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Abstract
This report shows that it’s possible to achieve a speedup of up to 39 times by accelerating CFD
codes written in Python using CUDA methods. The report also details the performance of different
solvers and the limitations of such acceleration. The report further shows how Nvidias multigrid
solver AMGX, using the Python interface pyamgx, is not able to achieve a speedup when compared
to the native GMRES solver in the CuPy package.



1 Introduction

General purpose graphics processing units have seen a sharp rise in popularity in recent years. Com-
pared to regular CPUs they have hugely superior performance in highly parallelizable workloads.
Writing code for GPUs usually requires writing custom kernels, but there exists many packages
that allow direct access to functions that can run on GPUs such as the Python package CuPy.

1.1 Computational fluid dynamics

Computational fluid dynamics is the act of solving Navier-Stokes equations numerically. This can
be done in many different ways, but this report will target a finite difference model as well as a
finite volume model. These models are different ways to discretize the equations to get approximate
numerical solutions. To get results that match experimental results large computational meshes
are usually required which are slow to resolve. The computations are however highly parallelizable
and by using GPGPU to solve the problem faster a higher resolution mesh can be used.

1.2 Why GPU Computing

In the past, computers were dominated by single core central processing unit(CPU) appears to
execute instruction in a sequential manner but with pipelining hidden at micro-structure level,
several instructions can be executed at the same time depends on the available hardware units.
The software industry was driven by the faster clock frequency and more hardware within a unit in
the past which was predicted by the Moore’s law. But this trend has slowed down since around 2004
due to the energy usage and heat dissipation problems. Since we cannot increase the performance
of a single core CPU, the trend has turns to encapsulated several cores within one chip. This trend
has changed the software and hardware industry tremendously, because previous code works pretty
well does not apply at multi-core era anymore [4].

Still, the multi-core design method tries to maintain the speed of each core and execute single
instruction as fast as possible. Another direction is trying to execute as many instructions as
possible per unit time which is often called the throughput. On type of hardware aims to increase
the throughput of instruction execution is called GPGPU. Intel and NVIDIA are two companies
represent these two different directions. For comparison, a modern CPU like intel 14th generation
CPU has up to 24 cores [1], while the NVIDIA 40 series graphic card can have tens of thousands
cores [7]. The huge number of thread cores within GPGPU makes it extremely suitable for scientific
programs where computation is often massively huge for example matrix multiplication and numeric
simulation.

In all, CPU is good at execute sequential instruction fast, while GPU can execute instructions
in parallel with high throughput. For CFD problems we are trying to study in the report, it’s
inherently suitable for parallel execution.

1.3 CUDA Programming model

CUDA is a programming model designed and maintained by NVIDIA for general purpous parallel
programming. It allows developers to utilize the parallel hardware of NVIDIA’s GPU devices.
NVIDIA also develops lots of libraries using CUDA for developers to use as well such as cuSolver
and cuSparse. Each CUDA program is divided into two parts, device code executes on GPU which
is often called kernel code, and host code executes on CPU which is responsible for launching device



code and transfer data between CPU and GPU. CUDA’s kernel code can executed in parallel on
GPU. GPU also has it’s own memory, CUDA kernel code can only access data on device memory.
So in order for the GPU core to acess the data, the CPU need to copy data from host memory
to GPU memory. The data traffic between GPU and CPU is often a huge overhead of CUDA
programs. GPU memory is divided into global memory and shared memory. Shared memory is
much faster than global memory and can be shared but much smaller in size than global memory
16].

1.4 CuPy

CuPy [2] is an Numpy equivalent designed on GPU. It wraps upon lots of CUDA library functions
and provides python API. It allows users to execute high performance operations on NVIDIA GPUs
easily. In most cases, the operations in Numpy are also provided in CuPy as well. So developers
can modify the numpy program operated on CPU to CuPy program by changing few lines of code.
In the cupyx.scipy.sparse module, several spare solvers are provided as well which makes it suitable
for CFD problems.

1.5 pyagmx

pyamgx [8] is a Python wrapper for NVIDIA’s AMGX library. AMGX is a distributed multigrid
linear solver library on GPU. It includes a flexible solver composition system that allows a user to
easily construct complex nested solvers and preconditioners. The library is well suited for implicit
unstructured methods. The AmgX library offers optimized methods for massive parallelism, the
flexibility to choose how the solvers are constructed, and is accessible through a simple C API that
abstracts the parallelism and scale across a single or multiple GPUs using user provided MPIL.



2 Method

2.1 The code we’re working with

This report will be limited to accelerating a lid driven cavity flow from Lorena Barbas 12-steps to
Navier-Stokes code as well as a boundary layer flow in pyCALC-RANS [3]. The code will mainly be
accelerated using CuPy and its sparse functionality from cupyx.scipy.sparse. Focus will lie on
benchmarking different solvers on different hardware.

2.2 How we decided what to speed up

To figure out which parts of our code were slow and needed speed up, we used a tool called cProfile.
This tool showed us details about how much time, different parts of our code were taking.
Here is a simple snippet of the code:

import cProfile
import stats

profiler = cProfile.Profile ()

5 profiler.enable ()

# run the lid-drive cavity flow
u, v, p = cavity_flow(nt, nit, u, v, dt, dx, dy, b, p, rho, nu)
profiler.disable ()

stats = pstats.Stats(profiler).sort_stats(’tottime’)
stats.print_stats (10)

Listing 1: cProfiler

The results helped us see which parts were taking up the most time. We then used insights to
decide where to focus our efforts for making the code faster. The graphs we created from this data
made it easy to see which functions were slowing things down the most.

2.3 How we measured the speed up

We measured the speedup through benchmarking, which involved testing our code with different
mesh sizes. We analyzed the performance using the statistics from pstats. By examining this data,
we identified which functions scale the worst by increasing the mesh sizes. This allowed us to
pinpoint areas that needed improvement. Benchmarks are between the M1 chip and the NVIDIA
RTX 3090.

2.4 GPU implementations

Two GPU implementations have been proposed. The first implementation will only accelerate the
solver using cupyx, while the second implementation looks to convert the entire codebase to cupy
instead of numpy or scipy. For the first implementation, since only the solver is accelerated using
CuPy, we need to copy solver input data from CPU to GPU and output data back from GPU to
CPU between iterations. This method will introduce lots of memory traffic into the program. For
the second implementation, the whole program is converted to using CuPy which means the whole
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CFD program is run on GPU. The only thing we need to do it copy data from CPU to GPU at
the beginning of the program and copy data from GPU to CPU at the end of the program. No
memory overhead is introduced in between. For the pyCALC-RANS code, we cannot replace Numpy
with CuPy directly. Since there are some operations that are used in the code but does not exist in
the CuPy library. In order to work around this, we try to change the origin code compatitable with
the CuPy operations. For example we use the cupy.append to replace the logic of np.insert, replace
np.max() function call with cupy array max method call, and replace np.matrix.flatten with cupy
array flatten method. After these fixes, the pyCALC-RANS is guaranteed to run GPU entirely.

After we made sure our code can run on NVIDIA GPU entirely, we replace the solver in the
program with the solver in CuPy. However, the only solver in CuPy works for CFD program is
gmres.

2.5 pyamgx implementation

The package pyamgx was used to allow the AMGX solver API to be accessed using Python.
As the whole code was written using CuPy the sparse matrix, the solution vector and the load
vector (i.e. Ax = b) were all loaded in the GPU memory. By using the pyamgx functions
pyamgx.Matrix.upload_CSR and pyamgx.vector.upload_raw it was possible to directly pass the
memory pointers and sizes of the arrays to amgx and therefore not having any transfer overhead
to convert the arrays from the CuPy format to the AMGX format. Further AMGX is a heavily
configurable package and a few configurations from the NVIDIA github repository for AMGX were

used[5].



2.6 Tests

Benchmarking the code shows that the majority of time is spent inside the solve2d-function. This
function solves a finite volume problem on the form A¢ = b.

The current implementation of pyCALC-RANS allows for a variety of solvers that come with the
SciPy package which run on the CPU.

For the chosen case, lid driven cavity flow, the GPU implementations and the existing CPU
implementations will be compared. The planned tests are to run each solver and implementation
for meshes of size 120x120, 240x240, 480x480 and 960x960.



3 Results

3.1 Lorena Barba 12 step code

Fixed overflow issue with smaller time-step for larger mesh sizes in Lorena Barba’s code. Achieved
significant speedup using an NVIDIA RTX 3090 GPU compared to the M1 chip CPU. Log scale
used for cleaner visualization of exponential increase in execution times.
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Figure 3: CPU and GPU Performance Comparison

3.2 pyCALC-RANS with CuPy

Accelerating the pyCALC-RANS code using the python package CuPy was possible. The provided
default configuration for the boundary-layer-RANS-kom was tested for different CPU solvers as
well as the GPU based CuPy solver GMRES, while CuPy was also used as a drop-in replacement
for NumPy for the GPU based runs. The code was ran for 3 iterations and figure [4] shows the
total runtime. The runtime of just the SIMPLEC iterations was also measured and figure |5| shows
the runtime per iteration. A maximum speedup by a factor 39.8 was obtained using the CuPy
acceleration for a meshsize of 12.5 million cells. The missing datapoints for the qmr and lgmres
solvers are due to the benchmarking machine running out of memory.
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3.3 Comparison between cupy and pyamgx solvers

The code was also tested using solvers from the pyamgx package for a few select configurations.
The tested pyamgx configurations were a classical GMRES solver configuration (GMRES. json[5]), a
multigrid solver using FGMRES as the outer solver (FGMRES_AGGREGATION. j son) and a multigrid
solver using only sweeps of an aggregated multicolor DILU solver (AGGREGATION DILU. json)ﬂ
The total runtime of these solvers were compared to the GMRES solver in CuPy which is displayed
in figure [6] Figure [7] shows the runtime per iteration as in the section above for all tested solvers.
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In the figures a sharp rise in computational time can be seen for meshes larger than about 20
million cells. This occurs when the codes memory exceeds the available memory on the GPU (24
gb), which caused the operating system to swap data onto the regular CPU memory giving rise to
a large decrease in performance.

IThe solver configurations can be found at https://github.com/NVIDIA/AMGX/tree/main/src/configs.


https://github.com/NVIDIA/AMGX/tree/main/src/configs

4 Discussion

The results show a significant improvement in the performance of the programs can be achieved by
utilizing GPU acceleration, in particular using the Python package CuPy. This does however not
mean that a CFD code will always run faster on a GPU.

The results shows that while the per-iteration time is always faster for all meshsizes, the total
runtime is not always larger. GPU based operation can introduce large overhead as the program
needs to generate the kernels that run on the GPU from the original python. The runtime of things
outside the solvers of the linear systems can also scale badly on the GPU, or not be paralleliz-
able, and it can therefore make sense to do some types of computation on the CPU in a hybrid
configuration.

There’s also a large overhead associated with transferring data between the GPU and CPU
which can cause a code that needs to do some treatment of the data on the CPU between iterations
to be significantly slower compared to running the entire code. This also applies to problems that
are too large to fit solely inside the GPU memory, such problems could see huge reductions in speed
due to having to move data between the two different types of memory, and this is also seen in
the results where a too large mesh sees a sharp increase in time due to this phenomena. This also
shows in the results where a quick interpolation of the CPU results would beat the GPU results for
very large meshes if the machine had enough memory to run such cases on the CPU.

The results also show that the CuPy native GMRES solver is the fastest, even beatin the AMGX
solver speed. This could be due to either that the CuPy solver is quicker due to being a newer
and faster-running solver. It could also be that the AMGX solver has to do extra work to convert
the CuPy arrays to something else on the GPU, even when passing the objects as direct memory
pointers. There could also be that the configurations of the AMGX solver as well as the convergence
criterion in the SIMPLEC loop were not ideal for the AMGX solver. It is however noteworthy that
both GPU solvers scaled similarly, as seen by the similar slopes of the lines in the log-log plots as
well as the fact that the pyamgx solver still outscaled the CPU based solvers by a large factor.

Another consideration is stability and convergence. Stability was not investigated in this study
and only a few iterations of the different solvers were ran. Future studies could look at stability and
convergence to further improve the runtime of the programs by tweaking parameters like relaxation
factors and convergence criterion in the SIMPLEC loop. It would also be possible to get a larger
selection of converging solvers by tweaking such parameters. It is however important to point out
that the runtime results are still valid due to the same convergence criterion being used for all the
solvers and equations in the SIMPLEC loop.

5 Conclusion

The main conclusion is that it is possible to accelerate both simple and complex CFD codes written
in Python using CUDA. This report shows that large decreases in computational time can be
obtained and this report measured an increase of up to 39.8 times decrease in computational time
per iteration by moving to GPU based solvers and data structures.

This report also highlights the importance of considering overhead and memory limitations as
the main limitants to the usability of such acceleration while also highlighting the need for further
studies where stability and convergence is studied in this context.
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