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J TME225 Learning outcomes 2019

Note that the questions related to the movies are not part of the learning outcomes.

They are included to enhance you learning and understanding.

TME225 Learning outcomes 2019: week 1

1. Explain the difference between Lagrangian and Eulerian description of the mo-

tion of a fluid particle.

2. Consider the flow in Section 1.2. Show that ∂v1/∂t is different from dv1/dt.

3. Watch the on-line lecture Eulerian and Lagrangian Description at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. The first part (approx. the first 12 minutes) describes the difference between

Lagrangian and Eulerian points and velocities.

ii. The formula
∂T

∂t
+ vi

∂T

∂xi
is nicely explained in (after approx. 12 minutes)

where the example is the flow in a river

4. Show which stress components, σij , that act on a Cartesian surface whose normal

vector is ni = (1, 0, 0). Show also the stress vector, tn̂i . (see Eq. D.2 and Fig. 1.3

and the Lecture notes of Ekh [2])

5. Show that the product of a symmetric and an antisymmetric tensor is zero.

6. Explain the physical meaning of diagonal and off-diagonal components of Sij

7. Explain the physical meaning of Ωij

8. What is the definition of irrotational flow?

9. What is the physical meaning of irrotational flow?

10. Derive the relation between the vorticity vector and the vorticity tensor

11. Start from Eq. 1.16 and express the vorticity tensor as a function of the vorticity

vector (Eq. 1.18)

12. Explain the physical meaning of the eigenvectors and the eigenvalues of the

stress tensor (see Section 1.8 and the Lecture notes of Ekh [2])

13. Watch the on-line lecture Vorticity, part 1 at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. What is a vortex line?

ii. The teacher talks of ωA and ωB, where ω = 0.5(ωA + ωB); what does it

denote? (cf. Fig. 1.4 in the eBook)

iii. The teacher shows the rotating tank (after 3 minutes into the movie). He

puts the vorticity meter into the tank. The flow in the tank moves like a

solid body. How does the vorticity meter move? This is a curved flow with

vorticity.

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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iv. The teacher puts the vorticity meter into a flow in a straight channel (near a

wall). What happens with the vorticity meter? (cf. Fig. 1.10)

v. After 4:20 minutes, the teacher shows the figure of a boundary layer. He

says that one of the “vorticity legs” (ωA in Item 13ii above) is parallel to the

wall; what does he say about ωB? What conclusion does is draw about ω?

This is a straight flow with vorticity.

vi. After 4:30 minutes, the teacher introduces a spiral vortex tank (in the eBook

this is called an ideal vortex). How does the vortex meter behave? (cf.

Fig. 1.8 in the eBook). How does the teacher explain that the vorticity is

zero (look at the figure he talks about after 6 minutes); the explanation uses

the fact that the tangential velocity, vθ , is inversely proportional to the radius,

r, see Eq. 1.29 in the eBook.

vii. After 8:40 minutes, the teacher puts the vorticity meter at different locations

in the boundary layer; he puts it near the solid wall, a bit further out and

finally at the edge of the boundary layer. How does the vorticity meter move

at the different locations? Where is the vorticity smallest/largest? Explain

why.

viii. After 10:35, the vortex meter is shown in the spiral vortex tank. What hap-

pens with the vorticity when we get very close to the center? Does it still

remain zero? What happens with the tangential velocity? (see Eq. 1.29)

ix. The teachers explains the concept of circulation, Γ, and its relation to vor-

ticity (cf. Eqs. 1.23 and 1.25).

x. What is a vortex core?

xi. How large is the vorticity and the circulation in the rotating tank?

xii. How large is the vorticity and the circulation in the spiral vortex tank? Does

it matter if you include the center?

xiii. The teacher presents a two-dimensional wing. Where is the pressure low and

high, respectively? The Bernoulli equation gives then the velocity; where is

it high and low, respectively? The velocity difference creates a circulation,

Γ.

xiv. After 15:25 minutes, the teacher looks at the rotating tank again. He starts

to rotate the tank; initially there is only vorticity near the outer wall. As time

increases, vorticity (and circulation) spread toward the center. Finally, the

flow in the entire tank has vorticity (and circulation). This illustrates that as

long as there is an imbalance in the shear stresses, vorticity (and circulation)

is changed (usually created), see Figs. 1.10 and 4.1.

14. A vortex lines are shown in experiments in the on-line lecture Vorticity, part 2

(18 minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

15. Show that the vorticity is non-zero in a boundary layer, see Section 1.7.2 (see

also Item 13iv above)

16. Show that the vorticity is zero in an ideal vortex (see Item 13vi above)

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html


J. TME225 Learning outcomes 2019 364

Hint:

v1 = −vθ
x2

(x2
1 + x2

2)
1/2

v2 = vθ
x1

(x2
1 + x2

2)
1/2
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TME225 Learning outcomes 2019: week 2

1. Derive the Navier-Stokes equation, Eq. 2.5 (use the formulas in the Formula

sheet which can be found on the course www page)

2. Simplify the Navier-Stokes equation for incompressible flow and constant vis-

cosity (Eq. 2.8)

3. Derive the transport equation for the internal energy, u, Eq. 2.14 (again, use the

Formula sheet). What is the physical meaning of the different terms?

4. Simplify the transport equation for internal energy to the case when the flow is

incompressible (Eq. 2.17).

5. Derive the transport equation for the kinetic energy, vivi/2, Eq. 2.22. What is

the physical meaning of the different terms?

6. Explain the energy transfer between kinetic energy, k, and internal energy, u

7. Show how the left side of the transport equations can be written on conservative

and non-conservative form

8. Starting from the Navier-Stokes equations (see Formula sheet), derive the flow

equation governing the Rayleigh problem expressed in f and η; what are the

boundary conditions in time (t) and space (x2); how are they expressed in the

similarity variable η?

9. Show how the boundary layer thickness can be estimated from the Rayleigh

problem using f and η (Fig. 3.3)

10. Explain the flow physics at the entrance (smooth curved walls) to a plane channel

(Fig. 3.5). Watch also the on-line lecture Pressure field and acceleration (22

minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

11. Explain the flow physics in a channel bend (Fig. 3.6). Watch also the on-line

lecture Pressure field and acceleration

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html.

(a) at 28 minutes into the movie the teacher discusses how the pressure varies

in a fixed-body rotation flow

(b) at 16 minutes into the movie the teacher discusses how the pressure varies

for the flow in a bend.

12. Explain the flow physics in a channel bend (Fig. 3.6).

13. Derive the flow equations for fully developed flow between two parallel plates,

i.e. fully developed channel flow (Eqs. 3.18, 3.22 and 3.26)

14. Show that the continuity equation is automatically satisfied in 2D when the ve-

locity is expressed in the streamfunction, Ψ

15. Starting from Eq. 3.41, derive the equation for two-dimensional boundary-layer

flow expressed in the streamfunction (Eq. 3.45).

16. Derive the Blasius equation, Eq. 3.53. Start from Eq. 3.45

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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TME225 Learning outcomes 2019: week 4

1. Explain (using words and a figure) why vorticity can be created only by an im-

balance (i.e. a gradient) of shear stresses. Explain why pressure and the gravity

force cannot create vorticity.

2. The incompressible Navier-Stokes equation can be re-written on the form

∂vi
∂t

+
∂k

∂xi
︸︷︷︸

no rotation

− εijkvjωk
︸ ︷︷ ︸

rotation

= −
1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

+ fi

Derive the transport equation (3D) for the vorticity vector, Eq. 4.20

3. Show that the divergence of the vorticity vector, ωi, is zero

4. Explain vortex stretching and vortex tilting. The vortex stretching can be shown

in experiments,

5. Watch the on-line lecture Vorticity, part 2 (11 minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

6. Show that the vortex stretching/tilting term is zero in two-dimensional flow

7. Derive the 2D equation transport equation (Eq. 4.22) for the vorticity vector from

the 3D transport equation (Eq. 4.20)

8. Show the similarities between the vorticity and temperature transport equations

in fully developed flow between two parallel plates

9. Use the diffusion of vorticity to show that
δ

ℓ
∝

√
ν

Uℓ
=

√

1

Re
(see Fig. 4.4 and

Eq. 3.14).

10. Watch the on-line lecture Boundary layers at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. Consider the flow over the flat plate (after two minutes) . How does the

boundary layer thickness change when we move downstream?

ii. What value does the fluid velocity take at the surface? What is this boundary

conditions called: slip or no-slip? How do they define the boundary layer

thickness?

iii. How is the wall shear stress defined? How does it change when we move

downstream? (how does this compare with the channel/boundary layer flow

in TME225 Assignment 1?)

iv. How is the circulation, Γ, defined? (cf. with Eq. 1.23) How is it related to

vorticity? How do they compute Γ for a unit length (> δ) of the boundary

layer? How large is it? How does it change when we move downstream on

the plate?

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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v. Where is the circulation (i.e. the vorticity) created? Where is the vorticity

created in “your” channel/boundary layer flow (TME225 Assignment 1)?

The vorticity is created at different locations in the flat-plate boundary layer

and in the channel flow: can you explain why? (hint: in the former case

∂p

∂x1

= µ
∂2v1
∂x2

2

∣
∣
∣
∣
wall

= 0,

but not in the latter; this has an implication for γ2,wall [see Section 4.3])

vi. How do they estimate the boundary layer thickness? (cf. Section. 4.3.1)
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TME225 Learning outcomes 2019: week 5

1. Watch the on-line lecture Boundary layers 10 minutes into the movie

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. How does the boundary layer thickness change at a given x when we in-

crease the velocity? Explain why.

ii. Consider the flow in a contraction: what happens with the boundary layer

thickness after the contraction?

iii. Why is the vorticity level higher after the contraction?

iv. Is the wall shear stress lower or higher after the contraction? Why?

v. Consider the flow in a divergent channel (a diffusor): what happens with the

boundary layer thickness and the wall shear stress?

vi. What happens when the angle of the diffusor increases?

vii. What do we mean by a “separated boundary layer”? How large is the wall

shear stress at the separation point?

viii. The second part of the movie deals with turbulent flow: we’ll talk about that

in the next lecture (and the remaining ones).

2. Derive the Bernoulli equation (Eq. 4.32)

Hint: The gravitation term is first expressed as a potential gi = −∂Φ̂/∂xi.

3. Consider the derivative of the complex function (f(z + z0) − f(z))/z0 where

z = x + iy and f = u + iv. The derivative of f must be independent in which

coordinate direction the derivative is taken (either along the real or the imaginary

axis). Show that this leads to the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x

4. Show that in inviscid flow, both the velocity potential and the streamfunction

satisfy the Laplace equation.

5. Consider the complex potential f = Φ + iΨ. Show that f = C1z
n satisfies the

Laplace equation. Derive the velocity polar components for n = 1 and n = 2.

What physical flow do these two cases correspond to?

6. Look at Potential flow at Wikipedia

(a) Figure 1 shows the streamfunction around an airfoil. Recall that the Bernoulli

equation applies for a streamline.

(b) Figure 2 shows the streamfunction for plane flow (n = 1) and a doublet

(n = −1, separation ε, see Section 4.4.6)

(c) Figure 3 shows the streamfunction for cylinder flow

(d) Figure 4 shows the flow around a blunt corner, n = 1/2 (streamlines in

blue and potential lines in cerise)

(e) Figure 5 shows the flow around a sharp corner, n = 2/3 (streamlines in

blue and potential lines in cerise)

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
https://en.wikipedia.org/wiki/Potential_flow#/media/File:Streamlines_around_a_NACA_0012.svg
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(f) Figure 6 shows parallel flow, n = 1 (streamlines in blue and potential lines

in cerise)

(g) Figure 7 shows flow along a corner (angle larger than 90o), n = 3/2
(streamlines in blue and potential lines in cerise)

(h) Figure 8 shows flow in a 90o corner, i.e. stagnation flow, see Section 4.4.3.2,

n = 2 (streamlines in blue and potential lines in cerise)

(i) Figure 9 shows flow in a corner (angle smaller than 90o), n = 3 (stream-

lines in blue and potential lines in cerise)

(j) Figure 10 shows flow for a doublet (separation ε = 0, see Section 4.4.6,

n = −1 (streamlines in blue and potential lines in cerise)

7. Derive the polar velocity components for the complex potential f = ṁ ln z/(2π)
and f = −iΓ ln z/(2π) (Γ denotes circulation). What does the physical flow

look like? Show that they satisfy the Laplace equation.

8. A doublet is a combination of a radial sink and source and its complex potential

reads f = µ/(πz). Combine it with the potential for parallel flow (f = V∞z).

Derive the resulting velocity field around a cylinder (in polar components).

Hint: the radius is defined as r20 = µ/(πV∞).

9. Consider the potential flow around a cylinder. Show that the radial velocity is

zero at the surface. Use the Bernoulli equation to get the surface pressure. Show

that the drag and lift forces are zero. Where are the stagnation points located?

10. Add the complex potential of a vortex line, f = −iΓ ln z/(2π) (Γ denotes cir-

culation) to the complex potential for cylinder flow. Compute the polar velocity

components. Where are the stagnation points located? What happens with the lo-

cation of the stagnation point(s) when the circulation becomes very large? How

is the lift of the cylinder computed (which applies for any body).

11. What is the Magnus effect? Explain the three applications in the text: why is it

efficient to use loops in table tennis? Why does the Magnus effect help a football

player get the ball around the wall (of players) when making a free-kick? How

does the Magnus effect help propulsing a ship using Flettner rotors. To look at

old and new installations of Flettner rotors, see Wikipedia.

12. Consider the inviscid flow around an airfoil, see Fig. 4.19. In inviscid theory it

would look like Fig. 4.20. What has been done to achieve the flow in Fig. 4.21?

How is the lift computed?

13. Watch the on-line lecture Boundary layers (17 minutes into the movie at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. The flow is “tripped” into turbulence. How?

ii. When the flow along the lower wall of the diffusor is tripped into turbulent

flow, the separation region is suppressed. Try to explain why.

iii. Two boundary layers – one on each side of the plate – are shown. The upper

one is turbulent and the lower one is laminar. What is the difference in the

two velocity profiles? (cf. my figures in the ’summary of lectures’) Explain

the differences.

https://en.wikipedia.org/wiki/Rotor_ship
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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iv. Why is the turbulent wall shear stress larger for the turbulent boundary

layer? What about the amount of circulation (and vorticity) in the laminar

and turbulent boundary layer? How are they distributed?

v. Consider the airfoil: when the boundary layer on the upper (suction) side

is turbulent, stall occurs at a higher angle of incidence compared when the

boundary layer is laminar. Why?

vi. Vortex generator are place on the suction side in order prevent or delay sep-

aration. Try to explain why separation is delayed.

14. What characterizes turbulence? Explain the characteristics. What is a turbulent

eddy?

15. Explain the cascade process. How large are the largest scales? What is dissi-

pation? What dimensions does it have? Which eddies extract energy from the

mean flow? Why are these these eddies “best” at extracting energy from the

mean flow?

16. What are the Kolmogorov scales? Use dimensional analysis to derive the expres-

sion for the velocity scale, vη , the length scale, ℓη and the time scale, τη.

17. Make a figure of the energy spectrum. The energy spectrum consists of three

subregions: which? Describe their characteristics. Show the flow of turbulent

kinetic energy in the energy spectrum. Given the energy spectrum, E(κ), how

is the turbulent kinetic energy, k, computed? Use dimensional analysis to derive

the −5/3 Kolmogorov law.

18. What does isotropic turbulence mean? What about the shear stresses?

19. Show how the ratio of the large eddies to the dissipative eddies depends on the

Reynolds number (see Eq. 5.16). Using these estimations, you can show how the

number of cells in DNS (Direct Numerical Simulations) depends on Reynolds

number (see eBook).

20. Watch the on-line lecture Turbulence at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. Why does the irregular motion of wave on the sea not qualify as turbulence?

ii. How is the turbulence syndrome defined?

iii. The movie shows laminar flow in a pipe. The viscosity is decreased, and the

pressure drop (i.e. the resistance, the drag, the loss) decreases. Why? The

viscosity is further decreased, and the pressure drop increases. Why? How

does the characteristics of the water flow coming out of the pipe change due

to the second decrease of viscosity?

iv. It is usually said that the flow in a pipe gets turbulent at a Reynolds number

of 2300. In the movie they show that the flow can remain laminar up to

8 000. How do they achieve that?

v. Dye is introduced into the pipe. For laminar flow, the dye does not mix with

the water; in turbulent flow it does. When the mixing occurs, what happens

with the pressure drop?

21. Watch the on-line lecture Turbulence (10 minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html


J. TME225 Learning outcomes 2019 371

i. Draw a laminar and turbulent velocity profile for pipe flow. What is the

main difference? In which flow is the wall shear stress τw = µ
∂v̄1
∂x2

largest,

laminar or turbulent?

ii. In turbulent flow, the velocity near the wall is larger than in laminar flow.

Why?

iii. Discuss the connection between mixing and the cross-stream (i.e. v′2) fluc-

tuations.

iv. Try to explain the increased pressure drop in turbulent flow with increased

mixing.

v. The center part of the pipe is colored with blue dye and the wall region is

colored with red dye: by looking at this flow, try to explain how turbulence

creates a Reynolds shear stress.

vi. The red and blue dye nicely show the turbulent eddies (fluctuations)

vii. After 16 minutes, the flow in jets is consider. Two turbulent jet flows are

shown, one at low Reynolds number and one at high Reynolds number. They

look very similar in one way and very different in another way. Which scales

are similar and which are different?

viii. he two turbulent jet flows have the same energy input and hence the same

dissipation. Use this fact to explain why the smallest scales in the high

Reynolds number jet must be smaller that those in the low Reynolds number

jet.

ix. At the end of the presentation of the jet flow, they explain the cascade pro-

cess.

x. Explain the analogy of a water fall (cascade of water, the water passes down

the cascade) and the turbulent cascade process.
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TME225 Learning outcomes 2019: week 6

1. Use the decomposition vi = v̄i + v′i to derive the time-averaged Navier-Stokes

equation. A new terms appears: what is it called? Simplify the time-averaged

Navier-Stokes equation for boundary layer flow. What is the total shear stress?

2. How is the friction velocity, uτ , defined? Define x+

2 and v̄+1 .

3. The wall region is divided into an inner and outer region. The inner region is

furthermore divided into a viscous sublayer, buffer layer and log-layer. Make a

figure and show where these regions are valid (Fig. 6.2)

4. Look at Turbulent flow around a wing at You Tube

(a) At 1:07 minutes into the movie, they present the flow using the λ2 criterion.

This is the second eigenvalue of S2
ij + Ω2

ij where λ1 > λ2 > λ3. This

criterion finds vortex cores i.e. the center of turbulent eddies

(b) At 1:18 minutes they show the prescribed transition on the upper side (suc-

tion side)

(c) At 1:42 minutes, for example, you can see turbulent vortex core in the outer

part of the boundary layer

(d) At 1:56 minutes, the incipient (the start of) separation near the trailing edge

is shown

5. What are the relevant velocity and length scales in the viscous-dominated region

(x+

2 . 5)? Derive the linear velocity law in this region (Eq. 6.22). What are

the suitable velocity and length scales in the inertial region (the fully turbulent

region)? Derive the log-law for this region.

6. Consider fully developed turbulent channel flow. In which region (viscous sub-

layer, buffer layer or log-layer) does the viscous stress dominate? In which re-

gion is the turbulent shear stress large? Integrate the channel flow equations and

show that the total shear stress varies as 1− x2/δ (Eq. 6.20).

7. In fully developed turbulent channel flow, the time-averaged Navier-Stokes con-

sists only of three terms. Make a figure and show how the velocity and Reynolds

shear stress vary across the channel. After that, show how the three terms vary

across the channel (Fig. 6.6). Which two terms balance each other in the outer

region? Which term drives (“pushes”) the flow in the x1 direction? Which two

terms are large in the inner region? Which term drives the flow?

8. Derive the exact transport equation for turbulent kinetic energy, k. Discuss the

physical meaning of the different terms in the k equation. Which terms are trans-

port terms? Which is the main source term? Main sink (i.e. negative source)

term?

9. Watch the on-line lecture Turbulence (20 minutes into the movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. The movie says that there is a similarity of the small scales in a channel flow

and in a jet flow. What do they mean?

https://www.youtube.com/watch?v=hz7UjN_vYuw
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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ii. What happens with the small scales when the Reynolds number is increased?

What happens with the large scales? Hence, how does the ratio of the large

scales to the small scales change when the Reynolds number increases (see

Eq. 5.16)

iii. In decaying turbulence, which scales die first? The scenes of the clouds

show this in a nice way.

iv. Even though the Reynolds number may be large, there are a couple of phys-

ical phenomena which may inhibit turbulence and keep the flow laminar:

mention three.

v. Consider the flow in the channel where the fluid on the top (red) and the

bottom (yellow) are separated by a horizontal partition. The two fluids are

identical. Study how the two fluids mix downstream of the partition. In the

next example, the fluid on the top is hot (yellow) and light, and the one at

the bottom (dark blue) is cold (heavy); how do the fluids mix downstream

of the partition, better or worse than in the previous example? This flow

situation is called stable stratification. In the last example, the situation is

reversed: cold, heavy fluid (dark blue) is moving on top of hot, light fluid

(yellow). How is the mixing affected? This flow situation is called unstable

stratification. Compare in meteorology where heating of the ground may

cause unstable stratification or when inversion causes stable stratification.

You can read about stable/unstable stratification in Section 12.1 at p. 157.

10. Given the exact k equation, give the equation for 2D boundary-layer flow (Eq. 8.24).

All spatial derivatives are kept in the dissipation term: why? In the turbulent re-

gion of the boundary layer, the k equation is dominated by two terms. Which

ones? Which terms are non-zero at the wall?

11. Where is the production term, P k = −v′
1
v′
2
∂v̄1/∂x2, largest? In order to explain

this, show how −v′1v
′

2 and ∂v̄1/∂x2 vary near the wall.

12. Derive the exact transport equation for mean kinetic energy, K . Discuss the

physical meaning of the different terms. One term appears in both the k and the

K equations: which one? Consider the dissipation terms in the k and the K
equations: which is largest near the wall and away from the wall, respectively?

13. Which terms in the k equation need to be modeled? Explain the physical mean-

ing of the different terms in the k equation.

14. Show how the modeled production term in the k − ε model is derived. Show

how it can be expressed in s̄ij

15. Show how the turbulent diffusion (i.e. the term which includes the triple corre-

lation) in the k equation is modeled.

16. Given the modeled k equation, derive the modeled ε equation.

17. How are the Reynolds stress tensor, v′iv
′

j , and the turbulent heat flux vector, v′iθ
′,

modeled in the Boussinesq approach?

18. Watch the on-line lecture Pressure field and acceleration at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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i. The water flow goes through the contraction. What happens with the veloc-

ity and pressure. Try to explain.

ii. Fluid particles become thinner and elongated in the contraction. Explain

why.

iii. In the movie they show that the acceleration along s, i.e.
dV 2

s /2

ds
, is re-

lated to the pressure gradient
dp

ds
. Compare this relation with the Bernoullii

equation (Eq. 4.34)

19. Watch the on-line lecture Pressure field and acceleration (6 minutes into the

movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. Water flow in a manifold (a pipe with many outlets) is presented. The pres-

sure decreases slowly downstream. Why?

ii. The bleeders (outlets) are opened. The pressure now increases in the down-

stream direction. Why?

iii. What is the stagnation pressure? How large is the velocity at a stagnation

point?

iv. What is the static pressure? How can it be measured? What is the difference

between the stagnation and the static pressures?

v. A venturi meter is a pipe that consists of a contraction and an expansion (i.e.

a diffusor). The bulk velocities at the inlet and outlet are equal, but still the

pressure at the outlet is lower than that at the inlet. There is a pressure drop.

Why?

vi. What happens with the pressure drop when there is a separation in the dif-

fusor?

vii. They increase the speed in the venturi meter. The pressure difference in

the contraction region and the outlet increases. Since there is atmospheric

pressure at the outlet, this means that the pressure in the contraction region

must decrease as we increase the velocity of the water. Finally the water

starts to boil, although the water temperature may be around 10oC. This is

called cavitation (this causes large damages in water turbines).

viii. Explain how suction can be created by blowing in a pipe.

20. Watch the on-line lecture Pressure field and acceleration (19 minutes into the

movie) at

http://www.tfd.chalmers.se/˜lada/MoF/flow viz.html

i. What is the Coanda effect?

ii. The water from the tap which impinges on the horizontal pipe attaches to the

surface of the pipe because of the Coanda effect. How large is the pressure

at the surface of the pipe relative to the surrounding pressure?

iii. Explain the relation between streamline curvature and pressure (cf. Sec-

tion 3.2.1).

iv. At the end of the contraction, there is an adverse pressure gradient (∂p/∂x >
0). Explain why.

http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
http://www.tfd.chalmers.se/~lada/MoF/flow_viz.html
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TME225 Learning outcomes 2019: week 7

1. Two options are used for treating the wall boundary conditions: which ones?

Explain the main features.

2. Consider wall functions. Show how the expression

uτ =
κv̄1,P

ln(Euτ δx2/ν)

is obtained. What is the wall boundary condition for the velocity equation?

3. How is the k equation simplified in the log-law region? Show how the boundary

condition

kP = C−1/2
µ u2

τ

for k is derived (wall functions).

4. Show how the boundary condition for ε

εP = P k =
u3
τ

κδx2

is derived (wall functions).

5. How fine should the grid be near the wall when using a low-Reynolds number

model? Why must the turbulence model be modified?

6. Use Taylor expansion (including boundary conditions and the continuity equa-

tion) to show how the three velocity components vary near the wall. Show then

how v̄, v̄, v′21 , v′1v
′

2, ε, ∂v̄1/∂x2 and k vary near the wall.

7. The exact k equation reads

ρv̄1
∂k

∂x1

+ ρv̄2
∂ρk

∂x2

= −ρv′1v
′

2

∂v̄1
∂x2

−
∂p′v′2
∂x2

−
∂

∂x2

(
1

2
ρv′2v

′

iv
′

i

)

+ µ
∂2k

∂x2
2

− µ
∂v′i
∂xj

∂v′i
∂xj

Show how the production term, the viscous and turbulent diffusion terms and the

dissipation vary near the wall.

8. The modeled k eq. reads

ρv̄1
∂k

∂x1

+ ρv̄2
∂ρk

∂x2

= µt

(
∂v̄1
∂x2

)2

+
∂

∂x2

(
µt

σk

∂k

∂x2

)

+ µ
∂2k

∂x2
2

− ρε

Show how the production term, the turbulent diffusion term and the dissipation

vary near the wall.
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9. Looking at how the exact and the modelled terms in the k behave near walls,

which terms need to modified? How?

10. The modeled ε eq. reads

ρv̄1
∂ε

∂x1

+ ρv̄2
∂ε

∂x2

= Cε1
ε

k
P k +

∂

∂x2

(
µt

σε

∂ε

∂x2

)

+ µ
∂2ε

∂x2
2

− Cε2ρ
ε2

k

Show how all terms behave as the wall is approached. Which terms do not go to

zero. Do they balance each other? If not, what modification is needed?

11. In low-Reynolds number models, what is the boundary condition for k?

12. A boundary condition for ε can be derived (Eq. 11.165) by looking at the two

terms in the k eq. that do not go to zero. Show this boundary condition.

13. Another boundary condition for ε

εwall = 2ν

(

∂
√
k

∂x2

)2

can be derived by using Taylor expansion. Derive the boundary condition above.

A third b.c. for ε reads

εwall = 2ν
k

x2
2

Show that this agrees with Taylor expansion.


