 77’0/ dIEg/ [sin@ — —sin® 9} =0
0 0 3 0

The cos @ on the first line appears because we project the pressure force in the hori-
zontal direction (see Fig. 4.12). Equations 4.74 and 4.75 give C;, = Cp = 0; hence
we find that inviscid flow around a cylinder creates neither lift nor drag. The reason is
that the pressure is symmetric both with respect to 1 = 0 and 2 = 0. The lift force
on the lower surface side cancels the force on the upper side. Same argument for the
drag force: the pressure force on the upstream surface cancels that on the downstream
surface.

Cp
(4.75)

4.4.7 Analytical solutions for flow around a cylinder with circulation

We will now introduce a second example of potential flow around cylinders, which is
by far the most important one from engineering point of view. Here we will introduce
the use of additional circulation which alters the locations of the stagnation points and
creates lift. This approach is used in potential methods for predicting flow around
airfoils in aeronautics (mainly helicopters) and windpower engineering.

We add the complex potential of a vortex line (see Eq. 4.61) to Eq. 4.67 so that

2
_ Voot

r
f 4+ Veoz—i—1Inz 4.76)
27
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\F/
Figure 4.14: Flow around a cylinder of radius 7o with additional circulation which give a (neg-
ative) lift force, see Eq. 4.85.

~_1

Figure 4.15: Flow around a cylinder of radius ¢ with maximal additional circulation.

On polar form it reads (see Eqgs. 4.62 and 4.68)

2
o

r
f=Vs (—(cos@ —isinf) +r(cosf + ¢ sin@)) ~ 3 (¢lnr —0) (4.77)
T T
The imaginary part gives the streamfunction

2
r
U=V, (7’ - T—O) sinf — o~ Inr (4.78)

T s

We get the velocity components as (see Eqs. 4.63 and 4.70)

10V 2
vy = =V (1—%)0059
r

r 00 4.79)
__8_\11__‘/ 1+ﬁ i 9+L .
vo = ar = r2 St 27r
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The effect of the added vortex line is, as expected, to increase vy while leaving v,
unaffected. The larger the circulation, the larger vg.
The velocity at the surface, » = rg, reads

Ups =0

(4.80)

r
Vs = —2Voo sinf +
’ 27rg
Now let’s find the location of the stagnation points, i.e. where vg s = 0. Equation 4.80
gives

. T . r
2V sinlstag = = Ostag = arcsin <7> (4.81)
0

27y 4mroVeo

The two angles that satisfy this equation are located in the the first and second quad-
rants. The two positions are indicated with a and b in Fig. 4.14. For a limiting value of
the circulation, I';, 4., the two locations s and b will merge at § = 7/2, denoted with ¢
in Fig. 4.15,

Tinaz = 47Vooro.- (4.82)

This corresponds to the maximum value of the circulation for which there is a stag-
nation point on the cylinder surface. For circulation larger than I';,,,, the stagnation
point will be located above the cylinder.

The pressure is obtained from Bernoulli equation as (see Eq. 4.73)

Vs

r 2
=12 =1 (—2sinf+-——o
Cr V2 ( sme+ 27T7“0V00>

AT sin r 2
=1—4sin’0 + sy
27119 Vso 2719 Vso

(4.83)

We found in Section 4.4.6 that a cylinder without circulation gives neither drag nor
lift, see Eqgs. 4.74 and 4.75. What about the present case? Let’s compute the lift. We
found in Eq. 4.74 that the two first terms in Eq. 4.83 give no contribution to the lift.
The last term cannot give any contribution to the lift because it is constant on the entire
surface. Hence we only need to include the third term in Eq. 4.83 so that
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We find that the lift force on a unit length of the cylinder can be computed from the
circulation as
Fr, = —pV, I’ (4.85)

This relation is valid for any body and it is called the Kutta-Joukowski law who —
independent of each other — formulated it. The reason to the sign of the lift force can
easily be seen from Fig. 4.14. The stagnation points, where the pressure is largest, are
located at the top of the cylinder and hence the pressure is higher on the top than on the
bottom. The "lift” force is acting downwards, i.e. in the negative x5 direction.
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Figure 4.17: Football. A free-kick uses the Magnus effect. Top view
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Figure 4.18: Flettner rotor (in blue) on a ship. The relative velocity between the ship and the
wind is Viyind + Vship. The ship moves with speed Vipip. Top view.

The drag is, however, still zero. In Eq. 4.75 we found that the first and the second
terms in Eq. 4.83 gives no contribution to drag. Hence, we only need to consider the
third terms. In the drag integral (see Eq. 4.75), this term in Eq. 4.83 gives rise to a term
proportional to sin € cos # whose contribution is zero. Hence, the additional circulation
does not give rise to any drag.

4.477.1 The Magnus effect

Circulation around a cylinder is very similar to a rotating cylinder. Instead of adding a
circulation, we let the cylinder rotate with speed €2. A rotating cylinder produces lift.
This has interesting application in sports, for example football, table tennis and golf.
In table tennis, the ball must hit the table on the side of the opponent. One way to
improve the chance that this will happen is to make a loop. This means that you hit the
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ball slightly on the top. The ball experiences a force, F', when you hit it (see Fig. 4.16)
and this force makes it rotate with rotation speed €2 (clockwise direction). The rotation
causes a lift, F,, which acts downwards so that the ball drops down quickly and (hope-
fully) hits the table on the other side of the net. The lift force is downwards because
the stagnation points are located on the upper surface. Recall that the relative velocity
of the air is in the negative z; direction.

Another example where the Magnus effect is important is golf. Here the object is
often vice versa. You want the ball to go as far as possible. Hence you hit it with a
slice so that it spins with a positive §2 (counter-clockwise). The result is a lift force in
the positive x5 direction which makes the ball go further.

A final sports example is football. Here the lift is used sideways. Imagine there is a
free-kick rather close to the opponents’ goal, see Fig. 4.17. The opponents erects a wall
of players between the goal and the location of the free-kick. The player who makes
the free-kick wants to make the ball go on the left side of the wall; after the wall of
players, the ball should turn right towards the goal. The Magnus effect helps to achieve
this. The player hits the ball with her/his left foot on the left side of the ball which
creates a force I on the ball. This makes the ball rotate clockwise, see Fig. 4.17, and
creates a lift force so that the ball after it has passed the wall turns to the right towards
the goal. The reason that the ball turns to the right first after the wall (and not before)
is that the forward momentum created by F’ (the player) is much larger than FT..

If you are interested in football you may be pleased to learn that by use of fluid
dynamics it is now scientifically proven that it was much harder to make a good freekick
in 2010 worldcup than in 2014 [9]. Figure 7b in that paper is particularly interesting.

As an experiment, two identical freekicks are made with the football used at
the 2013 FIFA Confederations. The freekicks are made 25m from the goal. The
initial velocity of the football is 30 m/s. The result of the two freekicks is that the
two footballs reach the goal three meters from each other in the vertical direction.
Why? Because the ball was rotated 45 degrees before the second freekick (see
Figs. 2¢,d) in [9].

Finally we give an engineering example of the use of the Magnus effect. The first
Flettner rotors on ships were produced in 1924. It has recently gained new interest as
the cost of fuel is rising. A Flettner rotor is a rotating cylinder (or many) on a ship,
see Fig. 4.18. The diameter of this rotor can be a couple of meter and have a length
(i.e. height) of 10 — 20 meter. The ship is moving to the right with speed V;,. The
wind comes towards the ship from the left-front (relative wind at an angle of 7/4).
The Flettner rotor rotates in the clockwise direction. The Magnus effect creates a force
in the orthogonal direction to the relative windspeed, i.e. at an angle of —m/4. Note
that if the wind comes from the right instead of from the left, the rotor should rotate
in the counter-clockwise direction. The additional propulsion force is FJ, cos(«). The
Division of Fluid Dynamics recently took part in an EU project where we studied the
flow around rotating cylinders in relation to Flettner rotors [10].

4.4.8 The flow around an airfoil

Flow around airfoils is a good example where potential methods are useful. These
methods are still in use in wind engineering and for helicopters. At the Division of
Fluid Dynamics we have an on-going PhD project where we use potential methods for
computing the aerodynamic loads for windturbine rotorblades [11].
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Figure 4.19: Airfoil. The boundary layers, §(z1), and the wake illustrated in red. 1 = 0 and
z1 = cat leading and trailing edge, respectively.
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Figure 4.20: Airfoil. Streamlines from potential flow. Rear stagnation point at the upper surface
(suction side).
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Figure 4.21: Airfoil. Streamlines from potential flow with added circulation. Rear stagnation
point at the trailing edge.
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The flow around airfoils is a good example where the flow can be treated as inviscid
in large part of the flow. For low angles of attack (which is the case for, for example, an
aircraft in cruise conditions) the boundary layers and the wake are thin. Outside these
regions the flow is essentially inviscid.

Figure 4.19 (see also Fig. 16.1) shows a two-dimensional airfoil. The boundary
layers and the wake are illustrated in red. The boundary layer is thinner on the pres-
sure (lower) side than on the suction (upper) side. It grows slightly thicker towards the
trailing edge (denoted by d(x1) in Fig. 4.19). When this flow is computed using po-
tential methods, the location of the front stagnation point is reasonably well captured,
see Fig. 4.20. However, the stagnation point near the trailing edge is located on the
suction side which is clearly nonphysical. The flow on the pressure (lower) side cannot
be expected to make a 180° turn at the trailing edge and then go in the negative x;
direction towards the stagnation point located on the suction side.

The solution is to move the stagnation points in the same way as we did for the
cylinder flow in Section 4.4.7. We want to move the rear stagnation point towards
the trailing edge. This is achieved by adding a circulation in the clockwise direction,
see Fig. 4.21. The magnitude of the circulation is determined by the requirement that
the stagnation point should be located at the trailing edge. This is called the Kutta
condition. The added circulation is negative (clockwise). In aeronautics, the sign of
circulation is usually changed so that I'4¢rongutic = —I'. The lift of a two-dimensional
airfoil (or a two-dimensional section of a three-dimensional airfoil) is then computed
as (see Eq. 4.85)

FL = pvooraeronautic (486)
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5 Turbulence

5.1 Introduction

LMOST all fluid flow which we encounter in daily life is turbulent. Typical exam-
Aples are flow around (as well as in) cars, aeroplanes and buildings. The boundary
layers and the wakes around and after bluff bodies such as cars, aeroplanes and build-
ings are turbulent. Also the flow and combustion in engines, both in piston engines
and gas turbines and combustors, are highly turbulent. Air movements in rooms are
turbulent, at least along the walls where wall-jets are formed. Hence, when we com-
pute fluid flow it will most likely be turbulent. In turbulent flow we usually divide the
velocities in one time-averaged part ¥;, which is independent of time (when the mean
flow is steady), and one fluctuating part v} so that v; = ¥; + v.

There is no definition on turbulent flow, but it has a number of characteristic fea-
tures (see Pope [12] and Tennekes & Lumley [13]) such as:

L. Irregularity. Turbulent flow is irregular and chaotic (they may seem random,
but they are governed by Navier-Stokes equation, Eq. 2.8). The flow consists of a
spectrum of different scales (eddy sizes). We do not have any exact definition of an
turbulent eddy, but we suppose that it exists in a certain region in space for a certain
time and that it is subsequently destroyed (by the cascade process or by dissipation,
see below). It has a characteristic velocity and length (called a velocity and length
scale). The region covered by a large eddy may well enclose also smaller eddies. The
largest eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet
width, etc). At the other end of the spectrum we have the smallest eddies which are
dissipated by viscous forces (stresses) into thermal energy resulting in a temperature
increase. Even though turbulence is chaotic it is deterministic and is described by the
Navier-Stokes equations.

II. Diffusivity. In turbulent flow the diffusivity increases. The turbulence increases
the exchange of momentum in e.g. boundary layers, and reduces or delays thereby
separation at bluff bodies such as cylinders, airfoils and cars. The increased diffusivity
also increases the resistance (wall friction) and heat transfer in internal flows such as
in channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.
For example, the transition to turbulent flow in pipes occurs that Rep ~ 2300, and in
boundary layers at Re, ~ 500 000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.

However, when the equations are time averaged, we can treat the flow as two-dimensional

(if the geometry is two-dimensional).

V. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in
the small (dissipative) eddies are transformed into thermal energy. The small eddies
receive the kinetic energy from slightly larger eddies. The slightly larger eddies receive
their energy from even larger eddies and so on. The largest eddies extract their energy
from the mean flow. This process of transferring energy from the largest turbulent
scales (eddies) to the smallest is called the cascade process, see Fig. Q.4.

VI. Continuum. Even though we have small turbulent scales in the flow they are
much larger than the molecular scale and we can treat the flow as a continuum.

turbulent
eddy

cascade
process
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flow of kinetic energy

. ..../

large scales intermediate scales dissipative scales

Y

Figure 5.1: Cascade process with a spectrum of eddies. The energy-containing eddies are
denoted by vo; ¢1 and /2 denotes the size of the eddies in the inertial subrange such that
ly < £y < Lo; £y is the size of the dissipative eddies.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (the boundary layer thickness,
for example), with length scale ¢y and velocity scale vy. These scales extract kinetic
energy from the mean flow which has a time scale comparable to the large scales, i.e.

B2 ~tot ~ g/l 5.D

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which
the large scales interact. Through the cascade process, kinetic energy is in this way
transferred from the largest scale to the smallest scales. At the smallest scales the
frictional forces (viscous stresses) become large and the kinetic energy is transformed
(dissipated) into thermal energy. The kinetic energy transferred per unit time from
eddy-to-eddy (from an eddy to a slightly smaller eddy) is the same for each eddy size.

The dissipation is denoted by € which is energy per unit time and unit mass (¢ =
[m?/s3]). The dissipation is proportional to the kinematic viscosity, v, times the fluc-
tuating velocity gradient up to the power of two (see Section 8.2). The friction forces
exist of course at all scales, but they are largest at the smallest eddies. In reality a small
fraction is dissipated at all scales. However it is assumed that most of the energy that
goes into the large scales per unit time (say 90%) is finally dissipated at the smallest
(dissipative) scales.

The smallest scales where dissipation occurs are called the Kolmogorov scales
whose velocity scale is denoted by v,, length scale by ¢,, and time scale by 7,,. We
assume that these scales are determined by viscosity, v, and dissipation, . The argu-
ment is as follows.
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viscosity: Since the kinetic energy is destroyed by viscous forces it is natural to assume
that viscosity plays a part in determining these scales; the larger viscosity, the
larger scales.

dissipation: The amount of energy per unit time that is to be dissipated is €. The more
energy that is to be transformed from kinetic energy to thermal energy, the larger
the velocity gradients must be.
Having assumed that the dissipative scales are determined by viscosity and dissipation,
we can express vy, £, and 7, in v and € using dimensional analysis. We write
vy — a Eb

[m/s] = [m2/s] [m?/s%] (5.2)

where below each variable its dimensions are given. The dimensions of the left and the
right side must be the same. We get two equations, one for meters [m]

1 =2a+ 29, (5.3)
and one for seconds [s]
“1=—a—3b, (5.4)

which give ¢ = b = 1/4. In the same way we obtain the expressions for ¢, and 7,, so
that

1/4
vy = (e)*, 4, = (”—) =" 5.5

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are composed of a wide range of
scales. We can think of them as eddies, see Fig. 5.1. It turns out that it is often conve-
nient to use Fourier series to analyze turbulence. In general, any periodic function, g,
with a period of 2L (i.e. g(z) = g(x + 2L)), can be expressed as a Fourier series, i.e.

1

g(z) = 540 + Z(an cos(knx) + by, sin(k,x)) (5.6)

n=1
where z is a spatial coordinate and

nmw 2T
Kp=— Of K= —

L L’

Kn, is called the wavenumber. The Fourier coefficients are given by

(5.7)

Ay =

/L g(x) cos(kpx)dx

—L

SIES

by = /_ LL (@) sin(kn)da

Parseval’s formula states that

L oo
L
/ g*(x)dx = §a3 + L § (a2 4+ b2) (5.8)
—L n=1
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Figure 5.2: Spectrum for turbulent kinetic energy, k. I: Range for the large, energy containing
eddies. II: the inertial subrange. III: Range for small, isotropic scales. For a discussion of &, vs.
€, see Section 8.2.1. The wavenumber, «, is proportional to the inverse of the length scale of a
turbulent eddy, £,., i.e. & o< £ . For a discussion of £, vs. &, see Section 8.2.1.

For readers not familiar to Fourier series, a brief introduction is given in Appendix H.
An example of a Fourier series and spectra are given in Appendix I. Let g be a fluctuat-
ing velocity component, say v. The left side of Eq. 5.8 expresses v}? in physical space
(vs. z) and the right side v’12 in wavenumber space (vs. ky). The reader who is not
familiar to the term “wavenumber”, is probably more familiar to “frequency”. In that
case, express g in Eq. 5.6 as a series in fime rather than in space. Then the left side of
Eq. 5.8 expresses v}2 as a function of time and the right side expresses v}? as a function
of frequency.

The turbulent scales are distributed over a range of scales which extends from the
largest scales which interact with the mean flow to the smallest scales where dissipation
occurs, see Fig. 5.1. Let us think about how the kinetic energy of the eddies varies with
eddy size. Intuitively we assume that large eddies have large fluctuating velocities
which implies large kinetic energy, vjv}/2. It is convenient to study the kinetic energy
of each eddy size in wavenumber space. In wavenumber space the energy of eddies
can be expressed as

E(r)dk (5.9)

where Eq. 5.9 expresses the contribution from the scales with wavenumber between
and k + dk to the turbulent kinetic energy k. The energy spectrum, F(x), corresponds
to g2(x) in Eq. 5.8. The dimension of wavenumber is one over length; thus we can think
of wavenumber as proportional to the inverse of an eddy’s diameter, i.e £ & 1/d. The
total turbulent kinetic energy is obtained by integrating over the whole wavenumber
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space, i.e.
k= / E(r)dr =LY g*(kn) (5.10)
0

Think of this equation as a way to compute the kinetic energy by first sorting all eddies
by size (i.e. wavenumber), then computing the kinetic energy of each eddy size (i.e.
E(k)dk), and finally summing the kinetic energy of all eddy sizes (i.e. carrying out the
integration). Note that the physical meaning of E is kinetic energy per unit wavenum-
ber of eddies of size ¢,. o< k1. Hence the dimension of E is v2/m, see Eq. 5.10; for a
discussion on the dimension of E, see Appendix I.

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity
components, i.e.

1l /—  — — 1—
k=3 (U/12 + v + U§2) = §v§v§ (5.11)
The spectrum of E is shown in Fig. 5.2. We find region I, II and III which are discussed
below.

I. In this region we have the large eddies which carry most of the energy. These
eddies interact with the mean flow and extract energy from the mean flow. This
energy transfer takes places via the production term, P, in the transport equation
for turbulent kinetic energy, see Eq. 8.14. Part of the energy extracted per unit
time by the largest eddies is transferred (per unit time) to slightly smaller scales.
The eddies’ velocity and length scales are vy and £, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here that the
dissipation occurs. The energy transfer from turbulent kinetic energy to thermal
energy (increased temperature) is governed by ¢ in the transport equation for
turbulent kinetic energy, see Eq. 8.14. The scales of the eddies are described by
the Kolmogorov scales (see Eq. 5.5)

II. Inertial subrange. The existence of this region requires that the Reynolds number

is high (fully turbulent flow). The eddies in this region represent the mid-region.
The turbulence is also in this region isotropic. This region is a “transport re-
gion” (i.e. in wavenumber space) in the cascade process. The “transport” in
wavenumber space is called spectral transfer. Energy per time unit, P* = ¢, is
coming from the large eddies at the lower part of this range and is transferred
per unit time to the dissipation range at the higher part. Note that the relation
P* = {dissipation at small scales}, see Fig. 5.2, is given by the assumption of
the cascade process, i.e. that the energy transfer per unit time from eddy-size—
to—eddy-size is the same for all eddy sizes.
The kinetic energy, &k, = v, ;v;. ;/2, of an eddy of size (lengthscale), 1/, repre-
sents the kinetic energy of all eddies of this size. The kinetic energy of all eddies
(of all size) is computed by Eq. 5.11. The eddies in this region are indepen-
dent of both the large, energy-containing eddies and the eddies in the dissipation
range. One can argue that the eddies in this region should be characterized by
the spectral transfer of energy per unit time (£) and the size of the eddies, 1/k.
Dimensional analysis gives

E = K gl

m3/s?] = [1/m] [m?/sY ©-12)

spectral
transfer
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We get two equations, one for meters [1m]
3= —a+2b,

and one for seconds [s]
—2 = —3b,

so that b = 2/3 and a = —5/3. Inserted in Eq. 5.12 we get
E(k) = Cgeir3 (5.13)

where the Kolmogorov constant C'x ~ 1.5. This is a very important law (Kol-
mogorov spectrum law or the —5/3 law) which states that, if the flow is fully
turbulent (high Reynolds number), the energy spectra should exhibit a —5/3-
decay in the inertial region (region II, Fig. 5.2).

Above we state that the eddies in Region II and III are isotropic. This means that —
in average — the eddies have no preferred direction, i.e. the fluctuations in all directions
are the same so that v{?> = v/ = v{2. Note that is not true instantaneously, i.e. in
general v] # v} # v5. Furthermore, isotropic turbulence implies that if a coordinate
direction is switched (i.e. rotated 180°), nothing should change. For example if the
x1 coordinate direction is rotated 180° the v} v4 should remain the same, i.e. vjvh =
—uv]vh. This is possible only if v{ v, = 0. Hence, all shear stresses are zero in isotropic
turbulence. Using our knowledge in tensor notation, we know that an isotropic tensor
can be written as const. - §;;. Hence, the Reynolds stress tensor for small scales can be
written as Tvé = const.d;; which, again, shows us that the shear stresses are zero in
isotropic turbulence.

As discussed on p. 69, the concept of the cascade process assumes that the energy
extracted per unit time by the large turbulent eddies is transferred (per unit time) by
non-linear interactions through the inertial range to the dissipative range where the
kinetic energy is transformed (per unit time) to thermal energy (increased temperature).
The spectral transfer rate of kinetic energy from eddies of size 1/x to slightly smaller
eddies can be estimated as follows. An eddy loses (part of) its kinetic energy during
one revolution. The kinetic energy of the eddy is proportional to v2 and the time for
one revolution is proportional to £,,/v,.. Hence, the energy spectral transfer rate, &,
for an eddy of length scale 1/x can be estimated as (see Fig. 5.2)

1)2

V2 v3
e Ui e Uk 5.14
ty En/vn L ( )

Kinetic energy is transferred per unit time to smaller and smaller eddies until the trans-
fer takes place by dissipation (i.e. increased temperature) at the Kolmogorov scales. In
the inertial subrange, the cascade process assumes that €,, = €. Applying Eq. 5.14 for
the large energy-containing eddies gives

2 3
v [
~J ~ — Y K = 5.]5
=0 go/vo o c c ( )

The dissipation at small scales (large wavenumbers) is determined by how much energy
per unit time enters the cascade process at the large scales (small wavenumbers). We

isotropic
turbulence
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generation | x; | X2 | X3
15% 1ol o
ond 0111
3rd 2 |1 1
4th 213 |3
5th 6 |55
6th 10 | 11 | 11
Tth 22 | 211 21

Table 5.1: Number of eddies at each generation with their axis aligned in the x1, x2 or x3
direction, see Fig. 5.3.

can now estimate the ratio between the large eddies (with vg and ¢;) to the Kolmogorov
eddies (v, and £,)). Equations 5.5 and 5.15 give

v _ —1/4
= = (ve) WAy = (vvi/0o) / vy = (voﬁo/y)1/4 = Rel/*

A L3N\ /4 V30, —1/4 L3\ /4
— i V= | —= Vo = | —— =R 3/4
no(5) (%) e ‘ (510

—1/2 3\ 1/2 1/2
To _ (V_go) o= (v_o) b _ (%) _ Rel/?
T vy vl o v

where Re = vglo/v. We find that the ratio of the velocity, length and time scales of the
energy-containing eddies to the Kolmogorov eddies increases with increasing Reynolds
number. This means that the eddy range (wavenumber range) of the intermediate region
(region II, the inertial region) increases with increasing Reynolds number. Hence, the
larger the Reynolds number, the larger the wavenumber range of the intermediate range
where the eddies are independent of both the large scales and the viscosity. or in other
words: the larger the Reynolds number, the larger the difference between the largest
and the smallest scales. This is the very reason why it is so expensive (in terms of
computer power) to solve the Navier-Stokes equations. With a computational grid we
must resolve all eddies. Hence, as the Reynolds number increases, the number of grid
cells increases rapidly, see Eq. 28.1.

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradients is an essential ingredient to
create and maintain turbulence. Disturbances are amplified by interaction between the
vorticity vector and the velocity gradients; the disturbances are turned into chaotic,
three-dimensional fluctuations, i.e. into turbulence. Two idealized phenomena in this
interaction process can be identified: vortex stretching and vortex tilting.

The equation for the instantaneous vorticity (w; = @; + w}) reads (see Eq. 4.20)

&ul- &ul- avi 82wi
Vi— = W;j 14
ot jaxj ]axj (’):cjaxj
8vk

Wi = €ijk o

8acj

(5.17)
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Figure 5.3: Family tree of turbulent eddies (see also Table 5.1). Five generations (indidcated in
bold). Orientation of eddy is indicated in red. The large original eddy, with axis aligned in the
x1 direction, is 1% generation. Adapted from [14].

As we learnt in Section 4.2 this equation is not an ordinary convection-diffusion equa-

tion: it has an additional term on the right side which represents amplification and
rotation/tilting of the vorticity lines (the first term on the right side). The i = j com-

ponents of this term represent (see Eq. 4.21) vortex stretching. A positive Ov}/0x1  Vortex
will stretch the cylinder, see Fig. 4.2 and from the requirement that the volume must stretching
not change (incompressible continuity equation) we find that the radius of the cylinder

will decrease. We may neglect the viscosity since viscous diffusion at high Reynolds

number is much smaller than the turbulent one and since viscous dissipation occurs at

small scales (see p. 69). Thus we can assume that there are no viscous stresses acting

on the cylindrical fluid element surface which means that the angular momentum

2w = const. (5.18)
remains constant as the radius of the fluid element decreases. Note that also the cir-
culation, I' — which is the integral of the tangential velocity round the perimeter, see
Eq. 1.23 — is constant. Equation 5.18 shows that the vorticity increases if the radius
decreases (and vice versa). As was mentioned above, the continuity equation shows
that stretching results in a decrease of the radius of a slender fluid element and an in-
crease of the vorticity component (i.e. the tangential velocity component) aligned with
the element. For example, an extension of a fluid element in one direction (z; direc-
tion) decreases the length scales in the 5 direction and increases wf, see Fig. 5.4. At
the same time, vortex tilting creates small-scale vorticity in the x5 and x3 direction,
wh and wh. The increased w) means that the velocity fluctuation in the x2 direction
is increased, see Fig. 5.5. The increased v} velocity component will stretch smaller
fluid elements aligned in the x5 direction, see Fig. 5.5. This will increase their vortic-

T3
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Figure 5.4: A fluid element is stretched by g > 0. Its radius decreases (from dashed line to
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Figure 5.5: The rotation rate of the fluid element (black circles) in Fig. 5.4 increases and its
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radius decreases. This creates a positive 8_3 > 0 which stretches the small red fluid element
X3

aligned in the x3 direction and increases w4. The radius of the red fluid element decreases.

ity w} and decrease their radius. In the same way will the increased wj also stretch a
fluid element aligned in the x3 direction and increase w4 and decrease its radius. At
each stage, the length scale of the eddies — whose velocity scale are increased — de-
creases. Figure 5.3 illustrates how a large eddy whose axis is oriented in the x; axis
in a few generations creates — through vortex stretching — smaller and smaller eddies
with larger and larger velocity gradients. Here a generation is related to a wavenumber
in the energy spectrum (Fig. 5.2); young generations correspond to high wavenumbers.
The smaller the eddies, the less the original orientation of the large eddy is recalled.
In other words, the small eddies “don’t remember” the characteristics of their original
ancestor. The small eddies have no preferred direction. They are isotropic. The cre-
ation of multiple eddies by vortex stretching from one original eddies is illustrated in
Fig. 5.3 and Table 5.1. The large original eddy (1%¢ generation) is aligned in the
direction. It creates eddies in the =5 and x5 direction (2% generation); the eddies in
the x5 direction create new eddies in the z; and z3 (3"¢ generation) and so on. For
each generation the eddies become more and more isotropic as they get smaller.
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The ¢ # j components in the first term on the right side in Eq. 4.21 represent vortex
tilting. Again, take a slender fluid element, now with its axis aligned with the xo axis,
Fig. 4.3. The velocity gradient dvq /Oxo (or Qv /Dzo, which is equivalent) will tilt the
fluid element so that it rotates in the clock-wise direction. As a result, the second term
wo0v1 /Ox2 in line one in Eq. 4.21 gives a contribution to wy (and w}). This shows
how vorticity in one direction is transferred to the other two directions through vortex
tilting.

Vortex stretching and vortex tilting qualitatively explain how interaction between
vorticity and velocity gradient create vorticity in all three coordinate directions from
a disturbance which initially was well defined in one coordinate direction. Once this
process has started it continues, because vorticity generated by vortex stretching and
vortex tilting interacts with the velocity field and creates further vorticity and so on.
The vorticity and velocity field becomes chaotic and three-dimensional: turbulence has
been created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence always must be
three-dimensional (Item IV on p. 68). If the instantaneous flow is two-dimensional
(z1 — z2 plane) we find that the vortex-stretching/tilting term on the right side of
Eq. 5.17 vanishes because the vorticity vector and the velocity vector are orthogonal.
The only non-zero component of vorticity vector is w3 because

b = Qs Ov2
8$2 (’)x3
by = v Ovs
81‘3 8351_

Since vz = 0, we get w;0v;/0z; = 0.

Vortex
tilting
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6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

WHEN the flow is turbulent it is preferable to decompose the instantaneous vari-
ables (for example the velocity components and the pressure) into a mean value
and a fluctuating value, i.e.

— /
V; = U5 +U;

p=p+p ©b
where the bar, -, denotes the time averaged value defined as
1 (T
U= oT . vdt. (6.2)
where 7' is sufficiently large. When we time average Eq. 6.1 we get
By =0; + 0L =0 + U] (6.3)
where we used the fact that v; = 9;, see Section 8.1.4. Hence, Eq. 6.3 gives
vj=0, pP=0 6.4)

One reason why we decompose the variables is that when we measure flow quan-
tities we are usually interested in their mean values rather than their time histories.
Another reason is that when we want to solve the Navier-Stokes equation numerically
it would require a very fine grid to resolve all turbulent scales and it would also require
a fine resolution in time (turbulence is always unsteady).

The continuity equation and the Navier-Stokes equation for incompressible flow
with constant viscosity read

(’)vi

0, 0 (6.5)
ov; Ov;v; dp 9%v;

(At 6.6

The gravitation term, —pg;, has been omitted which means that the p is the hydro-
dynamic pressure (i.e. when v; = 0, then p = 0, see p. 37). Inserting Eq. 6.1 into the
continuity equation (6.5)

v, +v, O, Ov. v O

?

8,%1' o 8,%1' (’)xl o (’)xl o 8,%1'

6.7)

where we used the fact that U_; = 0 (see Eq. 6.4 and U; = ©;, see section 8.1.4).
Next, we use the decomposition in Navier-Stokes equation (Eq. 6.6)

o +v)) | Owi+v)(; +v)  op+yp) | 0*(vi+v])
P ot Tt 81']- - ox; tH axjal'j 6.8)

I 11 111 1%

Let’s consider the equation term-by-term.
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Term I: .
0(; +v)) 0y,  ov) 0Ov; O

o ot ot ot ot
We assume that the mean flow, v;, is steady, and hence the term is zero.

Term 1I:

8(1_)1' + U;-)(i_)j + ’U;) . 861-6]- + T)ﬂ)‘; + ’U;’l_)j + ’U;’U;

8xj 81']'
. c’)@iﬁj " 81_11'1); n c’)vgﬁj n 81}1’.1);

o 8xj 8xj 81']' axj

e Section 8.1.4 shows that v;v; = v;7;.

e Section 8.1.3 shows that v;v; = v;v) = 0 and ;v = v,

PV
J i_o

Hence, Term II reads
— /i
81}1-1)]- a’Ui'Uj

axj (’)xj
Term III: _ _
op+p) _ Op N op' _ Op
(’)xi N axi axi - axi
Term IV: _
R +o) 0% 0] 0%0;

axj(’)xj - axj(’)xj + (’)xjaxj N axj(’)xj

Now we van finally write the time averaged continuity equation and Navier-Stokes
equation

on
o, 0 (6.9)
a’lji’Uj ap 0 0v; ——
_ Vi 1
p 81']' 83:1 + 81']' (Ma:p]— p’UZUj (6 0)

It is assumed that the mean flow is steady. This equation is the time-averaged
Navier-Stokes equation and it is often called the Reynolds Averaged Navies-Stokes
(RANS) equation. A new term pvgvé appears on the right side of Eq. 6.10 which is

called the Reynolds stress tensor. The tensor is symmetric (for example v| v}, = vhv}).
It represents correlations between fluctuating velocities. It is an additional stress term
due to turbulence (fluctuating velocities) and it is unknown. We need a model for vév}
to close the equation system in Eq. 6.10. This is called the closure problem: the num-
ber of unknowns (ten: three velocity components, pressure, six stresses) is larger than
the number of equations (four: the continuity equation and three components of the
Navier-Stokes equations).

The continuity equation applies both for the instantaneous velocity, v; (Eq. 6.5),
and for the time-averaged velocity, v; (Eq. 6.9); hence it applies also for the fluctuating
velocity, v}, i.e.

!
% -0 6.11)

RANS

closure
problem
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Figure 6.1: Flow between two infinite parallel plates. The width (i.e. length in the 3 direction)
of the plates, Znqq, is much larger that the separation between the plates, i.e. Zpaz > 9.

6.1.1 Boundary-layer approximation

For boundary-layer type of flow (i.e. boundary layers along a flat plate, channel flow,
pipe flow, jet and wake flow, etc.) the following relations apply
_ 0N 0vy
— < — 6.12
Vo K V1, 921 <<8:L'2, ( )
Assume steady (0/9t = 0), two-dimensional (5 = 9/0x3 = 0) boundary-layer flow.
First we re-write the left side of Eq. 6.10 using the continuity equation

81_)i’l)j _ 0y, _ 81_)j _ O
— o 2y, 2 6.13
p 81']' PYi 8xj +pU 81']' PY; 81']' ( )
=0

Using Eq. 6.13, Eq. 6.10 can be written

_ 0Ny _ 0 op o Oy .
pU1 0z + po2 e R + B [Mau pUh (6.14)

T12,tot

z1 and 2 denote the streamwise and wall-normal coordinate, respectively, see Fig. 6.1.
Note that the two terms on the left side are of the same order, because they both include
the product of one large (7; or 9/9x5) and one small (3 or §/dx) part.

In addition to the viscous shear stress, 1001 /0x2, an additional furbulent one — a
Reynolds shear stress — appears on the right side of Eq. 6.14. The total shear stress is
thus 95

T2 tot = ua—;: — ] (6.15)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velocity gradient is largest as
the velocity drops down to zero at the wall over a very short distance. One important
quantity is the wall shear stress which is defined as

0ty

= A 1
Tw = My . (6.16)

shear
stress
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Figure 6.2: The wall region (adapted from Ch.7 in [12]) for Re, = 10000. § denotes half
width of the channel, see Fig. 6.1 and 2] = 2ou. /v denotes the normalized wall distance.

From the wall shear stress, we can define a wall friction velocity, u., as
2\ 12
Tw = pUz = u, = (—w) (6.17)
p

In order to take a closer look at the near-wall region, let us, again, consider fully
developed channel flow between two infinite plates, see Fig. 6.1. In fully developed
channel flow, the streamwise derivative of the streamwise velocity component is zero
(this is the definition of fully developed flow), i.e. 0v1/0x1 = 0. The continuity
equation gives now v = 0, see Eq. 3.18 at p. 37. The first term on the left side of
Eq. 6.14 is zero because we have fully developed flow (991 /9x1 = 0) and the last term
is zero because v2 = (. The streamwise momentum equation, Eq. 6.14, can now be
written

ap 0 o0 _
0=————+— — — pvi) 6.18
81'1 + 81'2 (/’L 81'2 pU1U2) ( )
We know that the first term is a function only of x; and the two terms in parenthesis
are functions of x5 only; hence they must be constant (see Eq. 3.24 and the text related

to this equation), i.e.

9%
9P _ constant
1 (6.19)
0 0V — O0T12,t0t '
— | p=— — pvjvh | = ——=— = constant
Oxo \" Ox2 172 O

where the total stress, 712 ¢0¢, 1S given by Eq. 6.15. Integrating Eq. 6.18 from zo = 0
to zo gives

_ o5
b T2 = T12 tot :Tw+—p$2 = Tw (17E) (6.20)
’ 83@1 1)

le,tot($2) — Tw = %
1

At the last step we used the fact that the pressure gradient balances the wall shear stress,
i.e. —0p/Ox1 = 7y, /9, see Eq. 3.30 (note that h = 26) and Eq. 6.38.

wall
friction
velocity



6.2. Wall region in fully developed channel flow 82

The wall region can be divided into one outer and one inner region, see Fig. 6.2.
The inner region includes the viscous region, x; < 5 (dominated by the viscous diffu-
sion), and the logarithmic region, zg 2 30 (dominated by turbulent diffusion); the log-
arithmic region is sometimes called the inertial region, because the turbulent stresses
stem from the inertial (i.e. the non-linear convection) term. The buffer region acts as a
transition region between these two regions where viscous diffusion of streamwise mo-
mentum is gradually replaced by turbulent diffusion. In the inner region, the total shear
stress is approximately constant and equal to the wall shear stress 7, see Fig. 6.3.
Note that the total shear stress is constant only close to the wall (Fig. 6.3b); further
away from the wall it decreases (in fully developed channel flow it decreases linearly
with the distance from the wall, see Eq. 6.20 and Fig. 6.3a). The Reynolds shear stress
vanishes at the wall because vj = v5 = 0, and the viscous shear stress attains its
wall-stress value 7, = pu2. As we go away from the wall the viscous stress decreases
and the turbulent one increases and at x5 =~ 11 they are approximately equal. In the
logarithmic layer the viscous stress is negligible compared to the Reynolds stress.

At the wall, the velocity gradient is directly related to the wall shear stress, i.e. (see
Eq. 6.16 and 6.17)

| _Tw_rp_lp (6.21)
Ora|, K B v
Integration gives (recall that both v and u2 are constant)

1
2
U1 = —uirs + o
1%

Since the velocity, v1, is zero at the wall, the integration constant C'y = 0 so that

i _ Urt2 (6.22)

Uy v
Equation 6.22 is expressed in inner scaling (or wall scaling) which means that v; and
x9 are normalized with quantities related to the wall, i.e. the friction velocity stemming
from the wall shear stress and the viscosity (here we regard viscosity as a quantity

related to the wall, since the flow is dominated by viscosity). Often the plus-sign (‘ + )
is used to denote inner scaling and equation Eq. 6.22 can then be written

of =3 (623)

From the friction velocity and the viscosity we can define the viscous length scale, {,,,
for the near-wall region as

af = aafl, = b, = ui (6.24)

T

Further away from the wall at 30 < 23 < 3000 (or 0.003 < 22/6 < 0.3), we

2~

encounter the log-law region, see Fig. 6.2. In this region the flow is assumed to be
independent of viscosity. The Reynolds shear stress, pv} v}, is in the region z3 < 200

~

(i.e. 2 /6 < 0.1) fairly constant and approximately equal to the wall shear stress, i.e.

T = plOT0}] (6.25)

see Fig. 6.3b. Hence the friction velocity, u., is a suitable velocity scale in the inner
logarithmic region; it is used in the entire region.
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Figure 6.3: Reynolds shear stress. Rer = 2000. a) lower half of the channel; b) zoom
near the wall. DNS (Direct Numerical Simulation) data [15, 16]. == —pvjv}/Tw; ==
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Figure 6.4: Velocity profiles in fully developed channel flow. Re; = 2000. == : DNS (Direct
Numerical Simulation) data [15, 16]; = = : @1 /u, = (Inz3)/0.41 4 5.2; = = : Ty Ju, = 23 .

What about the length scale? Near the wall, an eddy cannot be larger than the
distance to the wall and it is the distance to the wall that sets an upper limit on the
eddy-size. Hence it seems reasonable to take the wall distance as the characteristic
length scale; a constant, «, is added so that

! = Kkxo. (6.26)
The velocity gradient can now be estimated as

o _ ur (6.27)
0xa KXo

based on the velocity scale, u,, and the length scale kz2. Another way of deriving the
expression in Eq. 6.27 is to use the Boussinesq assumption (see Eq. 11.33) in which a
turbulent Reynolds stress is assumed to be equal to the product between the turbulent
viscosity and the velocity gradient as

— Ui?}é = UVt Ei;;; (6.253)

The turbulent viscosity, v, represents the turbulence and has the same dimension as v,
i.e. [m?/s]. Hence 14 can be expressed as a product of a turbulent velocity scale and a
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Figure 6.5: Symmetry plane of channel flow.

3

turbulent length scale, and in the log-law region that gives
Vi = Ur KT (6.29)
so that Eq. 6.28 gives (inserting —v} v}, = u?)

2 = gy O o 90 (6.30)
0xo 0xa KTo

u

In non-dimensional form Egs. 6.27 and 6.30 read

vy 1

= — 6.31
oxf  kaf (031
Integration gives now
1
o ==In(2z3)+B or
U1 T Tol (6.32)
B in() e
Ur K v

where B is an integration constant. Equation 6.32 is the logarithmic law due to von
Karman [17]. The constant, , is called the von Karman constant. The constants in the
log-law are usually set to k = 0.41 and B = 5.2.

As can be seen in Fig. 6.2 the log-law applies for 3 < 3000 (z2/6 < 0.3).
Figure 6.4 — where the Reynolds number is lower than in Fig. 6.2 — shows that the log-
law fit the DNS (Direct Numerical Simulation) up to zg < 500 (z2/0 < 0.25). Hence,
the upper limit for the validity of the log-law is dependent on Reynolds number; the
larger the Reynolds number, the larger the upper limit.

In the outer region of the boundary layer, the relevant length scale is the boundary
layer thickness. The resulting velocity law is the defect law

where ¢ denotes centerline. The velocity in the log-region and the outer region (often
called the wake region) can be written as

vy 1 X 211 . 5 /7o
UT—Kln(y )+ B+ —sin (25) (6.34)

where k = 0.38, B = 4.1 and II = 0.5 are taken from boundary layer flow [18-20].

log-law



6.3. Reynolds stresses in fully developed channel flow 85

200 2000
1800
1600
1400

150F

+ 4 1200
3 100 T
2 2 1000

800

50l B 600 ': E
L L ' i

200,
a) —?50 -100  -50 0 50 100 150 b) -2

Figure 6.6: Fully developed channel flow. Re, = 2000. Forces in the v, equation, see Eq. 6.18.
a) near the lower wall of the channel; b) lower half of the channel excluding the near-wall re-
gion. DNS (Direct Numerical Simulation) data [15, 16]. === —p(0|0} /022)/Te; == :
w(0%01/023) [ Tw; ===+ —(05/0x1) [ Tw.

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensional (o3 = 0 and 9/dx5 = 0). Consider the x5 — x5 plane,
see Fig. 6.5. Since nothing changes in the x5 direction, the viscous shear stress

To = <% + ‘%2) =0 (6.35)

6172 6—.173

because 3 = 0U2/0x3 = 0. The turbulent part shear stress, pv5v5, can be expressed
using the Boussinesq assumption (see Eq. 11.33)

— pUhul = iy (g—;jz + g—zz) =0 (6.36)
and it is also zero since 73 = Ovy/0x3 = 0. With the same argument, vjv} = 0.
However note that v§?> = v # 0. The reason is that although the fime-averaged flow
is two-dimensional (i.e. v3 = 0), the instantaneous turbulent flow is always three-
dimensional and unsteady. Hence v3 # 0 and v # 0 so that v§* # 0. Consider, for
example, the time series v3 = v5 = (—0.25,0.125,0.125, —0.2, 0.2). This gives

3 = (—0.25+0.125+0.125— 0.2+ 0.2)/5 = 0

but

v =02 = [(—0.25)% + 0.1252 + 0.125% + (—0.2) + 0.22] /5 = 0.03475 # 0.

Figure 6.3 presents the Reynolds and the viscous shear stresses for fully developed
flow. As can be seen, the viscous shear stress is negligible except very near the wall. It
is equal to one near the wall and decreases rapidly for increasing wall distance. On the
other hand, the Reynolds shear stress is zero at the wall (because the fluctuating veloc-
ities are zero at the wall) and increases for increasing wall distance. The intersection
of the two shear stresses takes place at x5 ~ 11.

Looking at Eq. 6.18 we find that it is not really the shear stress that is interesting,
but its gradient. The gradient of the shear stress, —d(pv|v})/Ox and ud*v, /03
represent, together with the pressure gradient, —9p/dx1, the forces acting on the fluid.
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Figure 6.7: Forces in a boundary layer. The red (dashed line) and the blue (solid line) fluid
particle are located at x5 ~ 400 and x3 ~ 20, respectively (see Fig. 6.6).

Figure 6.6 presents the forces. Start by looking at Fig. 6.6b which shows the forces
in the region away from the wall, see the red fluid particle in Fig. 6.7. The pressure
gradient is constant and equal to one: this is the force driving the flow. This agrees
— fortunately — with our intuition. We can imagine that the fluid (air, for example) is
driven by a fan. Another way to describe the behaviour of the pressure is to say that
there is a pressure drop. The pressure must decrease in the streamwise direction so that
the pressure gradient term, —9p/0x1, in Eq. 6.18 takes a positive value which pushes
the flow in the z; direction. The force that balances the pressure gradient is the gradient
of the Reynolds shear stress. This is the force opposing the movement of the fluid. This
opposing force has its origin at the walls due to the viscous wall force (viscous shear
stress multiplied by area).

Now let’s have a look at the forces in the near-wall region, see Fig. 6.6a. Here the
forces are two orders of magnitude larger than in Fig. 6.6b but they act over a very thin
region (x5 < 40 or z2/6 < 0.02). In this region the Reynolds shear stress gradient
term is driving the flow and the opposing force is the viscous force, see the blue fluid
particle in Fig. 6.7. We can of course make a force balance for a section of the channel,
as we did for laminar flow, see Eq. 3.36 at p. 39 and Fig. 3.8 at p. 39 which reads

0= pIZma$26 - ﬁQZma$25 - 2TwLZwuz;v (637)
where L is the length of the section. We get

Ap op _ Tw
— == 6.38
As can be seen the pressure drop is directly related to the wall shear stress. In turbulent
flow the velocity profile in the center region is much flatter than in laminar flow (cf.
Fig. 6.4 and Fig. 3.7 at p. 38). This makes the velocity gradient near the wall (and
the wall shear stress, 7,,) much larger in turbulent flow than in laminar flow: Eq. 6.38
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Figure 6.8: Normal Reynolds stresses and turbulent kinetic energy. Re- = 2000. DNS (Direct
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Figure 6.9: Velocity profiles in a boundary layer along a flat plate. === : DNS (Direct Numer-
ical Simulation) data [21]; = = : U2 /ur = (Inz3)/0.41 + 5.2; =« = : ¥ /u, = x3.

shows why the pressure drop is larger in the former case compared to the latter; or —
in other words — why a larger fan is required to push the flow in turbulent flow than in
laminar flow. __ o

Figure 6.8 presents the normal Reynolds stresses, pviZ, pv%? and pvf?. As can
be seen, the streamwise stress is largest and the wall-normal stress is smallest. The
former is largest because the mean flow is in this direction; the latter is smallest because
the turbulent fluctuations are dampened by the wall. The turbulent kinetic energy,
k= m/ 2, is also included. Note that this is smaller than v/2.

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel flow. What is the dif-
ference between that flow and a boundary layer flow? First, in a boundary layer flow
the convective terms are not zero (or negligible), i.e. the left side of Eq. 6.14 is not
zero. The flow in a boundary layer is continuously developing, i.e. its thickness, &,
increases continuously for increasing x;. The flow in a boundary layer is described by
Eq. 6.14. Second, in a boundary layer flow the wall shear stress is not determined by
the pressure drop (indeed it is zero); the total shear stress is balanced by the convective
terms. Third, the outer part of the boundary layer is highly intermittent, consisting of
turbulent/non-turbulent motion.

However, the inner region of a boundary layer (x2/6 < 0.1) is principally the same
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as for the fully developed channel flow, see Fig. 6.9: the linear and the log-law regions
are very similar for the two flows. However, in boundary layer flow the log-law is
valid only up to approximately x2/d ~ 0.1 (compared to approximately x5 /6 ~ 0.3 in
channel flow)
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Figure 7.1: Time history of v’. Horizontal red lines show +v; .

7 Probability density functions

OME statistical information is obtained by forming the mean and second moments,
for example v and vg, as was done in Section 6. The root-mean-square (RMS) can
be defined from the second moment as

Vpms = (W)W (7.1)

The RMS is the same as the standard deviation which is equal to the square-root of the
variance. In order to extract more information, probability density function is a useful
statistical tool to analyze turbulence. From the velocity signals we can compute the
probability densities (sometimes called histograms). With a probability density, f,,, of
the v velocity, the mean velocity is computed as

U= /00 vfy(v)dv (7.2)

Normalize the probability functions, so that

/Oo fo(v)dv =1 (7.3)

Here we integrate over v. The mean velocity can of course also be computed by
integrating over time, as we do when we define a time average, (see Eq. 6.1 at p. 78),
ie.

T

— dt 7.4
T (7.4)

v =
where T is “sufficiently” large.
Consider the probability density functions of the fluctuations. The second moment
corresponds to the variance of the fluctuations (or the square of the RMS, see Eq. 7.1),
ie.

V2 = / 0" for (V)0 (7.5)
As in Eq. 7.4, v'2 is usually computed by integrating in time, i.e.
— 1 [T
V2 = v (t)dt

=oF »

root-mean-
square
RMS

standard
deviation
variance
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Figure 7.2: Probability density functions of time histories in Fig. 7.1. Vertical red lines show
+vrms. The skewness, S, and the flatness, F', are given for the three time histories.

A probability density function is symmetric if positive values are as frequent and
large as the negative values. Figure 7.1 presents the time history of the v’ history at
three different points in a flow (note that v/ = 0). The red horizontal lines indicate the
RMS value of v". The resulting probability densities functions are shown in Fig. 7.2.
The red vertical lines show plus and minus RMS of v’. Let us analyze the data at the
three points.

Point 1. The time history of the velocity fluctuation (Fig. 7.1a) shows that there ex-
ists large positive values but no large negative values. The positive values are
often larger than +v,.,,s (the peak is actually close to 8v,,,s) but the negative
values are seldom smaller than —wv,.,,s. This indicates that the distribution of v’
is skewed towards the positive side. This is confirmed in the PDF distribution,
see Fig. 7.2a.

Point 2. The fluctuations at this point are much smaller and the positive values are as
large the negative values; this means that the PDF should be symmetric which is
confirmed in Fig. 7.2b. The extreme values of v’ are approximately +1.5v,,s,
see Figs. 7.1b and 7.2b.

Point 3. At this point the time history (Fig. 7.1c) shows that the fluctuations are clus-
tered around zero and much values are within +v,,s. The time history shows
that the positive and the negative values have the same magnitude. The PDF
function in Fig. 7.2c confirms that there are many value around zero, that the ex-
treme value are small and that positive and negative values are equally frequent
(i.e. the PDF is symmetric).

In Fig. 7.2 we can judge whether the PDF is symmetric, but instead of “looking” at
the probability density functions, we should use a definition of the degree of symmetry,
which is the skewness. It is defined as

V3 = / V3 for (V) dv'

— 00

3

rms?

1 * 13 ! ! 1 ’ 13
Sy = V" for (V) dv" = 208 T v (t)dt

3 3
Urms J —co 2’07'ms =T

and is commonly normalized by v so that the skewness, S,, of v’ is defined as

skewness
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Note that f must be normalized (see Eq. 7.3).

There is yet another statistical quantity which sometimes is used for describing
turbulent fluctuations, namely the flatness. The variance (the square of RMS) tells us
how large the fluctuations are in average, but it does not tell us if the time history
includes few very large fluctuations or if all are rather close to v,.,,s. The flatness gives
this information, and it is defined computed from v’ and normalized by v

s 1-€.

F = L /OO V™ fur(v)dv

Ugms — 00
The fluctuations at Point 1 (see Fig. 7.1a) includes some samples which are very large
and hence its flatness is large (see caption in Fig. 7.2a), whereas the fluctuation for
Point 3 all mostly clustered within £2v,.,,5 giving a small flatness, see Fig. 7.1c and
the caption in Fig. 7.2c. For a Gaussian distribution

) = e (e

2
Urms 2vrms

for which F' = 3.

flatness
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IN this section and Section 9 we will derive various transport equations. There are two
tricks which often will be used. Both tricks simply use the product rule for derivative

backwards.

Trick 1: Using the product rule we get
A; B, B; A;
15) ) i& + Bj &
Oxy, Oxy, Oy,
This expression can be re-written as
A 0B; _ 0AiB; B, 04;
and then we call it the “product rule backwards”.

Trick 2: Using the product rule we get
10A4;A4; 1 ( 0A; 8A1-) 4 0A4;

2 ox; 2 i@xj * i@xj -81:3-
This trick is usually used backwards, i.e.
04, 104;A;
i@xj 2 81:3

8.1 Rules for time averaging

8.1.1 What is the difference between v/ v}, and v/ v}?

Using 6.2 we get

whereas

v vl = L Tvdt ! Tvdt
1 V2 = 2T | 1 o 1

We take a numerical example. Let the time series of v} and v}, be

v} =[0.2,-0.3,0.18, —0.08]
vty = [0.15, —0.25,0.04, 0.06]

(0.2—0.3+0.18 - 0.08)/4 =0

2 |

o —
1
o —
2

i
Vs

2 |

so that

(1 & 1 &
Ui”é(ﬁZ”in) <szé’">0.00
n=1 n=1

However, the time average of their product is not zero, i.e.

=(0.15—-0.25+0.04 +0.06)/4 =0

8.1)

(8.2)

(8.3)

(8.4)

Vvl = NZUMUM (0.2:0.15-0.3-0.25+0.18-0.04—0.08-0.06) /4 = 0.02685
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8.1.2 What is the difference between v/2 and EQ?
Using 6.2 we get
_ 1 T )
v = — v'"2dt.
Yoor ) o,

whereas

The numerical example gives

2

— 1
VR = ¥ v, = (0.22 + 0.3% + 0.18° 4 0.08%) /4 = 0.0422

N
— 1
VR = ¥ Z vy, = (0.15% + 0.25% + 0.04> 4 0.06%) /4 = 0.02255

but

N 2
_ 1
o= <N > vi,n> = [(0.2 — 0.3+ 0.18 — 0.08)/4]* = 0

N 2
_ 1
%= (N > vé,n> = [(0.15 — 0.25 + 0.04 + 0.06)/4]° = 0

8.1.3 Show that 5,02 = 7,0
Using 6.2 we get
T
" — 2
D = oT » vrodt

and since v does not depend on ¢ we can take it out of the integral as

1 7 —
_ 2 _
g | =i

Now let’s do it with numerical values. Assume that v; = 10.

1L (1 &
53 (5 ) -
n=1 m=1
= (10-0.22 +10-0.3%> + 10 - 0.18% + 10 - 0.08%) /4 = 0.422
— (1 & 1
1_)11)’12 = <N;v1_’n> <N;U/12”> =

= [10-(0.2* +0.3% + 0.18 4 0.08%) /4] = 0.422

171U/12 =
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8.1.4 Show that 51 =11

Using 6.2 we get

2

1 T
1= — 01dt
2T [T

and since v does not depend on ¢ we can take it out of the integral as
1 (T

1
b | dt =027 =70
Yot | 4T e u

With numerical values we get

<l

N
1 _
1:Nngl:(10+10+10+10)/4:10:v1

8.2 The Exact k£ Equation

The equation for turbulent kinetic energy, k = %W, is derived from the Navier-Stokes
equation. Again, we assume incompressible flow (constant density) and constant vis-
cosity (cf. Eq. 6.6). We subtract Eq. 6.10 from Eq. 6.6 and divide by density, multiply

by v} and time average which gives

/ 9 =
Y B [viv; — 5;74] =
J
(8.5)
I’
_lv{i 5+ ! 02 [vi—z’)i]Jranj .
p ‘oz t0x;0x; Ox; '
Using v; = 0; + vj, the left side can be rewritten as
/i [(7'"‘1‘ /)(—‘_’_ /)_—,—‘] — [—4 g+ /} (86)
Ui&rj Ui + ;) (05 + vj) — 005 _Ui&rj Uiv; + 005 + v;v5 ] .

Using the continuity equation 81}} /0z; = 0 (see Eq. 6.11), the first term is rewritten as

9 N _ 77 90

v;a—w] (17ivj) = v} oz, 8.7)
For the second term in Eq. 8.6 we start using 99, /0z; = 0
_ _,0u)
v;a—% (vjv;) = v} 9z, (8.8)

Next, we use Trick 2

ol 0 (1 0 0
V. / 2 = 0. — | =0 = V;— = — (Vs
o (’Uz 5$j> o oz, <2’U1’U1> oh oz, (k) oz, (v;k) (8.9)

The third term in Eq. 8.6 can be written as (replace v; by vé and use the same technique
as in Eq. 8.9)

N~

a [
9, (U;U;v;) (8.10)
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The first term on the right side of Eq. 8.5 is re-written using Trick 1

R 10pv, 1 19p'v)
g Lophv pav _ _Lopv @.11)
00w~ pom  p ox, p Oz;

where the continuity equation was used at the last step. The second term on the right
side of Eq. 8.5 can be written

» 0% —uv’i o} —yi AN 81} o} (8.12)
8:E]8xj - "0z \Ox; ) Oz 8z] 8z] dx; '

applying Trick 1 (A = v} and B = 9v}/dz;). For the first term in Eq. 8.12 we use the
same trick as in Eq. 8.9 so that

yi , OU] 0 o , OU] Py o} B
O0x; 81:3 830] “x; "0z B

L0 (1 (v, —yl Popl _ Ok
ij 2 8:rj o 28£Ej8$j o 8xj8:rj

The last term on the right side of Eq. 8.5 is zero because it is time averaging of a
fluctuation, i.e. ab’ = ab’ = 0. Now we can assemble the transport equation for the
turbulent kinetic energy. Equations 8.7, 8.9, 8.11, 8.12 and 8.13 give

(8.13)

81_)jk 8@1 (9 1,—/ 1 77 (9]6 81) (91)
— = - —viviv, —v— 8.14
O0x; i 830] 830] [ upE 9 iti% V@xj 830] 81:3 .14)
T T 7] ' v

The terms in Eq. 8.14 have the following meaning.
I Convection.

II Production, P*. The large turbulent scales extract energy from the mean flow.
This term (including the minus sign) is almost always positive. It is largest for
the energy-containing eddies, i.e. for small wavenumbers, see Fig. 5.2. This term
originates from the convection term (the first term on the right side of Eq. 8.6).
It can be noted that the production term is an acceleration term, U} 07v;/0z ;, mul-
tiplied by a fluctuating velocity, v}, i.e. the product of an inertial force per unit
mass (acceleration) and a fluctuating velocity. A force multiplied with a velocity
corresponds to work per unit time. When the acceleration term and the fluctuating
velocity are in opposite directions (i.e. when P* > 0), the mean flow performs
work on the fluctuating velocity field. When the production term is negative, it
means that the fluctuations are doing work on the mean flow field. In this case, v§
and the acceleration term, v/;09; / Oz, have the same sign.

Using Eq. 1.11, the production terms reads

v, - —— -
¢ == 71)1/-1)3(51']' + QU) = 71);1);»9”' (815)

k 100

P" = vV oz,

(the product of the symmetric tensor, WU}, and the anti-symmetric tensor, Qij, is

zero). Thus it is only the symmetric part of the velocity gradient (Sij, the part

that deforms a fluid element) that creates turbulence. The production does not

depend on Qij, the part of the velocity gradient that rotates a fluid element. This

is consistent with the fact that the stress tensor, o;;, depends only on .S;;, not on
€2;;, see discussion below Eq. 2.5.
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T2 da
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Figure 8.1: The size of the largest eddies (dashed lines) for different velocity profiles.

IIT The two first terms represent turbulent diffusion by pressure-velocity fluctua-
tions, and velocity fluctuations, respectively. The last term is viscous diffusion.
The velocity-fluctuation term originates from the convection term (the last term
on the right side of Eq. 8.6).

IV Dissipation, €. This term is responsible for transformation of kinetic energy at
small scales to thermal energy. The term (excluding the minus sign) is always
positive (it consists of velocity gradients squared). It is largest for large wavenum-
bers, see Fig. 5.2. The dissipation term stems from the viscous term (see Eq. 8.12)
in the Navier-Stokes equation. It can be written as v;J7;;/0z;, see Eq. 4.1. The
divergence of 7/; is a force vector (per unit mass), i.e. 7] = O7;;/0x;. The
dissipation term can now be written W which is a scalar product between two
vectors. When the viscous stress vector is in the opposite direction to the fluctuat-
ing velocity, the term is negative (i.e. it is dissipative); this means that the viscose
stress vector performs work and transforms kinetic energy into internal energy.

The transport equation for £k can also be written in a simplified easy-to-read sym-
bolic form as
ck =Pk DF—¢ (8.16)

where C*, P*, D* and ¢ correspond to terms I-IV in Eq. 8.14.

Above, it is stated that the production takes place at the large energy-containing
eddies, i.e. we assume that the large eddies contribute much more to the production
term more than the small eddies. There are two arguments for this:

1. The Reynolds stresses (which appear in P*) are larger for large eddies than for
small eddies.

2. The mean flow generates large eddies which will have same time scale as the
mean velocity gradient, 97;/0x;. In the fully turbulent region of a boundary
layer, for example, both time scales are proportional to xKx2/u,. The time scale
of the velocity gradient is given by xx2/u,, see Eq. 6.27, and the time scale of
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E(k)

Kk + dk

dr

Figure 8.2: Zoom of the energy spectrum for a wavenumber located in Region II or III, see
Fig. 5.2.

a large eddy is also given by ¢y /vy = Kkx2/u,. Figure 8.1 shows how different
velocity profiles create different largest eddies. The largest eddies created by the
velocity profile A are much smaller than those created by the velocity profile
B, because the gradient of profile A acts over a much shorter length than the
gradient of profile B.

In the cascade process (see Section 5.3) we assume that the viscous dissipation, ¢,
takes places at the smallest scales. How do we know that the majority of the dissipation
takes place at the smallest scales? First, let us investigate how the time scale varies with
eddy size. Consider the inertial subrange. Let’s denote the energy that is transferred
in spectral space (i.e. from eddy-to-eddy) per unit time by ¢,. How large is € — that
is generating heat — at wavenumber «, which we here denote £(x) (see Section 8.2.1
and Fig. 8.2)? Recall that the viscous dissipation, €, is expressed as viscosity times
the square of the velocity gradient, see Eq. 8.14. The velocity gradient for an eddy
characterized by velocity v,; and lengthscale /,; can be estimated as

ov Vg 1/2
(£)N o< 7. o< (vi) K (8.17)

since £, oc k1. We know that the energy spectrum (see Eqs. 5.10 and 5.13),
E(k) < ke/k x 02 /6 x k7% = 0% o k723 (8.18)

in the inertial region. Inserting Eq. 8.18 into Eq. 8.17 gives

1/2
<@) x (/i*Q/B) ko kY3 o k23 (8.19)
o /.

Thus the viscous dissipation at wavenumber « can be estimated as (see the last term in
Eq. 8.14)

a7 A0yl 2
€= v v; = 5(&)0((81}) o k3, (8.20)

o V@l‘j axj % “
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i.e. €(k) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy per unit time in spectral space can also be
used for estimating the velocity gradient of an eddy. The cascade process assumes that
this energy transfer per unit time is the same for each eddy size, i.e. £, = ¢ = v3 /(. =
02 /73 = (%2/73, see Eq. 5.14. We find from (2 /73 = (%/73 that for decreasing eddy
size (decreasing /), the time scale, 7, also decreases, i.e.

0\ 23
Lo

where 7y and ¢, are constants (they are given by the flow we’re looking at, for example
a boundary layer which has the large scales, 7y and ¢;). Hence

@ x Or o Tl o 4723 n2/3, (8.22)
or ), L ® ®

which is the same as Eq. 8.19.

8.2.1 Spectral transfer dissipation ¢, vs. ““true” viscous dissipation, ¢

As a final note to the discussion in the previous section, it may be useful to look at the
difference between the spectral transfer dissipation €, and the “true” viscous dissipa-
tion, ¢; the former is the energy transferred from eddy-to-eddy per unit time, and the
latter is the energy transformed per unit time to internal energy (i.e. increased temper-
ature) for the entire spectrum (occurring mainly at the small, dissipative scales), see
Fig. 5.2. Now consider Fig. 8.2 which shows a zoom of the energy spectrum. We as-
sume that no mean flow energy production occurs between  and « + dk, i.e. the region
may be in the —5/3 region or in the dissipation region. Turbulent kinetic per unit time
energy enters at wavenumber « at a rate of ,; and leaves at wavenumber x + dk a rate
of extdx- If k and k + dk are located in the inertial region (i.e. the —5/3 region),
then the usual assumption is that €,, ~ €,.4 4, and that there is no viscous dissipation to
internal energy, i.e. €(k) ~ 0. If there is viscous dissipation at wavenumber x (which
indeed is the case if the zoomed region is located in the dissipative region), then (k)
is simply obtained through an energy balance per unit time, i.e.

e(K) = €xtdr — €x (8.23)

8.3 The Exact k£ Equation: 2D Boundary Layers
In 2D boundary-layer flow, for which 9/0xo > 0/0xz1 and U2 < 7, the exact k

equation reads
ovik  Ovgk —— 001
= —vvi—
81‘1 8x2 1 281'2

7 Ll Ok dv; dv; ®29

_ 8—1'2 ;p Uy + §U2U'LU'L — 1/8—1'2 — Va—:pja—;p]

Note that the dissipation includes all derivatives. This is because the dissipation term

is at its largest for small, isotropic scales for which all derivatives are of the same order

and hence the usual boundary-layer approximation 9/0x; < 0/0x2 does not apply
for these scales.
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Figure 8.3: Channel flow at Re, = 2000. Terms in the k equation scaled by u?/v. Re, =
2000. a) Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15,16].
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Figure 8.4: Channel flow at Re, = 2000. DNS (Direct Numerical Simulation) data [15, 16].

Figure 8.3 presents the terms in Eq. 8.24 for fully developed channel flow. The left
side is — since the flow is fully developed — zero. In the outer region (Fig. 8.3b) all terms
are negligible except the production term and the dissipation term which balance each
other. This is called local equilibrium, see p. 100. Closer to the wall (Fig. 8.3a) the
other terms do also play a role. Note that the production and the dissipation terms close
to the wall are two orders of magnitude larger than in the logarithmic region (Fig. 8.3b).
At the wall the turbulent fluctuations are zero which means that the production term is
zero. Since the region near the wall is dominated by viscosity the turbulent diffusion
terms due to pressure and velocity are also small. The dissipation term and the viscous
diffusion term attain their largest value at the wall and they much be equal to each other
since all other terms are zero or negligible.

The turbulence kinetic energy is produced by its main source term, the production
term, P~ = —vjvh 01 /Oxo. The velocity gradient is largest at the wall (see Fig. 8.4a)
where the shear stress is zero (see Fig. 8.4b)); the former decreases and the magnitude
of the latter increases with wall distance and their product takes its maximum at z3 =~
11. Since P* is largest here so is also k, see Fig. 6.8. k is transported in the 5 direction
by viscous and turbulent diffusion and it is destroyed (i.e. dissipated) by ¢.

local equilib-
rium
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8.4 Spatial vs. spectral energy transfer

In Section 5.3 we discussed spectral transfer of turbulent kinetic energy from large to
small eddies (which also applies to the transport of the Reynolds stresses). In Sec-
tion 8.2 we derived the equation for spatial transport of turbulent kinetic energy. How
are the spectral transfer and the spatial transport related? The reason that we in Sec-
tion 5.3 only talked about spectral transfer was that we assumed homogeneous tur-
bulence in which the spatial derivatives of the time-averaged turbulent quantities are
zero, for example Ovi2/dz; = 0, Ok/Ox; = 0 etc. (Note that the derivatives of the
instantaneous turbulent fluctuations are non-zero even in homogeneous turbulence, i.e.
0v} /Ox; # 0, the instantaneous flow field in turbulent flow is — as we mentioned at the
beginning of this section, p. 68 — always three-dimensional and unsteady). In homoge-
neous turbulence the spatial transport terms (i.e. the convective term, term I, and the
diffusion terms, term III in Eq. 8.14) are zero. Hence, in homogeneous turbulence there
is no time-averaged spatial transport. However, there is spectral transfer of turbulent
kinetic energy which takes place in wavenumber space, from large to small eddies. The
production term (term II in Eq. 8.14) corresponds to the process in which large energy-
containing eddies extract energy from the mean flow. The dissipation term (term IV in
Eq. 8.14) corresponds to transformation of the turbulent kinetic energy at the small ed-
dies to thermal energy. However, real flows are hardly ever homogeneous. Some flows
may have one or two homogeneous directions. Consider, for example, fully developed
channel turbulent flow. If the channel walls are very long and wide compared to the
distance between the walls, 24, then the turbulence (and the flow) is homogeneous in
the streamwise direction and the spanwise direction, i.e. 01 /9z1 = 0, dv/?/dx1 = 0,
Ovl?/dxs = 0 etc.

In non-homogeneous turbulence, the cascade process is not valid. Consider a large,
turbulent eddy at a position x4 (see Fig. 6.1) in fully developed channel flow. The
instantaneous turbulent kinetic energy, k. = v, ;v ;/2, of this eddy may either be
transferred in wavenumber space or transported in physical (spatial) space, or both. It
may first be transported in physical space towards the center, and there lose its kinetic
energy to smaller eddies. This should be kept in mind when thinking in terms of the
cascade process. Large eddies which extract their energy from the mean flow may not
give their energy to the slightly smaller eddies as assumed in Figs. 5.2 and 5.1, but k,,
may first be transported in physical space and then transferred in spectral space (i.e. to
a smaller eddy).

In the inertial range (Region II), however, the cascade process is still a good ap-
proximation even in non-homogeneous turbulence. The reason is that the transfer of
turbulent kinetic energy, k., from eddy-to-eddy, occurs at a much faster rate than the
spatial transport by convection and diffusion. In other words, the time scale of the cas-
cade process is much smaller than that of convection and diffusion which have no time
to transport k,; in space before it is passed on to a smaller eddy by the cascade process.
We say that the turbulence at these scales is in local equilibrium. The turbulence in
the buffer layer and the logarithmic layer of a boundary layer (see Fig. 6.2) is in local
equilibrium. In Townsend [22], this is (approximately) stated as:

the local rates of turbulent kinetic energy (i.e. production and dissipation)
are so large that aspects of the turbulent motion concerned with these pro-
cesses are independent of conditions elsewhere in the flow.

This statement simply means that production is equal to dissipation, i.e. P* = ¢, see
Fig. 8.3.

homogeneous
turbulence

local
equilibrium
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In summary, care should be taken in non-homogeneous turbulence, regarding the
validity of the cascade process for the large scales (Region I).

8.5 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the production term is to increase k, i.e. if we
integrate the production term over the entire domain, V', we get

/ PFav >0 (8.25)
v
Similarly, the net effect of the dissipation term is a negative contribution, i.e.

/ —edV <0 (8.26)
”

What about the overall effect of the transport terms, i.e. convection and diffusion?
Integration of the convection term over the entire volume, V', gives, using Gauss diver-
gence law,
8173‘/{?
v Oz;
where S is the bounding surface of V. This shows that the net effect of the convection
term occurs only at the boundaries. Inside the domain, the convection merely transports
k with out adding or subtracting anything to the integral of &, fv kdV; the convection
acts as a source term in part of the domain, but in the remaining part of the domain it
acts as an equally large sink term. Similarly for the diffusion term, we get

0 (14— 1— ok
/8%( ViU v + pv _Vaz] 1%

=— vy, + pv —v— | n;dS
/(2]kk aj J

The only net contribution occurs at the boundaries. Hence, Eqs. 8.27 and 8.28 show
that the transport terms only — as the word implies — transports k without giving any
net effect except at the boundaries. Mathematically these terms are called divergence
terms, i.e. they can both be written as the divergence of a vector A4,

dv = / v,kn;dS (8.27)
S

(8.28)

0A;
J 8.29
e (8.29)
where A; for the convection and the diffusion term reads
vk convection term
= 1—— 1 — ok
4 - (2 Vv, + p vl — V@xj> diffusion term (8.30)

8.6 The transport equation for v,v;/2

The equation for K = 7;7;/2 is derived in the same way as that for v}v]/2. Multiply
the time-averaged Navier-Stokes equations, Eq. 6.10, by ; so that

61}11)] _ _l op B 0%, Ul@vév}
Zaz](?:r] " Oz

8z] p Oz

(8.31)

divergence
terms
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Figure 8.5: Channel flow at Re; = 2000. Comparison of mean and fluctuating dissipation
terms, see Eqgs. 8.37 and 8.38. Both terms are normalized by u>/v. DNS (Direct Numerical
Simulation) data [15, 16]. —— : v(9%1 /0x2)%; — = : €.

Using the continuity equation and Trick 2 the term on the left side can be rewritten as

Ov;0; ov; B la’lji’lji 0v; K
viv; 00 7 an‘ — g# (8.32)
7 J

’l_)i = V;U;
c’)xj J axj

The viscous term in Eq. 8.31 is rewritten in the same way as the viscous term in Sec-
tion 8.2, see Eqgs. 8.12 and 8.13, i.e.

82’51‘ ’K 0v; 0v;
az = — . 8.33
vy 8zj8xj V@xja:rj Vaxj 835]- ( )
Equations 8.32 and 8.33 inserted in Eq. 8.31 gives
9, K O*K v dop  Ov ov  Ovjy;
vk Y A I N k3 (8.34)
836]- 8zj8xj 14 8351 axj 835]- axj
The last term is rewritten using Trick 1 as
viv', ov vV, —— 9w,
_ 7] 177 77 7
— =_ A ) 8.35
Y axj c’)xj + UZ’UJ c’)xj ( )

Note that the first term on the right side differs to the corresponding term in Eq. 8.14
by a factor of two since Trick 2 cannot be used because @; # v}. Inserted in Eq. 8.34
gives (cf. Eq. 8.14)

(’)T)jK — dv;  v; Op 0 _ oK 0v; 0v;
= vjv) - —— |l —v— | v ———

Oz T0x; p Ox; Oz J Ox; Oz Ox; (8.36)
— Pk sink  source €mean, Sink

On the left side we have the usual convective term. On the right side we find:
e loss of energy to k due to the production term

e work performed by the pressure gradient; in channel flow, for example, this term
gives a positive contribution to K (as expected) since —v19p/9x1 > 0

e diffusion by velocity-stress interaction
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e
0 G

Figure 8.6: Transfer of energy between mean kinetic energy (X)), turbulent kinetic energy (k)
and internal energy (denoted as an increase in temperature, AT). K = %171-171- and k = %vgvg.

e viscous diffusion.

e viscous dissipation, €,,eq5. This corresponds to the dissipation term in Eq. 2.22;
if you replace v; with v; and use the continuity equation to get rid of the sec-
ond velocity gradient in S‘ij you find that the dissipation term in Eq. 2.22 (see
Eq. 2.25), is identical to €yeqn.-

Note that the first term in Eq. 8.36 is the same as the first term in Eq. 8.14 but with
opposite sign: here we clearly can see that the main source term in the k equation (the
production term) appears as a sink term in the K equation.

In the K equation the dissipation term and the negative production term (represent-
ing loss of kinetic energy to the £ field) read

0v; 07; — 07v;

_ 23 8.37
Vaxj (’)xj v a$j7 ( )
and in the k£ equation the production and the dissipation terms read
T vl o
B A A (8.38)

v axj (’)xj G—:UJ

The gradient of the time-averaged velocity field, ¥;, is much smoother than the gradient
of the fluctuating velocity field, v}. Hence, the dissipation by the turbulent fluctuations,
€, in the turbulent region (logarithmic region and further out from walls), is much larger
than the dissipation by the mean flow (left side of Eq. 8.37). This is seen in Fig. 8.5
(xF = 15). The energy flow from the mean flow to internal energy is illustrated in
Fig. 8.6. The major part of the energy flow goes from K to k and then to dissipation.
In the viscous-dominated wall region (3[:;r < 5), the mean dissipation, v(97; /61’2)2,

is much larger than ¢, see Fig. 8.5. At the wall, the mean dissipation takes the value
v = 1/2000 (normalized by u? /v).
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9 Transport equations for Reynolds stresses

N this section we will derive the transport equation for the Reynolds stress tensor.
This is an unknown quantity in the time-averaged Navier-Stokes equations, Eq. 6.10,
which must be known before Eq. 6.10 can be solved. The most accurate way to find
;v} is, of course, to solve a transport equation for it. This is computationally expen-

sive since we then need to solve six additional transport equations (recall that v§v§- is

symmetric, i.e. Vvl = vhv} etc). Often, some simplifications are introduced, in which

’ ’ is modeled by expressing it as the product of a turbulent viscosity and velocity

gradlents Two-equations models are commonly used in these simplified models; no
transport equation for v;v; is solved.

In Section 8 we derived transport equations for kinetic turbulent energy, k£, which

is the trace of the Reynolds stress tensor v;v’; divided by two, i.e. k = viv}/2. This

means that k is equal to half the sum of the diagonal components of v] v ,le k=

0.5(v2 4+ v 4 vi2).

Now let’s start to derive the transport equation for v/v’. viv’,. This approach is very simi-
lar to that we used when deriving the £ equation in Sectlon 8.2. Steady, incompressible
flow with constant density and viscosity is assumed. Subtract Eq. 6.10 from Eq. 6.6
and divide by density, multiply by v;- and time average and we obtain

v VU — U;Uk) =

iy
J ka
1 0 0% vy, ,
8 ] 8$ka$k 8$k J
Equation 6.10 is written with the index ¢ as free index, i.e. ¢ = 1,2 or 3 so that the
equation is an equation for vy, v2 or v3. Now write Eq. 6.10 as an equation for v; and
multiply this equation by v;. We get

©.1)

Uéa—xk [vjvr — U;0k] =

S 9.2)
1 8 0%v 3 o', vk .
_p i p v 8:Ek8xk + oz, Yi

It may be noted that Eq. 9.2 is conveniently obtained from Eq. 9.1 by simply switching
indices 7 and j. Adding Egs. 9.1 and 9.2 together gives

U’-i [vivg — T;0k] + 9 [vjvr — T;0] =
I 0wy, 8 I I

1 8p v’. ap’

Yi O0x; J axi

/ /

v Z(’)xkaxk T ]awkal’k

aU Uk / av;v;c ’

al’k i al’k j

Note that each line in the equation is symmetric: if you switch indices ¢ and j in any
of the lines nothing changes. This is important: since the tensor vz’-v3 is symmetric, all
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terms in its transport equation must also be symmetric. Furthermore, you can check
that the equation is correct according to the tensor notation rules. Indices ¢ and j appear
once in each term (not more, not less) and index % (the dummy index) appears exactly
twice in each term (implying summation). Note that it is permitted to use any other
index than k in some terms (but you must not use ¢ and j). You could, for example,
replace k with m in the first term and with ¢ in the second term; however, usually we
use the same dummy index in every term.
Using v; = ¥; + v}, the first line can be rewritten as

]
/ 73.09/ !5 U
V= [0v), + vjUk + vjvp] + v

. [ﬁjvi, + véﬂk + vg-vﬂ 9.4)

/—
Za:L'k

Using the continuity equation the first terms in the two groups are rewritten as

D + vy, D2y 9.5)

!,
’Uj’l)k

We merge the second terms in the two groups in Eq. 9.4.

—a= s A /
/8vivk /avjvk o avi = /avj
. v = UV + vk,
J 8:% al’k al’k 8:% (9 6)
_ Qv Qi
= ’Uk = —

The continuity equation was used twice (to get the right side on the first line and to get
the final expression) and the product rule was used backwards to get the second line.
Re-writing also the third terms in the two groups in Eq. 9.4 in the same way, the second
and the third terms in Eq. 9.4 can be written

1oyl 55 oyl oyl
8vivjvk N 8vivjvk

9.7
The second line in Eq. 9.3 is also re-written using Trick 1
10— —— Jovl 1 0v;
——=—vp - == - L+ —p— 9.8
pox; P pon " " 0z, o ©5)

It will later turn out that it is convenient to express all derivatives as 9/dzy,. Therefore
we re-write the derivative in the two first terms as

0 0 0 0
so that
10— 10— 1 ov 1 0
— 4 __/_/_61, Z T o/ 1 0/ J 9.10
Jkpaxkvzp kpaxkv]p + pp oz, + pp B, 9.10)

The third line in Eq. 9.3 is also re-written using Trick 1

L N R AN
Oy, Ui&’rk Oy, Ujaxk Oxy, Oz,
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The product rule is used backwards to merge the two first terms so that the third line in

Eq. 9.3 reads
0 3 ' n , Ov] _ 9y o, 31}
y— 2
8$k 8$k U] 8$k 8$k 81‘k

dvj) 1oV O*v[v), 1oV
9 <Uﬂj>_2yavl v 5, 001 0%

©.11)

- V@xz a:L'k 8$k a:L'k &L'kaxk B 8$k 81‘k

The terms on the fourth line in Eq. 9.3 are zero because ab/ = al/ = 0. We can now
put everything together. Put the first term in Eq. 9.7 on the left side and the second
term on the right side together with Egs. 9.5, 9.10 and 9.11 so that

— Jv; 0v;
= (F, ) ! awa J
I&Ek (vkvlvj)l | —Vjv 3V Dy — v} vka .
Cij-,I Pi]‘,II
9 ToT o7 —= e = 81)21)/‘
- g, + 6»kv§ [+ =0 vp — v
Oz ( k RO T ORGP Oz 9.12)
' Di; 101
n 8 / n 81}3 _ 9y 81} (91)
p 81'] (9 €Ty 8$k &L'kl
m, v ' ey IV

Note that the manipulation in Eq. 9.9 allows the diffusion (term III) to be written on a
more compact form. After a derivation, it is always useful to check that the equation is
correct according to the tensor notation rules.

e Every term — or group of terms — should include the free indices ¢ and j (only
once);

e Every term — or group of terms — should be symmetric in ¢ and 7;

e A dummy index (in this case index k) must appear exactly twice (=summation)
in every term

Equation 9.12 can also be written in a simplified easy-to-read symbolic form as
Cij = Pij + Dij +1lij — €45 (9.13)

where II;; denotes the pressure-strain term

o ]1 81); 81);
IL;; = P (8$j + Bz, 9.14)

Equation 9.12 is the (exact) transport equation of the Reynolds stress, W It is called
the Reynolds stress equations. It is an equation for a second-order tensor which con-
sists of nine equations, but since it is symmetric we only need to consider six of them.
Compare Eq. 9.12 with the equation for turbulent kinetic energy, Eq. 8.14. An alter-
native — and maybe easier — way to derive Eq. 8.14 is to first derive Eq. 9.12 and then
take the trace (setting + = j) and divide by two. In both the £ and the v§v§- equations

Reynolds
stress
equations
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Figure 9.1: Channel flow at Re, = 2000. Terms in the v 2 equation scaled by u2 /v. a) Zoom
near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15, 16]. == P;;;
—— gy e Iy —O(Vh0]2) /O2a; 01 O V(2 /O

there is a convection term (I), a production term (II), a diffusion term (III) and a dis-
sipation term (IV). In the vz’-vé equation there is a fifth term (V), see Eq. 9.14, which
is called the pressure strain term. The physical meaning of this term is to redistribute
energy between the normal stress components (if we transform Eq. 9.12 to the princi-
pal coordinates of vjv ’ there are no shear stresses, only normal stresses). The average

of the normal stresses is v’2 = vjv} / 3. For a normal stress that is larger than vt’fv, the
pressure-strain term is negative and vice-versa. It is often called the Robin Hood term
because it — as Robin Hood — “takes from the rich and gives to the poor”. Note that the

trace of the pressure-strain term is zero, i.e.

1 ov o,
Mit =~/ (azz + azz) 0 (9.15)

because of the continuity equation and this is the reason why this term does not appear
in the k equation.
For 2D boundary layer flow, Eq. 9.12 reads

o — 0v; —8@-
0z By TG v+ 8—:@(”2”;”9) = U dxy v%%
0 1. — 1. — c%{v’
92, ( iVjvs + p5j2v§p’+ ;51'2”31’/ - 5:52] (9.16)
el ov; sy ! Ov)
+ p 8% + 8361 a:L'k 8xk

Now let’s look at this equation for fully developed channel flow for which

Uy =03 =0
() a() 0 9.17)
(9%1 aIL'g
Note that on the second line the streamwise (1) and the spanwise (z3) derivatives
operate on time-averaged quantities; those that operate on instantaneous quantities,
such as in €;; and II;;, are not zero.

pressure
strain

Robin Hood
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wall wall

Z1
—_—

Figure 9.2: One-dimensional unsteady heat conduction. In the middle there is a heat source, Q).

9.1 Source terms

In order to analyze the Reynolds stress equation, Eq. 9.16, we will now look at the
source terms. A positive source term in a transport equation, for example @, increases
the value of ®. A simple example is the one-dimensional unsteady heat conduction
equation (Eq. 2.17 with v; = 0)

oT o*T
— =a-——5+ 9.18
o~ %o @ ©.18)
where () is a heat source, see Fig. 9.2. If () is positive, T will increase and vice-versa.

Now we will look at an important source term in the v} U; equation, namely the
production term. The production term in Eq. 9.16 reads

P ol 0v; B v’v’ 0v;
1 72 2
al’g al’g

(9.19)

In fully- developed channel flow, we get for the v/2 V2 =j=1,v (i =35 =2), v_{f
(i=j =3)andvjv} (i = 1, j = 2) equations

(%1
Py = —20ju)—+ . (9.20a)
802
Pyy = 200} o =0 (9.20b)
Py = —20] 2‘%3 -0 (9.20¢)
0
—0vy 6172 —5 001
Py = —vlvl éa— — vjvg 8— = _U/228—$2 (9.20d)

using Eq. 9.17.

Figure 9.1 presents the terms in the v'2 v equation (Eq. 9.16 with i = 7 = 1). As
we saw for the k equation, the production term, P;1, reaches its maximum at zo ~ 11
where also v/? takes its maximum (Fig. 6.8). The pressure-strain term, Ty, and the
dissipation term act as sink terms. In the outer region (Fig. 9.1b) the production term
balances the pressure-strain term and the dissipation term.

The terms in the wall-normal stress equation, v_§2 are shown in Fig. 9.4. Here we
find — as expected — that the pressure-strain term, 52, acts as the main source term.
As mentioned previously, Ilss — the “Robin Hood” term — takes from the “rich” 2
equation and gives to the “poor” v} equation energy because v{? is large and v%? is
small.
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Figure 9.4 presents the terms in the v}2 v equation. As for the v/2 v? equation, the main
source term is the pressure strain term, but it may be noted that here it is positive

near the wall; for the v}? equation it goes negative near the wall since the pressure-

strain term dampens v/ o2

near the wall. Another difference is that the pressure diffusion
term, 28v3p /O, is zero (as it is in the v}? equation), whereas it near the wall gives
an important contribution in the v? equation (it balances the negative pressure-strain
term).

Figure 9.6 presents the terms in the v/ v}, equation. The production term — which
should be a source term — is here negative. Indeed it should be. Recall that v} v} is
here negative and hence its source must be negative; or, rather, the other way around:
vjv} is negative because its production term, Pjs = —v520v; /x>, is negative since
071 /0x2 > 0. Note that in the upper half of the channel 97, /022 < 0 and hence P25
and v} v} are positive. Furthermore, note that the dissipation, €19, is zero. This is be-
cause dissipation takes place at the smallest scales and they are isotropic. That implies
there is no correlation between two fluctuating velocity components, e.g. v{v5 = 0 (in
general, for i # j, the stresses vgvg in isotropic turbulence are zero). Hence, also their
gradients are zero so that

v Ol
€12 = 2Va$k 81‘k =0 (92])

However, very close to the wall, ac;r < 10, €12 # 0 because here the wall affects
the dissipative scales making them non-isotropic; £12 is positive since v{vs < 0, see
Fig. 9.6. When looking at the energy spectrum, neither the production term nor the
dissipation of the mean kinetic energy enters the spectrum, see Fig. 9.3

The main sink term in the v} v} equation is the pressure-strain term, 712, see Fig. 9.6.
But since v{v4 < 0 in the lower half of the channel, it means that it is positive. In order
to understand the sign of 715, we can look at the pressure-strain term in the principal
coordinate directions and transform it to the x1 — x5 coordinate system, see Eq. 11.52.

If you want to learn more how to derive transport equations of turbulent quantities,
see [23] which can be downloaded here
http://www.tfd.chalmers.se/ lada/allpaper.html

9.2 Reynolds shear stress vs. the velocity gradient

In boundary-layer type of flow, the Reynolds shear stress and the velocity gradient
001/ 0z have nearly always opposite signs. For channel flow, for example, Eq. 9.20
shows that P; 2 is negative (and hence also v{v4) in the lower half because 071 /0z2 > 0
and it is positive in the upper half because 071 /dx2 < 0. It can be summarized as:

o Py = is the source term in v/ v/, equation and it is large

— )
2 a o
= Pj9 and v]v} have the same sign. Compare Fig. 9.2 (temperature in °C' and
T = 0 at the boundaries): a negative source, (), gives negative temperature
and vice versa;
9%,
= v/vh and —

8$2

have opposite sign;

|
‘ —

> 0;

,_.\

o~

Q| QO
<

= The production term in the k equation, P* = —v/v
Z2

e P is always positive in fully-developed channel flow;


http://www.tfd.chalmers.se/~lada/allpaper.html
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Figure 9.3: Energy spectrum. Transfer of kinetic energy. The cascade process assumes that the

term in red are negligible (see also Fig. 8.2). The term in blue show the viscous dissipation of
the mean flow.
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Figure 9.7: Sign of the Reynolds shear stress —pv/ v4 in a boundary layer.
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e In general flows, P¥ is almost always positive.

The fact that m and 001 /0x2 almost always have different signs can also be
shown by physical argumentation. Consider the flow in a boundary layer, see Fig. 9.7.
A fluid particle is moving downwards (particle drawn with solid line) from z2 g to
x2, 4 with (the turbulent fluctuating) velocity v4. At its new location the vy velocity is
in average smaller than at its old, i.e. U1 (22,4) < U1(x2,p). This means that when the
particle at x2 p (which has streamwise velocity vq (1:27 B)) comes down to x2 4 (Where
the streamwise velocity is vq (1:27 A)) it has an excess of streamwise velocity compared
to its new environment at zo_4. Thus the streamwise fluctuation is positive, i.e. v > 0
and the correlation between v{ and v5 is in average negative (vjvs < 0).

If we look at the other particle (dashed line in Fig. 9.7) we reach the same con-
clusion. The particle is moving upwards (v) > 0), and it is bringing a deficit in vy
so that v] < 0. Thus, again, vivi < 0. If we study this flow for a long time and
average over time we get vj v, < 0. If we change the sign of the velocity gradient so
that 07 /0z2 < 0 we will find that the sign of v} v} also changes.

In cases where the shear stress and the velocity gradient have the same sign (for
example, in a wall jet) the reason is that the other terms (usually the transport terms)
are more important than the production term.
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Figure 10.1: Two-point correlation.

10 Correlations

10.1 Two-point correlations

WO-point correlations are useful when describing some characteristics of the tur-

bulence. By “correlation”, we mean the tendency for two values or variables to
change together, in either the same or opposite way. Pick two points along the x; axis,
say 27 and z¢, and sample the fluctuating velocity in, for example, the z; direction.
We can then form the correlation of v} at these two points as

vl () (10.1)

Often, it is expressed as

Bui(ai, &1) = vf (a{)v] (= + 1) (10.2)

where 71 = 2¢ — x{' is the separation distance between point A and C.

It is obvious that if we move point A and C closer to each other, B;; increases;
when the two points are moved so close that they merge, then By; = v2(z{'), see
Fig. 10.1. If, on the other hand, we move point C' further and further away from point
A, then By will go to zero. It is convenient to normalize B1; so that it varies between

—1 and +1. The normalized two-point correlation reads

1
norm (.. A 4 / AN, A S
Ty, 1) = —v ()] (x4 + 21 (10.3)
11 ( 1 ) ’U17rm5(fr114)’l)17rm5($114 zl) 1( 1 ) 1( 1 )

where subscript rms denotes root-mean-square, which for v/, for example, is defined
as

v _ ()" 10.4
1,rms = | Uy ( . )

RMS is the same as standard deviation (Matlab command st d) which is the square-
root of the variance (Matlab command var).

Consider a flow where the largest eddies have a length scale of L;,, see Fig. 10.2.
We expect that the two point correlation, B11, approaches zero for separation distance,
|z‘14 — xlc| > L;n: because for separation distances larger than L;,. there is no correla-
tion between v/ (z{') and v} (x¢). Hence, flows with large eddies will have a two-point
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(a) Small integral length scale

(b) Large integral length scale

Figure 10.2: Schematic relation between the two-point correlation, the largest eddies (thick
lines) and the integral length scale, Lin:.
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correlation function which decreases slowly with separation distance. For flows with
small eddies, the two-point correlation, By, decreases rapidly with Z;.

If the flow is homogeneous (see p.100) in the x; direction, the two-point correlation
does not depend on the location of z{}, but it is only dependent on the separation of the
two points, 21, i.e.

norm (2, 1 7 7 =
By (#1) = 2 v (z1)v] (z1 + Z1) (10.5)

vl,rms

From the two-point correlation, B;1, an integral length scale, L;,;, can be com-
puted which is defined as the integral of B1; over the separation distance, i.e.

[e.°] B 2,

Lint(xl) = / All(l’l,Cxl) dfil (106)
0 vl,rmsvl,rms

The integral length scale represents the length scale of the large energy-containing

eddies. If the flow is homogeneous in the z; direction then L;,; does not depend on

x1, and the integral length scale is then computed as
Lins = / norm (3 Vi (10.7)
0

10.2 Auto correlation

Auto correlation is a “two-point correlation” in time, i.e. the correlation of a turbulent
fluctuation with a separation in time. If we again choose the v} fluctuation, the auto
correlation reads

B (t4,1) = v} (t4)) (tA + 1) (10.8)

where ¢ = t€ — ¢4, is the time separation distance between time A and C. If the mean
flow is steady, the “time direction” is homogeneous and B, is independent on t4: in
this case the auto-correlation depends only on time separation, t, i.e.

Bui(t) = v () (t +1) (10.9)
where the right side is time-averaged over .
The normalized auto-correlation reads
. ~ 1 < ., ~.
17 () = v (H)or (t + 1) (10.10)

vl,rms

In analogy to the integral length scale, L;, the integral time scale, T+, is defined
as (assuming steady flow)

Tint = / T () dt (10.11)
0
The integral time scale represents the time scale of the large energy-containing eddies.

Itis used an Assignment (see Section R.3) for finding time samples that are independent
(i.e. the time beween the samples is at least one integral timescale).

integral
length scale

integral
time scale
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Figure 10.3: Two-point correlation and frozen turbulence.

10.3 Taylor’s hypothesis of frozen turbulence

The autocorrelation, BJ*?"™ (#), is much easier to measure than the two-point correla-

tion, BYY"™ (%1 ). Let’s try to obtain the two-point correlation from the autocorrelation.

Consider the velocity fluctuation at point A (i.e. v}(t)) and B (i.e. v(B(t)), see
Fig. 10.3. Assume that the turbulent fluctuation at point A is transported by the mean
velocity, v1, in a frozen state to point B. This is called Taylor’s hypothesis of frozen
turbulence. This asumption is better the smaller the turbulence intensity, v1 yms /1. It
takes &1 /01 seconds for the fluid particle at point A to reach point B. Based on Taylor’s
hypothesis we can estimate v} at point A by measuring v} at point B i1 /7; seconds
later. This gives

A 1l —F—5— 1 g

BiY"™ (@) = o (i (1) = =P (L + 31 /0)0i" (1)
1,7rms 1,7rms

Based on Taylor’s hypohesis, the integral length scale can in Fig. 10.3 be estimated

from the integral time scale as

Lint = 11Tine (10.12)
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations

11.1.1 Flow equations

For incompressible turbulent flow, all variables are divided into a mean part (time av-
eraged) and fluctuating part. For the velocity vector this means that v; is divided into
a mean part ¥; and a fluctuating part v} so that v; = ¥; + v;. Time average and we get
(see Eq. 6.9 at. p. 79):

ov;
8,%1'
dpoti b (poBi5;) op N 8%v; 0735
= (onTiDs) = — -2 _
ot ow; O ox; | Mow;00; oz,
(note that 6 denotes temperature) where pg is a constant reference density, the volume

force fi = —B(0 — 0y)g; and the turbulent stress tensor (also called Reynolds stress
tensor) is written as:

=0 (11.1)

— Bpo(0 —0o)g;  (11.2)

Tij = poviv} (11.3)
The pressure, p, denotes the hydrodynamic pressure, see Eq. 3.22, which means that
when the flow is still (i.e. v; = 0), then the pressure is zero (i.e. p = 0). We have
assumed that the temperature variations are small (typically smaller than 10 °C') so
that the density variations can be neglected (using pg) in all terms except the gravity
term. This is called the Boussinesq approximation.

The body force f; — which was omitted for convenience in Eq. 6.9 — has here been
re-introduced. The body force in Eq. 11.2 is due to buoyancy, i.e. density differences.
The basic form of the buoyancy force is f; = g; where g; denotes gravitational acceler-
ation. Since the pressure, p, is defined as the hydrodynamic pressure we have re-written
the buoyancy source as

pofi = (p— po)gi (11.4)

so that p = 0 when ¥; = 0 (note that the true pressure decreases upwards as pgAh
where Ah denotes change in height). If we let density depend on pressure and temper-
ature, differentiation gives

(o o
dp = (89>pd9+<8p>9dp (11.5)

Our flow is incompressible, which means that the density does not depend on pressure,
i.e. Op/Op = 0; it may, however, depend on temperature and mixture composition.
Hence the last term in Eq. 11.5 is zero and we introduce the volumetric thermal expan-

sion, 3, so that
po \90 ), (11.6)

dp = —poBdf = p — po = —PBpo(6 — bb)

where [ is a physical property which is tabulated in physical handbooks. For a perfect
gasitis simply 3 = 0! (with 6 in degrees Kelvin). Now we can re-write the buoyancy
term as

(p— po)gi = —poB(0 — 0o)g; (11.7)

Reynolds
stress
tensor

Boussinesq
approximation
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which is the last term in Eq. 11.2. Consider the case where 3 is vertically upwards.
Then g; = (0,0, —g) and a large temperature in Eq. 11.7 results in a force vertically
upwards, which agrees well with our intuition.

11.1.2 Temperature equation

The instantaneous temperature, 0, is also decomposed into a mean and a fluctuating
component as = 6 + #’. The transport equation for 6 reads (see Eq. 2.17 where
temperature was denoted by 1)

06  Ov;0 020
= = 11.
where o = k/(pc,), see Eq. 2.17 on p. 28. Introducing § = 6 + 6’ we get
] =0 27 W7
99  ovf _  0°0  Ovib (11.9)
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The last term on the right side is an additional term whose physical meaning is turbulent
heat flux vector. This is similar to the Reynolds stress tensor on the right side of the
time-averaged momentum equation, Eq. 11.2. The total heat flux vector — viscous plus
turbulent — in Eq. 11.9 reads (cf. Eq. 2.13)

2,to 7 7, tur 85
Qitot _ 4i | Qiturb 9V ray (11.10)
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11.2  The exact vjv}; equation

Now we want to solve the time-averaged continuity equation (Eq. 11.1) and the three
momentum equations (Eq. 11.2). Unfortunately there are ten unknowns; the four usual
ones (¥;, p) plus six turbulent stresses, vgv;—. We must close this equation system,; it is
called the closure problem. We must find some new equations for the turbulent stresses.
We need a turbulence model.

The most comprehensive turbulence model is to derive exact transport equations
for the turbulent stresses. An exact equation for the Reynolds stresses can be derived
from the Navies-Stokes equation. It is emphasized that this equation is exact; or, rather,
as exact as the Navier-Stokes equations. The derivation follows the steps below.

e Set up the momentum equation for the instantaneous velocity v; = ¥; + v, —
Eq. (A)

e Time average — equation for v;, Eq. (B)
e Subtract Eq. (B) from Eq. (A) — equation for v}, Eq. (C)
e Do the same procedure for v; — equation for v}, Eq. (D)

e Multiply Eq. (C) with v}; and Eq. (D) with v}, time average and add them together

o 1,0
— equation for v;v;

In Section 9 at p. 104 these steps are given in some detail. More details can also be
found in [23] (set the SGS tensor to zero, i.e. Tiaj =0).

closure
problem
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The final vév} -equation (Reynolds Stress equation) reads (see Eq. 9.12)

8v§v9+1_)k 1)21); _ 7/_1)/% 7/_—1/861- p_’ % n 8_1);
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where D;; ; and D;; ,, denote turbulent and viscous diffusion, respectively. The total
diffusion reads D;; = D;; + D;;,. This is analogous to the momentum equation
where we have gradients of viscous and turbulent stresses which correspond to viscous
and turbulent diffusion. Equation 11.11 can symbolically be written

Cij = Pij + ILij + Dyj + Gij — €ij

C;; Convection

P;; Production

IT;; Pressure-strain

D;; Diffusion

G;; Buoyancy production
€;; Dissipation

Which terms in Eq. 11.11 are known and which are unknown? First, let’s think
about which physical quantities we solve for.

v; 1s obtained from the momentum equation, Eq. 11.2

v;v} is obtained from the modeled @ equation, Eq. 11.101

Hence the following terms in Eq. 11.11 are known (i.e. they do not need to be modeled)
o The left side
e The production term, P;;

e The viscous part of the diffusion term, D;;, i.e. D;’j

e The buoyancy term, G;; (provided that a transport equation is solved for W,
Eq. 11.22; if not, v}’ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.3 The exact v/0 equation

If temperature variations occur we must solve for the mean temperature field, see
Eq. 11.9. Then we need the unknown turbulent heat fluxes, v;6’. To derive its transport
equation, start with the equation for the fluctuating temperature. Subtract Eq. 11.9 from
Eq. 11.8

o0 O a Iy
EnLa—xk(vkeJrva +v,0") =

9?0 vl

11.12
a&zkaxk * 81‘k ( )

To get the equation for the fluctuating velocity, v}, subtract the equation for the mean
velocity v; (Eq. 11.2) from the equation for the instantaneous velocity, v; (Eq. 6.6) so
that

ov, 0 10p 0*v] N ovjvy,
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Multiply Eq. 11.12 with v} and multiply Eq. 11.13 with ¢’, add them together and
time average

vl d d _

o0 T Vi (VO 0+ 0}8) + 6/ 5 (Biv) + O]+ vioy) (11.14)
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The Reynolds stress term in Eq. 11.13 multiplied by 6’ and time averaged is zero, i.e.

A J oviv __
tlgr=_"Jg =0

If you have forgotten the rules for time-averaging, see Section 8.1.
The first term in the two parentheses on line 1 in Eq. 11.14 are combined into two
production terms (using the continuity equation, 0v;,/Oxj = 0)
ov

L U — 11.1
kD Dy, (1115

,U/

The second term in the two parenthesis on the first line of Eq. 11.14 are re-written using
the continuity equation

] A
O O] k( a9 +9,%>

(11.16)

=1

i o dxy "\ omy | Oy
Now the two terms can be merged (product rule backwards, Trick 1)

oo’ ov! ovle’  Ovpvle’
vy | v 00— | =vp—=—— = L 11.17
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where we used the continuity equation to obtain the right side. The last two terms
on the first line in Eq. 11.14 are re-cast into turbulent diffusion terms using the same
procedure as in Egs. 11.16 and 11.17

!
9 (vlv),) = kT v;v6 (11.18)

0
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The viscous diffusion terms on the right side are re-written using the product rule back-
wards (Trick 1, see p. 92)

%67 0 (59')_ ) ( 89’) 90" ou,

!
AV, ———F—— =V, — | m— | = a—
18xk8xk 18:75;9 a:L'k 81‘k 81‘k 8$k 81‘k
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Inserting Eqs. 11.15, 11.17, 11.18 and 11.19 into Eq. 11.14 gives the transport
equation for the heat flux vector v;6’

(11.19)
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where Pjg, I1;9 and D;p ; denote the production, scramble and turbulent diffusion term,
respectively. The production term includes one term with the mean velocity gradient
and one with the mean temperature gradient. On the last line, D;g ., €, and G;9 denote
viscous diffusion, dissipation and buoyancy term, respectively. The unknown terms —
110, Dyg , €19, Gip — have to be modeled as usual; this is out of the scope of the present
course but the interested reader is referred to [24].

It can be noted that there is no usual viscous diffusion term in Eq. 11.20. The
reason is that the viscous diffusion coefficients are different in the v; equation and
the @ equation (v in the former case and « in the latter). However, if v ~ « (which
corresponds to a Prandtl number of unity, i.e. Pr = v/a ~ 1, see Eq. 2.18), the
diffusion term in Eq. 11.20 assumes the familiar form
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where D, ,, cancels the corresponding term in Eq. 11.20 if o = v. Often the viscous

diffusion is simplified in this way. Hence, if oo =~ v the transport equation for v}§’ can
be simplified as

(11.21)
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The same question arises as for the vz’-v} equation: which terms need to be modeled
in Eq. 11.22? The following quantities are known:

¥; 1is obtained from the momentum equation, Eq. 11.2

0 is obtained from the temperature equation, Eq. 11.9

vl vé is obtained from the modeled v;v’; equation, Eq. 11.101

vz’ﬂ’ is obtained from the modeled W equation
Hence the following terms in Eq. 11.22 are known (i.e. they do not need to be modeled)
The left side

The production term, P;

e The viscous diffusion term, D;g ,,

The buoyancy term, Gy (provided that a transport equation is solved for 0'2; if
not, 6’2 is usually modeled via a relation to k)

11.4 The £ equation

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e.

1 1—
kz—( + V5 Jrv)zivgv;

By taking the trace (setting indices ¢ = j) of the equation for v]v’, vl and dividing by two
we get the equation for the turbulent kinetic energy

ot~ 7ox; U I0x 81:3 830]
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(11.23)
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where — as in the vjv} equation — DF and D¥ denotes turbulent and viscous diffusion,

respectively. The total diffusion reads D¥ = DF + D. Equation 11.23 can symboli-
cally be written:

Ct=Pr 4+ DF +GF —¢ (11.24)
The known quantities in Eq. 11.23 are:
¥; 1is obtained from the momentum equation, Eq. 11.2
k is obtained from the modeled k equation, Eq. 11.97
Hence the following terms in Eq. 11.23 are known (i.e. they do not need to be modeled)

e The left side

e The viscous diffusion term, D¥

e The buoyancy term, G;; (provided that a transport equation is solved for W,
Eq. 11.22; if not, v}¢’ is obtained from the Boussinesq assumption, Eq. 11.35)
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11.5 The € equation

Two quantities are usually used in eddy-viscosity model to express the turbulent vis-
cosity. In the k — € model, k and ¢ are used. The turbulent viscosity is estimated —
using dimensional analysis — as the product of a turbulent velocity, I/, and length scale,
L,

v UL (11.25)

The velocity scale is taken as k'/? and the length scale as k>/2 /e which gives

k2
Vy = CN?

where C, = 0.09. An exact equation for the transport equation for the dissipation

v} O]
e=v——t
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can be derived (see, e.g., [25]), but it is very complicated and in the end many terms
are found negligible. It is much easier to look at the k£ equation, Eq. 11.24, and to setup
a similar equation for €. The transport equation should include a convective term, C¢,
a diffusion term, D?, a production term, P¢, a production term due to buoyancy, G¢,
and a destruction term, W€, i.e.

O = P° + D° + G° — ¢ (11.26)

The production and destruction terms, P and ¢, in the k equation are used to for-
mulate the corresponding terms in the £ equation. The terms in the & equation have
the dimension [m? /s3] (look at the unsteady term, Ok /0t) whereas the terms in the ¢
equation have the dimension [m?/s%] (cf. 9z/9t). Hence, we must multiply P* and ¢
by a quantity w