CHALMERS

Studentarbeten — Mekanik och maritima vetenskaper (M2)
Projektarbeten 2022:06:21

GPU Accelerated CFD Using CUDA

TME131 Project in Applied Mechanics 2022

David Andersson
Robert Ranman
Shisheer Shetty
Frowin Winkes

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2022

GPU Accelerated CFD Using CUDA
TME131 Project in Applied Mechanics 2022

© DAVID ANDERSSON, ROBERT RANMAN, SHISHEER SHETTY,
FROWIN WINKES 2022

Studentarbeten — Mekanik och maritima vetenskaper (M2) — Projektarbeten 2022:06:21

Department of Mechanics and Maritime Sciences
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone +46 (0)31 772 1000

Preface

The work in the present report was carried out as a part of the course TME131 Project in
Applied Mechanics, which is a mandatory course within the Applied Mechanics Masters
programme at Chalmers. The course was carried out during spring semester 2022.

The project was supervised by prof. Lars Davidson

Abstract

The GPU programming extension CUDA, developed by NVIDIA, has over the last years led
to numerous advances in compute capabilities. The CUDA API enables relatively easy access
to the graphics card hardware, which enables the user to perform parallel computations using
thousands of CUDA cores.

The following report investigates the methodology and advantages of using the CUDA API
for CFD computations. To do this, an existing code written for the CPU was rewritten to
run on the GPU. It has been evaluated in terms of the reduction in iteration time, as well as
development difficulty. The code was rewritten using Numba, which is a Python module that
allows the user to access the CUDA API in the Python programming language. Furthermore,
a simpler CFD code has also been written from scratch, where the GPU computations were
taken into consideration at the first implementation stage. This is used as small comparison.

Both implementations show significant improvements with regard to iteration time, indepen-
dent of GPU model or architecture. For larger domain sizes the performance increased reached
a factor of 18. It has also been shown how the GPU can be maximized for up to an additional
25-30% speed up by simply varying certain parameters, boosting the overall performance of
the code to generate an overall improvement factor of 26. Another investigation dives into
the overhead associated with programming memory intensive scripts to the GPU and shows
what effect this has on the total times for the application.

These results are followed by a discussion about the implementation limitations and for what
problems it would be considered worthwhile to target the code for execution on the GPU.

Keywords: CFD, RANS, CUDA, GPU, Python, C+-+

Abbreviations

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

float32 32bit Floating Point Number (Data type)

float64 64bit Floating Point Number (Data type)

GMRES Generalized Minimal Residual (Method)

GPU Graphics Processing Unit

RANS Reynolds Averaged Navier-Stokes

SIMPLEC Semi-Implicit Method for Pressure Linked Equations-Consistent

SM Streaming Multiprocessor

Contents

1 Introduction 1
1.1 Provided RANS Solver 1
1.2 Lid Driven Cavity 1
1.3 Delimitations 2
1.4 Limitations L 2

2 Theory and Methodology 3
2.1 GPU Architecture 3

2.1.1 Caches 4
2.2 CUDA . . . e 5
2.2.1 Parallel Discretization 5)
222 Indexing 7
2.2.3 Block Sizes and Grid Sizeso 8
2.2.4 Shared Memory 9
2.2.5 Index Mapping for Shared Arrays 10
2.2.6 Boundary Control 11
2.2.7 Syncronization 12
2.2.8 Warps 12
229 Occupancyo 13
2.3 CUDA using Numba 13
2.4 Poisson CFD Solver 14
2.5 Kernel Setup for Shared Memory Usage 14

3 Results 16
3.1 Performance Comparison between the CPU and GPU 16
3.2 The Impact of Complexity 18
3.3 Performance Comparison between Block Sizes 20
3.4 Performance Comparison between C++ and Python. 20

4 Discussion 23
4.1 When CUDA is Worth Implementing 23
4.2 Implementation Issues 24

5 Conclusion 25

References

26

GPU ACCELERATED CFD USING CUDA INTRODUCTION

1

Introduction

The increased capabilities and computational power of graphics cards has during the last
decade spurred a transition to where more and more computations are transferred to the
GPU. The main advantage of the GPU-architecture is that it facilitates parallel execution,
which means that large amounts of calculations can occur simultaneously.

To facilitate programming towards the graphics card, the large GPU manufacturer; NVIDIA|
has developed a programming extension called CUDA. Using the extension, every compatible
NVIDIA GPU is able to execute that code in a parallel manner.

Running a sequentially executed code in a CFD program for fine mesh resolutions is devas-
tatingly slow. In order to take one step towards fully utilizing the power of the computational

resources which are available, this project aimed to convert the in-house developed CFD-code
pyCalc-RANSI1] to run completely on the GPU.

1.1 Provided RANS Solver

The provided RANS solver is a fully vectorized code used to solve the two-dimensional, steady,
incompressible momentum equations. It solves both the laminar and the turbulent case, where
in the turbulent case the £ — w turbulence model is used. The code does not solve for density,
but uses the continuity equation to create a pressure correction equation, according to the
SIMPLEC method. The discretized equations are solved with sparse matrix solvers using
either a direct solver, or a GMRES-type solver.

The code is implemented in Python, and solves the lid driven cavity.

1.2 Lid Driven Cavity

Lid driven cavity is a common, and simple case used for many CFD simulations. It consists
of a system confined by three stationary no-slip walls and one moving wall. The moving
wall, which is usually placed at the top of the domain, acts as a boundary condition for the
u-velocity which propagates into a rotational flow as the moving fluid interacts with the walls
(see figure 1.1). The arrows denote the direction of the flow, while the contour defines the
magnitude of the velocity.

GPU ACCELERATED CFD USING CUDA INTRODUCTION

Velocity Field

1.0- -1.0

-0.8

y [m]

X [m]

Figure 1.1: Velocity field of the lid driven cavity, with w,.; = 1 [m/s].

1.3 Delimitations
To delimit the project, the following boundaries will confine our work:

e Only the laminar flow type will be converted to run on the GPU

e The primary focus is on the CUDA conversion.

1.4 Limitations
The project is limited by the following factors

e Lid driven cavity is the only case which will be studied.

e GPU-brands other than NVIDIA will not be supported by this project.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

2
Theory and Methodology

In this chapter, a brief summary of relevant theory behind the CUDA framework, as well as
GPU memory architecture, will be presented. The theory presented is selected and motivated
by the implementation strategy of the code, as well as to enlighten the reader of the key
components of the CUDA framework, or parallelization in general.

Since the CUDA framework is an extension of the C++ programming language, there will
also be short comparisons between the implementation procedures using C++ and Python
with the latter being the more relevant language for our work

2.1 GPU Architecture

Before introducing CUDA and its implementation, the reader should have a basic understand-
ing of the memory architecture of a normal CPU and GPU. Therefore, this first section aims
to provide sufficient background information to facilitate a good understanding later on.

The CPU and GPU are two physically separate entities, with unique memory locations. There
can be no implicit communication between the two entities, which means that the user must
explicitly transfer specific data either from the CPU to the GPU, or the other way around.
In practice, the programmer will need two copies of the data to be passed to the GPU. One
copy on the host side (CPU), which is initialized in some pre-defined process, and one copy
which has been allocated, and transferred to the device (GPU).

In figure 2.1 we can see a schematic view of the memory architecture for the host (on the left)
as well as for the device (on the right). The GPU consists of multiple streaming multiproces-
sors (SM), which are the fundamental building blocks of every GPU [2]. A large amount of
SMs will generally, simply put, create a more powerful GPU. The amount of SMs on modern
GPUs today are on the order of 10.

Inside an SM there are a certain number of cores. How many cores that are available depends
on the GPU model and architecture [3]. Inside the cores the coding instructions take place.
Hence, having access to many SMs opens up more cores, and thereby more places to execute
code. Having many SMs thus increases the upper limit to how much parallelization can occur
at the same time.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

/

(s | oo

p
= ”ﬂj

Registers

|
f—w
]
i

DRAM
nared

1 ymory
‘ Shared ‘

A 4) ‘ L2
P @J) | Cache | |Memory -/

e \ J - J
\ / Multiprocessor (SM)

Figure 2.1: Memory architecture of the CPU (host) and the GPU (device)

The data transferred from the host to the device is stored in global DRAM memory, available
to be accessed universally on the GPU. Recently accessed data requested from an SM passes
through two fast access caches [4]. Firstly, the global L1 cache, followed by the local L2 cache.
The L1 cache is shared with the whole device, and the L2 cache is local to each SM. Their
function is to reduce the number of times needed to perform a fetch from global DRAM, a
process which is slow, and induces latency.

As the data reaches the registers, or the cores of the GPU, it can either be used for compu-
tations, or placed in shared memory. By placing the data in shared memory, we can ensure
that the data is always accessible with minimal latency [5]. A deeper explanation of shared
memory has been covered in section 2.2.4.

2.1.1 Caches

While not specific to either CUDA or GPUs, it is considered pertinent for the reader to un-
derstand something about how the caches work.

Memory requests do not occur on a byte to byte level. Instead, the total memory is divided
into several cache lines. When requesting a specific value, the whole cache line is pulled, and
temporarily stored in some cached memory allocation [2]. This is done regardless of the initial
request. While this seem like an odd feature, it is in fact (in part) created for the purpose of
arrays. We know that the raw definition of an array is a contiguous block of memory. Since
many array requests usually occur within a short timeframe and a smaller memory subset, it
is very likely that the data of a later memory request has already been pulled and stored at
an earlier stage.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

The size of a cache line varies, but most architectures uses 64 bytes[2]. The size of the cache
memory allocation can vary between a few kB to hundreds, or thousands of kB depending on
what the cache is for. Important to note is that the caches are system managed, which means
that the user has no control of what is stored in the cache at any given time.

2.2 CUDA

Implementing code on the GPU needs to be done inside special functions, which are typically
called kernels. In order for the compiler to be able to differentiate between regular functions
and GPU kernels, extra specifiers are needed. In C++ an additional keyword is added, and
in Python a special decorator is used, see the following code snippet.

(@cuda.jit
__global woid A C++_kernel (int *a param) def A _Python Kernel (a_param):
T 2t =

Kernel Body
// Kernal Body

We can, based on the C++ code, see that the kernels are void-typed, i.e. they return nothing.
This is a characteristic every kernel must obey. The typical workflow in functions of void
type is to modify the result directly in the memory. This means that an array with mem-
ory allocated for the result needs to be passed in as an argument and written to in the function.

A typical C++ kernel also passes the parameters to the function by either reference or by
pointer. This means that the actual array is not passed, but the memory location of the first
element in the array. The process is handled implicitly by the CUDA extension to Python,
since Python has no memory management for the user.

Calling the kernel from the main part of the program will also appear differently than regular
functions. When calling the kernel, the parallel discretization parameters need to be specified
so that the kernel knows which resources are needed. Parallel discretization will be covered
in section 2.2.1.

| A C++ Hernel «<<< BlocksInGrid, ThreadsPerBlock >>> (...}; ‘

| A Python Kernel [BlocksInGrid, ThreadsPerBlock] (...) ‘

2.2.1 Parallel Discretization

In general, running code on a CPU is done serially. This means that a certain process is
performed in sequence with respect to the data. In a serial discretization of a CFD problem,

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

we can simply divide the domain into cells, and perform calculations for each cell in sequence.

For parallel computing, there are two steps in the discretization process. As can be seen in
figure 2.2, the domain is divided into a certain number of blocks. The blocks contain threads,
which perform the calculations, similarly to the serial case. Since there will be one thread per
CFD-cell, the word cell and thread will in the following be used interchangeably. It should
also be noted here that computations can be run in parallel on the CPU but discussing the
pros and cons compared to GPU compute is out of the scope of this project.

To understand why there are two layers in a parallel discretization process, we can think of
a block as a worker. Each worker controls the area of the domain it is physically occupying,
which is done through its threads, or imagine, multiple arms. The arms perform the same
tasks synchronously, but separately, which means that once a value has been computed for a
certain cell, the value is unknown to every other cell in the domain. Luckily, and the reason
for the ”worker” metaphor being used, a worker has the possibility to track what its arms are
computing. But this is limited to each worker, i.e. blocks are able to communicate internally,
but not intercommunicate with each other.

Serial Discretization Parallel Discretization

%%%%%%%% , - = . Bk
BEnenenn : 9 . | %%%%%
ooy OO
anenenen O

00000000 00000

DOoduogdu
Thread

LO0o0oooy

Figure 2.2: A serial discretization, compared to a parallel discretization

Observant readers might note a big problem the lack of intercommunication causes, as illus-
trated in figure 2.3. The lack of intercommunication causes problems where the process of
performing computations for a certain cell involve the neighboring cells. For cells which are
on block boundaries, this causes issues since they cannot access all of their neighbors. In a
CFD program, the use of the neighboring cells are especially prominent, making this a large
concern.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

Serial Communication Parallelized Communication

£

Figure 2.3: In the parallel kernels, the only valid communication between threads is within a
thread block.

One of the ways to resolve this problem is to use a resource called shared memory, which can
uniquely store a certain amount of data inside each block. This was used for the pyRANS
code in this project. More on how this was implemented in Section 2.2.4.

2.2.2 Indexing

The indexing for a parallel discretization is two-layered. Firstly, there is an index which iden-
tifies each block and inside a block the threads are indexed locally by their position in the
block. Thread indices are thereby not unique, but the combination of thread index and block
index results in a unique location in the total domain.

The thread and block indices are hidden struct-objects which can uniquely be accessed by
every thread [6]. Getting the global location of each thread require some index mapping

Global Index = Thread Index + Block Index * Block Size

If the domain is two-dimensional as in this case, the struct-objects; thread index, block index
and block size have an x and a y component.

This operation is so fundamental to the workflow in CUDA that Numba has added a sup-
porting method called grid which will perform this operation behind the scenes. As an input
argument, the user specifies how many dimensions the domain is defined by, see the following
code snippet.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

//,/"" _-"‘-x\\ . ;__/"-- -..'___I
/ b @cuda.jit
| __global__ void A C++ _Kernel (...) { ' def A Python Kernel (...):

// Thread Indices i,j = cuda.grid(2)

int tx = threadIdx.x;
int ty = threadIdx.y;

// Block Indices KH S
int bx = blockIdx.x;
int by = blockIdx.y;

// Global indices
int i = tx + bx * blockDim.x;
int J = ty + by * blockDim.y;

Numba also supports a very similar syntax to that of C++, in the cases where the user does
not want to use the grid method.

2.2.3 Block Sizes and Grid Sizes

A logical question at this point might be how to be able to decide, or determine, the best size
of the blocks. As it turns out though, determining the optimal block size is not a straight
forward process. It is both hardware, and problem dependent. The general guidelines are a
maximum of 1024 threads per block, i.e. 32x32, in two dimensions, and a block size evenly
divisible by 32. The reason for the last guideline will be covered in Section 2.2.8.

It is the block size we care most about for optimization. But as previously mentioned, we
would like to launch one thread per cell, which means we need to create the correct number of
blocks to cover the domain completely. The set of all blocks in the domain is generally called
a grid. The grid size is obtained by dividing the total domain size by the block size in each
coordinate direction. Since this needs to be an integer, we cannot round down and thereby
risk missing cells. We therefore ceil the divisions.

Grid Size = ceil (Domain Size / Block Size)

However, this might instead lead to the kernel launching threads outside the domain, i.e. in
unspecified memory. In order to make sure none of those threads are accessed, we need to
add a conditional at the beginning of the kernel, see code snippet below.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

-~ T
£ Y
\

[@cuda.jit
def A Python Kernel (... ni, nj, ...):
i, j = cuda.grid(2)
if i €« ni and j < nj:

Perform kernel code

2.2.4 Shared Memory

The shared memory is a user managed memory allocation, unlike the caches, which are sys-
tem managed allocations based on recently accessed data. This means that the user has full
control of what and how data is stored [5].

In many general parallelization cases, the shared memory has the same size as the block and is
used for memory optimization purposes. Generally, the optimization revolves around avoiding
latency from global memory calls, if some values are to be used multiple times in a kernel.

But the size of the shared memory allocation is up to the user, which means that to solve
the intercommunication problem presented previously, we can expand the shared memory so
that it covers an area larger than the block. The expanded area will cover cells in neighboring
blocks, which means that every thread in the current block will have access to all of their
neighbors.

U
— L AL AL R
Size of shared memory D D D D
01010 UL Y

0000 000

| Fully extended shared memory size

Size of a block

Figure 2.4: Sizes of the shared memory compared to the block size

In figure 2.4 to the left, we can see the area expansion of the shared memory for a block in
the bottom left corner. For a general block, in the middle of the domain, the expansion region
would look like the image to the right.

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

The process of actually computing the extra values needs to be managed. Recall that each
block has a fixed number of threads, and each thread handle the calculations of one cell. Now
that we have included additional cells for the block, extra work needs to be performed. The
job is assigned to the boundary cells, and implemented in code through simple conditional
statements. Boundary cells will, in addition to their own work, also perform the same work
for their neighboring cell outside the block. The Python syntax for this, looking at the left
image in figure 2.4, see the following code snippet.

s .
// Y
/ BlockSize = 32 N\

Create Globally defined shared memory size. In this case
we just add one cell to the right and up. See figure 2.4 (left)
ShMemSize = BlockSize + 1

fcuda.jit
def A Python Kernel (Input, ni, nj, ...):

i, § = cuda.grid(2)
if i < ni and jJ < nj:

tx
ty

cuda. threadIdx.x
cuda.threadIdx.y

Sharr = cuda.shared.array(shape=(5hMemSize, ShMemSize), dtype=numpy.float32)

Every thread in the block loads in its corresponding global wvalue
Sharr[tx, ty]l] = Input[i,]]

Let block-boundary threads load in extra values

Right boundary
if tx == cuda.BlockDim.x - 1:
Sharr[tx + 1, ty] = Input[i + 1, j]

Upper boundary
if ty == cuda.BlockDim.y - 1:
\ ShAarr[tx, ty + 1] = Input[i, j + 1] |

\\ cuda . syncthreads ()

Important to note here is that the shared memory arrays use the thread indices, tx and ty, in
the block. This should make sense since it was previously mentioned that thread indices are
local to each block (i.e. in every block) the first thread has location (0, 0), and the last thread
has index (Block Size x - 1, Block Size y - 1). This means that the thread indices maps very
nicely to the shared arrays.

2.2.5 Index Mapping for Shared Arrays

In some cases, when shared arrays are used in an extended form, we need to perform some
simple index mapping.

10

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

But firstly, by observing the left image in figure 2.4, we can note that index mapping is not
required in this case. If we imagine index (0, 0) being the bottom left thread, then every index
remains the same, even if we add more cells to the sides.

On the other hand, the right image in figure 2.4 shows a case in which we do need to perform
index mapping. We see that index (0,0) of the shared memory is offset from index (0,0) in
the block. In fact in shared memory space, thread index (0,0) is index (1,1). This is the clue
to the index mapping which needs to be done. The shared indez is thread index + 1, and this
is the indices which needs to be used when working with this type of shared array.

2.2.6 Boundary Control

Observant readers might have caught a dangerous coding pattern in the latest code snippet.
When accessing the right and upper values for the boundary threads, we used no bounds
checking. Since raw arrays in C+4, which this code is compiled into, has no internal bounds
checking, we will access unspecified memory for cells on the domain boundaries. Therefore,
we need to create our own bounds check, to make sure that we stop at the domain limits.
This is done through simple min and max functions.

Another form of boundary control, which is of great importance when working with shared
memory, is block overflow at domain boundaries. If the total domain size and the block size
are not evenly divisible, there will be some overflow at the edges of the domain. A schematic
illustration of this issue can be seen in figure 2.5.

Domain Size: 40x40

Block Size: 12x12

Figure 2.5: Block overflow at domain boundaries

Therefore, when using shared memory implemented the way this project does, extra care
needs to be taken into consideration at the right domain boundary in figure 2.5. Normally
it is the thread index which correspond to the size of the block that determines if the thread
is positioned on the boundary of the block. Now we end up in a position where the domain
ends in the middle of the block, and we cannot use the block width to determine if a thread

11

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

is located on the boundary.

Solving this was done by adding an or- conditional to check if the thread is either at a block
boundary, or at the domain boundary.

2.2.7 Syncronization

An important concept when working with shared memory is synchronization, or more par-
ticularly, synchronization of threads within a block. If we imagine several threads running
through code in parallel and in this process writing to shared memory (just like the previous
code snippet) not every thread might be in sync at a given location in the code. This is a
problem if a thread accesses shared memory for a cell for which another thread has not yet
finished its calculations. The synchronization acts as a barrier, stopping the threads until
every thread in that block has reached that point.

cuda . synchthreads ()

The syntax cuda.syncthreads() is therefore placed directly after the shared memory array is
filled up correctly, which means that it’s safe for the code to continue.

The reason for threads in a block being out of sync could for example be conditional forks in
the code, but is mostly caused by warps, see Section 2.2.8.

As hinted before, the synchronization is only valid inside the threads blocks. There is no direct
way to establish a global synchronization syntactically. However, different kernel calls will be
called sequentially, which means that practically, global synchronization can be reached by
splitting up code into two or more kernel calls.

2.2.8 Warps

Warps are a low level implementation feature in CUDA whereby a finite number of threads
are launched in sequence. Although previously mentioned that the entire process takes place
in parallel, this is not precisely true in the implementation. The execution of a block is struc-
tured into several warps, with a fixed warp size. For the CUDA framework, this size is 32, i.e.
32 threads are launched in sequence [7].

The graphics card hardware is able to switch between different warps with zero overhead, as
a warp is currently inactive. Inactivity can be caused by latency in global memory calls, or
through synchronization barriers.

The CUDA warp size is important to keep in mind in order to have the program run as
efficiently as possible. Since the warp size is constant, it will always launch 32 threads at the
same time. But if the block size is not evenly divisible by 32, we will at the last scheduler

12

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

have < 32 threads left in our domain, and therefore launch too many and cause inefficiency
in the program.

2.2.9 Occupancy

For maximal performance of the GPU we want to maximize the occupancy. The occupancy of
the GPU is determined by how many of all the SMs are put to work, i.e. how parallelized the
code becomes in the execution stage [2]. The code could for example run on one SM which
would cause low occupancy, or it could utilize every SM, which should significantly enhance
the performance.

The way the SM utilization is determined is through the blocks and their sizes. If the parallel
discretization consists of very few blocks, then the code will only load a few of the SMs.
Introducing many blocks of significant sizes will allow the GPU to maximize the amount of
parallelization.

2.3 CUDA using Numba

As previously mentioned, CUDA is implemented in C++, but there exists multiple modules
or libraries in other programming languages which allows the programmer to write functions
to the GPU in that language. One example is the Numba module for Python.

Numba is an open-source compiler used to convert Python code into C++ code. Due to the
conversion between the two languages, Python-specific data structures such as dictionaries or
lists etc will not be able to be mapped over. Numba does however support NumPy, which
means that every array passed in to a kernel should be a NumPy array which has been allo-
cated and transferred to the device.

One issue which was found was the use of characters in kernels compiled in Numba, or rather,
character arrays passed into a kernel as a parameter. If the characters passed are used to check
for equality against another given character, as can be seen in the following code snippet, the
program will fail.

[@cuda.jit
def A Python Kernel(A Character, A Dict, ... }:
i, j = cuda.grid(2)

Will generate Errors
Some Variable = A Dict[Key] [i,]]

Will alsc generate Errors

if A Character — =
Do something

13

GPU ACCELERATED CFD USING CUDA THEORY AND METHODOLOGY

Numba seem to auto-convert the character into a device-array, which makes it impossible to
use for the comparison check against a pure character. The issue was handled by replacing
the character arrays (which were used to define boundary types, for example) with numbers
instead. Being extra careful in commenting this discrepancy in the source code.

2.4 Poisson CFD Solver

In order to implement the above outlined practices, a code previously written for serial com-
pute on the CPU was rewritten to run in parallel on the GPU. Since this case was deemed to
be of somewhat complex nature, another code was written from scratch to only solve Poisson’s
equation and was from the beginning targeted at running on the GPU. While the two codes
did end up rather similar in structure, they still illustrate quite well how to; on one hand,
implement GPU acceleration in a more rudimentary and basic form and on the other hand,
it shows how a more complex code significantly increases the difficulty of implementing GPU
acceleration.

2.5 Kernel Setup for Shared Memory Usage

The following code snippet shows a complete kernel introduction whilst working with shared
memory the way needed in this project. It includes all the important considerations, and has
been validated to produce the exact same results as the serial implementation.

14

GPU ACCELERATED CFD USING CUDA

THEORY AND METHODOLOGY

/" BlockSize = 32

| # Create Globally defined shared memory size.
we add one cell to every direction. See figure 2.4 (right) |

ShMemSize = BlockSize + 2

@cuda.jit
def A Python Kernel (Input, ni, nj, ...):

i, § = cuda.grid(2)

i left = max(i-1, 0)
i right = min(i+l, ni-1)
Jj_down = max(j-1, 0)
J_up = min(j+1, nj-1)

if i < ni and jJ < nj:

Thread indices
tx = cuda.threadIdx.x
ty = cuda.threadIdx.y

Shared indices
six = tx + 1
siy = ty + 1

ShArr = cuda.shared.array(shape=(5ShMemSize, ShMemSize), dtype=numpy.float32)

Every thread in the block loads in its corresponding global value
il

Sharr[six, siy] = Input[i,

Let block-boundary threads load in extra wvalues

Right boundary

if tx == cuda.BlockDim.x - 1 or i

sharr[=ix + 1, =iy]
Left boundary
if tx ==

ShArr[six - 1, =iy]

Upper boundary

if ty == cuda.BlockDim.y - 1 or j

ShArr[six, siy + 1]

Lower boundary

if ty ==
\ Sharr[six, =iy - 1] =
\
\
\ cuda . syncthreads ()
\\\\ # Main Kernel code goes here!

In this case

==ni - 1:
Input[i_right, jl

Input[i_left, j]

= nj - 1l:

Inputli, j_upl

Input[i, j_down]

15

GPU ACCELERATED CFD USING CUDA RESULT

3
Results

The results presented in this chapter solely covers the parts of the script connected with
CUDA. The main results of interest is therefore the average iteration times compared between
the GPU and CPU. The average iteration times in the pyCalc-RANS script were simply ob-
tained by having two time measurements in either end of the main convergence loop. The
iteration times were then averaged over the number of iterations the convergence loop per-
formed.

To make sure the CUDA conversion of the code was implemented correctly, the numerical
results have been compared to the results on the CPU.

This project did not manage to successfully integrate a parallel linear solver in the CFD code,
which meant that in order to solve the system, multiple data transfers back to the CPU were
needed. Therefore, in order to create a fair comparison between the serial and the paral-
lel implementation, the process of solving the linear equations was commented out for both
implementations. This meant that no solutions were obtained in these tests, and therefore
the absolute times presented in this chapter are not necessarily representative of the actual
execution time. However, the main pattern of the time differences between the parallel and
the serial implementations will still clearly be evident.

3.1 Performance Comparison between the CPU and GPU

Figure 3.1 shows the average iteration time of one iteration of the pyCalc RANS script, for
both the parallel and serial implementation. The parallel implementation uses a block size of
32x32, and both implementations are run on a node on the Vera cluster which has an NVIDIA
GP106GL graphics card of the Pascal architecture.

16

GPU ACCELERATED CFD USING CUDA RESULT

pyCalc-RANS Performance Comparison

@ Serial Implementation
) m Parallel Implementation
E
© 102
£
2 g
S
e

= O "
£ 10!
Q
=

10 10° 106

Domain Size

Figure 3.1: Speed comparison for the average iteration speed of the pyCalc RANS script using
log scales.

From figure 3.1 we see in log scales the average iteration times with increasing domain sizes.
The parallel implementation starts off by being slower than the serial, but being constant
with increasing domain sizes, it quickly grows to have faster iteration times by more than one
order of magnitude.

To get a detailed view of the time difference between the parallel and serial implementation,
table 3.1 shows, in milliseconds, the average iteration times.

Table 3.1: Average iteration time measured from 200 iteration of pyCalc-RANS. The parallel
discretization consists of blocks with a size 32x32

Serial Parallel
64x64 2.7 [ms] | 12.6 [ms]
128x128 | 5.53 [ms] | 12.58 [ms]
256x256 | 24.55 [ms] | 12.2 [ms]
512x512 | 121.5 [ms| | 14.66 [ms]
1024x1024 | 591 [ms] | 33.1 [ms]

The slower iteration times for the parallel implementation at small domain sizes has to do
with the overhead time for the kernels to launch. This overhead is for example associated
with establishing the indices used in the parallel discretization. The iteration times then re-
main constant until the 1024x1024 mesh size, suggesting that the actual compute time for
the smaller domains is negligible compared to the copy times. The serial implementation on
the other hand sees significant increases, of a factor 5, in iteration time for every increase

17

GPU ACCELERATED CFD USING CUDA RESULT

in domain size. For the largest domain size we see a performance increase of a factor 18 by
executing the code on the GPU.

Similar trends were seen in the Poisson’s CFD solver that was written from scratch. Difficulties
with convergence with both the CPU and GPU implementation made it difficult to time the
iterations seen in table 3.2. Further, inherent limitations in the way the reference CPU code
was written limited the comparisons to only use small domains which give the CPU code a
large advantage.

Table 3.2: Average iteration time comparing 1000 iterations for Poisson’s CFD code running
on CPU and GPU. A block size of 88 was used on the GPU

Serial Parallel
64x64 | 0.37 [ms] | 11.84 [ms
128x128 | 1.92 [ms] | 11.82 [ms
256x256 | 8.89 [ms| | 11.83
512x512 | 64.45 [ms] | 16.27 [ms

3.2 The Impact of Complexity

Since one of the major drawbacks of GPU targeted code is the required transfer of variables
from the host to the device, one might think that an increase in the number of matrices, and
their size, would be an ever-growing bottleneck and a significant limitation to the problem size.
While this might be true for significantly larger scale computations, we did not observe this
in a prominent way in either of our codes. Interestingly, it appears as though the first copying
of any variable to the device from the host requires a sort of synchronization or "handshake”
between the CPU and GPU, resulting in noticeably longer transfer times for the first transfer.
Subsequent transfers do not appear to suffer this delay, and are instead directly proportionate
to the memory footprint of the transferred variable.

Note that there are significant differences in this behavior depending on the hardware that is
used, with the initial transfer times being vastly different.

18

GPU ACCELERATED CFD USING CUDA RESULT

Copy to Device Timing

=
= - —
=
H
g
0 = | | I I I
D | | 6 ° 10
2 6 float32 0.5mb
: float32 2mb
ald| float32 8mb o
l:: float32 3Z2mb ______________,
f2r
- P R — 1
0 i —]
0 20 10 - -]

Packages Copied to Device (GPU)

Figure 3.2: Cumulative time for the copying of float32 arrays containing random values in
sizes of 1024x1024 (0.5MB), 2048x2048 (2MB), 4096x4096 (3MB) and 8196x8196 (32MB) to
a GTX1060 (Pascal Architecture) GPU.

In figure 3.2 we see the cumulative time for copying large matrices to the device. The matrix
sizes vary from 1024x1024 (0.5MB) to 8196x8196 (32MB). We note that matrices of sizes up
to 8 MB have a near instant copying time after an initial long waiting period. Zooming out,
we can see that the graphs up to 8 MB grow slightly more linear as the amount of matrices
copied over increases. The smaller slowdowns seen with regular intervals is suspected to be
garbage collection and caching taking place. Note here that the 32 MB case is an outlier that
behaves notably different to the other cases.

An argument can thus be made for repeated data transfers, while still unwanted, not being
as bad as one might suspect from timing the initial transfer.

Another aspect to consider here is that the memory on the GPU is limited and as such the
total memory footprint of all variables used in the calculations has to be considered. While a
single matrix will not saturate the memory of a modern GPU, using unnecessarily large data
types, such as float64 instead of float32 and copying unnecessary data to the device, might.

19

GPU ACCELERATED CFD USING CUDA RESULT

3.3 Performance Comparison between Block Sizes

As mentioned in Section 2.2.9, the parallel discretization is very important for maximal per-
formance, mostly through maximizing occupancy. The following table shows a minor investi-
gation in how the block sizes affect the average iteration times. The investigation was carried
out using the 1024x1024 domain size, and averaged over four different runs. The investigation
was also performed using three different GPUs; the GP106GL on Vera, an RTX 2070 and also
on a GTX 1060. Here, the GTX 1060 and RTX 2070 represent mid-range consumer hardware
and the GP106GL representing more scientific and professional hardware.

Table 3.3: Investigation between the block size and iteration time for the pyCalc RANS code.
Note that the domain size was set to 1024x1024 for all tests. The investigation was performed
for three different GPUs.

GP 106 GL (Pascal) | GTX 1060 (Pascal) | RTX 2070 (Turing)
4x4 32.32 [ms] 25.5 [ms] 15.0 [ms]
8x8 23.05 [ms] 19.0 [ms] 12.6 [ms]
16x16 27.15 [ms] 21.9 |ms] 12.9 [ms]
32x32 33.1 [ms] 26.44 [ms] 15.2 [ms]

From table 3.3 we firstly note that the three GPUs have vastly different performance, where
the RTX 2070 is around two times faster than GP106GL. The GTX 1060 is more similar to the
GP106GL, which makes sense given the same card architecture. However, more interestingly,
we note a similar pattern in the iteration speed as a function of block size. The 8x8 and 16x16
perform significantly better than the other two block sizes for every GPU. Both the GP106GL
on Vera and GTX 1060 see around 25-30% performance increase by reducing the block size
to 8x8 from 32x32. If this result is compared to the performance increase received in Section
3.1, we could (by using the 8x8 block size) obtain a performance increase of a factor close to
26 instead.

This result seem to align well with the theory presented about occupancy, where smaller, but
more numerous blocks launched allows the GPU to parallelize the code to a larger degree, and
hence improves the performance. The only block size in the tests which does not meet the
unofficial guidelines for blocks, seen in Section 2.2.3, is the 4x4 block, which is not a multiple
of 32 threads. The average iteration time for this size is also significantly slower compared to
the 8x8 blocks for every GPU tested.

3.4 Performance Comparison between C++ and Python

In order to investigate how much performance increase could be expected from switching lan-
guage to C++, a single function was implemented in three different ways. Firstly, it was
implemented with a vectorized but serial approach in Python, in order to set a benchmark.

20

GPU ACCELERATED CFD USING CUDA RESULT

Then it was implemented as a kernel in both Python and C++. Before the testing started,
validation made sure that all versions produced the same result to a given initialization of the
input data.

The procedure for the tests was carried out the same way for all implementations. Time
measurements where placed before and after the function, or kernel call, which were then
averaged over 50 different samples. This gave a fair time approximation for all three versions.

Performance Comparison between C++ and Python

® C++4 Parallel
@ 104, O Python Parallel
E. A Python Serial
©
£ 10°; 2
= -
% 102.
3
Z

10ty B
lbﬁ 1(j? 1(']8

Domain Size

Figure 3.3: Speed comparison between parallelized C++ code, parallelized Python code and
serial Python code for a single kernel plotted using log scales

Table 3.4: The measurement data from the speed comparison seen in figure 3.3

Python Serial | Python Parallel | C4++ Parallel
1000x1000 215.93 [ms] 12.5 [ms] 5.75 [ms]
5000x5000 7564.4 [ms] 412.87 [ms] 141.5 [ms]

10000x10000 | 45 797.1 [ms] 1686.15 [ms] 406.5 [ms]

Based on figure 3.3 we can see that the C++ implementation is close to being two order
of magnitudes faster than the serial Python approach for all three domain sizes. The perfor-
mance increase for the C++ implementation compared to the parallel Python implementation
grows for the largest domain size to be over 0.5 orders of magnitude, otherwise it is about
0.25 order of magnitude difference.

21

GPU ACCELERATED CFD USING CUDA RESULT

Looking at the pure times in table 3.4, another way to see the performance increase can
be obtained. At the largest domain size tested, the C++ implementation was over 100 times
faster than the serial Python implementation, and more than four times faster than the parallel

Python implementation.

22

GPU ACCELERATED CFD USING CUDA DISCUSSION

4

Discussion

The discussion of the results and the project in general will mainly cover two areas. First a
short investigation into whether the potential performance increase of CUDA will be worth
the additional implementation and testing time. The latter being the most time-consuming,
as the debugging possibilities are limited.

The second part involves a few of the prominent implementation issues while implementing
pyCalc-RANS on the GPU. The discussion will explain the issue, what the believed root cause
of it was, as well as how it was handled.

4.1 When CUDA is Worth Implementing

Rewriting, or targeting, your code for GPU computations is by no means a universal pathway
to better overall times. Factoring in the time to re-target the code from a CPU implementa-
tion, this work might not be worth it for many applications. The benefit of using Numba, and
thereby Python however, is that much of the complexity is handled for you. The simplicity
offered by Python and Numba generally outweigh its drawbacks for small to medium size
applications. It also makes it a good candidate for learning the concepts of the architecture
and prototyping ideas. This can later be applied in a similar manner in more advanced, but
also more flexible and powerful languages such as C++. One of the best ways to improve the
performance of a working kernel is to change the language, which is why C++ still remains
the go-to option for commercial and finalized codes aimed at running on the GPU.

Another aspect in determining whether a parallel implementation will be worth the time
and effort is the debugging difficulties associated with writing kernels. While it is easy to
implement the general workflow, a CUDA-kernel is notoriously difficult to use for debugging
intermediate computations. Serial code allows the use of break points and slowly stepping
over lines to check for unexpected events. A kernel does not support this sort of debugging.
Instead, the programmer will have to find other creative ways to access intermediate results
computed inside a kernel. One effective way, which was found in this project, was to write
intermediate results to one of the input arguments of the kernel, and terminating the kernel
early.

23

GPU ACCELERATED CFD USING CUDA DISCUSSION

4.2 Implementation Issues

While re-writing the pyCalc-RANS into parallelized code, several costly and non evident bugs
were introduced by accident. The following section will discuss some of these problems, why
we believe they occurred and how they were fixed.

The first issue involves only passing a part of a whole array into a kernel. The coefficients ag,
aw, ay, as and ap were collected into a common three-dimensional array where the third di-
mension separated the coefficients. For some kernels only a few of the coefficients were needed,
in those cases they were passed in individually, by accessing the third dimension. This process
made the script very slow, and increasingly slow for large domains. We believe the reason
for this is that accessing the variable like that caused Numba to be unable to create a C++
code where the argument was passed in by reference (or by pointer). Instead, the arrays were
forced to be passed by value i.e. copied, which explains why this process became slower and
slower with increased domain size. To solve the issue we passed the whole array, and accessed
the desired coefficient inside the kernel. Passing in large arrays into a kernel does not result
in a performance hit, since they are passed in by reference, i.e. a memory location.

A second long term issue was to define the shared memory size in a way which was adaptive
to the block size the user specified. For improved structure and readability, the code was
initially split into several files, where each kernel got its own file. But by doing this, the
shared memory sizes were forced to be hard coded. The reason for this issue is that in C4++
the shared memory size must either explicitly be a constant or a macro. In Python, the
concept of constants does not exist, but variables created globally in the scope of a certain
file will be treated as constants by Numba. This means that to define the size of the shared
memory in an adaptive way, every kernel needed to be in a file where the block size was created
in the global scope. The only way to achieve this was by adding all the kernels into the main
Python file, something which was done regretfully as it severely harms the readability of the
code.

24

GPU ACCELERATED CFD USING CUDA CONCLUSION

5

Conclusion

From the result, we can draw a few documented conclusions. Firstly, the cross-over point be-
tween the serial and parallel implementations occur for relatively small domain sizes. In the
pyCalc-RANS code this cross-over occurred at a domain size of around 256x256. For domain
sizes larger than that, the parallel implementation quickly grows to be exponentially faster
than the serial. Even by factoring in the extra overhead time of copying variables to the de-
vice, the decreased iteration time will make the parallel approach inherently more effective for
a relatively moderate number of iterations. The performance increase for the largest domain
size of 1024x1024 was measured to be a factor of 18.

We have also seen that for this particular case, a block size of 8x8 seem to be the optimum
size for maximum performance universally over a number of GPUs. This particular block size
improved the performance by up to 30% compared to a block size of 32x32. While smaller
blocks mean that there are more block boundaries where threads need to perform extra com-
putations (see Section 2.2.4), the added occupancy caused by the smaller block sizes seem to
be the largest determining factor for performance. By using this block size, a performance
increase of a factor 26 was obtained instead.

One last conclusion to draw is that, while Numba will convert Python code into C++ code for
the programmer, it will not manage to perform better than a CUDA implementation originally
written in C++. Although the entry level bar for CUDA in C++ is higher, this should be a
real consideration if performance is of paramount interest.

25

References

Lars Davidson. pyCALC-RANS: A Python Code for Two-Dimensional Turbulent Steady
Flow. Tech. rep. Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences,
Chalmers University of Technology, 2021.

Robert Crovella. Fundamental CUDA optimization (Part 1). Online Lecture. Oak Ridge
National Laboratory. Mar. 2020. URL: https://vimeo.com/398824746.

NVIDIA. GeForece RTX 3080-Series. 2022. URL: https://www.nvidia.com/sv-se/
geforce/graphics-cards/30-series/rtx-3080-3080ti/.

Robert Crovella. Fundamental CUDA optimization (Part 2). Online Lecture. Oak Ridge
National Laboratory. Apr. 2020. URL: https://vimeo.com/414827487.

Robert Crovella. CUDA Shared Memory. Online Lecture. Oak Ridge National Labora-
tory. Feb. 2020. URL: https://vimeo.com/393552516.

Robert Crovella. Introduction to CUDA C++. Online Lecture. Oak Ridge National Lab-
oratory. Jan. 2020. URL: https://vimeo.com/386244979.

Robert Crovella. Atomics, Reductions and Warp Shuffle. Online Lecture. Oak Ridge
National Laboratory. May 2020. URL: https://vimeo.com/419029739.

https://vimeo.com/398824746
https://www.nvidia.com/sv-se/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.nvidia.com/sv-se/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://vimeo.com/414827487
https://vimeo.com/393552516
https://vimeo.com/386244979
https://vimeo.com/419029739

	Introduction
	Provided RANS Solver
	Lid Driven Cavity
	Delimitations
	Limitations

	Theory and Methodology
	GPU Architecture
	Caches

	CUDA
	Parallel Discretization
	Indexing
	Block Sizes and Grid Sizes
	Shared Memory
	Index Mapping for Shared Arrays
	Boundary Control
	Syncronization
	Warps
	Occupancy

	CUDA using Numba
	Poisson CFD Solver
	Kernel Setup for Shared Memory Usage

	Results
	Performance Comparison between the CPU and GPU
	The Impact of Complexity
	Performance Comparison between Block Sizes
	Performance Comparison between C++ and Python

	Discussion
	When CUDA is Worth Implementing
	Implementation Issues

	Conclusion
	References

