
2021-01-05, Exam, Part 2, in

Mechanics of fluids, TME226

• Time: 14.00-18.00 Location: Zoom

• Teacher: Lars Davidson, phone 031-772 1404

• Aids

– All.

• Checking the evaluation and results of your written exam at Canvas. If you

have questions on the correction of the exam, add a comment at Canvas and

send me an Email.

• Grading: 0-10: 3, 11-20: 4, 21-30: 5.

Q1

• Consider developing incompressible, laminar channel flow obtained from a CFD

simulation. The density is equal to one. Use the Matlab or Python file chan and

the data file chan data.dat, xp.dat and yp.dat. The data includes the

flow in the upper half of the channel. They can be downloaded at Canvas and at

http://www.tfd.chalmers.se/˜lada/MoF/exam-21

1. Plot the peak velocity at each x1 location vs. x1.

2. Plot the skinfriction vs. x1.

3. When can the flow be consider to be fully developed?.

4. Where is the vorticity, ω3, largest?

5. Is there any region where the flow is irrotational?

Upload your Matlab/Python scripts and plots to Canvas.

(15p)

Q2

• Consider fully-developed incompressible, turbulent channel flow obtained from

a CFD simulation using a low-Reynolds number k − ε model. The density is

equal to one. The height of the channel is 2.0. Use the Matlab or Python file

turb and the data file y u k eps 8000.dat. They can be downloaded at

Canvas and at http://www.tfd.chalmers.se/˜lada/MoF/exam-21
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1. Compute the friction velocity, uτ .

2. Where is the velocity gradient smallest and largest, respectively?

3. The boundary condition for ε is given by Eq. 11.170 in the eBook. Verify

that the ε values at the walls agree with this b.c. (check both walls)

4. The AKN model was used to produce the data. Compute the damping

function, fµ. Plot it vs. x2 for x2 < 0.05.

5. Compute the viscous diffusion term in the k equation. Plot it vs. x+
2 and

zoom in to 0 < x+
2 < 100.

Upload your Matlab/Python scripts and plots to Canvas.

(15p)
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TME225 Mechanics of fluids: Formula sheet to be used at written

examinations

◮The ǫ− δ identity reads

ǫinmǫmjk = ǫminǫmjk = ǫnmiǫmjk = δijδnk − δikδnj

◮Strain rate tensor, vorticity tensor

∂vi
∂xj

=
1

2









∂vi
∂xj

+
∂vi
∂xj

2∂vi/∂xj

+
∂vj
∂xi

− ∂vj
∂xi

=0









=
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

+
1

2

(

∂vi
∂xj

− ∂vj
∂xi

)

= Sij +Ωij

◮The vorticity vector is computed as

ω = ∇× v

ωi = ǫijk
∂vk
∂xj

◮The material derivative

ρ
dΨ

dt
= ρ

∂Ψ

∂t
+ ρvj

∂Ψ

∂xj

where Ψ = vi, u, T, k, v′iv
′

j . . .

◮The balance equation for mass

dρ

dt
+ ρ

∂vi
∂xi

= 0

◮The balance equation for linear momentum

ρ
dvi
dt

=
∂σji

∂xj
+ ρfi

◮The balance equation for internal energy

ρ
du

dt
= σji

∂vi
∂xj

− ∂qi
∂xi

◮The equation for kinetic energy reads

ρ
dk

dt
=

∂viσji

∂xj
− σji

∂vi
∂xj

+ ρvifi
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◮The constitutive law for Newtonian viscous fluids

σij = −pδij + 2µSij −
2

3
µSkkδij , σij = −pδij + τij

qi = −k
∂T

∂xi

◮Viscosity

µ: dynamic viscosity

ν: kinematic viscosity (ν = µ/ρ)

◮The continuity equation and the Navier-Stokes equation for incompressible flow

with constant viscosity read (conservative form, p denotes the hydrostatic pressure, i.e.

p = 0 if vi = 0)

∂vi
∂xi

= 0

ρ
∂vi
∂t

+ ρ
∂vivj
∂xj

= −
∂p

∂xi
+ µ

∂2vi
∂xj∂xj

◮The Navier-Stokes equation for incompressible flow with constant viscosity read

(non-conservative form)

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= −
∂p

∂xi
+ µ

∂2vi
∂xj∂xj

The viscous stress tensor then reads

τij = 2µSij = µ

(

∂vi
∂xj

+
∂vj
∂xi

)

◮The equation for internal energy reads

ρ
du

dt
= −p

∂vi
∂xi

+ 2µSijSij −
2

3
µSkkSii

Φ

+
∂

∂xi

(

k
∂T

∂xi

)

◮Streamfunction, Ψ; potential, Φ

v1 =
∂Ψ

∂x2

, v2 = − ∂Ψ

∂x1

vk =
∂Φ

∂xk

◮The Rayleigh problem

η =
x2

2
√
νt

, f =
v1
V0
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d2f

dη2
+ 2η

df

dη
= 0

◮Blasius solution

ξ =

(

V1,∞

νx1

)1/2

x2, Ψ = (νV1,∞x1)
1/2 g

1

2
gg′′ + g′′′ = 0

◮The Navier-Stokes (different form of the convective term)

∂vi
∂t

+
∂k

∂xi
− εijkvjωk = −1

ρ

∂P

∂xi
+ ν

∂2vi
∂xj∂xj

+ fi
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◮Complex functions

f = u+ iv, z = x+ iy, z = reiθ = r(cos θ + i sin θ)

In fluid mechanics, f = Φ + iΨ, i.e. the streamfunction is the imaginary part and

the velocity potential is the real part.

◮The Laplace operator in polar coordinates reads

∇2f =
1

r

∂

∂r

(

r
∂f

∂r

)

+
1

r2
∂2f

∂θ2

◮Velocities from Ψ in polar coordinates

vr =
1

r

∂Ψ

∂θ
, vθ = −∂Ψ

∂r

◮The Bernoulli equation

p1 +
ρV 2

1

2
+ ρgh1 = const

◮The transport equation for the vorticity reads

dωp

dt
≡ ∂ωp

∂t
+ vk

∂ωp

∂xk
= ωk

∂vp
∂xk

+ ν
∂2ωp

∂xj∂xj

◮The Kolmogorov scales vη = (νε)
1/4

, ℓη =

(

ν3

ε

)1/4

, τη =
(ν

ε

)1/2

◮The −5/3 law

E(κ) = const. ε
2

3κ−
5

3

◮The time averaged continuity equation and Navier-Stokes equation for incom-

pressible flow with constant viscosity read

∂v̄i
∂xi

= 0

ρ
∂v̄iv̄j
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

(

µ
∂v̄i
∂xj

− ρv′iv
′

j

) (1)
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◮Units

ν =
µ

ρ
m2/s

ε m2/s3

k m2/s2

◮The wall region

Friction velocity: τw = ρu2
τ , x+

2 =
x2uτ

ν

The linear law:
v̄1
uτ

=
uτx2

ν
or v̄+1 = x+

2

The log-law:
v̄1
uτ

=
1

κ
ln
(x2uτ

ν

)

+B or v̄+1 =
1

κ
ln
(

x+
2

)

+B

◮The exact k equation reads

∂v̄jk

∂xj
= −v′iv

′

j

∂v̄i
∂xj

− ∂

∂xj

[

1

ρ
v′jp

′ +
1

2
v′jv

′

iv
′

i − ν
∂k

∂xj

]

− ν
∂v′i
∂xj

∂v′i
∂xj

◮The exact K equation reads

∂v̄jK

∂xj
= ν

∂2K

∂xj∂xj
− 1

ρ

∂v̄ip̄

∂xi
− ν

∂v̄i
∂xj

∂v̄i
∂xj

−
∂v̄iv′iv

′

j

∂xj
+ v′iv

′

j

∂v̄i
∂xj

.

◮The modelled k and ε equations

∂k

∂t
+ v̄j

∂k

∂xj
= νt

(

∂v̄i
∂xj

+
∂v̄j
∂xi

)

∂v̄i
∂xj

+ giβ
νt
σθ

∂θ̄

∂xi

−ε+
∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

∂ε

∂t
+ v̄j

∂ε

∂xj
=

ε

k
cε1νt

(

∂v̄i
∂xj

+
∂v̄j
∂xi

)

∂v̄i
∂xj

+ cε1gi
ε

k

νt
σθ

∂θ̄

∂xi
− cε2

ε2

k
+

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

νt = Cµ
k2

ε
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◮Wall functions

uτ =
κv̄1,P

ln(Euτ δx2/ν)

kP = C−1/2
µ u2

τ , Cµ = 0.09

εP = P k =
u3
τ

κδx2

◮Low-Reynolds number model: different wall boundary conditions for ε:

εwall = ν
∂2k

∂x2
2

εwall = 2ν

(

∂
√
k

∂x2

)2

εwall =
2νk

x2
2

◮In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is introduced to

model the unknown Reynolds stresses in Eq. 1. The stresses are modelled as

v′iv
′

j = −νt

(

∂v̄i
∂xj

+
∂v̄j
∂xi

)

+
2

3
δijk = −2νts̄ij +

2

3
δijk

Trick 1:

Ai
∂Bj

∂xk
=

∂AiBj

∂xk
−Bj

∂Ai

∂xk

Trick 2:

Ai
∂Ai

∂xj
=

1

2

∂AiAi

∂xj
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