a
b
C

x_{2}

Figure 1.10: A shear flow. A fluid particle with vorticity. $v_{1}=c x_{2}^{2}$.

1.7.2 Shear flow

Another example - which is rotational - is the lower half of fully-developed channel flow for which the velocity reads (see Eq. 3.28)

$$
\begin{equation*}
\frac{v_{1}}{v_{1, \max }}=\frac{4 x_{2}}{h}\left(1-\frac{x_{2}}{h}\right), \quad v_{2}=0 \tag{1.35}
\end{equation*}
$$

where $x_{2}<h / 2$, see Fig. 1.10. The vorticity vector for this flow reads

$$
\begin{equation*}
\omega_{1}=\omega_{2}=0, \quad \omega_{3}=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}=-\frac{4}{h}\left(1-\frac{2 x_{2}}{h}\right) \tag{1.36}
\end{equation*}
$$

When the fluid particle is moving from position a, via b to position c its has vorticity. Its vertical too edge move faster than its bottom edge. The horizontal edges stay horizontal because $v_{2}=$. Its vertical edges are rotating in clockwise direction. The diagonal is rotating which really is the definition of rotation. Note that the positive rotating direction is defined as the counter-clockwise direction, indicated by a in Fig. 1.10. This is why the vorticity, ω_{3}, in the lower half of the channel $\left(x_{2}<h / 2\right)$ is negative. In the upper half of the channel the vorticity is positive because $\partial v_{1} / \partial x_{2}<0$. It may be noted that for the flow in Fig. 1.10 the magnitude of the shear, S_{12}, and the vorticity, Ω_{12}, are equal but of opposite sign, i.e. $S_{12}=-\Omega_{12}$.

1.8 Eigenvalues and eigenvectors: physical interpretation

See also [1], Chapt. 2.5.5.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure it is oriented along the $x_{1}-x_{2}$ coordinate system. On the surfaces act normal stresses $\left(\sigma_{11}, \sigma_{22}\right)$ and shear stresses $\left(\sigma_{12}, \sigma_{21}\right)$. The stresses form a tensor, $\sigma_{i j}$. Any tensor has eigenvectors and eigenvalues (also called principal vectors and principal values). Since $\sigma_{i j}$ is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are obtained from the characteristic equation, see [1], Chapt. 2.5 .5 or Eq. 13.5 at p. 165. When the eigenvalues have been obtained, the eigenvectors can be computed. Given

