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(a) S = 1.51 and F = 7.68
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(b) S = −0.27 and F = 5.81
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(c) S = −0.09 and F = 2.77

Figure 1: Time history of v′1. Horisontal red lines show ±v1,rms.

1 Turbulent mean flow

There is no definition on turbulent flow, but it has a number of characteristic
features (see Pope [1] and Tennekes & Lumley [2]) such as:

I. Irregularity. Turbulent flow is irregular, random and chaotic. The flow
consists of a spectrum of different scales (eddy sizes). We do not have any exact
definition of an turbulent eddy, but we suppose that it exists in a certain region turbulent

eddyin space for a certain time and that it is subsequently destroyed (by the cascade
process or by dissipation, see below). It has a characteristic velocity and length
(called a velocity and length scale). The region covered by a large eddy may
well enclose also smaller eddies. The largest eddies are of the order of the flow
geometry (i.e. boundary layer thickness, jet width, etc). At the other end of
the spectra we have the smallest eddies which are dissipated by viscous forces
(stresses) into thermal energy resulting in a temperature increase. Even though
turbulence is chaotic it is deterministic and is described by the Navier-Stokes
equations.

S = 1.51, −0.27 and −0.09. The flatness are F = 7.68, 5.81 and 2.77.
Consider the probability density functions of the fluctuations. The second

moment corresponds to the variance of the fluctuations (or the square of the
RMS, i.e.

v′2 =

∫
∞

−∞

v′2f(v′)dv′

v′2 is usually computed by integrating in time.

2 Turbulent mean flow

2.1 Time averaged Navier-Stokes

When the flow is turbulent it is preferable to decompose the instantaneous
variables (for example the velocity components and the pressure) into a mean
value and a fluctuating value, i.e.

vi = v̄i + v′i

p = p̄ + p′
(1)

where the bar, ·̄, denotes the time averaged value. One reason why we decompose
the variables is that when we measure flow quantities we are usually interested
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in their mean values rather than their time histories. Another reason is that
when we want to solve the Navier-Stokes equation numerically it would require
a very fine grid to resolve all turbulent scales and it would also require a fine
resolution in time (turbulent flow is always unsteady).

The continuity equation and the Navier-Stokes equation for incompressible
flow with constant viscosity read

∂vi

∂xi

= 0

ρ
∂vi

∂t
+ ρ

∂vivj

∂xj

= −
∂p

∂xi

+ µ
∂2vi

∂xj∂xj

(2)

The gravitation term, −ρgi, has been omitted which means that the p is the
hydrostatic pressure. Inserting Eq. 1 at p. 2 into the continuity equation (2)
and the Navier-Stokes equation we obtain the time averaged continuity equation
and Navier-Stokes equation

∂v̄i

∂xi

= 0 (3)

ρ
∂v̄i

∂t
+ ρ

∂v̄iv̄j

∂xj

= −
∂p̄

∂xi

+
∂

∂xj

(

µ
∂v̄i

∂xj

− ρv′iv
′

j

)

(4)

This equation is the time-averaged Navier-Stokes equation and it is often
called the Reynolds equation. A new term ρv′iv

′

j appears on the right side of Reynolds

equationsEq. 4 which is called the Reynolds stress tensor. The tensor is symmetric (for
example v′1v

′

2 = v′2v
′

1). It represents correlations between fluctuating velocities.
It is an additional stress term due to turbulence (fluctuating velocities) and it
is unknown. We need a model for v′iv

′

j to close the equation system in Eq. 4.
This is called the closure problem: the number of unknowns (ten: three velocity closure

problemcomponents, pressure, six stresses) is larger than the number of equations (four:
the continuity equation and three components of the Navier-Stokes equations).

2.1.1 Boundary-layer approximation

For steady (∂/∂t = 0), two-dimensional (v̄3 = ∂/∂x3 = 0) boundary-layer type
of flow (i.e. boundary layers along a flat plate, channel flow, pipe flow, jet and
wake flow, etc.) where

v̄2 ≪ v̄1,
∂

∂x1

≪
∂

∂x2

, (5)

Eq. 4 reads

ρ
∂v̄1v̄1

∂x1

+ ρ
∂v̄2v̄1

∂x2

= −
∂p̄

∂x1

+
∂

∂x2

[

µ
∂v̄1

∂x2

− ρv′1v
′

2

]

︸ ︷︷ ︸

τtot

(6)

x1 and x2 denote the streamwise and wall-normal coordinate, respectively.
If you want to learn more how to derive transport equations of turbulent

quantities, see [5] which can be downloaded here
http://www.tfd.chalmers.se/~lada/allpapers.html

http://www.tfd.chalmers.se/~lada/allpapers.html
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Figure 2: Channel flow at Reτ = 2000. Terms in the v′1v
′

2 equation scaled by
u4

τ/ν. DNS data [3, 4]. : P12; : −ε12; ▽ : −∂v′p′/∂x2; : Π12; +:

−∂(v′1v
′2
2 )/∂x2; ◦: ν∂2v′1v

′

2/∂x2
2.

i n j k εinmεmjk δijδnk − δikδnj

1 2 1 2 ε12mεm12 = ε123ε312 = 1 · 1 = 1 1 − 0 = 1
2 1 1 2 ε21mεm12 = ε213ε312 = −1 · 1 = −1 0 − 1 = −1
1 2 2 1 ε12mεm21 = ε123ε321 = 1 · −1 = −1 0 − 1 = −1

1 3 1 3 ε13mεm13 = ε132ε213 = −1 · −1 = 1 1 − 0 = 1
3 1 1 3 ε31mεm13 = ε312ε213 = 1 · −1 = −1 0 − 1 = −1
1 3 3 1 ε13mεm31 = ε132ε231 = −1 · 1 = −1 0 − 1 = −1

2 3 2 3 ε23mεm23 = ε231ε123 = 1 · 1 = 1 1 − 0 = 1
3 2 2 3 ε32mεm23 = ε321ε123 = −1 · 1 = −1 0 − 1 = −1
2 3 3 2 ε23mεm32 = ε231ε132 = 1 · −1 = −1 0 − 1 = −1

Table 1: The components of the ε − δ identity which are non-zero.

A ε − δ identity

The ε − δ identity reads

εinmεmjk = εminεmjk = εnmiεmjk = δijδnk − δikδnj

In Table 1 the components of the ε − δ identity are given.

References

[1] S.B. Pope. Turbulent Flow. Cambridge University Press, Cambridge, UK,
2001.

[2] H. Tennekes and J.L. Lumley. A First Course in Turbulence. The MIT
Press, Cambridge, Massachusetts, 1972.

[3] S. Hoyas and J. Jiménez. Scaling of the velocity fluctuations in turbulent
channels up to Reτ = 2003. Physics of Fluids A, 18(011702), 2006.



A. ε − δ identity 5
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