

Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching. $\frac{\partial v_{1}}{\partial x_{1}}>0$.

We recognize the usual unsteady term, the convective term and the diffusive term. Furthermore, we have got rid of the pressure gradient term. That makes sense, because as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the vorticity) of a fluid particle since the pressure acts through its center. Equation 4.21 has a new term on the right-hand side which represents amplification and bending or tilting of the vorticity lines. If we write it term-by-term it reads

$$
\omega_{k} \frac{\partial v_{p}}{\partial x_{k}}=\left\{\begin{array}{lll}
\omega_{1} \frac{\partial v_{1}}{\partial x_{1}} & +\omega_{2} \frac{\partial v_{1}}{\partial x_{2}}+\omega_{3} \frac{\partial v_{1}}{\partial x_{3}}, & p=1 \tag{4.22}\\
\omega_{1} \frac{\partial v_{2}}{\partial x_{1}} & +\omega_{2} \frac{\partial v_{2}}{\partial x_{2}}+\omega_{3} \frac{\partial v_{2}}{\partial x_{3}}, & p=2 \\
\omega_{1} \frac{\partial v_{3}}{\partial x_{1}} & +\omega_{2} \frac{\partial v_{3}}{\partial x_{2}}+\omega_{3} \frac{\partial v_{3}}{\partial x_{3}}, & p=3
\end{array}\right.
$$

The diagonal terms in this matrix represent vortex stretching. Imagine a slender, cylindrical fluid particle with vorticity ω_{i} and introduce a cylindrical coordinate system with the x_{1}-axis as the cylinder axis and r_{2} as the radial coordinate (see Fig. 4.2) so that $\omega_{i}=\left(\omega_{1}, 0,0\right)$. We assume that a positive $\partial v_{1} / \partial x_{1}$ is acting on the fluid cylinder; it will act as a source in Eq. 4.21 increasing ω_{1} and it will stretch the cylinder. The volume of the fluid element must stay constant during the stretching (the incompressible continuity equation), which means that the radius, r, of the cylinder will decrease. For high Reynolds numbers, the viscous term is neglible. Hence, the viscous forces on the surface is small. This means than the angular momentum, $r^{2} \omega_{1}$, is constant during the elongation (stretching) of the cylinder which gives an increased ω_{1}. We see that vortex stretching will either make a fluid element longer and thinner with larger ω_{1} (as in the example above) or shorter and thicker (when $\partial v_{1} / \partial x_{1}<0$). The illustratation given here is mainly relevant when a fluid particle actually rotates (as it does in turbulent flow, see Section 5).

The off-diagonal terms in Eq. 4.22 represent vortex tilting. Again, take a slender fluid particle, but this time with its axis aligned with the x_{2} axis, see Fig. 4.3. Assume is has a vorticity, ω_{2}, and that the velocity surrounding velocity field is $v_{1}=v_{1}\left(x_{2}\right)$. The velocity gradient $\partial v_{1} / \partial x_{2}$ will tilt the fluid particle so that it rotates in clock-wise direction. The second term $\omega_{2} \partial v_{1} / \partial x_{2}$ in line one in Eq. 4.22 gives a contribution to ω_{1}. This means that vorticity in the x_{2} direction, through the source term $\omega_{2} \partial v_{1} / \partial x_{2}$, creates vorticity in the x_{1} direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions: fluid which initially is two dimensional becomes quickly three dimensional through these phenomena. Vorticity is useful when explaining why turbulence must be three-

Vortex stretching

Re number= ratio of convective to viscous term

Vortex tilting

