where the first on the second line is zero because of continuity. Let's verify that

$$
\begin{equation*}
\left(\frac{\partial^{2} v_{j}}{\partial x_{j} \partial x_{i}}-\frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}\right)=\varepsilon_{i n m} \varepsilon_{m j k} \frac{\partial^{2} v_{k}}{\partial x_{j} \partial x_{n}} \tag{4.3}
\end{equation*}
$$

Use the $\varepsilon-\delta$-identity (see Table C. 1 at p. 328)

$$
\begin{equation*}
\varepsilon_{i n m} \varepsilon_{m j k} \frac{\partial^{2} v_{k}}{\partial x_{j} \partial x_{n}}=\left(\delta_{i j} \delta_{n k}-\delta_{i k} \delta_{n j}\right) \frac{\partial^{2} v_{k}}{\partial x_{j} \partial x_{n}}=\frac{\partial^{2} v_{k}}{\partial x_{i} \partial x_{k}}-\frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}} \tag{4.4}
\end{equation*}
$$

which shows that Eq. 4.3 is correct. At the right side of Eq. 4.3 we recognize the vorticity, $\omega_{m}=\varepsilon_{m j k} \partial v_{k} / \partial x_{j}$, so that

$$
\begin{equation*}
\frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}=-\varepsilon_{i n m} \frac{\partial \omega_{m}}{\partial x_{n}} \tag{4.5}
\end{equation*}
$$

In vector notation the identity Eq. 4.5 reads

$$
\begin{equation*}
\nabla^{2} \mathbf{v}=\nabla(\nabla \cdot \mathbf{v})-\nabla \times \nabla \times \mathbf{v}=-\nabla \times \boldsymbol{\omega} \tag{4.6}
\end{equation*}
$$

Using Eq. 4.5, Eq. 4.1 reads

$$
\begin{equation*}
\frac{\partial \tau_{j i}}{\partial x_{j}}=-\mu \varepsilon_{i n m} \frac{\partial \omega_{m}}{\partial x_{n}} \tag{4.7}
\end{equation*}
$$

Let's look at Eq. 4.7 for the v_{1} equation in two dimensions. Setting $i=1$ gives

$$
\frac{\partial \tau_{j 1}}{\partial x_{j}}=-\mu \varepsilon_{1 n m} \frac{\partial \omega_{m}}{\partial x_{n}}=-\mu \varepsilon_{123} \frac{\partial \omega_{3}}{\partial x_{2}}-\mu \varepsilon_{132} \frac{\partial \omega_{2}}{\partial x_{3}}=-\frac{\partial \omega_{3}}{\partial x_{2}}+\frac{\partial \omega_{2}}{\partial x_{3}}=-\frac{\partial \omega_{3}}{\partial x_{2}}
$$

since $\omega_{2}=0$. Inserting Eq. 1.12 gives

$$
\frac{\partial \tau_{j 1}}{\partial x_{j}}=-\frac{\partial}{\partial x_{2}}\left(\epsilon_{3 j k} \frac{\partial v_{k}}{\partial x_{j}}\right)=-\frac{\partial}{\partial x_{2}}\left(\epsilon_{321} \frac{\partial v_{1}}{\partial x_{2}}+\epsilon_{312} \frac{\partial v_{2}}{\partial x_{1}}\right)=-\frac{\partial}{\partial x_{2}}\left(-\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right)
$$

Changing the order of derivatation for the second term gives

$$
\frac{\partial \tau_{j 1}}{\partial x_{j}}=\frac{\partial}{\partial x_{2}}\left(\frac{\partial v_{1}}{\partial x_{2}}\right)-\frac{\partial}{\partial x_{1}}\left(\frac{\partial v_{2}}{\partial x_{2}}\right)
$$

Using the continuity equation for the last term gives

$$
\frac{\partial \tau_{j 1}}{\partial x_{j}}=\frac{\partial}{\partial x_{2}}\left(\frac{\partial v_{1}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{1}}\left(\frac{\partial v_{1}}{\partial x_{1}}\right)
$$

and now we have shown - again - that Eqs. 4.7 and 4.8 are indeed correct.
Thus, there is a one-to-one relation between the viscous term and vorticity: no viscous terms means no vorticity and vice versa. An imbalance in shear stresses (left side of Eq. 4.7) causes a change in vorticity, i.e. generates vorticity (right side of Eq. 4.7). Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception is when vorticity is transported into an inviscid region, but also in that case no vorticity is generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called irrotational flow (i.e. no rotation) or potential flow. The vorticity is always created at boundaries, see Section 4.3.1.

The main points that we have learnt in this section are:

