
pyCALC-LES: A Python Code for DNS, LES
and Hybrid LES-RANS

Lars Davidson
Div.. of Fluid Dynamics

Dept. of Mechanics and Maritime Sciences
Chalmers University of Technology

SE-412 96 Göteborg, Sweden

January 26, 2024

Abstract
This report gives some details on pyCALC-LES and how to use it. It is written in
Python (3.8). The code solves the incompressible momentum equations, the continuity
equation and transport equations for modeled turbulent quantities such as k, ε and ω.
The density is assumed to be constant and equal to one, i.e. ρ ≡ 1. The transport
equations are solved in 3D and the grid may be curvi-linear in the x − y plane. In the
z direction the grid is Cartesian but ∆z may vary.

The code is suitable for DNS, LES or DES (hybrid LES-RANS). For LES, the
Smagorinsky model and the WALE model are implemented. For DES, a k − ω DES
model and a PANS k−ε model are implemented. The code can also be used for steady
RANS and the time-marching method is then used to reach steady flow.

pyCALC-LES is a finite volume code. It is fully vectorized (i.e. no for loops).
The solution procedure is based on fractional step. Second-order central differenc-
ing is used in space and the Crank-Nicolson scheme in time. The discretized equa-
tions are solved with Pythons sparse matrix solvers (currently linalg.lgmres or
linalg.gmres are used). For the pressure Poisson equation, the pyAMG [1] has
been found to be very efficient. For users who have an Nvidia graphics card, the entire
code runs on the CPU (see Section 24). The CuPy library is used and this part was im-
plemented in [2]. On large meshes the speed-up is a factor of 40 on the GPu compared
to the CPU.

1

http://www.tfd.chalmers.se/~lada

Contents
1 Geometrical details of the grid 7

1.1 Grid . 7
1.1.1 Nomenclature for the grid 7
1.1.2 Area calculation of control volume faces 7
1.1.3 Interpolation . 10

1.2 Gradient . 10

2 Diffusion 11
2.1 Unsteady diffusion . 12

2.1.1 Crank-Nicolson . 13
2.2 Convergence criteria . 13
2.3 2D Diffusion . 14
2.4 3D diffusion . 15

3 Convection – diffusion 16
3.1 Central Differencing scheme (CDS) 16
3.2 First-order upwind scheme . 17
3.3 Hybrid scheme . 18
3.4 MUSCL . 18
3.5 Blended CDS and MUSCL . 18
3.6 Inlet boundary conditions using source term 19
3.7 Wall boundary conditions using source term 20

4 The Fractional-step method 20
4.1 Boundary condition for p̄ . 21

5 Boundary Conditions 22
5.1 Outlet velocity, small outlet . 22
5.2 Outlet velocity, large outlet . 22
5.3 Remaining variables . 23

6 The Smagorinsky Model 23

7 The WALE model 24

8 The PANS Model 24

9 The PITM Model 25

10 The k − ω DES model 25

11 Inlet boundary conditions 25
11.1 Synthesized turbulence . 26
11.2 Random angles . 26
11.3 Highest wave number . 26
11.4 Smallest wave number . 27
11.5 Divide the wave number range . 27
11.6 von Kármán spectrum . 27
11.7 Computing the fluctuations . 28

2

3

11.8 Introducing time correlation . 28

12 Procedure to generate anisotropic synthetic fluctuations 30

13 Flow Chart 30

14 Modules 30
14.1 bc outlet bc . 30
14.2 calceps . 30
14.3 calck kom . 31
14.4 calck . 31
14.5 calcom . 31
14.6 calcp . 31
14.7 calcu . 31
14.8 calcv . 31
14.9 calcw . 31
14.10 coeff . 31
14.11 compute face phi . 31
14.12 compute fk . 31
14.13 compute inlet fluct . 32
14.14 conv . 32
14.15 correct conv . 32
14.16 fix eps, fix k, fix omega . 32
14.17 crank nicol . 32
14.18 dphidx, dphidy, dphidz . 32
14.19 init . 32
14.20 modify eps, modify k, modify om, modify u, modify v, modify w . 33
14.21 modify case.py . 33
14.22 modify init . 33
14.23 print indata . 33
14.24 read restart data . 33
14.25 save data . 33
14.26 save.file . 33
14.27 save time aver data . 33
14.28 save vtk . 34
14.29 setup case.py . 34
14.30 solve amg . 34
14.31 solve amgx . 34
14.32 solve 3d . 34
14.33 solve p . 34
14.34 solve px . 34
14.35 solve tdma . 35
14.36 synt fluct . 35
14.37 time stats . 35
14.38 update . 35
14.39 vist kom . 35
14.40 vist pans . 35
14.41 vist smag . 35
14.42 vist wale . 35

4

15 DNS of fully-developed channel flow at Reτ = 500 36
15.1 setup case.py . 37

15.1.1 Section 1 . 37
15.1.2 Section 3 . 37
15.1.3 Section 4 . 37
15.1.4 Section 6 . 37
15.1.5 Section 7 . 38
15.1.6 Section 8 . 38
15.1.7 Section 9 . 39
15.1.8 Section 10 . 39

15.2 modify case.py . 39
15.2.1 modify u . 40

15.3 Run the code . 40

16 Fully-developed channel flow at Reτ = 5 200 using k − ω DES 41
16.1 setup case.py . 41

16.1.1 Section 1 . 41
16.1.2 Section 2 . 41
16.1.3 Section 5 . 41
16.1.4 Section 6 . 41
16.1.5 Section 10 . 42

16.2 modify case.py . 42

17 RANS of channel flow at Reτ = 5 200 using k − ω 42
17.1 setup case.py . 43

17.1.1 Section 1 . 43
17.1.2 Section 2 . 43
17.1.3 Section 3 . 43
17.1.4 Section 8 . 43
17.1.5 Section 10 . 43

17.2 modify case.py . 44

18 Periodic flow over a 2D hill using PANS 44
18.1 setup case.py . 44

18.1.1 Section 1 . 44
18.1.2 Section 2 . 44
18.1.3 Section 4 . 44
18.1.4 Section 6 . 45
18.1.5 Section 8 . 45

18.2 modify case.py . 45
18.2.1 modify u . 45
18.2.2 fix eps . 46

19 Synthetic turbulence at inlet: Channel flow at Reτ = 395 46
19.1 setup case.py . 46

19.1.1 Section 2 . 46
19.1.2 Section 3 . 47
19.1.3 Section 4 . 47
19.1.4 Section 6 . 47
19.1.5 Section 10 . 47

5

19.2 modify case.py . 47
19.2.1 modify init . 47
19.2.2 modify inlet . 48
19.2.3 modify u . 49
19.2.4 modify v . 49
19.2.5 modify w . 49
19.2.6 modify outlet . 49

20 Synthetic turbulence at inlet using commutation terms: Channel flow 50
20.1 setup case.py . 50

20.1.1 Section 2 . 50
20.1.2 Section 4 . 50
20.1.3 Section 6 . 50
20.1.4 Section 10 . 51

20.2 modify case.py . 51
20.2.1 modify init . 51
20.2.2 modify inlet . 52
20.2.3 modify k . 52
20.2.4 modify om . 53

21 RANS of boundary layer flow using k − ω 53
21.1 setup case.py . 53

21.1.1 Section 1 . 53
21.1.2 Section 2 . 53
21.1.3 Section 4 . 54
21.1.4 Section 6 . 54
21.1.5 Section 8 . 54
21.1.6 Section 10 . 54

21.2 modify case.py . 55
21.2.1 modify init . 55

22 RANS of hump flow using the AKN k − ε model 55
22.1 setup case.py . 55

22.1.1 Section 2 . 55
22.1.2 Section 6 . 56
22.1.3 Section 8 . 56

22.2 modify case.py . 56
22.2.1 modify inlet . 56
22.2.2 fix eps . 57

22.3 Using the GPU to solve the equations 57

23 IDDES of hump flow using the k − ε model 58
23.1 setup case.py . 59

23.1.1 Section 6 . 59
23.2 modify case.py . 59

23.2.1 modify inlet . 59
23.2.2 modify fk . 59
23.2.3 modify k . 61

23.3 Using the GPU to solve the equations 62

6

24 IDDES of hump flow running 100% on the GPU 62
24.1 setup case.py . 62

24.1.1 Section 0 . 62
24.1.2 Section 6 . 63

25 Developing boundary layer 63

26 Workshop 63
26.1 Getting started . 63
26.2 Channel flow, RANS . 64

26.2.1 New grid . 64
26.2.2 Boundary wall conditions on ω 65
26.2.3 k − ε model . 66

26.3 Boundary layer flow, RANS . 66
26.4 Channel flow, inlet-outlet, Reτ = 395 67
26.5 Channel flow, inlet-outlet with heat transfer, Reτ = 395 68

26.5.1 Adding buoyancy . 69
26.6 RANS of channel flow at Reτ = 5 200: k − ω and wall functions . . 69
26.7 Channel flow, inlet-outlet, Reτ = 5 200 70

26.7.1 Neumann boundary condition on k 71
26.7.2 No commutation terms . 71
26.7.3 No commutation terms in URANS region 71

26.8 Channel flow, inlet-outlet, Reτ = 5 200, using wall functions 71
26.9 Channel flow, fully developed, Reτ = 5 200 71

26.9.1 Wall boundary condition of ω 72
26.9.2 RANS-LES Interface . 72
26.9.3 Change turbulence model 72

27 Machine Learning for improving wall functions 72
27.1 Directory 1 . 73
27.2 Directory 2 . 73

A Variables in pyCALC-LES 73

B Sparse matrix format in Python 80
B.1 2D grid, ni× nj = (3, 4) . 80
B.2 2D grid, ni× nj = (3, 2) . 82
B.3 3D grid, ni× nj × nk = (3, 2, 2), cyclic in x,i 83
B.4 3D grid, ni× nj × nk = (2, 2, 3), cyclic in z,k 84

C Using pyAMGx on GPU 84

1. Geometrical details of the grid 7

boundary

0

0

1

1

2

2

3

3 4

4 5

boundary

x

Figure 1.1: 1D grid with five cells (ni=5). The bullets denote cell centers (and control
volume) which are labeled 0–4. Dashed lines denote control volume faces labeled 0–5.

1 Geometrical details of the grid

1.1 Grid
The grid (x2d,y2d) must be generated by the user. The grid spacing in the third
direction is set by the 1D array z (control volume face). The nodes of the control
volume xp2d,yp2d are placed at the center of the control volume. In any coordinate
direction, lets say ξ, there are ni+1 control volume faces, and ni control volumes.
Note that (ξ, η, z) must form a right-hand coordinate system. The grid in the x − y
plane may be curvilinear.

1.1.1 Nomenclature for the grid

Figure 1.1 shows a 1D grid. The first cell is number 0. Note that there are no ghost cells.
This means that all Dirichlet boundary conditions must be prescribed using sources.

A schematic 2D control volume grid is shown in Fig. 1.2. Single capital letters
define nodes [E(ast), W(est), N(orth), S(outh), H(igh) and L(ow)], and single small
letters define faces of the control volumes. When a location can not be referred to by
a single character, combination of letters are used. The order in which the characters
appear is: first east-west (i direction), then north-south (j direction), and finally high-
low (k direction).

1.1.2 Area calculation of control volume faces

The x and y coordinates of the corners of the face in Fig. 1.3 are given by

x2d(i,j),y2d(i,j)

x2d(i+1,j),y2d(i+1,j)

x2d(i,j+1),y2d(i,j+1)

x2d(i+1,j+1),y2d(i+1,j+1)

The grid in the y − z direction (see Fig. 1.4), but may be non-equidistant. The z
coordinates of the face and the cell center are given by the 1D arrays z(k) and zp(k),
respectively.

The vectors ~a, ~b and ~c for faces in Fig. 1.3 are set in a manner that the normal
vectors point outwards. For the west face they are defined as

1.1. Grid 8

P E
e

W
w

N

n

S

sx, i

y, j

P H
h

L
l

N

n

S

sz, k

y, j

Figure 1.2: Control volume. Top: x− y plane; bottom: y − z plane.

1.1. Grid 9

~a: from corner (i,j) to (i,j+1)

~b: from corner (i,j) to (i+1,j)

The Cartesian components of ~a and~b are thus

ax = x2d(i, j + 1)− x2d(i, j) (1.1)
ay = y2d(i, j + 1)− y2d(i, j)

bx = x2d(i+ 1, j)− x2d(i, j)

by = y2d(i+ 1, j)− y2d(i, j)

Since the grid in the z direction is Cartesian, it is simple to compute the west and
south areas of a control volume. The outwards-pointing vector areas reads

Awx = −ay∆z

Awy = ax∆z

Asx = by∆z

Asy = −bx∆z

which are stored in Python arrays areawx, areawy, areasx and areasy.
The area of the control volume in the x − y plane is calculated as the sum of two

triangles. The area of the two triangles, A1, A2, is calculated as the cross product.

A1 =
1

2
|~a×~b|; A2 =

1

2
|~c× ~d| (1.2)

The area for the low face is then obtained as

Az = A1 +A2 (1.3)

which is stored in the Python array areaz.
The volume of the control volume is computed as Az∆z which is stored in the

Python array vol.

A1

A2~a

~b

~c

~d

x2d(i,j+1)

x2d(i,j)

x2d(i+1,j+1)

x2d(i+1,j)

xp2d(i,j)

x

y

Figure 1.3: Control volume in x − y plane. Calculation of areas and volume of cell
i,j,k.

1.2. Gradient 10

1.1.3 Interpolation

The nodes where all variables are stored are situated in the center of the control volume.
When a variable is needed at a control volume face, linear interpolation is used. The
value of the variable φ at the west face is

φw = fxφP + (1− fx)φW (1.4)

where

fx =
|−−→Ww|

|−→Pw|+ |−−→Ww|
(1.5)

where |−→Pw| is the distance from P (the node) to w (the west face). In pyCALC-
LES the interpolation factors (fx, fy) are stored in the Python array fx and fy. The
interpolation factor in the z direction is stored in the Python array fz.

All geometrical quantities are computed in the module init.

1.2 Gradient
The derivatives of φ (∂φ/∂xi) at the cell center are in pyCALC-LEScomputed as
follows. We apply Green’s formula to the control volume, i.e.

∂Φ

∂x
=

1

V

∫
A

ΦnxdA,
∂Φ

∂y
=

1

V

∫
A

ΦnydA,
∂Φ

∂z
=

1

V

∫
A

ΦnzdA

where A is the surface enclosing the volume V . For the x component, for example, we
get

∂Φ

∂x
=

1

V
(ΦeAex − ΦwAwx + ΦnAnx − ΦsAsx + ΦhAhx − ΦlAlx) (1.6)

where index e, w, n, s, h, l denotes east (i+1/2), west (i−1/2), north (j+1/2), south
(j − 1/2), high (k + 1/2) and low (k − 1/2).

The values at the west, south and low faces of a variable are stored in the Python
arrays u face w, u face s, u face l, v face w, etc. They are computed in the
Python module compute face phi.

The derivatives ∂Φ/∂x, ∂Φ/∂x and ∂Φ/∂z, are computed in the Python modules
dphidx, dphidy and dphidz, respectively.

yp2d(i,j),zp(k)

y2d(i,j+1),z(k+1)

y2d(i,j),z(k+1)y2d(i,j),z(k)

y2d(i,
j+1),z

(k)

z

y

Figure 1.4: Control volume in y − z plane.

2. Diffusion 11

u uu
W EP

ew

-�
∆x

-�
δxe

-�
δxw

Figure 2.1: 1D control volume. Node P located in the middle of the control volume.

2 Diffusion
We start by looking at 1D diffusion for a generic variable, φ, with diffusion coefficient
Γ

d

dx

(
Γ
dφ

dx

)
+ S = 0.

To discretize (i.e. to go from a continuous differential equation to an algebraic discrete
equation) this equation is integrated over a control volume (C.V.), see Fig. 2.1.

∫ e

w

[
d

dx

(
Γ
dφ

dx

)
+ S

]
dx =

(
Γ
dφ

dx

)
e

−
(

Γ
dφ

dx

)
w

+ S̄∆x = 0 (2.1)

where (see Fig. 2.1):

P: an arbitrary node

E, W: its east and west neighbor node, respectively

e, w: the control volume’s east and west face, respectively

S̄: volume average of S

The variable φ and the diffusion coefficient, Γ, are stored at the nodes W , P and
E. Now we need the derivatives dφ/dx at the faces w and e. These are estimated from
a straight line connecting the two adjacent nodes, i.e.(

dφ

dx

)
e

' φE − φP
δxe

,

(
dφ

dx

)
w

' φP − φW
δxw

. (2.2)

The diffusion coefficient, Γ, is also needed at the faces. It is estimated by linear
interpolation between the adjacent nodes. For the east face, for example, we obtain

Γw = fxΓP + (1− fx)ΓW , (2.3)

Insertion of Eq. 2.2 into Eq. 2.1 gives

aPφP = aEφE + aWφW + SU (2.4)

2.1. Unsteady diffusion 12

u uu
Wo EoPo

u uu
W1 E1P1

ew

-�
∆x

-�
δxe

-�
δxw

6

?

∆t

- x

6

t

Figure 2.2: Control volume for 1D unsteady diffusion

aE =
Γe
δxe

aW =
Γw
δxw

SU = S̄∆x

aP = aE + aW

2.1 Unsteady diffusion
We discretize the unsteady diffusion equation

∂φ

∂t
=

∂

∂x

(
Γ
∂φ

∂x

)
over a 1D control volume (see Fig. 2.2). We integrate in space and time∫ t+∆t

t

∫ e

w

∂φ

∂t
dxdt =

∫ t+∆t

t

∫ e

w

∂

∂x

(
Γ
∂φ

∂x

)
dxdt

Left-hand side: ∫ e

w

 φ1︸︷︷︸
t+∆t

− φo︸︷︷︸
t

 dx = (φ1
P − φoP)∆x

Right-hand side: ∫ t+∆t

t

[(
Γ
∂φ

∂x

)
e

−
(

Γ
∂φ

∂x

)
w

]
dt =∫ t+∆t

t

[
Γe
φE − φP
δxe

− Γw
φP − φW
δxw

]
dt

At what time should φW , φP and φE be taken?

2.2. Convergence criteria 13

1. Fully implicit: take them at the new time step t + ∆t, i.e. φ1
W , φ1

P and φ1
E

(first-order accurate).

2. Fully explicit: take them at the old time step t, i.e. φoW , φoP and φoE (first-order
accurate).

3. Use central differencing in time (Crank-Nicolson). Second-order accurate. Note
that this is what we did in space when integrating the LHS.

2.1.1 Crank-Nicolson

For Crank-Nicolson the interpolation factor in time, α, is equal to 0.5. Below we
express the time integration in a general way using α. When α = 0, it corresponds to
fully explicit and when α = 1, it corresponds to fully implicit. We get

aPφP = αaEφE + αaWφW (2.5)
+ (1− α)(aEφ

o
E + aWφ

o
W) + (aoP − (1− α)(aE + aW))φoP︸ ︷︷ ︸

SU

aE =
Γe
δxe

, aW =
Γw
δxw

, aoP =
∆x

∆t

aP = α (aE + aW) + aoP

The Crank-Nicolson scheme (α = 0.5) is implicit and unconditionally stable. In prac-
tice, however, it is less stable than the fully implicit scheme. Crank-Nicolson in time
can be compared with central differencing in space, even though it is much more stable.

2.2 Convergence criteria
Compute the residual for Eq. 2.4

R =
∑

all cells

|aEφE + aWφW + SU − aPφP |

In Python it corresponds to |Ax− b|. Since we want Eq. 2.4 to be satisfied, the differ-
ence of the right-hand side and the left-hand side is a good measure of how well the
equation is satisfied. The residual R is computed in the sparse-matrix solvers except
for the continuity equation for which the Python command xp.linalg.norm is em-
ployed. Note that R has the units of the integrated differential equation. For example,
for the temperature R has the same dimension as heat transfer rate divided by density,
ρ, and specific heat, cp, i.e. temperature times volume per second [Km3/s]. If R = 1,
it means that the residual for the computation is 1. This does not tell us anything, since
it is problem dependent. We can have a problem where the total heat transfer rate is
1000, and a another where it is only 1. In the former case R = 1 means that the so-
lutions can be considered converged, but in the latter case this is not true at all. We
realize that we must normalize the residual to be able to judge whether the equation
system has converged or not. The criterion for convergence is then

R

F
≤ ε

where 0.0001 < ε < 0.01, and F represents the total flow of φ.
Regardless if we solve the continuity equation, the Navier-Stokes equation or the

temperature equation, the procedure is the same: F should represent the total flow of
the dependent variable.

2.3. 2D Diffusion 14

dxw

dxe

Dx

dyn

dys

P E

N

S

W

Dy

Figure 2.3: 2D control volume.

Continuity equation. F is here the total incoming volume flow V̇ . The Python vari-
able resnorm p is used for scaling.

Navier-Stokes equation. The unit is that of a force per unit volume. A suitable value
of F is obtained from F = V̇ ū at the inlet. The Python variable resnorm vel
is used for scaling.

2.3 2D Diffusion
The two-dimensional diffusion equation for a generic variable φ reads

∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+ S = 0. (2.6)

In the same way as we did for the 1D case, we integrate over our control volume, but
now it’s in 2D (see Fig. 2.3), i.e.∫ e

w

∫ n

s

[
∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+ S

]
dxdy = 0.

We start by the first term. The integration in x direction is carried out in exactly the
same way as in 1D, i.e.∫ e

w

∫ n

s

[
∂

∂x

(
Γ
∂φ

∂x

)]
dxdy =

∫ n

s

[(
Γ
∂φ

∂x

)
e

−
(

Γ
∂φ

∂x

)
w

]
dy

=

∫ n

s

(
Γe
φE − φP
δxe

− Γw
φP − φW
δxw

)
dy

Now integrate in the y direction. We do this by estimating the integral∫ n

s

f(y)dy = fP∆y +O
(
(∆y)2

)

2.4. 3D diffusion 15

(i.e. f is taken at the mid-point P) which is second order accurate, since it is exact if f
is a linear function. For our equation we get∫ n

s

(
Γe
φE − φP
δxe

− Γw
φP − φW
δxw

)
dy

=

(
Γe
φE − φP
δxe

− Γw
φP − φW
δxw

)
∆y

Doing the same for the diffusion term in the y direction in Eq. 2.6 gives(
Γe
φE − φP
δxe

− Γw
φP − φW
δxw

)
∆y

+

(
Γn
φN − φP
δyn

− Γs
φP − φS
δys

)
∆x+ S̄∆x∆y = 0

Rewriting it as an algebraic equation for φP , we get

aPφP = aEφE + aWφW + aNφN + aSφS + SU (2.7)

aE =
Γe∆y

δxe
, aW =

Γw∆y

δxw
, aN =

Γn∆x

δyn
, aS =

Γs∆x

δys

SU = S̄∆x∆y, aP = aE + aW + aN + aS − SP .

In this 2D equation we have introduced the general form of the source term, S =
SPΦ + SU ; this could also be done in the 1D equation (Eq. 2.4).

For more detail on diffusion, see
http://www.tfd.chalmers.se/˜lada/comp fluid dynamics/lecture notes.html

2.4 3D diffusion
In pyCALC-LES the diffusion coefficients are computed using areas and volume, i.e.

aPφP = aEφE + aWφW + aNφN + aSφS + aHφH + aLφL + SU (2.8)

aW =
ΓwA

2
w

Vw

aS =
ΓsA

2
s

Vs

aL =
ΓlA

2
l

Vl
aP = aE + aW + aN + aS + aH + aL − SP

The east, north and high coefficients are computed from aW , aS and aL, respectively,
as

aE,i = aW,i+1

aN,j = aS,j+1

aH,k = aL,k+1

http://www.tfd.chalmers.se/~lada/comp_fluid_dynamics/lecture_notes.html

3. Convection – diffusion 16

u uu
W EP

ew

-�
∆x

-�
δxe

-�
δxw

Figure 3.1: 1D control volume. Node P located in the middle of the control volume.

3 Convection – diffusion
The 1D convection-diffusion equation reads

d

dx
(ūφ) =

d

dx

(
Γ
dφ

dx

)
+ S

We discretize this equation in the same way as the diffusion equation. We start by
integrating over the control volume (see Fig. 3.1).

∫ e

w

d

dx
(ūφ) dx =

∫ e

w

[
d

dx

(
Γ
dφ

dx

)
+ S

]
dx. (3.1)

We start by the convective term (the left-hand side)∫ e

w

d

dx
(ūφ) dx = (ūφ)e − (ūφ)w .

We assume the velocity ū to be known, or, rather, obtained from the solution of the
Navier-Stokes equation.

3.1 Central Differencing scheme (CDS)
How to estimate φe and φw? The most natural way is to use linear interpolation (central
differencing); for the east face this gives

(ūφ)w = (ū)w φw

where the convecting part, ū, is taken by central differencing, and the convected part, φ,
is estimated with different differencing schemes. We start by using central differencing
for φ so that

(ūφ)w = (ū)w φw, where φw = fxφP + (1− fx)φW

where fx is the interpolation function (see Eq. 2.3, p. 11), and for constant mesh
spacing fx = 0.5. Assuming constant equidistant mesh (i.e. δxw = δxe = ∆x) so that
fx = 0.5, inserting the discretized diffusion and the convection terms into Eq. 3.1 we
obtain

(ū)e
φE + φP

2
− (ū)w

φP + φW
2

=

=
Γe(φE − φP)

δxe
− Γw(φP − φW)

δxw
+ S̄∆x

3.2. First-order upwind scheme 17

P EWWW

w

δ(WW)W δWP δPE

x

Figure 3.2: Constant mesh spacing. uw > 0.

which can be rearranged as

aPφP = aEφE + aWφW + SU

aE =
Γe
δxe
− 1

2
(ū)e, aW =

Γw
δxw

+
1

2
(ū)w

SU = S̄∆x, aP =
Γe
δxe

+
1

2
(ū)e +

Γw
δxw

− 1

2
(ū)w

We want to compute aP as the sum of its neighbor coefficients to ensure that aP ≥
aE +aW which is the requirement to make sure that the iterative solver converges. We
can add

(ū)w − (ū)e = 0

(the continuity equation) to aP so that

aP = aE + aW .

Central differencing is second-order accurate (easily verified by Taylor expansion),
i.e. the error is proportional to (∆x)2. This is very important. If the number of cells
in one direction is doubled, the error is reduced by a factor of four. By doubling the
number of cells, we can verify that the discretization error is small, i.e. the difference
between our algebraic, numerical solution and the exact solution of the differential
equation.

Central differencing gives negative coefficients when |Pe| > 2; this condition is
unfortunately satisfied in most of the computational domain in practice. The result is
that it is difficult to obtain a convergent solution in steady flow. However, in LES this
does usually not pose any problems.

3.2 First-order upwind scheme
For turbulent quantities upwind schemes must usually be used in order stabilize the
numerical procedure. Furthermore, the source terms in these equations are usually very
large which means that an accurate estimation of the convection term is less critical.

In this scheme the face value is estimated as

φw =

{
φW if ūw ≥ 0
φP otherwise

• first-order accurate

• bounded

The large drawback with this scheme is that it is inaccurate.

3.3. Hybrid scheme 18

3.3 Hybrid scheme
This scheme is a blend of the central differencing scheme and the first-order upwind
scheme. We learned that the central scheme is accurate and stable for |Pe| ≤ 2. In
the Hybrid scheme, the central scheme is used for |Pe| ≤ 2; otherwise the first-order
upwind scheme is used. This scheme is only marginally better than the first-order
upwind scheme, as normally |Pe| > 2. It should be considered as a first-order scheme.

3.4 MUSCL
MUSCL [3] is a second-order upwind bounded scheme. It uses two nodes upstream
and one downstream, see Fig. 3.2. The coefficients aW , aE , . . . aH are computed with
first-order upwind. A correction term is then added to the source term. For the west
face, e.g, it reads

C+ = 0.5 + 0.5 · sign(Cw)

C− = 0.5 · sign(Cw)− 0.5 (3.2)
SMU = 0.5 · Cw · (C+ ·minmo(uP − uW,uW − uWW)

− C− ·minmo(uP − uW,uE − uP))

where Cw is the convective flux through the west face. The function minmo is defined
as

minmo(a,b) = sign(a) ·max(0,min(|a|,b · sign(a))

3.5 Blended CDS and MUSCL
When using the central differencing scheme (CDS), numerical oscillations may ap-
pear in inviscid regions. If they are harmful, they can be avoided by using a blend
between CDS and MUSCLE. The MUSCL scheme is first used. A blending parameter,
b =blend, is set. If b = 1, we use full CDS. This corresponds to deferred CDS and is
different from the standard CDS because here the left-hand side (i.e. aW , aE , . . . aH)
is first-order upwind and the CDS is added on the right-hand side. Hence, deferred
CDS (b = 1) is more dissipative than CDS.

The blending parameter, b, is first used for reducing the additional source term, SMU
(see Eq. 3.2) when b < 1, i.e.

SMU = (1− b) · SMU (3.3)

Second, it is used for adding the CDS scheme to the right-hand side and subtracting
the first-order upwind scheme. For the west face the additional source term reads

SCDSU = b · (acW − auW) · (α · (uW − uP) + (1− α) · ((uoW − uoP)) (3.4)

where superscript c, u and o denote CDS, first-order upwind and previous time step,
respectively. The parameter, α, is the time-discretization, see Eq. 2.5; it is 0.5 for
Crank-Nicolson.

3.6. Inlet boundary conditions using source term 19

boundary

0

0

1

1

2

x

Figure 3.3: 1D grid. Boundary conditions at x = 0.

3.6 Inlet boundary conditions using source term
Since pyCALC-LES does not use any ghost cells or cell centers located at the bound-
aries, the boundary conditions must be prescribed through source terms. By default,
there is no flux through the boundaries and hence Neumann boundary conditions are
set by default. Here, we describe how to set Dirichlet boundary conditions.

Consider discretization in a cell, P , adjacent to an inlet, see Fig. 3.3. Consider only
convection. For the ū equation at cell i = 0 we get

aP ūP = aW ūW + aE ūE + SU (3.5)
aP = aW + aE − SP , aW = Cw, aE = −0.5Ce

Cw = ūWAw

aP = Cw − 0.5Ce

Note there’s no 0.5 in front of Cw since the west node is located at the inlet. Since
there is no cell west of i = 0, Eq. 3.5 has to be implemented with additional source
terms

aW = 0 (3.6)
SuU,add = Cwūin

SuP,add = −Cw

For v̄ and w it reads

SvU,add = Cwv̄in (3.7)
SvP,add = −Cw
SwU,add = Cww̄in

SwP,add = −Cw

The additional term for the diffusion reads

SuU,add,diff =
νtotAw

∆x
ūin (3.8)

SvU,add,diff =
νtotAw

∆x
v̄in

SwU,add,diff =
νtotAw

∆x
w̄in

SP,add,diff = −νtotAw
∆x

3.7. Wall boundary conditions using source term 20

where SP,add,diff is the same for ū, v̄ and w̄. The viscous part of Eq. 3.8 is imple-
mented in module bc. The turbulent part and the convective part (Eqs. 3.6 and 3.7) are
implemented in modify u, modify v etc.

3.7 Wall boundary conditions using source term
We use exactly the same procedure as in Section 3.6. At walls, there is no convection
and the velocity is zero. Hence we simply use Eq. 3.8 with ū = v̄ = w̄ = 0, i.e. (for
west wall)

SP,add,diff = −νAw
∆x

Note that we use ν instead of νtot since the turbulent viscosity is zero at the wall.
This boundary condition is implemented in module bc.

4 The Fractional-step method
modules: calcp, correct conv

The numerical method based on an implicit, finite volume method with collocated
grid arrangement, central differencing in space, and Crank-Nicolson (α = 0.5) in
time is briefly described below. An implicit, two-step time-advancement methods is
used [4]. The Navier-Stokes equation for the ūi velocity reads

∂ūi
∂t

+
∂

∂xj
(ūiūj) = − ∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τij
∂xj

(4.1)

The discretized momentum equations read

v̄
n+1/2
i = v̄ni + ∆tH

(
v̄n, v̄

n+1/2
i

)
−α∆t

∂p̄n+1/2

∂xi
− (1− α)∆t

∂p̄n

∂xi
(4.2)

where H includes convective, viscous and SGS terms. In SIMPLE notation this equa-
tion reads

aP v̄
n+1/2
i =

∑
nb

anbv̄
n+1/2 + SU − α

∂p̄n+1/2

∂xi
∆V

where SU includes the explicit pressure gradient. The face velocities v̄n+1/2
f,i = 0.5(v̄

n+1/2
i,J +

v̄
n+1/2
i,J−1) (note that J denotes node number and i is a tensor index) do not satisfy conti-

nuity. Create an intermediate velocity field by subtracting the implicit pressure gradient
from Eq. 4.2, i.e.

v̄∗i = v̄ni + ∆tH
(
v̄n, v̄

n+1/2
i

)
− (1− α)∆t

∂p̄n

∂xi

⇒ v̄∗i = v̄
n+1/2
i + α∆t

∂p̄n+1/2

∂xi
(4.3)

4.1. Boundary condition for p̄ 21

Take the divergence of Eq. 4.3b and require that ∂v̄n+1/2
f,i /∂xi = 0 so that

∂2p̄n+1

∂xi∂xi
=

1

∆tα

∂v̄∗f,i
∂xi

(4.4)

This is a diffusion equation which is discretization in the same way as in Sections 2.3
and 2.4 (the diffusion coefficient Γ is set to 1/(∆tα)).

The Poisson equation for p̄n+1 is solved with an efficient algebraic multigrid method,
either on the CPU (pyAMg [1]) or on the GPU using pyAMGx [5]. The face velocities
are corrected as

v̄n+1
f,i = v̄∗f,i − α∆t

∂p̄n+1

∂xi
(4.5)

1. Solve the discretized filtered Navier-Stokes equation, Eq. 4.3, for v̄1, v̄2 and v̄3.

2. Create an intermediate velocity field v̄∗i from Eq. 4.3.

3. Use linear interpolation to obtain the intermediate velocity field, v̄f,i, at the face

4. The Poisson equation (Eq. 4.4) is solved with pyAMG or pyAMGx.

5. Compute the face velocities (which satisfy continuity) from the pressure and the
intermediate face velocity from Eq. 4.5

6. Step 1 to 4 is performed till convergence (normally one iteration) is reached.

7. The turbulent viscosity is computed and transport equations for turbulent quan-
tities are solved.

8. Next time step.

4.1 Boundary condition for p̄

The Poisson equation for pressure reads (see Eq. 4.4)

∂2p̄

∂xi∂xi
=

1

∆tα

∂v̄∗f,i
∂xi

Integration over the entire flow domain, V , using Gauss divergence law gives∫
S

∂p̄

∂xi
nidS =

1

∆tα

∫
S

v̄∗f,inidS (4.6)

where S denotes the bounding surface of the flow domain and ni is the unit normal
vector of the surface. At the boundaries, the intermediate velocity field, v̄∗f,i, is equal
to the physical velocity, i.e. v̄∗f,i = v̄i Hence, the right side of Eq. 4.6 expresses the
total mass flow out of the domain. This must – due to global continuity – be zero. A
consistent boundary condition for the pressure is then

∂p̄

∂xi
ni =

∂p̄

∂xn
= 0 (4.7)

at all boundaries (xn denotes the local direction normal to the boundary).

5. Boundary Conditions 22

RANS LES
Domain 2D or 3D always 3D
Time domain steady or unsteady always unsteady
Space discretization 2nd order upwind central differencing
Time discretization 1st order 2nd order (e.g. C-N)
Turbulence model more than two-equations zero- or one-equation

Table 4.1: Differences between a finite volume RANS and LES code.

t

u

es

Figure 4.1: Time averaging in LES.

5 Boundary Conditions

5.1 Outlet velocity, small outlet
For small outlets, the outlet velocity can be determined from global continuity. As the
outlet is small a constant velocity over the whole outlet can be used. The outlet velocity
is set as (see Fig. 5.1)

ūinhin = ūouthout ⇒ ūout = ūinhin/hout

5.2 Outlet velocity, large outlet
For large outlets the outlet velocity must be allowed to vary over the outlet. The proper
boundary condition in this case is ∂ū/∂x = 0. Hence it is important that the flow near
the outlet is fully developed, so that this boundary condition corresponds to the flow
conditions. The best way to ensure this is to locate the outlet boundary sufficiently far

i

o

ui

uo

Figure 5.1: Outlet boundary condition. Small outlet

5.3. Remaining variables 23

ui

w
e o

i

Figure 5.2: Outlet boundary condition. Large outlet.

downstream. If we have a recirculation region in the domain (see Fig. 5.2), the outlet
should be located sufficiently far downstream of this region so that ∂ū/∂x ' 0.

The outlet boundary condition is implemented as follows (see Fig. 5.2)

1. Set ūe = ūw for all nodes (i.e. for j = 0 to 4, see Fig. 5.2);

2. In order to speed up convergence, enforce global continuity.

– Inlet volume flow: V̇in =
∑
inlet ūin∆y

– Outlet volume flow: V̇out =
∑
outlet ūout∆y

– Compute correction velocity: ūcorr = (V̇in− V̇out)/(Aout), whereAout =∑
outlet ∆y.

– Correct ūe so that global continuity (i.e. V̇in = V̇out) is satisfied: ūnewe =
ūe + ūcorr

This boundary condition is implemented in module modify outlet.

5.3 Remaining variables
Set ∂Φ/∂x = 0, and implement it through Φni = Φni−1 each iteration. This is done
in module compute face phi if phi bc east type =’n’.

6 The Smagorinsky Model
module: vist les

The simplest model is the Smagorinsky model [6]:

τij −
1

3
δijτkk = −νsgs

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
= −2νsgss̄ij

νsgs = (CS∆)
2√

2s̄ij s̄ij ≡ (CS∆)
2 |s̄| (6.1)

and the filter-width is taken as the local grid size

∆ = (∆Vijk)
1/3 (6.2)

Near the wall, the SGS viscosity becomes quite large since the velocity gradient is
very large at the wall. A convenient way to dampen the SGS viscosity near the wall is
simply to use the RANS length scale as an upper limit, i.e.

∆ = min
{

(∆Vijk)
1/3

, κn
}

(6.3)

where n is the distance to the nearest wall. CS is set to 0.1 (in pyCALC-LES it is set
by cmu).

7. The WALE model 24

7 The WALE model
module: vist wale

The WALE model by [7] reads

gij = ∂v̄i
∂xj

, g2
ij = gikgkj

s̄dij = 1
2

(
g2
ij + g2

ji

)
− 1

3δijg
2
kk

νsgs = (Cm∆)
2 (s̄dij s̄

d
ij)

3/2

(s̄ij s̄ij)
5/2+(s̄dij s̄dij)

5/4 (7.1)

with Cm = 0.325 which corresponds to Cs = 0.1.

8 The PANS Model
module: calck, calceps, vist pans

The Reynolds number PANS model presented in [8, 9] reads

∂k

∂t
+
∂(kūj)

∂xj
=

∂

∂xj

[(
ν +

νt
σku

)
∂k

∂xj

]
+ (P k − ε)

∂ε

∂t
+
∂(εūj)

∂xj
=

∂

∂xj

[(
ν +

νt
σεu

)
∂ε

∂xj

]
+ Cε1P

k ε

k
− C∗ε2

ε2

k

νt = Cµfµ
k2

ε
, C∗ε2 = Cε1 +

fk
fε

(Cε2f2 − Cε1)

σku ≡ σk
f2
k

fε
, σεu ≡ σε

f2
k

fε
, P k = 2νts̄ij s̄ij (8.1)

f2 =

[
1− exp

(
− y∗

3.1

)]2{
1− 0.3 exp

[
−
(Rt

6.5

)2
]}

fµ =

[
1− exp

(
−y
∗

14

)]2
{

1 +
5

R
3/4
t

exp

[
−
(
Rt
200

)2
]}

Rt =
k2

νε
, y∗ =

Uεy

ν
, Uε = (εν)1/4

The modifications introduced by the PANS modeling as compared to its parent RANS
model are underlined. The model constants take the same values as in the AKN
model [10], i.e.

Cε1 = 1.5, Cε2 = 1.9, σk = 1.4, σε = 1.4, Cµ = 0.09 (8.2)

When the turbulent Prandtl numbers, σk and σε (Python variables prand k and prand eps),
are set to negative values, σk,u and σε,u are computed as in Eq. 8.1 using the absolute
values of σk and σε. When σk and σε are positive, the PITM model is used (see Sec-
tion 9).

The function fε, the ratio of the modeled to the total dissipation, is set to one since
the turbulent Reynolds number is high. fk is computed as [11]

fk = max

[
fk,min,min

(
1, 1− ψ − 1

Cε2 − Cε1

)]
(8.3)

ψ = max

(
1,

k3/2/ε

CDES∆max

)
, ∆max = max(∆x1,∆x2,∆x3)

9. The PITM Model 25

which means that the interface is chosen automatically. The minimum fk,min is stored
in the Python variable fkmin limit

At the wall-adjacent cells, ε is not solved but it is fixed as

εP =
2νk

y2
(8.4)

where subscript P denotes wall-adjacent cells and y is the distance between the cell
center and the wall. This is done in module fix eps.

9 The PITM Model
PITM is an acronym for Partially Integrated Transport Model [12, 13]. It is identical
to the PANS model, except that fk = 1 in the diffusion terms of the k and ε equations.
Setting pans=True and positive values σk and σε activates PITM.

10 The k − ω DES model
modules: calck kom, calcom, vist kom

The Wilcox k − ω RANS turbulence model [14] modified for DES reads

∂k

∂t
+
∂v̄ik

∂xi
= P k − FDEScµkω +

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
∂ω

∂t
+
∂v̄iω

∂xi
= Cω1

ω

k
P k − Cω2ω

2 +
∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
(10.1)

νt =
k

ω

FDES = max

(
k1/2

cµω∆
, 1

)
, ∆ = 0.67 max(∆x1,∆x2,∆x2)

where cµ = 0.09, cω1 = 5/9, cω2 = 3/40, σk = 0.5 = σω = 2.0. The wall boundary
conditions are

kw = 0, ωw = 10
6ν

Cω2y2
(10.2)

where y is the wall distance between the wall-adjacent cell center and the wall.

11 Inlet boundary conditions
In RANS it is sufficient to supply profiles of the mean quantities such as velocity and
temperature plus the turbulent quantities (e.g. k and ε). However, in unsteady simula-
tions (LES, URANS, DES . . .) the time history of the velocity and temperature need to
be prescribed; the time history corresponds to turbulent, resolved fluctuations. In some
flows it is critical to prescribe reasonable turbulent fluctuations, but in many flows it
seems to be sufficient to prescribe constant (in time) profiles [15, 16].

There are different ways to create turbulent inlet boundary conditions. One way is
to use a pre-cursor DNS or a well resolved LES of channel flow. This method is limited

11.1. Synthesized turbulence 26

to fairly low Reynolds numbers and it is difficult (or impossible) to re-scale the DNS
fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuations is the vortex method [17].
It is based on a superposition of coherent eddies where each eddy is described by a
shape function that is localized in space. The eddies are generated randomly in the
inflow plane and then convected through it. The method is able to reproduce first and
second-order statistics as well as two-point correlations.

A third method is to take resolved fluctuations at a plane downstream of the inlet
plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlet fluctuations.

11.1 Synthesized turbulence
module: synt fluct.

The method described below was developed in [18, 19] for creating turbulence for
generating noise. It was later further developed for inlet boundary conditions [20, 21,
22, 23].

A turbulent fluctuating velocity fluctuating field (whose average is zero) can be
expressed using a Fourier series, see [24]. Let us re-write this formula as

an cos(nx) + bn sin(nx) =

cn cos(αn) cos(nx) + cn sin(αn) sin(nx) = cn cos(nx− αn) (11.1)

where an = cn cos(α) , bn = cn sin(αn). The new coefficient, cn, and the phase angle,
αn, are related to an and bn as

cn =
(
a2
n + b2n

)1/2
, αn = arctan

(
bn
an

)
(11.2)

A general form for a turbulent velocity field can thus be written as

v′(x) = 2

N∑
n=1

ûn cos(κn · x + ψn)σn (11.3)

where ûn, ψn and σni are the amplitude, phase and direction of Fourier mode n. The
synthesized turbulence at one time step is generated as follows.

11.2 Random angles
The angles ϕn and θn determine the direction of the wavenumber vector κ, see Eq. 11.3
and Eq. 11.1; αn denotes the direction of the velocity vector, v′. For more details,
see [24].

11.3 Highest wave number
Define the highest wave number based on mesh resolution κmax = 2π/(2∆) (see [24]),
where ∆ is the grid spacing. Often the smallest grid spacing near the wall is too small,
and then a slightly larger values may be chosen. Here we don’t let it be smaller than
dmin synt (which can be set to a fraction of dz).

11.4. Smallest wave number 27

k1p

s

k3p

a

k2p

k3p

0
k2

kn

k1p

f
k1

k3

t

Figure 11.1: The wave-number vector, κni , and the velocity unit vector, σni , are orthog-
onal (in physical space) for each wave number n.

11.4 Smallest wave number
Define the smallest wave number from κ1 = κe/p, where κe = α9π/(55Lt), α =
1.453. The turbulent length scale, Lt, may be estimated in the same way as in RANS
simulations, i.e. Lt ∝ δ where δ denotes the inlet boundary layer thickness. In [21, 22,
23] it was found that Lt ' 0.1δin is suitable. Here we usually use Lt ' 0.2δin.

Factor p should be larger than one to make the largest scales larger than those
corresponding to κe. A value p = 2 is suitable.

11.5 Divide the wave number range
Divide the wavenumber space, κmax − κ1, into N modes, equally large, of size ∆κ.

11.6 von Kármán spectrum
A modified von Kármán spectrum is chosen, see Eq. 11.4 and Fig. 11.2. The amplitude
ûn of each mode in Eq. 11.3 is then obtained from

ûn = (E(κ)∆κ)1/2 (11.4)

E(κ) = cE
u2
rms

κe

(κ/κe)
4

[1+(κ/κe)2]17/6
e[−2(κ/κη)2]

κ = (κiκi)
1/2, κη = ε1/4ν−3/4

The coefficient cE is obtained by integrating the energy spectrum over all wavenumbers
to get the turbulent kinetic energy, i.e.

k =

∫ ∞
0

E(κ)dκ (11.5)

11.7. Computing the fluctuations 28

53

dk

kn

k

ek

ekn

kp

ke

Figure 11.2: Modified von Kármán spectrum

which gives [25]

cE =
4√
π

Γ(17/6)

Γ(1/3)
' 1.453 (11.6)

where

Γ(z) =

∫ ∞
0

e−z
′
xz−1dz′ (11.7)

11.7 Computing the fluctuations
Having ûn, κnj , σni and ψn, allows the expression in Eq. 11.3 to be computed, i.e.

v′1 = 2
∑N
n=1 û

n cos(βn)σ1

v′2 = 2
∑N
n=1 û

n cos(βn)σ2

v′3 = 2
∑N
n=1 û

n cos(βn)σ3

βn = kn1 x1 + kn2 x2 + kn3 x3 + ψn (11.8)

where ûn is computed from Eq. 11.4.
In this way inlet fluctuating velocity fields (v′1, v

′
2, v
′
3) are created at the inlet x2−x3

plane.

11.8 Introducing time correlation
A fluctuating velocity field is generated each time step as described above. They are
independent of each other and their time correlation will thus be zero. This is non-
physical. To create correlation in time, new fluctuating velocity fields, V ′1, V ′2, V ′3, are
computed based on an asymmetric time filter

(V ′1)m = a(V ′1)m−1 + b(v′1)m

11.8. Introducing time correlation 29

0.0 0.2 0.4 0.6 0.8 1.0

τ
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

B(
τ)

Figure 11.3: Auto correlation, B(τ) = 〈v′1(t)v′1(t− τ)t (averaged over time, t). :
Eq. 11.12; : computed from synthetic data, (V ′1)m, see Eq. 11.9.

(V ′2)m = a(V ′2)m−1 + b(v′2)m

(V ′3)m = a(V ′3)m−1 + b(v′3)m (11.9)

where m denotes the time step number and

a = exp(−∆t/Tint) (11.10)

where ∆t and Tint denote the computational time step and the integral time scale,
respectively. The integral time scale is here set at Tont = Lint/uτ . The second coeffi-
cient is taken as

b = (1− a2)0.5 (11.11)

which ensures that 〈V ′21 〉 = 〈v′21 〉 (〈·〉 denotes averaging). The time correlation of will
be equal to

exp(−t̂/Tint) (11.12)

where t̂ is the time separation and thus Eq. 11.9 is a convenient way to prescribe the
turbulent time scale of the fluctuations. For more detail, see Section 11.8. The inlet
boundary conditions are prescribed as (we assume that the inlet is located at x1 = 0
and that the mean velocity is constant in the spanwise direction, x3)

v̄1(0, x2, x3, t) = V1,in(x2) + v′1,in(x2, x3, t)

v̄2(0, x2, x3, t) = V2,in(x2) + v′2,in(x2, x3, t)

v̄3(0, x2, x3, t) = V3,in(x2) + v′3,in(x2, x3, t) (11.13)

where v′1,in = (V ′1)m, v′2,in = (V ′2)m and v′3,in = (V ′3)m (see Eq. 11.9). The mean
inlet profiles, V1,in, V2,in, V3,in, are either taken from experimental data, a RANS
solution or from the law of the wall; for example, if V2,in = V3,in = 0 we can estimate
V1,in as [26]

V +
1,in =


x+

2 x+
2 ≤ 5

−3.05 + 5 ln(x+
2) 5 < x+

2 < 30
1
κ ln(x+

2) +B x+
2 ≥ 30

(11.14)

12. Procedure to generate anisotropic synthetic fluctuations 30

where κ = 0.4 and B = 5.2.
The method to prescribed fluctuating inlet boundary conditions have been used for

channel flow [23], for diffusor flow [16] as well as for the flow over a bump and an
axisymmetric hill [27].

The time correlation is implemented in module modify inlet.

12 Procedure to generate anisotropic synthetic fluctua-
tions

The methodology is as follows:

1. A pre-cursor RANS simulation is made using a RANS model, see Section 17.

2. After having carried out the pre-cursor RANS simulation, the Reynolds stress
tensor is computed using the EARSM model [28].

3. The Reynolds stress tensor is used as input for generating the anisotropic syn-
thetic fluctuations. The integral length scale, Lint, need to be prescribed; it can
be set to 0.1δ < Lint < 0.3δ, where δ denotes half-channel width.

4. Since the method of synthetic turbulence fluctuations assumes homogeneous tur-
bulence, we can only use the Reynolds stress tensor in one point. We need to
choose a relevant location for the Reynolds stress tensor. In a turbulent boundary
layer, the Reynolds shear stress is by far the most important stress component.
Hence, the Reynolds stress tensor is taken at the location where the magnitude
of the turbulent shear stress is largest.

5. Finally, the synthetic fluctuations are scaled with
(
|u′v′|/|u′v′|max

)1/2
RANS

, which
is taken from the 1D RANS simulation.
This is done in module modify inlet.

The only constant used when generating these synthetic simulations is the pre-
scribed integral length scale.

13 Flow Chart
pyCALC-LES flowchart

14 Modules

14.1 bc outlet bc
Neumann outlet boundary conditions are set.

14.2 calceps
Source terms in the ε equation (AKN) are computed, see Section 8. When PANS is
used, pans=True, fk is computed in module compute fk. Otherwise it is set to
one. The user can define additional source terms in modify eps.

http://www.tfd.chalmers.se/~lada//postscript_files/html-ubuntu/index.html

14.3. calck kom 31

14.3 calck kom
Source terms in the k equation (Wilcox model) are computed, see Section 10. When
DES is used, CDES is computed (it is stored in fk3d). The user can define additional
source terms in modify k.

14.4 calck
Source terms in the k equation (AKN) are computed, see Section 8. The user can define
additional source terms in modify k.

14.5 calcom
Source terms in the ω equation (Wilcox model) are computed, see Section 10. The user
can define additional source terms in modify om.

14.6 calcp
Coefficients in the p̄ equation (Eq. 4.4). It is a diffusion equation and hence the coef-
ficients aw, aE . . . are computed in the same was as in Section 2.4 (with the diffusion
coefficient Γ set to 1/(α∆t)).

14.7 calcu
Source terms in the ū equation are computed. The user can define additional source
terms in modify u.

14.8 calcv
Source terms in the v̄ equation are computed. The user can define additional source
terms in modify v.

14.9 calcw
Source terms in the w̄ equation are computed. The user can define additional source
terms in modify w.

14.10 coeff
The coefficient aW , aE , aS , aN , aL, aH are computed. There are four different dis-
cretization schemes: central differencing scheme (CDS) first-order upwind, MUSCL
and the hybrid scheme (first-order upwind and CDS)

14.11 compute face phi
Compute the face values of a variable.

14.12 compute fk
Computes fk (array f3kd) from Eq. 8.3. The user can modify fk3d in modify fk.

14.13. compute inlet fluct 32

14.13 compute inlet fluct
Compute synthetic fluctuations (see Section 11.1)

14.14 conv
Compute the convection as a vector product v · A at the west, south and low faces
(stored in arrays convw, convs and convl. Note that they are defined as the volume
flow going into the control volume.

14.15 correct conv
After the Poisson equation for pressure has been solved, the convections convw,
convs and convl (which are defined at the control volume faces) are corrected so as
to satisfy continuity, see Eq. 4.5.

14.16 fix eps, fix k, fix omega
This routine may be used for set ε, k and ω in the wall-adjacent cell center. For ω, for
example, it may be set according to Eq. 10.2 rather than as a wall-boundary condition.
Note that it is called just before the solver is called. For fixing ω near a south boundary
we use

aw3d[:,0,:]=0
ae3d[:,0,:]=0
as3d[:,0,:]=0
an3d[:,0,:]=0
al3d[:,0,:]=0
ah3d[:,0,:]=0
ap3d[:,0,:]=1
su3d[:,0,:]=om_bc_south

The discretized equation (Eq. 2.8) then reads

ωP = SU

which gives ωP =om bc south as intended.

14.17 crank nicol
Modification of the coefficients aW , aE , . . . due to time integration of the convective
and diffusion made, see Section 2.1.1.

14.18 dphidx, dphidy, dphidz
The derivative in x1, x2 or x3 direction are computed, see Section 1.2.

14.19 init
Geometric quantities such as areas, volume, interpolation factors etc are computed.

14.20. modify eps, modify k, modify om, modify u, modify v, modify w 33

14.20 modify eps, modify k, modify om, modify u, modify v, mod-
ify w

The sources su3d and sp3d can be modified for the ε, k, ω, ū, v̄ and w̄ equations.

14.21 modify case.py
This file includes modify eps, modify k, . . .modify w and modify conv, modify init,
modify inlet, modify outlet, fix eps, fix k, fix omega, modify vis
and modify fk.

14.22 modify init
The user can set initial fields. If restart=True, these fields are over-written with
the fields from the restart file.

14.23 print indata
Prints the indata set by the user.

14.24 read restart data
This module is called when restart=True. Initial fields from files

• u3d saved.npy, v3d saved.npy, w3d saved.npy, p3d saved.npy,
k3d saved.npy, eps3d saved.npy, om3d saved.npy

are read from a previous simulation.

14.25 save data
This module is called when save=True. The

• ū, v̄, w̄, p̄, k, ε and ω fields

are stored in the files

• u3d saved.npy, v3d saved.npy, w3d saved.npy, p3d saved.npy,
k3d saved.npy, eps3d saved.npy, om3d saved.npy.

14.26 save.file
This is file, not a module. It is read every second time step. It should include a integer
’0’ or ’1’. If it’s ’1’, the module save data is called. The object is to be able to save
data during a long simulation,

14.27 save time aver data
This module is called when every itstep save time step when itstep≥ itstep start.
Time-averaged data of the

• ū, v̄, w̄, p̄, k, fk, ε, ω, νt + ν, ū2, v̄2, w̄2 and ūv̄

14.28. save vtk 34

are stored in the files

• u averaged, v averaged, w averaged, p averaged, k averaged,
fk averaged, k averaged, om averaged, vis averaged, eps averaged,
k3d averaged, uu stress, vv stress, ww stress, uv stress

If save average z=True, the flow fields are averaged also in the z direction.

14.28 save vtk
The results are stored in VTK format. It is called if vtk=True. You must then set the
name of the VTK file names, i.e. vtk file name. If vtk movie is true, the results
are saved every itstep save time step may be viewed as a movie.

14.29 setup case.py
In this module the user sets up the case (time step, turbulence model, turbulence con-
stants, type of boundary condition, solver, convergence criteria, etc)

14.30 solve amg
An algebraic multigrid solver.

14.31 solve amgx
An algebraic multigrid solver on the GPU. The sparse matrix (e.g. Eq. B.4) is uploaded
every time this module is called.

14.32 solve 3d
This module can be used for all variables except pressure, p̄. With the coefficient arrays
aw3d, ae3d, as3d, ... a sparse matrix is created, A. The equation system
is solved using the Python solver linalg.cgs, linalg.cg, linalg.gmres,
linalg.qmr or linalg.lgmres.

14.33 solve p
This module is used for the pressure, p̄. With the coefficient arrays aw3d, ae3d,
as3d, ... a sparse matrix is created, Ap. At the first time step and iteration, the
multigrid hierarchy is constructed using pyamg.ruge stuben solver (recall that
the coefficient arrays aw3d, ae3d, as3d, ... do not change since they are
defined by geometrical quantities). The equation system is solved using the pyAMG
solver Ap.solve. The user can choose relaxation method at each MG level with the
variable amg relax (’default’,’cg’,’gm’,’gmres’,’fgmres’,’cgne’,’cgnr’,’cr”).

14.34 solve px
An algebraic multigrid solver on the GPU for the pressure. The sparse matrix (e.g.
Eq. B.4) is uploaded once at the first iteration at the first time step. Note that this
option requires twice as much memory on the GPU compared to solve amgx.

14.35. solve tdma 35

14.35 solve tdma
This module can be used for all variables except pressure, p̄. It solves the equations
exactly in the y direction by treating the x and z directions explicitly. Hence, only the
coefficient arrays as3d, an3d, ap3d are used in the matrix solver. With theses
three arrays, a sparse matrix is created, A. The equation system is solved using the
Python solver linalg.spsolve. This means that the equation is solved by TDMA
(Tri-Diagonal-Matrix-Algorithm). It is a combination of exact solution in y direction
(TDMA) combined with Jacobi iteration in the other two directions. This solver is ef-
ficient at high Reynolds numbers when the diffusion terms near the wall are very large.
This solver is activated by setting solver vel = ’tdma’ and solver turb =
’tdma’. When the solver tdma is employed, the convergence limits are not used.
Instead we rely on how many sweeps should be made (nsweep vel, nsweep keps
and nsweep kom).

14.36 synt fluct
The synthetic fluctuations are computed and scaled with uv rans, see Section 11.1

14.37 time stats
Time-averaged quantities are created such as time-averaged velocities, pressure, re-
solved stresses etc. This module is called every itstep stats time step when
itstep ≥ itstep start.

14.38 update
At the end of each time step, all variables are updated, i.e. u3d old=u3d, v3d old=v3d,
etc.

14.39 vist kom
The turbulent viscosity is computed using the k − ω model, see Section 10

14.40 vist pans
The turbulent viscosity is computed using the AKN k − ε model, see Section 8.

14.41 vist smag
The turbulent viscosity is computed using the Smagorinsky model, see Section 6.

14.42 vist wale
The turbulent viscosity is computed using the WALE model, see Section 7.

15. DNS of fully-developed channel flow at Reτ = 500 36

15 DNS of fully-developed channel flow at Reτ = 500

To follow the execution of pyCALC-LES, it is recommended to start reading at the
line the execution of the code starts here. To find where the time stepping starts, look
for the line start of time stepping. You can also kook at the pyCALC-LES flowchart.

The grid is created using the script generate-channel-grid.py. The num-
ber of cells is set to ni = nj = 96. The extent of the grid in x and y direction is 3.2
and 2 respectively. The grid is stretched by 9% from both walls.

import numpy as np
import sys

ni=96
nj=96
yfac=1.09 # stretching
ymax=2
xmax=3.2
viscos=1/500
dy=0.1
yc=xp.zeros(nj+1)
yc[0]=0.
for j in range(1,int(nj/2)+1):

yc[j]=yc[j-1]+dy
dy=yfac*dy

ymax_scale=yc[int(nj/2)]
cell faces

for j in range(1,int(nj/2)+1):
yc[j]=yc[j]/ymax_scale
yc[nj-j+1]=ymax-yc[j-1]

yc[int(nj/2)]=1
make it 2D

y2d=xp.repeat(yc[None,:], repeats=ni+1, axis=0)

y2d=xp.append(y2d,nj)
xp.savetxt(’y2d.dat’, y2d)

x grid
xc = xp.linspace(0, xmax, ni+1)

make it 2D
x2d=xp.repeat(xc[:,None], repeats=nj+1, axis=1)
x2d_org=x2d
x2d=xp.append(x2d,ni)
xp.savetxt(’x2d.dat’, x2d)

The grid in the z direction is read from file z.dat

zmax, nk=xp.loadtxt(’z.dat’)
nk=int(nk)
dz=zmax/nk

http://www.tfd.chalmers.se/~lada//postscript_files/html-ubuntu/index.html

15.1. setup case.py 37

and the z.dat file reads

1.6 96

The case is defined in modules setup case and modify case. They are lo-
cated in a directory with the name channel-500 (or something similar). Enter this
directory.

15.1 setup case.py

This module consists of 10 sections.

15.1.1 Section 1

We choose the central-differencing scheme for convection

scheme=’c’

We use Crank-Nicolson for time discretization of the convection terms and for pressure
we use fully implicit

acrank=1.0 # for pressure gradient
acrank_conv=0.5 # for convection-diffusion

The fully implicit discretization for the pressure gradient stabilizes the simulation and
makes it possible to use only one global iteration.

15.1.2 Section 3

We take initial conditions from a previous simulation (restart=True) and we also
save the new results to disk (save=True) which can be used as initial condition for
next simulation.

restart =True
save= True

The restart file used as initial condition may be created as in Section 19.

15.1.3 Section 4

The viscosity is set.

viscos=1/500

15.1.4 Section 6

The maximum number of global iterations is set to 5. We allow the solver to do only
one iteration (min iter=1). For the hill flow (see Section 18), the code diverges
when min iter=1 and we must then force the solver to do at least two iterations.

The default relaxation method is chosen for the AMG solver for pressure and the
convergence level in the AMG solver is set to 5 · 10−4.

The ’lgmres’ sparse matrix solver in Python is set for ū, v̄ and w̄.
In the Python solver for the velocities, the maximum number of iterations is set to

50 and the convergence level to 10−5.

15.1. setup case.py 38

maxit=5
min_iter=1
sormax=1e-3
amg_relax=’default’
solver_vel=’lgmres’
nsweep_vel=50
convergence_limit_u=1e-5
convergence_limit_v=1e-5
convergence_limit_w=1e-5
convergence_limit_p=5e-4

The convergence limit in the Python solvers is defined as

|Ax− b|/|b| < γ (15.1)

where γ is the convergence limit. The norm of, for example f , is computed as

|f | =

[∑
all cells i

f2
i

]1/2

If your computer has an Nvidia compatible graphics card, you may select to solve
the pressure equation on the graphics card. You set

solver_p=’pyamgx’

If you want to solve also the velocity equations on the GPU, you set

solver_vel=’pyamgx’

Note that you must then install CUDA, the AMGX library as well as pyamgx, see
Section C. The pyamgx solver on GPU gives a speed-up of approximately a factor of
ten when solving the pressure equation and an overall speed-up factor of approximately
two.

15.1.5 Section 7

The flow during the iterations and time steps is monitored in cell (i, j, k) = (10, 10, 10).

imon=10
jmon=10
kmon=10

15.1.6 Section 8

We use 15000 time steps. Time-averaging starts after 7500 time steps. The time steps
is set to 0.5∆x/Uin where Uin is an estimated bulk velocity. The instantaneous and
time-averaged fields are saved to disk every 2000 time steps. When time-averaging, we
use every 10th time step.

15.2. modify case.py 39

ntstep=15000
uin=20
dt=0.5*(x2d[1,0]-x2d[0,0])*xp.ones(ntstep)/uin
itstep_start=7500
itstep_save=2000
itstep_stats=10

We don’t want to store data on VTK format. Hence

vtk=False

15.1.7 Section 9

The residual of the momentum equation and the continuity equation are normalized by
resnorm vel and resnorm p which are set to

resnorm_p=uin*zmax*y2d[1,-1]
resnorm_vel=uin**2*zmax*y2d[1,-1]

15.1.8 Section 10

The boundary conditions are set here. We have cyclic boundary conditions in x and z
directions and hence

cyclic_x = True
cyclic_z = True

The south and north boundaries we define as walls (Dirichlet)

u_bc_south_type=’d’
u_bc_north_type=’d’
v_bc_south_type=’d’
v_bc_north_type=’d’
w_bc_south_type=’d’
w_bc_north_type=’d’

and the value for all variables is set to zero

u_bc_south=xp.zeros((ni,nk))
u_bc_north=xp.zeros((ni,nk))
v_bc_south=xp.zeros((ni,nk))
v_bc_north=xp.zeros((ni,nk))
w_bc_south=xp.zeros((ni,nk))
w_bc_north=xp.zeros((ni,nk))

Note that we don’t need to set and type boundary conditions for west, east and high/low
boundaries since they are defined by the cyclic boundary conditions

15.2 modify case.py

Initial condition and additional boundary conditions are set in this file. It includes a
module which are called for every flowfield variable, i.e. modify_u, modify_v,
modify_w, modify_p, modify_k, modify_eps and modify_om. It includes
also modules for modifying initial boundary conditions (modify_init), convections
(modify_conv), inlet (modify_inlet) and outlet boundary conditions (modify_outlet)

15.3. Run the code 40

15.2.1 modify u

The only boundary conditions we need to set is the prescribed driving pressure gradient
in the ū equation.

su3d= su3d+vol

15.3 Run the code
The bash script run-python is used which reads

#!/bin/bash
delete first line
sed ’/setup_case()/d’ setup_case.py > temp_file
add new first line plus global declarations
cat ˜/pythons-rans-code/global-GPU temp_file modify_case.py ˜/pythons-rans-code/synt_fluct-GPU.py ˜/pythons-rans-code/pyCALC-LES-GPU.py > temp_file1;
find setting of ’gpu’
’grep’ gpu setup_case.py > gpu_value;
remove leading white space
sed -i ’s/ˆ[\t]*//’ gpu_value;
add value of ’gpu’ at first line
cat gpu_value temp_file1 > exec-pyCALC-LES-GPU.py;
/usr/bin/time -a -o out ˜/anaconda3/bin/python -u exec-pyCALC-LES-GPU.py > out

You must change the last line if your Python installation is not in /anaconda3/bin/.
If you have not installed the Python module pyamgx (see Section C) you must com-
ment line 11 in pyCALC-LES.

This script simply collects all Pythons files in one file and the global declarations
(which gives all modules access to the global variables) into the file exec-pyCALC-LES.py
and then executes it. Now run the code with the command

./run-python &

The input data is written to the file out. In this file you also find convergence history
etc. To check the convergence history type

grep ’max res’ out

The code also writes out maximum values of some variables (in order to detect if the
simulation is diverging). Check this by

grep umax out

If the Python sparse matrix solved does not converge, a warning is written. Check this
with

grep warn out

You can check that the Python sparse matrix reduces the residuals. Type

grep history out

You see three lines per time step, i.e. the residuals for ū, v̄ and w̄ equation.
Plot the results using the script pl_uvw_DNS.py

16. Fully-developed channel flow at Reτ = 5 200 using k − ω DES 41

16 Fully-developed channel flow at Reτ = 5 200 using
k − ω DES

You find setup case.py and modify case.py in a directory with the name
channel 5200-k-omega-DES (or something similar). Go into this directory. The
grid is generated with the script generate-channel-grid.py. It is stretched by
15% in the y direction and the extent in the x direction is set to 3.14 with 32 cells.

32 cells are also used in the z direction with and extent of 1.6. The z.dat reads

1.6 32

Here we comment only on differences compared to the DNS flow in Section 15.

16.1 setup case.py

16.1.1 Section 1

We choose the first-order upwind scheme for the k and ε equations.

scheme_turb=’u’

We use also first-order time discretization for k and ω

acrank_conv_kom=1

16.1.2 Section 2

The k − ω DES model is selected.

kom_des = True
jl0=0

The variable jl0is set to zero which means that the location LES-RANS interface is
automatically computed (if we want to prescribe the j line of the interface, we set it to
a negative value). The turbulence constants are set to

cmu=0.09
c_omega_1= 5./9.
c_omega_2=3./40.
prand_omega=2.0
prand_k=2.0

16.1.3 Section 5

The under-relaxation factor for turbulent viscosity is set to 0.5.

urfvis=0.5

16.1.4 Section 6

The tdma solver is chosen for k and ω and the number of sweep is set to one.

solver_turb=’tdma’
nsweep_kom=1

16.2. modify case.py 42

16.1.5 Section 10

The wall-boundary conditions for k and ω are set as k = 0 and ω as below (see
Eq. 10.2).

boundary conditions for k
k_bc_south=xp.zeros((ni,nk))
k_bc_north=xp.zeros((ni,nk))

k_bc_south_type=’d’
k_bc_north_type=’d’

boundary conditions for omega
xwall_s=0.5*(x2d[0:-1,0]+x2d[1:,0])
ywall_s=0.5*(y2d[0:-1,0]+y2d[1:,0])
dist2_s=(yp2d[:,0]-ywall_s)**2+(xp2d[:,0]-xwall_s)**2
om_bc_south=6*viscos/c_omega_2/dist2_s

make it 2D
om_bc_south=xp.repeat(om_bc_south[:,None], repeats=nk, axis=1)

xwall_n=0.5*(x2d[0:-1,-1]+x2d[1:,-1])
ywall_n=0.5*(y2d[0:-1,-1]+y2d[1:,-1])
dist2_n=(yp2d[:,-1]-ywall_n)**2+(xp2d[:,-1]-xwall_n)**2
om_bc_north=10*6*viscos/c_omega_2/dist2_n

make it 2D
om_bc_north=xp.repeat(om_bc_north[:,None], repeats=nk, axis=1)

om_bc_south_type=’d’
om_bc_north_type=’d’

16.2 modify case.py

No changes are made compared to Section 15.
Note that no initial conditions are set here. The default ones are used which are set

where all variables are initialized, i.e.

u3d=xp.zeros((ni,nj,nk))
v3d=xp.zeros((ni,nj,nk))
w3d=xp.zeros((ni,nj,nk))
k3d=xp.ones((ni,nj,nk))*1
eps3d=xp.ones((ni,nj,nk))*1
om3d=xp.ones((ni,nj,nk))*1

17 RANS of channel flow at Reτ = 5 200 using k − ω

You find setup case.py and modify case.py in a directory with the name
channel-5200-k-omega-RANS (or something similar). Go into this directory.

17.1. setup case.py 43

We generate a new grid. We take the same grid in the y direction as in Section 15,
but in the x direction we set three cells, ni=3, and xmax=1 (this is the minimum
number of cells we can use when cyclic x=True). In the z direction we set domain
size to one and use two cells; the z.dat is modified to 1, 2. The grid is created
using the script generate-channel-grid.py.

Here we comment only on differences compared to the DES flow in Section 16.

17.1 setup case.py

17.1.1 Section 1

Since we will simulated a time-marching flow towards steady conditions we choose the
hybrid scheme for the velocities and set fully implicit time integration for the velocities,
i.e.

scheme=’h’
acrank_conv=1

17.1.2 Section 2

We choose the k − ω RANS model.

kom = True
kom_des = False

17.1.3 Section 3

We don’t start from a previous solution.

restart = False

17.1.4 Section 8

We increase the time step.

dt=4*(x2d[1,0]-x2d[0,0])*xp.ones(ntstep)/uin

and we use 1000 and time average during the last 100 time steps

ntstep=1000
itstep_start=ntstep-100

17.1.5 Section 10

We do not use cyclic boundary conditions in the z direction.

cyclic_z=False

In the z direction we set Neumann boundary condition for all variables except w̄ (which
is set to zero) .

17.2. modify case.py 44

u_bc_low_type=’n’
u_bc_high=’n’
v_bc_low_type=’n’
v_bc_high=’n’
w_bc_low_type=’d’
w_bc_high=’d’
p_bc_low_type=’n’
p_bc_high=’n’
k_bc_low_type=’n’
k_bc_high=’n’
om_bc_low_type=’n’
om_bc_high=’n’

17.2 modify case.py

No changes are made compared to Section 16.

18 Periodic flow over a 2D hill using PANS
In this section we present the flow over many 2D hills. We define the case as one hill
with periodic boundary conditions in x. The flow is also periodic on the z direction.
The PANS model (see Section 8) is used together with the AKN as the baseline RANS
model.

The test case is presented at Erfoctac. The mesh has 160 × 80 cells in the x − y
plane and 32 cells in the z direction with xmax = 4.5.

Below we comment only on differences compared to the DNS flow in Section 16.

18.1 setup case.py

18.1.1 Section 1

We use the hybrid spatial discretization scheme and the first-order time discretization
for k and ε

scheme=’h’
acrank_conv_keps=1

18.1.2 Section 2

The PANS model is selected

pans = True

18.1.3 Section 4

The Reynolds number is set to Re = 10500 based on the bulk velocity (equal to one)
and the height of the channel at the hill crest (equal to one).

viscos=1/10500

https://www.kbwiki.ercoftac.org/w/index.php?title=UFR_3-30_Test_Case#Curvilinear_grids

18.2. modify case.py 45

18.1.4 Section 6

For this flow we must do at least two global iterations. If not, the solution diverges.

min_iter=2

For the turbulent quantities we use the tdma solved and set the number of sweeps to
one.

solver_turb=’tdma’
nsweep_keps=1

18.1.5 Section 8

Number of time steps is set to 15000 and time averaging starts after 7500 time steps.
The time step is set to 0.2∆x/Uin where Uin is the bulk velocity the hill crest.

ntstep=15000
uin=1
dt=0.2*(x2d[1,0]-x2d[0,0])*xp.ones(ntstep)/uin
itstep_start=7500

18.2 modify case.py

18.2.1 modify u

We compute the driving pressure gradient from a balance of all forces on the surfaces,
i.e. wall shear stresses and pressure force. For more details, see Section 3.5 in Iran-
nezhad [29].

First, compute the viscous forces at the walls,

taus=xp.sum(viscos*as_bound*u3d[:,0,:])
taun=xp.sum(viscos*an_bound*u3d[:,-1,:])

Next, compute the force in the x direction due to pressure on the lower wall and the
total force.

sumps=xp.sum(p3d[:,0,:]*areasx[:,0,:])
total_forces=taus+taun+sumps

Compute the total volume of the domain and the bulk velocity at the hill crest. The
target bulk velocity is one.

sumvol=xp.sum(vol)
uin=xp.sum(convw[0,:,:])/(y2d[0,-1]-y2d[0,0])/zmax

Finally, compute the required driving pressure gradient, beta, and add it as a volume
source (in the ū equation).

beta=total_forces/sumvol
su3d=su3d+beta*vol

19. Synthetic turbulence at inlet: Channel flow at Reτ = 395 46

18.2.2 fix eps

Here we set the wall boundary conditions on ε according to Eq. 8.4

south wall
aw3d[:,0,:]=0
ae3d[:,0,:]=0
as3d[:,0,:]=0
an3d[:,0,:]=0
al3d[:,0,:]=0
ah3d[:,0,:]=0
ap_max=xp.max(ap3d)
ap3d[:,0,:]=ap_max
su3d[:,0,:]=ap_max*2*viscos*k3d[:,0,:]/dist3d[:,0,:]**2

north wall
aw3d[:,-1,:]=0
ae3d[:,-1,:]=0
as3d[:,-1,:]=0
an3d[:,-1,:]=0
al3d[:,-1,:]=0
ah3d[:,-1,:]=0
ap_max=xp.max(ap3d)
ap3d[:,-1,:]=ap_max
su3d[:,-1,:]=ap_max*2*viscos*k3d[:,-1,:]/dist3d[:,-1,:]**2

Run the code and then plot the results using the script plot_hill.py.

19 Synthetic turbulence at inlet: Channel flow at Reτ =
395

Here we will simulate the flow in a channel at Reτ = 395. At the inlet, we prescribe
mean flow velocity obtained from a 1D RANS simulation with the k − ω model, see
Section 17. Synthetic fluctuations are superimposed on the mean flow.

Go into the directory channel-395-inlet-ni96 (or something similar). To
create the anisotropy, we need the eigenvalues and the eigenvectors of a Reynolds stress
tensor which is taken from the EARSM model. The Reynolds stress tensor is taken at
the cell where |v′1v′2| is maximum. The eigenvectors and the eigenvalues are created
with the script compute_a_and_R-from-earsm.py. This script generates two
files, R.dat which includes the eigenvectors and a.dat which includes the eigenval-
ues. The two files are read in module synt fluct. Finally, the synthetic fluctuations
are scaled with the shear stress from the 1D RANS simulation.

Below, we highlight the differences compared to Section 16.

19.1 setup case.py

19.1.1 Section 2

We choose the WALE turbulence model

wale = True

19.2. modify case.py 47

19.1.2 Section 3

No restart.

restart = False

19.1.3 Section 4

Reynolds number Reτ = 395

viscos=1/395

19.1.4 Section 6

We choose the default relaxation method for the AMG solver of the Poisson pressure
equation.

amg_relax=’default’

19.1.5 Section 10

We will use inlet-outlet boundary conditions. Hence, no cyclic boundary conditions in
the x direction.

cyclic_x = False

We will use synthetic fluctuations at the inlet. We set the length scale of the synthetic
fluctuations to Lt = 0.2 (see Section 11.4) and the number of modes (see Section 11.5)
to 1200.

L_t_synt=0.2
nmodes_synt=1200

The Reynolds stress tensor of the generated time-averaged anisotropic fluctuations is
equal to the prescribed Reynolds stress tensor, see Item 2 in Section 12. In this case,
it gives a negative shear stress which is correct for the lower half of the channel. But
for the upper half of the channel it should be positive. This is fixed by switching the
sign of the synthetic fluctuation in the y direction. The variable jmirror_synt tells
pyCALC-LES where to switch sign. We want to switch sign for j > nj/2 and hence
we set

jmirror_synt=int(nj/2)

19.2 modify case.py

19.2.1 modify init

Here we set initial conditions. We use the 1D RANS data, see Section 17 (the y, u, k,
ω and v′1v

′
2 profiles are stored on disk in pl uvw.py). We read ū

data=xp.loadtxt(’y_u_k_om_uv_395.dat’)
u_rans=data[:,1]

make it 2D
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)

set inlet field in entre domain
u3d=xp.repeat(u_rans[None,:,:], repeats=ni, axis=0)

19.2. modify case.py 48

19.2.2 modify inlet

Inlet boundary conditions are set here. At the first time step, we read the 1D RANS
solution for ū and v′1v

′
2

if itstep == 0:
y_u_k_om=xp.loadtxt(’y_u_k_om_uv_395.dat’)
y_rans=y_u_k_om[:,0]
u_rans=y_u_k_om[:,1]

make it 2D
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)

uv_rans=xp.abs(y_u_k_om[:,4])

A grid in the z direction is created and we call synt_fluct to generate the synthetic
fluctuations, see Eq. 11.8.

zp = xp.linspace(0, zmax, nk)
usynt,vsynt,wsynt=synt_fluct(nmodes_synt,itstep,L_t_synt,y_rans,zp,\

uv_rans,viscos,jmirror_synt)

We want to make sure that the average of the streamwise fluctuation is zero, i.e. 〈u′〉 =
0. Hence we subtract its mean

uinc=xp.sum(usynt*areaw[0,:,:])/(y2d[0,-1]-y2d[0,0])/zmax
usynt=usynt-uinc

Next, we set the initial fields of V ′3, V ′2 and V ′3 (see Eq. 11.13) and compute a and b
(see Eqs. 11.10 and 11.11).

usynt_inlet=usynt
vsynt_inlet=vsynt
wsynt_inlet=wsynt

tturb from ustar=1
tturb=L_t_synt/1
a_synt=xp.exp(-dt[itstep]/tturb)
b_synt=(1.-a_synt**2)**0.5

For time step higher than zero, we call synt_fluct, correct u′ and make the time
filtering in Eq. 11.13

usynt,vsynt,wsynt=synt_fluct(nmodes_synt,itstep,L_t_synt,y_rans,zp,\
uv_rans,viscos,jmirror_synt)

correct usynt so that it is = 0 (easier to converge the p solver)
uinc=xp.sum(usynt*areaw[0,:,:])/(y2d[0,-1]-y2d[0,0])/zmax
usynt=usynt-uinc
usynt_inlet=a_synt*usynt_inlet+b_synt*usynt
vsynt_inlet=a_synt*vsynt_inlet+b_synt*vsynt
wsynt_inlet=a_synt*wsynt_inlet+b_synt*wsynt

Finally, we superimpose the synthetic fluctuations to the mean flow and store the inlet
fields in u_bc_west, v_bc_west and w_bc_west which are returned as a result
from the modify_inlet

19.2. modify case.py 49

u_bc_west=u_rans+usynt_inlet
v_bc_west=vsynt_inlet
w_bc_west=wsynt_inlet

19.2.3 modify u

Add the inlet convective flow to source terms

su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*u_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*u_bc_west

We take max of convw because large negative synthetic fluctuations sometimes make
ū negative near the walls. Note that the viscous diffusive part is added in module bc.

19.2.4 modify v

Same as in modify u

su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*v_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*v_bc_west

19.2.5 modify w

Same as in modify u

su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*w_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*w_bc_west

19.2.6 modify outlet

This outlet boundary condition is described in Section 5.2. First, compute inlet and
outlet volume flow as well as the outlet area.

inlet
flow_in=xp.sum(convw[0,:,:])
flow_out=xp.sum(convw[-1,:,:])
area_out=xp.sum(areaw[-1,:,:])

Next, compare global inflow and outflow, compute a corrective velocity, uinc and
correct the convective fluxes so that global balance is satisfied.

uinc=(flow_in-flow_out)/area_out
ares=areaw[-1,:,:]
convw[-1,:,:]=convw[-1,:,:]+uinc*ares

20. Synthetic turbulence at inlet using commutation terms: Channel flow 50

Note that Neumann boundary conditions are set for ū, v̄, . . . since

phi_bc_east_type=’n’

for all variables.
Run the code and plot the results with the script plot_inlet.

20 Synthetic turbulence at inlet using commutation terms:
Channel flow

Here we will simulate the flow in a channel at Reτ = 5, 200. We use the k − ω
DES turbulence model. The grid in the y and z direction is used as in Section 16.
The number of cells and extent in the x direction are 96 and 9 (constant grid spacing),
respectively.

You find setup case.py and modify case.py in a directory with the name
channel-5200-k-omega-DES-inlet (or something similar). Go into this di-
rectory.

Below, we highlight the differences compared to Section 19.

20.1 setup case.py

20.1.1 Section 2

We select the k − ω DES model.

kom_des = True

The interface is automatically computed

jl0 = 0

20.1.2 Section 4

The Reynolds number is set to 5 200.

viscos=1/5200

20.1.3 Section 6

For the turbulent quantities we use the gmres solved and set the number of sweeps to
50.

solver_turb=’gmres’
nsweep_kom=50

20.2. modify case.py 51

20.1.4 Section 10

The boundary conditions for k and ω at the walls are set.

k_bc_south=xp.zeros((ni,nk))
k_bc_north=xp.zeros((ni,nk))

k_bc_south_type=’d’
k_bc_north_type=’d’

boundary conditions for omega
om_bc_south=xp.zeros((ni,nk))
om_bc_north=xp.zeros((ni,nk))

xwall_s=0.5*(x2d[0:-1,0]+x2d[1:,0])
ywall_s=0.5*(y2d[0:-1,0]+y2d[1:,0])
dist2_s=(yp2d[:,0]-ywall_s)**2+(xp2d[:,0]-xwall_s)**2
om_bc_south=10*6*viscos/0.075/dist2_s

make it 2D
om_bc_south=xp.repeat(om_bc_south[:,None], repeats=nk, axis=1)

xwall_n=0.5*(x2d[0:-1,-1]+x2d[1:,-1])
ywall_n=0.5*(y2d[0:-1,-1]+y2d[1:,-1])
dist2_n=(yp2d[:,-1]-ywall_n)**2+(xp2d[:,-1]-xwall_n)**2
om_bc_north=10*6*viscos/0.075/dist2_n

make it 2D
om_bc_north=xp.repeat(om_bc_north[:,None], repeats=nk, axis=1)

20.2 modify case.py

20.2.1 modify init

Here we set initial conditions. We use the 1D RANS data, see Section 17. We read ū,
k and ω. kinit is set to 20% of the RANS value and ωiniy is set to k1/2

init/(0.01∆max).

data=xp.loadtxt(’y_u_k_om_uv_5200_nj96.txt’)
u_rans=data[:,1]

make it 2D
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)

k_rans=data[:,2]
make it 2D

k_rans=xp.repeat(k_rans[:,None], repeats=nk, axis=1)

om_rans=data[:,3]
make it 2D

om_rans=xp.repeat(om_rans[:,None], repeats=nk, axis=1)

set inlet field in entre domain

20.2. modify case.py 52

u3d=xp.repeat(u_rans[None,:,:], repeats=ni, axis=0)
k3d=0.2*xp.repeat(k_rans[None,:,:], repeats=ni, axis=0)
om3d=k3d**0.5/(0.01*delta_max)

vis3d=k3d/om3d+viscos

20.2.2 modify inlet

Here we set inlet boundary conditions. At the first time step, we read mean inlet data
from a 1D RANS solution

if itstep == 0:
y_u_k_om=xp.loadtxt(’y_u_k_om_uv_5200_nj96.txt’)
y_rans=y_u_k_om[:,0]
u_rans=y_u_k_om[:,1]

make it 2D
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)
k_rans=y_u_k_om[:,2]

make it 2D
k_rans=xp.repeat(k_rans[:,None], repeats=nk, axis=1)
eps_rans=y_u_k_om[:,3]

make it 2D
eps_rans=xp.repeat(eps_rans[:,None], repeats=nk, axis=1)
uv_rans=xp.abs(y_u_k_om[:,4])

store k and omega
k_bc_west=k_rans
om_bc_west=om_rans

Compared to Section we store also k and ω in k_bc_west and om_bc_west.

20.2.3 modify k

We need to add inlet boundary conditions.

su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*k_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*k_bc_west
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound

We prescribe RANS inlet conditions on k and ω. Hence, we must make sure that they
are turned into values relevant to LES. This is done by adding commutation terms [30,
31]. It is implemented as:

delt_i1=0.09**(-0.25)*k_bc_west**0.5/om_bc_west
delt_i2=vol[0,:,:]**0.333333
flux_k_RANS=xp.maximum(u_bc_west,0)*k3d[0,:,:]
vis_smag= (0.1 *delt_i2)**2*gen[0,:,:]**0.5

21. RANS of boundary layer flow using k − ω 53

rk_smag=(vis_smag/delt_i2)**2
flux_k_LES=u3d[0,:,:]*rk_smag
delt_LES=delt_i2
delt_RANS=delt_i1
dx=x2d[1,0]-x2d[0,0]
comm_term=(flux_k_LES-flux_k_RANS)/(delt_LES-delt_RANS)*(delt_i2-delt_i1)/dx
sp3d[0,:,:]=sp3d[0,:,:]+xp.minimum(comm_term,0.)*vol[0,:,:]/k3d[0,:,:]

20.2.4 modify om

Inlet boundary conditions

su3d[0,:,:]= su3d[0,:,:]+xp.maximum(convw[0,:,:],0)*om_bc_west
sp3d[0,:,:]= sp3d[0,:,:]-xp.maximum(convw[0,:,:],0)
vist=vis3d[0,:,:]-viscos
su3d[0,:,:]=su3d[0,:,:]+vist*aw_bound*om_bc_west
sp3d[0,:,:]=sp3d[0,:,:]-vist*aw_bound

and the commutation term

prod_extra=-om3d[0,:,:]/k3d[0,:,:]*comm_term
su3d[0,:,:]=su3d[0,:,:]+xp.maximum(prod_extra,0.)*vol[0,:,:]

21 RANS of boundary layer flow using k − ω

You find setup case.py and modify case.py in a directory with the name
boundary-layer-RANS-kom (or something similar). Go into this directory.

We generate a new grid. The first cell is set to ∆t = 7.83 · 10−4. We stretch the
grid in the y direction by 10% but limit the cell size to ∆ymax = 0.05. The number of
cells is set to nj=90. In the x direction, the first cells is set to ∆x = 0.03 and then we
stretch it by 0.5%. We set the number of cells to ni=300. In the z direction we set the
number of cells to two and the extent to one, i.e. the z.dat is modified to 1.0, 2.
The grid is created using the script generate-bound-layer-grid.py.

Here we comment only on differences compared to the DES flow in Section 17.

21.1 setup case.py

21.1.1 Section 1

Hybrid discretization is set for all variables.

scheme=’h’ #hybrid
scheme_turb=’h’

21.1.2 Section 2

The k − ω RANS model is selected.

kom = True
kom_des = False

21.1. setup case.py 54

21.1.3 Section 4

The viscosity is set.

viscos=3.57E-5

21.1.4 Section 6

The tdma solver is chosen for k and ω.

solver_turb=’tdma’
nsweep_kom=1

Recall that the number of sweeps should be set to low value since no convergence
criteria is used for TDMA.

21.1.5 Section 8

The number of time steps is set to 1000 and the results are time averaged the last 100
time steps (the solution will be steady). A rather large time step is chosen (we are not
concerned about time accuracy since we time march to steady state).

ntstep=400
uin=1
dt=4*(x2d[1,0]-x2d[0,0])*xp.ones(ntstep)/uin
itstep_start=ntstep-10

21.1.6 Section 10

We do not use cyclic boundary conditions in the x and z directions.

cyclic_x = False
cyclic_z = False

At the north boundary we set Neumann boundary condition for all variables except v̄
(which is set to zero) .

u_bc_north_type=’n’
v_bc_north_type=’d’
w_bc_north_type=’n’
k_bc_north_type=’n’
om_bc_north_type=’n’

We use Neumann boundary condition in the z directions for all variables except w̄
(which is set to zero) .

u_bc_low_type=’n’
u_bc_high=’n’
v_bc_low_type=’n’
v_bc_high=’n’
w_bc_low_type=’n’
w_bc_high=’n’
k_bc_low_type=’n’
k_bc_high=’n’
om_bc_low_type=’n’
om_bc_high=’n’

21.2. modify case.py 55

Inlet boundary conditions are ū = 1 and ω = 1. For the first 10 cells adjacent to the
wall k = 0.01 and further out we set k = 10−5.

u_bc_west=xp.ones((nj,nk))
k_bc_west=xp.ones((nj,nk))*1e-2
k_bc_west[10:,:]=1e-10
om_bc_west=xp.ones((nj,nk))

The wall boundary condition of ω is multiplied by a factor of 10

om_bc_south=10*6*viscos/0.075/dist2_s

This – of course – increases the cell center value and makes it closer to the correct
value in Eq. 10.2.

21.2 modify case.py

21.2.1 modify init

Initial condition: set ū, k and ω = from inlet boundary conditions..

set inlet field in entre domain
u3d=xp.repeat(u_bc_west[None,:,:], repeats=ni, axis=0)
k3d=xp.repeat(k_bc_west[None,:,:], repeats=ni, axis=0)
om3d=xp.repeat(om_bc_west[None,:,:], repeats=ni, axis=0)

vis3d=k3d/om3d+viscos

Run the code and plot the results with plot inlet bound.py Looking at the time
histories of ū, we find that we should maybe run more time steps to really reach steady
state.

Now we will use these results as mean inlet boundary conditions in Section 23.
Look at the script create-inlet-rans-profiles.py. Here we extract ū, v̄, k,
ω and v′1v

′
2 at cells ni-10. The data are stored in file

y u v k om uv re-theta-2500.txt.

22 RANS of hump flow using the AKN k − ε model
The grid is shown in Fig. 22.1. This grid was used in [32].

The inlet boundary condition are taken from a 2D boundary layer. It could have
been taken from the results in Section 21 if the extent of the streamwise domain were
increased (the inlet momentum Reynolds number should be Reθ = 6 300).

The flow is 2D, so we use only two cells in the z direction. The z.dat file reads

0.2 2

22.1 setup case.py

22.1.1 Section 2

The AKN k − ε model is used

keps=True

The TDMA solver using two sweeps is found to be most efficient for the velocities and
k and εall equations

22.2. modify case.py 56

−2 0 2 4
x/c

0.0
0.5y/

c

Figure 22.1: Hump flow. The grid. Every 8th grid line is shown.

22.1.2 Section 6

solver_vel=’tdma’
solver_turb=’tdma’
nsweep_vel=2
nsweep_keps=2

The pyamg solver also works well. 2000 time steps are made using ∆t = 0.001 and
time averaging the last 100 time steps

22.1.3 Section 8

ntstep=2000
uin=1
dt=0.001*xp.ones(ntstep)
itstep_start=ntstep-100

22.2 modify case.py

22.2.1 modify inlet

The inlet boundary conditions are taken and interpolated from a RANS boundary-layer
simulation using the k − ω model.

if itstep == 0:
y_u_k_om=xp.loadtxt(’y_u_v_k_om_uv_hump.dat’)
y_rans_in=y_u_k_om[:,0]
u_rans_in=y_u_k_om[:,1]
v_rans_in=y_u_k_om[:,2]
k_rans_in=y_u_k_om[:,3]
om_rans_in=y_u_k_om[:,4]
uv_rans_in=y_u_k_om[:,5]
eps_rans_in=0.09*k_rans_in*om_rans_in

y_rans=yp2d[0,:]
u_rans=xp.interp(y_rans, y_rans_in, u_rans_in)

make it 2D
u_rans=xp.repeat(u_rans[:,None], repeats=nk, axis=1)

22.3. Using the GPU to solve the equations 57

k_rans=xp.interp(y_rans, y_rans_in, k_rans_in)
make it 2D

k_rans=xp.repeat(k_rans[:,None], repeats=nk, axis=1)
eps_rans=xp.interp(y_rans, y_rans_in, eps_rans_in)

make it 2D
eps_rans=xp.repeat(eps_rans[:,None], repeats=nk, axis=1)

uv_rans=xp.interp(y_rans, y_rans_in, uv_rans_in)

k_bc_west=k_rans
eps_bc_west=eps_rans
u_bc_west=u_rans

22.2.2 fix eps

The values of ε are set fo the wall-adjacent cells.

south wall
aw3d[:,0,:]=0
ae3d[:,0,:]=0
as3d[:,0,:]=0
an3d[:,0,:]=0
al3d[:,0,:]=0
ah3d[:,0,:]=0
ap_max=xp.max(ap3d)
ap3d[:,0,:]=ap_max
su3d[:,0,:]=ap_max*2*viscos*k3d[:,0,:]/dist3d[:,0,:]**2

Run the code. Check how much time it takes to solve each equation with the command

grep time out

The output on a Dell Alienware x17 R1 laptop is

time one iteration: 7.28e-01
time u: 1.35e-01
time v: 1.26e-01
time w: 1.26e-01
time p: 5.83e-02
time k: 1.39e-01
time eps: 1.34e-01

22.3 Using the GPU to solve the equations
Above we use the solvers on the CPU. If you have a Nvidia graphics card, you can
solve the equations on the GPU. In setup case.py, Section 6, you should then set

solver_vel=’pyamgx’
solver_turb=’pyamgx’
solver_vel=’pyamgx’
solver_p=’pyamgx’

23. IDDES of hump flow using the k − ε model 58

Run the code. Then type

grep time out

The output on a Dell Alienware x17 R1 laptop is

time one iteration: 2.91e-01
time u: 4.61e-02
time v: 2.06e-02
time w: 2.01e-02
time p: 8.42e-02
time k: 6.11e-02
time eps: 5.49e-02

We find that the CPU time is reduced by a factor of 2.5. We can actually make it even
faster. By setting

solver_p=’pyamgx_p’

the code does uploads the coefficient matrix (see e.g. Eq. B.1) of the pressure equations
only once (it depends only on geomeetry). The output on a Dell Alienware x17 R1
laptop is

time one iteration: 2.58e-01
time u: 4.46e-02
time v: 1.89e-02
time w: 1.84e-02
time p: 6.04e-02
time k: 5.87e-02
time eps: 5.47e-02

We get further speed-up of approximately 12%. The disadvantage is that this option
requires more memory on the GPU since the CPU then must store to sparse matrices
all the time.

23 IDDES of hump flow using the k − ε model
This setup was used for simulations presented in [32].

The same grid is used as in Section 22 except that the flow is now three dimensional.
32 cells are used in the z direction and the z.dat file reads

0.2 32

The grid is shown in Fig. 22.1. It happens to give good results, but that’s probably
fortuitous; in order to accurately resolve large-scale turbulence it should probably be
refined upstream the hump and in the outlet region for x > 2. It is fairly easy to do this
with a Python script. This has been done in [33].

The settings are very similar to those in Section 22 except that we now use central
differencing and synthetic inlet fluctuations.

You find this case in the directory
hump-IDDES-ni-583-go4hybrid-mesh-vel-tdma-STG-dt-0.003/

The results are presented in [32].

23.1. setup case.py 59

23.1 setup case.py

All equationsa are solved in the GPU

23.1.1 Section 6

solver_vel=’pyamgx’
solver_turb=’pyamgx’
solver_p=’pyamgx_p’

23.2 modify case.py

23.2.1 modify inlet

Initial data are taken from the RANS simulation in Section 22.

start from RANS
itstep,dummy1,dummy2=xp.load(’../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/itstep.npy’)
u2d=xp.load(’../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/u_averaged.npy’)/itstep
v2d=xp.load(’../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/v_averaged.npy’)/itstep
p2d=xp.load(’../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/p_averaged.npy’)/itstep
k2d=xp.load(’../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/k_averaged.npy’)/itstep
eps2d=xp.load(’../hump-2D-RANS-AKN-go4hybrid-mesh-inlet-at-x-m2.1/eps_averaged.npy’)/itstep

vismax=xp.max(0.09*k2d**2/eps2d)
print(’vismax’,vismax/viscos)

change from RANS to LES
k2d=0.4*k2d

vismax_les=xp.max(0.09*k2d**2/eps2d)
print(’vismax_les’,vismax_les/viscos)

make 2d to 3d
u3d=xp.repeat(u2d[:,:,None], repeats=nk, axis=2)
v3d=xp.repeat(v2d[:,:,None], repeats=nk, axis=2)
p3d=xp.repeat(p2d[:,:,None], repeats=nk, axis=2)
k3d=xp.repeat(k2d[:,:,None], repeats=nk, axis=2)
eps3d=xp.repeat(eps2d[:,:,None], repeats=nk, axis=2)
w3d=xp.zeros((ni,nj,nk))

23.2.2 modify fk

The IDDES model is implemented here

global f_e_mean, f_b_mean, f_dt_mean

l_dist=0.15*dist3d
l_max=0.15*delta_max
dy=xp.diff(y2d[1:,:],axis=1)

23.2. modify case.py 60

make it 3d
dy=xp.repeat(dy[:,:,None],repeats=nk,axis=2)

l_temp=xp.maximum(l_dist,l_max)
l_temp=xp.maximum(l_temp,dy)
l_iddes=xp.minimum(l_temp,delta_max)

l_iddes=xp.minimum(xp.maximum(l_dist,l_max,dy),delta_max)

ueps=(eps3d*viscos)**0.25
ystar=ueps*dist3d/viscos
rt=k3d**2/eps3d/viscos
fdampf2=((1.-xp.exp(-ystar/3.1))**2)*(1.-0.3*xp.exp(-(rt/6.5)**2))
fmu=((1.-xp.exp(-ystar/14.))**2)*(1.+5./rt**0.75*xp.exp(-(rt/200.)**2))
fmu=xp.minimum(fmu,1.)

psi=xp.minimum(10,(fdampf2*fmu)**(-0.75))

l_c=psi*cdes*l_iddes #eq. 9

vist=vis3d-viscos
denom=kappa**2*dist3d**2*gen**0.5

r_dt=vist/denom #eq. 22
r_dl=viscos/denom #eq. 23

f_t=xp.tanh((c_t**2*r_dt)**3)
f_l=xp.tanh((c_l**2*r_dl)**10)

f_e2=1.-xp.maximum(f_t,f_l) #eq. 19

alpha=0.25-dist3d/delta_max

f_e1=xp.where(alpha <= 0,2*xp.exp(-9*alpha**2),2*xp.exp(-11.09*alpha**2))

f_b= xp.minimum(2.*xp.exp(-9*alpha**2),1.)

f_dt=1.-xp.tanh((8.*r_dt)**3)

f_e=xp.maximum(f_e1-1.,0.)*psi*f_e2

f_d=xp.maximum((1.-f_dt),f_b)

l_u=k3d**1.5/eps3d

l_tilde=f_d*(1+f_e)*l_u+(1-f_d)*l_c
l_tilde=f_d*l_u+(1-f_d)*l_c

fk3d=l_u/l_tilde

fk3d=xp.minimum(fk3d,c_eps2/c_eps_1) # limie on psi

23.2. modify case.py 61

23.2.3 modify k

A commutation term is added to the k equation.

global u2prim_i0,v2prim_i0,w2prim_i0,umean_i0

if iter == 0:
set running-averaged inlet values to zero

if itstep == 0:
u2prim_i0=xp.zeros(nj)
v2prim_i0=xp.zeros(nj)
w2prim_i0=xp.zeros(nj)
umean_i0=xp.zeros(nj)

time average
u2prim_i0=u2prim_i0+xp.mean(u3d[0,:,:]**2,axis=1)
v2prim_i0=v2prim_i0+xp.mean(v3d[0,:,:]**2,axis=1)
w2prim_i0=w2prim_i0+xp.mean(w3d[0,:,:]**2,axis=1)
umean_i0=umean_i0+xp.mean(u3d[0,:,:],axis=1)

comm_term=xp.zeros((nj,nk))
umean=umean_i0/(itstep+1)
u2prim=u2prim_i0/(itstep+1)-umean**2
v2prim=v2prim_i0/(itstep+1)
w2prim=w2prim_i0/(itstep+1)
k_tot=0.5*(u2prim+v2prim+w2prim)+xp.mean(k3d[0,:,:],axis=1)

make it 2D
k_tot=xp.repeat(k_tot[:,None], repeats=nk, axis=1)

psi_small=fk3d[0,:,:]
term1=xp.maximum((c_eps_2-c_eps_1*psi_small)/(c_eps_2-c_eps_1),1e-10)
fk2d_from_psi=term1**0.333

dfk_dx=u3d[0,:,:]*(fk2d_from_psi-1)/(x2d[1,1]-x2d[0,1])
commutation term

comm_term_pans=k_tot*dfk_dx
comm_min_pans=xp.min(comm_term_pans)
pk_max=xp.max((vis3d-viscos)*gen)

u2prim_max=xp.max(u2prim)
v2prim_max=xp.max(v2prim)
w2prim_max=xp.max(w2prim)

print(f"\n{’comm_min_pans: ’} {comm_min_pans:.2e}, {’pk_max: ’}{pk_max:.2e}, {’u2prim_max: ’}{u2prim_max:.2e}, {’v2prim_max: ’}{v2prim_max:.2e}, {’w2prim_max: ’}{w2prim_max:.2e}")
sp3d[0,:,:]=sp3d[0,:,:]+xp.minimum(comm_term_pans,0)*vol[0,:,:]/k3d[0,:,:]

Run the code and look at the CPU time by typing

23.3. Using the GPU to solve the equations 62

grep time out

The output on a Dell Alienware x17 R1 laptop is

time one iteration: 7.18e+00
time u: 1.33e+00
time v: 1.06e+00
time w: 1.05e+00
time p: 1.17e+00
time k: 1.46e+00
time eps: 1.35e+00

23.3 Using the GPU to solve the equations
Above we use the solvers on the CPU. If you have a Nvidia graphics card, you can
solve the equations on the GPU. In setup case.py, Section 6, you should then set

solver_vel=’pyamgx’
solver_turb=’pyamgx’
solver_vel=’pyamgx’
solver_p=’pyamgx_p’

Run the code and look at the CPU time by typing

grep time out

The output on a Dell Alienware x17 R1 laptop is

time one iteration: 4.58e+00
time u: 8.57e-01
time v: 2.30e-01
time w: 2.15e-01
time p: 8.21e-01
time k: 1.02e+00
time eps: 9.23e-01

We find that solving the equations on the GPU gives a speed-up of approximately 1.6.

24 IDDES of hump flow running 100% on the GPU
In order to run the case in Section 23 we must make a few modifications in setup case
and modify case.

24.1 setup case.py

We introduce a new Section at the beginning where we tell the code to run on the GPU.

24.1.1 Section 0

gpu = True

25. Developing boundary layer 63

24.1.2 Section 6

The pyAMGX solver which is available on the GPU is very efficient. Hence we choose
to use this for all equations.

solver_vel=’pyamgx’
solver_turb=’pyamgx’
solver_p=’pyamgx_p’

Note that I chose pyamgx p for the pressure. That means that the matrix (aW , . . . AH)
is computed only once. This option increases the memory requirement.

25 Developing boundary layer
Here we simulate developing flow boundary layer flow along a flat plate at inlet Reynolds
number based on the momentum thickness, Reθ = Ufreeθ/ν = 2 550. The data pre-
sented below are averaged in z direction and time.

The inlet boundary-layer thickness is δin ∼ 0.78. The far-field mean velocity is
one, i.e. Ufree = 1, and the time step is 0.043. The mean inlet profiles are taken from
a 2D RANS solution at Reθ = 2 500. Synthetic fluctuations [34, 35] are superimposed
to the RANS velocity profile.

The mesh has 700 × 90 × 64 cells (x, y, z). The domain size is 87 × 2.9 × 1.6.
∆x+

in = 110, ∆z+
in = 31 and y+

in = 0.5 for the center of the wall-adjacent cell. A
stretching of 10% is used in the wall-normal direction but ∆y is not allowed to be
larger than 0.05.

You find the case in directory
boundary-layer-IDDES-ni-700-nk128-2zmax-synt-commut-with-fk-psi-eps-neumann

The settings in setup case and modify case are almost identical to those in
Section 23. The main difference is that here I use Neumann indet b.c. on ε instead of
adding a commutation term. This has a negligible influence on the predicted results.

26 Workshop
In this section you will get familiar to use and modify the pyCALC-LES code. We
start by doing some simple RANS simulations. Note that you should not use any for
loops because in Python they are very slow. An exception may be the grid generator
and plotting scripts in which the CPU time is not an issue.

26.1 Getting started
Unpack the pyCALC-LES-course-june-202x.tgz (x=2, 3, ...). Go into
the directory pyCALC-LES-course-june-202x.tgz.

First, you must make sure that you have installed the required Python packages. I
recommend that you install Python in your home directory using Anaconda.

Run the Python script pyamgx solve random matrix.py. This script will
test if you have installed the required sparse-matrix solvers, the algebraic multigrid
solver pyamg, and algebraic multigrid solver on the GPUpyamgx. Do the test by
typing

run pyamgx_solve_random_matrix.py

https://www.anaconda.com/products/distribution

26.2. Channel flow, RANS 64

If everything works you will see

************************ gmRES solver works

************************ pyAMG solver works

************************ pyAMGx solver works

Probably, neither pytamg not pytamgx are installed on your system. On Ubuntu, I
installed pyamg with the command

conda install -c anaconda pyamg

For installation of pyamgx, see Section C.

26.2 Channel flow, RANS
Go to the directory channel-5200-k-omega-RANS (or something similar). Here
RANS simulations of fully-developed channel flow will be studied. Look at setup case.py
and modify case.py; the input is briefly described in Section 17. Plot the results
using the script pl uvw RANS.py. I’m using the Python interface ipython. So I
would type

ipython

and then

run pl_uvw_RANS.py

If you like the vi editor – as I do – then you can from ipython edit the script using
the command

!vim pl_uvw_RANS.py

Below I give some examples of how you can modify this flow. You may do all or only
a few. The object is that you should get familiar with the code and do some fast sim-
ulations. Create a new directory (below the directory where pyCALC-LES resides).
Copy all files from channel-5200-k-omega-RANS into this new directory.

26.2.1 New grid

The grid is generated using the script generate-channel-grid.py. 96 cells are
used in the y direction with a stretching of 15%. It gives a y+ value of approximately
0.5 for the wall-adjacent cell center. Modify the number of cell and/or the stretching
and look at the influence. You execute the grid script by typing

python generate-channel-grid.py

Now a new grid is generated (it is written to x2d.dat and y2d.dat) which is read
by pyCALC-LES. Now run pyCALC-LES by typing

run-pyton &

This is a bash script which simply puts the four Python scripts setup case.py,
modify case.py, ../pyCALC-LESp.py and ../synt flucy.py (together
with the declarations of global variables in file ../globals) into one file called
exec-pyCALC-LES.py and then runs this file. In Section 15.3, you find some useful
information on how to extract convergence history etc from the output file out.

26.2. Channel flow, RANS 65

26.2.2 Boundary wall conditions on ω

The wall boundary conditions on ω are set in Section 10 in setup case.py accord-
ing to Eq. 10.2. This is not entirely correct, because it prescribes ω at the wall, whereas
it should be prescribed at the cell center. With the present boundary condition, the value
of ω at the cell center will be too small. Try to compensate this by increasing the value
of ω at the wall by a factor of fact=10.

When you edit the code you may do it in two ways. Either you edit setup case.py
and then execute the code with the run-python script. Or you edit the file
exec-pyCALC-LES.py directly. If you do it with ipython you type

ipython

and then

!vim exec-pyCALC-LES.py
run exec-pyCALC-LES.py

You can insert breaks in the code by inserting the command sys.exit().
Now, do you get the correct value of ω at the wall-adjacent cell center? Or is it still

too small? If so, increase fact.
Another way is to prescribe ω at the cell center using sources SP and SU . In

standard SIMPLE finite volume methods, this is usually done setting SU and SP to
large values, i.e

SP = −1010, SU = 1010ωwall

where ωwall is the wall boundary condition. However, this option does not work
in pyCALC-LES (the simulations diverges rapidly), probably because the advanced
solvers do not tolerate the resulting large condition number of the solution matrix.

Instead, at the wall-adjacent cells, we simply set all coefficients, aw, aE , . . . aH
to zero, aP = 1 and Su = ωwall. You do this in the module fix omega in file
modify case.py

def fix_omega():
aw3d[:,0,:]=0
ae3d[:,0,:]=0
as3d[:,0,:]=0
an3d[:,0,:]=0
al3d[:,0,:]=0
ah3d[:,0,:]=0
ap3d[:,0,:]=1
su3d[:,0,:]=om_bc_south

Setting ap = 1 may not be optimal, since this value may be much larger/smaller than
ap at other cells. It’s probably better to set

aP,max = max(aP)

where max is taken over all cells and Su = aP,maxωwall; this approach makes the
condition number of the coefficient matrix smaller.

26.3. Boundary layer flow, RANS 66

Note, that the procedure of setting the coefficients aW , aE , . . . cannot by done in
modify om, since the aP and SU are modified in module crank nicol after leav-
ing modify om. You must use the module fix omega (in file modify case.py)
which is called just before the solver is called. Implement the boundary condition (i.e.
setting ωwall as the wall-adjacent cell value) and find out how large the effect is on the
results.

26.2.3 k − ε model

Now simulate the same flow with the AKN k − ε model. You set keps=True and
kom=False. You need to set the wall boundary for ε according to Eq. 8.4. Do that
in module fix eps. You can look at the modify case file for the hill flow, see
Section 18.

The default initial values are set in the main code for k and ε, i.e. k = ε = 1.
Check the convergence by typing

grep ’max resi’ out

You find that the simulation diverges. Change solver to TDMA and set the number of
sweeps to one

solver_vel=’tdma’
solver_turb=’tdma’
nsweep_vel=1
nsweep_keps=1

Run the code. Check convergence. Plot the results. They don’t look too good, do they?
If you look at the time histories you see there are large oscillations. Decrease the time
step (Section 8 in setup case.py) by a factor of four and make a corresponding
increase in number of time steps. Run again and you find it looks better.

How do the results compare with k − ω model? Try different grids. Is the k − ε
more or less sensitive to the near-wall refinement than the k − ω model?

26.3 Boundary layer flow, RANS
Read Section 21 carefully. This is a developing boundary layer flow. At the inlet,
ū = 1, ω = 1 and k = 10−2 near the wall (first 10 cells) and k = 10−10 in the
outer region. This flow case can be used for creating mean inlet profiles for the DES
simulations in Section 23 (but you need to increase ni). Neumann boundary conditions
are used at the free (north) boundary for k and ω. Do some sensitivity checks.

• Is the flow sensitive to the inlet values of k and ω?

• The TDMA solved is used for k and ω.

– Check the CPU time by typing
grep itera out
which gives the CPU time per iteration. If you type
grep time out
you get the CPU time for each variable (per iteration)

– What happens if you use the LGMRES solver? Remember to set

26.4. Channel flow, inlet-outlet, Reτ = 395 67

nsweep_kom=50

Check maximum turbulent viscosity by typing
grep vismax out

• What happens if you set Dirichlet boundary at the free boundary (the k−ω model
is known to be sensitive to free-stream values of ω)

• The ωwall value is set to 10ωwall, See Section 10 in setup case.py What
happens if you fix is to ωwall in the center of the cell (as you did in Sec-
tion 26.2.2).

26.4 Channel flow, inlet-outlet, Reτ = 395

Now we will – finally – do some LES. The setup of this flow is given in Section 19.
Read this section carefully, look at the file out and plot the results. Now create a new
directory and copy all files.

In order to make the simulations quicker, you can make the domain smaller and use
shorter integration times. You can also choose to make simulations only in the lower
half of the channel using a symmetry boundary condition at the upper (north) boundary.
Note that by doing this we modify the physics, but the influence will probably be
limited to the region near the upper boundary.

So, let’s change the domain and generate a new grid with extent x = [0, 4] and
y = [0, 1] with ni = 44 and nj = 40. The generate-channel-grid.py mirrors
the grid in the upper half; remove that part (since we want to create a grid only for the
lower half). Modify the script generate-channel-grid.py accordingly.

Next, we need to change the boundary conditions at the upper (north) boundary
from Dirichlet to Neumann (note that it should be changed for all variables except
one). You do that in file setup case.py in Section 10.

In the full channel (i.e. ymax = 2 in Section 19), the inlet shear stress profile
created by the synthetic fluctuations is negative in the lower (south) half and positive in
the upper (north) half. We change the sign of the inlet shear stress in the upper half by
switching the sign of v′ in Eq. 11.8, see Section 19.1.5. In this case, we compute the
flow only in the lower half of the channel and hence we set jmirror synt=0 (also
in Sectioon 10).

In file modify case.py you should look for modify init and modify inlet.
Here the variables y rans, u rans and uv rans are used. The length of the loaded
vectors are that of the full channel. But now we must use only the values in the lower
half of the channel, e.g.

y_rans=y_u_k_om[0:nj,0]
u_rans=y_u_k_om[0:nj,1]
uv_rans=y_u_k_om[0:nj,4]

Finally, reduce the start of time integration and number of time steps to

itstep_start=2000
ntstep=6000

Also, if you have managed to install pyamgx, you can solve set

26.5. Channel flow, inlet-outlet with heat transfer, Reτ = 395 68

solver_p=’pyamgx_p’
solver_vel=’pyamgx’
solver_turb=’pyamgx’

Now run the code. On my Dell Alienware x17 R1 laptop the simulation takes 10 min-
utes. By loosening the convergence limits in the Pythons solvers (e.g. 10−4 for veloci-
ties and 5 · 10−3) you can make the simulation even faster. Plot the results (you’ll find
that you must make some modifications of the plot script) and compare with the origi-
nal results. The most critical quantities are the friction velocity and the resolved shear
stress. The profiles of the resolved stresses are non-smooth because of too short a time
averaging. Increase ntstep and itstep start if you prefer smoother profiles.

Now investigate how sensitive the flow is to various parameters.

• The number of synthetic modes is set to nmodes synt=1200. What happens
if you increase or decrease it? What about the CPU time?

• The SGS viscosity is plotted. You find that νsgs/ν ' 1. We use the WALE
model. What happens if you switch to DNS?

• The integral turbulent length scale of the synthetic fluctuations is set to L t synt=0.2.
What happens if you increase/decrease it? Do you get the same effect as in [23]?

• Can you increase the time step? If so, you can reduce the integration time. Is the
CPU time/time step the same for the larger time step (type grep time at the
prompter)? Can you loosen the convergence criteria?

• The integral turbulent timescale of the synthetic fluctuations is set to Lt/uτ (see
tturb=L t synt in modify inlet). Note that this value gives a synt=0.994
and b synt=0.108 (see file out) which correspond to a and b in Eqs. 11.10
and 11.11 (hence only a small contribution from the “new” fluctuation in the time
filter, Eq. 11.9). What happens if you increase/decrease the integral timescale?

• The eigenvalues and the eigenvectors for the synthetic fluctuations are read in
module synt fluct. It reads the files a synt inlet.dat and R synt inlet.dat.
The eigenvalues and the eigenvectors have been computed using a Reynolds
stress tensor created with EARSM and a 1D RANS simulation. They were com-
puted using the script compute a and R-from-earsm.py. Try another
Reynolds stress tensor (e.g. from DNS). This task in optional.

• Change any other parameters. For example, you can make more changes in the
synthetic fluctuation generator (file ../synt fluct.py).

26.5 Channel flow, inlet-outlet with heat transfer, Reτ = 395

Now we can add a new transport equation: a temperature equation. If you’re more
interested in the k − ω DES turbulence model, skip this section. You can make a LES
simulation or if you want to faster simulation, then use RANS. In either way, copy the
files in Section 26.4. For RANS, you skip the inlet fluctuations and you can reduce the
number of cells to two in the z direction, and you can choose, e.g., the k − ω model.
Or you can even do laminar flow (don’t forget to reduce the Reynolds number).

When we add a new transport equation, it means that you have to make changes in
the main code. i.e. pyCALC-LES.py. I suggest that you copy that file into a new

26.6. RANS of channel flow at Reτ = 5 200: k − ω and wall functions 69

name, e.g. pyCALC-LES-heat.py. Then you need to change the run-python
file so that it reads

#!/bin/bash
delete forst line
sed ’/setup_case()/d’ setup_case.py > temp_file
add new first line plus global declarations
cat ../global temp_file modify_case.py ../synt_fluct.py \
../pyCALC-LES-heat.py > exec-pyCALC-LES.py;
˜/anaconda3/bin/python -u exec-pyCALC-LES.py > out

Now you need to define many new variables in file globals such as
t bc east, t bc east type, t bc north, t bc north type, t bc south,

t bc south type, t bc west, t bc west type, t bc high, t bc low,
t bc high type, t bc low type.

You need to initialize temperature (search for the string u3d=xp.one in pyCALC-LES-heat.py)
with the command

t3d=xp.ones((ni,nj,nk))*1e-20

Then you need to create a new routine for temperature, calct. You need to call
coeff, bc You can, for example, copy the lines used for v3d (search for the
string calcv in pyCALC-LES-heat.py). You need to define a viscous Prandtl
number (prand is a turbulent one). You can add one parameter (e.g. prand visc in
the call to coeff; don’t forget to add prand visc to the file global).

You must also create a modify t in file modify case.py.
Now, set boundary conditions and try it out! (it will most likely not work right

away). I suggest that you use T = 0 at the inlet. Then set some Dirichlet b.c.
at the wall. Next, you may set some internal heat source in, for example, the cells
(i,j,:)=(5,10,:). You do this with the command in modify t

su3d[5,10,:]= su3d[5,10,:]+ss*vol[5,10,:]

where ss is the source per unit volume.

26.5.1 Adding buoyancy

Maybe you want to add buoyancy. We choose the vertical direction as y. That means
that we should add the buoyancy term to the v̄ momentum equation which reads

gβ(T − Tref) (26.1)

see, e.g., Section 11.1 in [24]. β is the thermal expansion coefficient and g is the
gravitational acceleration which are set to 1/273 and g = 0.81, respectively. We set
the reference temperature to zero, i.e. Tref = 0. Now you simply add Eq. 26.1 to
su3d in module modify v (don’t forget to multiply by volume).

26.6 RANS of channel flow at Reτ = 5 200: k − ω and wall func-
tions

Here we will implement wall functions and make RANS simulations of fully developed
channel flow. Copy all files used in Section 17. When wall functions are used we place

26.7. Channel flow, inlet-outlet, Reτ = 5 200 70

the wall-adjacent cell centers in the log-region, i.e. approximately at 30 ≤ y+ ≤ 200.
So we start by generating a new grid using generate-channel-grid.py. Set
nj=50 and make all ∆y equal. You can achieve this by setting the stretching factor to
one, i.e. yfac=1. The wall boundary conditions for ū, k and ε are given in Section
11.14.1 in [24]. They can be summarized as

ū: set the wall shear stress as τw = ρu2
τ (recall that ρ = 1). The log-law reads

ū

uτ
=

1

κ
ln

(
Euτy

ν

)
(26.2)

where E = 0 and κ = 0.41.

k: set k at the wall-adjacent cells as kP = C
−1/2
µ u2

τ

ω: set ω at the wall-adjacent cells as ωP = C
−1/2
µ uτ/(κywall), see Eg. 3.27 in [36]

Here are some tips.

• The wall force (wall shear stress times area), τwAs, should always be in the
opposite direction to the local ū velocity. Hence, it is best to add τwAs/|ū|
to sp3d. Since the wall boundary condition is implemented as a force, there
should be no diffusion from the wall via as3d and an3d. Hence, set Neumann
boundary conditions for ū.

• When setting the wall-adjacent ω according to the expression above, use the
module fix omega in file modify case.py.

• Add a new module fix k for setting k. Add a call to fix k in the main it-
eration loop of pyCALC-LES in a similar way as the calls to fix eps and
fix omega

• The expression for uτ in the log-law (Eq. 26.2) is implicit, Hence, compute uτ
from the log-law in an iterative way (you could make 3–5 iterations using uτ
from the previous global iteration as initial value).

• Print uτ at every time step; it is a good check to see if it’s correctly computed. It
should go to one (it takes at least 1000 time steps).

• Finally, when you plot the results using pl uvw.py. The friction velocity is
here computed as

uτ =

(
ν
∂ū

∂y

∣∣∣∣
wall

)1/2

Now you should compute is from the wall functions (you can compute it from k)

26.7 Channel flow, inlet-outlet, Reτ = 5 200

Here we will make simulations with inlet-outlet boundary conditions using a k − ω
DES turbulence model. Create a new directory and copy the files from the case in
Section 20. Make the same modifications as in Section 26.4. Run the code, plot and
compare with the results in Section 20.

26.8. Channel flow, inlet-outlet, Reτ = 5 200, using wall functions 71

26.7.1 Neumann boundary condition on k

The discretized commutation term in the k equation is in effect a negative convection
term [30]. Hence, we should get the same results if we omit the commutation term in
the k equation and change the inlet Dirichlet boundary condition on k to Neumann (cf
Figs. 6 and 9 in [30]). Make the changes, run the code and compare the results with
those in Section 26.7.

26.7.2 No commutation terms

• What happens if you keep Dirichlet inlet boundary conditions on k and ω and
omit the commutation terms?

• What happens if omit the commutation terms and use Neumann inlet boundary
conditions on both k ans ω?

26.7.3 No commutation terms in URANS region

As discussed in [30], the commutation terms should maybe not be used in the URANS
region. First, find out where the switch between URANS and LES occurs. Then, make
a simulation where you use the commutation terms only in the LES region. Run the
code. How do the results compare with those in Section 26.7?

26.8 Channel flow, inlet-outlet, Reτ = 5 200, using wall functions
Implement wall functions in the same way as Section 26.6. Copy all files from Sec-
tion 26.7. Modify the grid, setup case and modify case in the same way as in
Section 26.6.

If you would do turbulent, atmospheric boundary layer, you would use a similar
wall functions but instead of the friction velocity we use roughness length, see, e.g.,
Eq. 14 in [37]

26.9 Channel flow, fully developed, Reτ = 5 200

Now we’ll replace the inlet-outlet boundary conditions with cyclic boundary condi-
tions. This will be the same flow as in Section 16 but now we compute the flow only in
the lower (south) half of the channel. Copy the files from Section 26.7. In Section 10
in setup case.py, set

cyclic_x = True

This means that the results from 26.7 will be used as initial conditions stored in files
u3d saved.npy, v3d saved.npy. . . . om3d saved.npy. You don’t need to change
u bc west type, u bc east type . . .om bc east type.

We must have reasonably good initial condition. A good way it to use the results in
Section 26.7 as initial condition. Hence, simply set

restart = True

in Section 3 in setup case.py.
Remove all initial, inlet and outlet conditions in modify case.py. Then add the

driving pressure gradient source term in modify u

27. Machine Learning for improving wall functions 72

su3d = su3d +vol

Run the code. It may take some time for the flow to get fully developed. When you
plot the results, check how large uτ is (or τw). It should be equal to one (because τw
must balance the pressure gradient, see Section “Force balance, channel flow” in [24]).
If it is 5% too small or too large, run the code again (i.e. run another ntstep time
step). How do the results compare with those in Section 16?

26.9.1 Wall boundary condition of ω

In Section 26.2.2 you investigated the sensitivity of the flow to the wall boundary con-
dition of ω. You compared three different boundary conditions.

1. Equation 10.2 (this is what you used in Section 26.9)

2. Multiply Eq. 10.2 by a factor of 10.

3. Set Eq. 10.2 in the cell center by using the module fix omega.

Make two new runs where you apply the two last options. Are the results much af-
fected? For option 1 and 2, how much do the computed ω values differ from the correct
value in Eq. 10.2?

26.9.2 RANS-LES Interface

Check where the RANS-LES interface is located (it is stored in variable fk3d which
is computed in module compute fk). The interface is defined as the location where
fk3d gets larger than one.

1. Investigate the sensitivity to the location of the interface by forcing it to a certain
cell layer of constant jl0. This is done by setting the jl0 to a negative value, i.e.
xp.abs(jl0)=jl0.

2. The LES length scale is ∆, see Eq. 10.1. Replace ∆ by the IDDES length scale,
∆dw, see Section 23 or Eq. 8 in [31]. Note that you must not use any for loops.
Run the code and compare with the results obtained in Section 26.9.

26.9.3 Change turbulence model

Up to now, you have used the standard Wilcox k − ε model. Now switch to the k − ω
model used in [31]

27 Machine Learning for improving wall functions
Here we will use Machine Learning (ML) for improving wall functions. Start by read-
ing my report [38].

The codes in two directories are used.

27.1. Directory 1 73

27.1 Directory 1
The name of the directory is

channel-5200-IDDES-96-86-96-ML-aver-xz-database-3cells-15000-timesteps.
Here IDDES is used to make fully-developed channel flow at reτ = 5 200, see

Section 2 & 3 in [38]. Files with time series of independent samples at nine cells are
created in module modify u.

Next, svr is used to create a ML wall-function model in file
svr-C-10-eps-0.001-low-re-yplus-inst-first-uplus-output-cell

-1-9-local-300-samples.py
It creates three files (which is the ML model):

• model-low-re-svr-C-10-eps-0.001-yplus-inst-uplus-output-first
-cell-1-9-local-cells-300-samples.bin

• model-low-ustar-svr-C-10-eps-0.001-yplus-inst-uplus-output-first
-cell-1-9-local-cell scaler-yplus-300-samples.bin

• min-max-model-low-re-svr-C-10-eps-0.001-yplus-inst-uplus-output-first
-cell-1-9-local-cells-loca-300-samplesl.txt

27.2 Directory 2
The name of the directory is

channel-16000-IDDES-wall-functions-nj92-ML-dy-from-database-ni-96-svr
-C-10-eps-0.001-low-re-IDDES-yplus-inst-uplus-output-cell-1-9-300-samples

Here, the wall-function ML model is used to predict fully-developed channel flow
at Reτ − 16 000. The ML model created in Section 27.1 is loaded in module fix k.
The friction velocity, uτ , is predicted with the ML wall-function model. It is then used
to set k = C

−1/2
µ u2

τ in the wall-adjacent modes. The friction velocity is also used

• in module fix eps: set ε =
u3
τ

κδy in the wall-adjacent modes

• in module modify u: set τw = u2
τ at the wall in the wall-adjacent modes

A Variables in pyCALC-LES

Nomenclature
acrank: time integration scheme for pressure (1: fully implicit)

acrank conv: time integration scheme for convection and diffusion in ū, v̄ and w̄
equations (1: fully implicit)

acrank conv keps: time integration scheme for convection and diffusion in k and
ε equations (1: fully implicit)

acrank conv kom: time integration scheme for convection and diffusion in k and
ω equations (1: fully implicit)

ae bound: aE coefficient for diffusion for east boundary (without viscosity)

A. Variables in pyCALC-LES 74

amg cycle: type of cycle in the pyAMG solver for the pressure equation (’V’, ’W’,
’F’, ’AMLI’)

amg cycle phi: type of cycle in the pyAMG solver for all equations except the
pressure equation (’V’, ’W’, ’F’, ’AMLI’)

amg relax: relation method in pyAMG for the pressure equation: ’default’, ’cg’,
’gm’, ’gmres’, ’fgmres’, ’cgne’, ’cgnr’, ’cr’

amg relax phi: relation method in pyAMG for all equations except the pressure
equation: ’default’, ’cg’, ’gm’, ’gmres’, ’fgmres’, ’cgne’, ’cgnr’, ’cr’

an bound: aN coefficient for diffusion for north boundary (without viscosity)

apo3d: aoP , see Eq. 2.5

areas: south area

areasx: x component of south area of control volume

areasy: y component of south area of control volume

areaw: west area of control volume

areawx: x component of west area of control volume

areawy: y component of west area of control volume

areaz: high and low area of control volume

as bound: aS coefficient for diffusion for south boundary (without viscosity)

aw3d,ae3d,as3d,an3d,al3d,ah3d,ap3d: discretization coefficients, aW , aE ,
aS , aN , aL, aH , aP

aw bound: aW coefficient for diffusion for west boundary (without viscosity)

az bound: aH and aL coefficient for diffusion for high and low boundary (without
viscosity)

blend: blending between central differencing (CDS) and MUSCL. blend=1 is full
CDS, see Section 3.5

c eps 1: Cε1 coefficient in the k − ε model

c eps 2: Cε2 coefficient in the k − ε model

c omega 1: Cω1 coefficient in the k − ω model

c omega 2: Cω2 coefficient in the k − ω model

cmu: Cµ coefficient in the k − ε model, the k − ω model and CS coefficient in the
Smagorinsky model

convergence limit eps, convergence limit k, convergence limit om:
convergence limit in Python solver for ε, k, ω (max(limit,limit· norm(su3d));
if negative: abs(limit))

A. Variables in pyCALC-LES 75

convergence limit om, convergence limit k, convergence limit om:
convergence limit in Python solver for ε, k, ω (max(limit,limit· norm(su3d));
if negative: abs(limit))

convergence limit p: convergence limit in Python solver for p̄ (relative limit);
when the pyamgx solver is used for any variable, this variable is used as the
convergence criterium

convergence limit u: convergence limit in Python solver for ū (max(limit,limit·
norm(su3d)); if negative: abs(limit))

convergence limit v: convergence limit in Python solver for v̄ (max(limit,limit·
norm(su3d)); if negative: abs(limit))

convergence limit w: convergence limit in Python solver for w̄ (max(limit,limit·
norm(su3d)); if negative: abs(limit))

convw,convs,convl: convection through west, south and low face

cyclic x: cyclic boundary conditions in x direction

cyclic z: cyclic boundary conditions in z direction

delta max: max (∆x,∆y,∆z)

dist3d: smallest distance to south or north wall

dmin synt: the length defining the maximum wavenumber in the synthetic fluctua-
tions, see Section 11.3

dpdx old, dpdy old, dpdz old: pressure derivatives, ∂p̄/∂x, ∂p̄/∂y, ∂p̄/∂z
at old time step

dt: time step

dz3d: grid spacing in the z direction (3D array)

dz: grid spacing in the z direction (1D array)

eps3d: modeled dissipation of turbulent kinetic energy, ε

eps3d mean: time-averaged dissipation of turbulent kinetic energy, 〈ε〉

eps bc east, eps bc north, eps bc south, eps bc west, eps bc high, eps bc low:
boundary values of ε at east, north, south, west and high/low boundary. De-
fault: 0

eps bc east type, eps bc north type, eps bc south type, eps bc west type:
see below

eps bc high type, eps bc low type: type of b.c. for ε (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2ε/∂n2 = 0). Default: Neumann

fk3d: fk, used in PANS and as FDEs in k − ω DES

fk3d mean: time-averaged fk, 〈fk〉

A. Variables in pyCALC-LES 76

fkmin limit: minimum fk in PANS and PITM, see Eq. 8.3

fx,fy,fz: fx, fy , fy , the interpolation function in i, j and k direction

gen: P k excluding the turbulent viscosity (used in the k, ε and ω equations)

gpu: if TRUE, all simulations are made on the GPU; if FALSE, all simulations are
made on the CPU

imon,jmon,kmon: print time history of variables for this node

iter: current global iteration

itstep: current time step

itstep save: instantaneous and time-averaged field are saved on disk every itstep save
time step

itstep start: time averaging starts

itstep stats: time averaging is done every itstep stats time step

itstep stats counter: counter for how many samples are used for time aver-
aging

jl0: when jl0 < 0, the LES-RANS interface in the k− ω DES model is fixed at
cell np.abs(jl0)

jmirror synt: the sign of the v synthetic are changed for nodes j ≥ jmirror
(in module synt fluct)

k3d: modeled turbulent kinetic energy, k

k3d mean: time-averaged modeled turbulent kinetic energy, 〈k〉

k bc east, k bc south, k bc west, k bc north, k bc high, k bc low:
boundary values of k at east, south, west, north, and high/low boundary. De-
fault: 0

k bc east type, k bc north type, k bc south type, k bc west type:
see below

k bc high type, k bc low type: type of b.c. for k (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2k/∂n2 = 0). Default: Dirichlet

keps: the AKN k − ε model is used (RANS)

kom: the Wilcox k − ω model is used (RANS)

kom des: the DES Wilcox k − ω model is used

L t synt: length scale of the synthetic fluctuations, see Eq. 11.4

maxit: maximum number of global iterations (solving ū, v̄, w̄, p̄, . . .)

ni,nj,nk: number of cell centers in i, j and k direction

nmodes synt: number of modes when generating synthetic fluctuations

A. Variables in pyCALC-LES 77

norm order: order of norm when computing residual for ū, v̄, w̄, k, ε and ω. De-
fault: 2

nsweep keps: maximum number of iterations in the Python solver when solving
the k and ε equations in solver called in solve 3d

nsweep kom: maximum number of iterations in the Python solver when solving the
k and ω equations in solver called in solve 3d

nsweep vel: maximum number of iterations in the Python solver when solving the
ū, v̄ and w equations in solver called in solve 3d

ntstep: number of time steps

om3d: specific dissipation of turbulent kinetic energy, ω

om3d mean: time-averaged modeled specific dissipation of turbulent kinetic energy,
〈ω〉

om bc east, om bc north, om bc south, om bc west, om bc high, om bc low:
boundary values of ω at east, north, south, west and high/low boundary. De-
fault: 0

om bc east type, om bc north type, om bc south type, om bc west type:
see below

om bc high type, om bc low type: type of b.c. for ω (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2ω/∂n2 = 0). Default: Dirichlet

p3d: pressure, p̄

p3d mean: time-averaged pressure, 〈p̄〉

p bc east, p bc north, p bc south, p bc west, p bc high, p bc low
boundary values of p̄ at east, north, south, west, and high/low boundary. De-
fault: 0

p bc east type, p bc north type, p bc south type, p bc west type:
see below

p bc high type, p bc low type: type of b.c. for p̄ (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2p/∂n2 = 0). Default: Neumann

pans: PANS (based on k − ε) or PITM is used. PANS is used when prand k and
prand eps are positive, otherwise PITM

prand eps: σε, turbulent Prandtl number in the ε equation

prand k: σk, turbulent Prandtl number in the k equation

prand omega: σω , turbulent Prandtl number in the ω equation

residual p: residual for the continuity equation

residual u: residual for the ū equation

residual v: residual for the v̄ equation

A. Variables in pyCALC-LES 78

residual w: residual for the w̄ equation

resnorm p: the residual of the continuity equation is normalised by this quantity

restart: a restart from a previous simulaton is made, see Section 14.24

save: the ū, v̄ . . . fields are saved to disk, see Section 14.25

save average z: when averaging flow variables in time, average also in z direc-
tion. Default: True

scheme: discretization scheme for the ū, v̄ and w̄ equation. ’c’=central, ’h’=hybrid,
’u’=upwind or ’m’=MUSCL, see Section 14.10

scheme turb: discretization scheme for k, ε and ω. ’c’=central, ’h’=hybrid, ’u’=upwind,
see Section 14.10

smag: the Smagorinsky model is used

solver p: pyAMG solver for p̄. solver p=’pyamgx’ means that tke p̄ equation is
solved on the GPU. The coefficient matrix, A (see Eqs.B.4 – B.4), is uploaded
to the GPU every iteration; solver p=’pyamgx p’ means that the matrix, A,
is uploaded only once. This option is faster but requires twice as much GPU
memory.

solver turb: Python sparse matrix or pyAMG solver for k, ε and ω. solver turb=’pyamg’,
’pyamgx’ (solved on the GPU), ’gmres’, ’lgmres’, ’cgnr’, ’cgne’, ’fgmres’,
’bicgstab’, ’tdma’

solver vel: Python sparse matrix or pyAMG solver for ū, v̄ and w̄. solver vel=’pyamg’,
’pyamgx’ (GPU), ’gmres’, ’lgmres’, ’cgnr’, ’cgne’, ’fgmres’, ’bicgstab’, ’tdma’

sormax: convergence criteria in outer iteration loop

sp3d,su3d: discretization source terms, Sp, SU

u3d: ū velocity

u3d mean: time-averaged ū velocity, 〈ū〉

u bc east, u bc north, u bc south, u bc west, u bc high, u bc low:
boundary values of ū at east, north, south, west, and high/low boundary. De-
fault: 0

u bc east type, u bc north type, u bc south type, u bc west type:
see below

u bc high type, u bc high low: type of b.c. for ū (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2u/∂n2 = 0). Default: Dirichlet

urfvis: under-relaxation factor for turbulent viscosity

usynt inlet: synthetic inlet fluctuation in the x direction, (V ′1)m, see 11.9

uu3d stress: time-averaged resolved stress, 〈v′21 〉

uv3d stress: time-averaged resolved stress, 〈v′1v′2〉

A. Variables in pyCALC-LES 79

v3d: v̄ velocity

v3d mean: time-averaged v̄ velocity, 〈v̄〉

v bc east, v bc north, v bc south, v bc west, v bc east, v bc high, v bc low:
boundary values of v̄ at east, north, south, west and high/low boundary. De-
fault: 0

v bc east type, v bc north type, v bc south type, v bc west type:
see below

v bc high type, v bc low type: type of b.c. for v̄ (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2v/∂n2 = 0). Default: Dirichlet

vis3d: total viscosity, ν + νt

vis3d mean: time-averaged total viscosity, 〈νt + ν〉

viscos: viscosity, ν. Note that ν = µ since ρ = 1.

vol: volume of a control volume

vsynt inlet: synthetic inlet fluctuation in the y direction, (V ′2)m, see 11.9

vtk: if TRUE, save results in VTK format

vtk file name: file name of VTK output files

vtk movie: if TRUE, save results every itstep save time step in VTK format

vv3d stress: time-averaged resolved stress, 〈v′22 〉

w3d: w̄ velocity

w3d mean: time-averaged w̄ velocity, 〈w̄〉

w bc east, w bc north, w bc south, w bc west, w bc low, w bc high:
boundary values of w̄ at east, north, south, west, and high/low boundary. De-
fault: 0

w bc east type, w bc north type, w bc south type, w bc west type:
see below

w bc high type, w bc low type: type of b.c. for w̄ (’d’=Dirichlet, ’n’=Neumann’
or ’2’=∂2w/∂n2 = 0). Default: Dirichlet

wale: the WALE model is used

wsynt inlet: synthetic inlet fluctuation in the z direction, (V ′3)m, see 11.9

ww3d stress: time-averaged resolved stress, 〈v′23 〉

x2d: the x coordinate of a corner of a control volume, see Fig. 1.3

xp2d: the x coordinate of the center of a control volume, see Fig. 1.3

y2d: the y coordinate of a corner of a control volume, see Fig. 1.3

B. Sparse matrix format in Python 80

yp2d: the y coordinate of the center a control volume, see Fig. 1.3

z: the z coordinate of the face of a control volume, see Fig. 1.4

zmax: extent of the computational domain in the z direction

zp: the z coordinate of the center of a control volume, see Fig. 1.4

B Sparse matrix format in Python
pyCALC-LES uses the sparse solvers available in Python. The coefficients aW , aE , aS , aN , aL, aH , aP , Su
must be converted to Python’s sparse matrix format. Hence, there are seven diagonals.
When cyclic boundary conditions are used (cyclic x and/or cyclic z), there will
be two additional diagonals for each cyclic boundary condition. This means that the
cyclic boundary conditions are treated implicitly.

The Python solvers linalg.lgmres, linalg.gmres, linalg.cgnr, linalg.fgmres,
linalg.bicgstab or the algebraic multigrid solver pyAMG [1] may be used for
all variables. For the pressure, pyAMG is always used.

Below, the full coefficient matrix, A, is shown for a couple of cases with and with-
out cyclic boundary conditions..

B.1 2D grid, ni× nj = (3, 4)

j and N

i and E

0 1 2 3

4 5 6 7

8 9 10 11



C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
L0 : aP,0 −aN,0 0 0 −aE,0 0 0 0 −aW,0
L1 : −aS,1 aP,1 −aN,1 0 0 −aE,1 0 0 −aW,1
L2 : 0 −aS,2 aP,2 −aN,2 0 0 −aE,2 0 0 −aW,2
L3 : 0 0 −aS,3 aP,3 0 0 0 −aE,3 0 0 −aW,3
L4 : −aW,4 0 0 0 aP,4 −aN,4 0 0 −aE,4 0 0
L5 : 0 −aW,5 0 0 −aS,5 aP,5 −aN,5 0 0 −aE,5 0 0
L6 : 0 0 −aW,6 0 −aS,6 −aP,6 −aN,6 0 0 −aE,6 0
L7 : 0 0 0 −aW,7 0 0 −aS,7 −aP,7 0 0 0 −aE,7
L8 : −aE,8 0 0 0 −aW,8 0 0 0 aP,8 −aN,8 0
L9 : 0 −aW,9 0 0 0 −aW,9 0 0 −aS,9 aP,9 −aN,9 0
L10 : 0 0 −aW,10 0 0 0 −aW,10 0 0 −aS,10 aP,10 −aN,10

L11 : 0 0 0 −aW,11 0 0 0 −aW,11 0 0 −aS,11 aP,11



(B.1)

B.1. 2D grid, ni× nj = (3, 4) 81

Figure B.1: Matrix for 2D flow. ni× nj = (3, 4). Cyclic in x. The coefficients due to
cyclic boundary conditions are colored in blue.

B.2. 2D grid, ni× nj = (3, 2) 82

B.2 2D grid, ni× nj = (3, 2)

j and N

i and E

0 1

2 3

4 5



C0 C1 C2 C3 C4 C5
L0 : aP,0 −aN,0 −aE,0 0 −aW,0 0
L1 : −aS,1 aP,1 0 −aE,1 0 −aW,1
L2 : −aW,2 −aS,2 aP,2 −aN,2 −aE,2 0
L3 : 0 −aW,3 −aS,3 aP,3 0 0aE,3
L4 : −aE,4 0 −aW,4 0 aP,4 −aN,4
L5 : 0 −aE,5 0 −aW,5 0 aP,5


(B.2)

Figure B.2: Matrix, A, for 2D flow. ni × nj = (3, 2). Cyclic in x. The coefficients
due to cyclic boundary conditions are colored in blue.

B.3. 3D grid, ni× nj × nk = (3, 2, 2), cyclic in x,i 83

B.3 3D grid, ni× nj × nk = (3, 2, 2), cyclic in x,i

i=0

k and H

j and N

0 1

2 3

i=1

k and H

j and N

4 5

6 7

i=2

k and H

j and N

8 9

10 11



C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
L0 : aP,0 −aH,0 −aN,0 0 −aE,0 0 0 0 −aW,0 0 0 0
L1 : −aL,1 aP,1 0 −aN,1 0 −aE,1 0 0 0 −aW,1 0 0
L2 : −aS,2 0 aP,2 −aH,2 0 0 −aE,2 0 0 0 −aW,2 0
L3 : 0 −aS,3 −aL,3 aP,3 0 0 0 −aE,3 0 0 0 −aW,3
L4 : −aW,4 0 0 0 aP,4 −aH,4 −aN,4 0 −aE,4 0 0 0
L5 : 0 −aW,5 0 0 −aL,5 aP,5 0 0 0 −aE,5 0 0
L6 : 0 0 −aW,6 0 −aS,6 0 aP,6 −aH,6 0 0 −aE,6 0
L7 : 0 0 0 −aW,7 0 −aS,7 −aL,7 aP,7 0 0 0 −aE,7
L8 : −aE,8 0 0 0 −aW,8 0 0 0 aP,8 −aH,8 −aN,8 0
L9 : 0 −aE,9 0 0 0 −aW,9 0 0 −aL,9 aP,9 0 −aN,9
L10 : 0 0 −aE,10 0 0 0 −aW,10 0 −aS,10 0 aP,10 −aH,10

L11 : 0 0 0 −aE,11 0 0 0 −aW,11 0 −aS,11 −aL,11 aP,11



(B.3)

Figure B.3: Matrix, A, for 3D flow. ni × nj × nk = (3, 2, 2). Cyclic in x. The
coefficients due to cyclic boundary conditions are colored in blue.

B.4. 3D grid, ni× nj × nk = (2, 2, 3), cyclic in z,k 84

B.4 3D grid, ni× nj × nk = (2, 2, 3), cyclic in z,k

i=0

k and H

j and N

0 1 2

3 4 5

i=1

k and H

j and N

6 7 8

9 10 11



C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
L0 : aP,0 −aH,0 −aL,0 −aN,0 0 0 −aE,0 0 0 0 0 0
L1 : −aL,1 aP,1 aH,1 0 −aN,1 0 0 −aE,1 0 0 0 0
L2 : −aH,2 −aL,2 aP,2 0 0 −aN,2 0 0 −aE,2 0 0 0
L3 : −aS,3 0 0 aP,3 aH,3 −aL,3 0 0 0 −aE,3 0 0
L4 : 0 aS,4 0 −aL,4 aP,4 −aH,4 0 0 0 0 −aE,4 0
L5 : 0 0 −aS,5 −aH,5 −aL,5 aP,5 0 0 0 0 0 −aE,5
L6 : −aW,6 0 0 0 0 0 aP,6 −aH,6 −aL,6 −aN,6 0 0
L7 : 0 −aW,7 0 0 0 0 −aL,7 aP,7 −aH,7 0 −aN,7 0
L8 : 0 0 −aW,8 0 0 0 −aH,8 −aL,8 aP,8 0 0 −aN,8
L9 : 0 0 0 −aW,9 0 0 −aS,9 0 0 aP,9 −aH,9 −aL,9‘
L10 : 0 0 0 0 −aW,10 0 0 −aS,10 0 −aL,10 aP,10 −aH,10

L11 : 0 0 0 0 0 −aW,11 0 0 −aS,11 −aH,11 −aL,11 aP,11



(B.4)

Figure B.4: Matrix, A, for 3D flow. ni × nj × nk = (2, 2, 3). Cyclic in and z. The
coefficients due to cyclic boundary conditions are colored in blue.

C Using pyAMGx on GPU
If you don’t do the installation described below, you must de-activate pyAMGx by
commenting the line which imports pyAMGX at the top of pyCALC-LES.py, i.e.

#import pyamgx

pyAMGx is a Python interface to the NVIDIA AMGX library. pyAMGx can be used
to construct complex solvers and preconditioners to solve sparse sparse linear systems
on the GPU. pyAMGx has been tested only on Linux, though it should be possible to
install on Windows as well.
Your computer must have a (compatible) nVidea graphics card. You can check which
graphics card you have with the Linux command

lspci

Look for the line starting with lUSB controller:.
Start by getting the nVidia CUDA toolkit. In Ubuntu, type

sudo apt install nvidia-cuda-toolkit

C. Using pyAMGx on GPU 85

You may also have to install drivers with the command

sudo ubuntu-drivers autoinstall

After installation you can check the installation

nvcc -version

You need to install the AMGX library. Instructions are found at here.
When installing AMGX, I encountered a couple of problems:

• I had to install gcc-9 and g++-9 as

1. sudo apt install gcc-9

2. sudo apt install g++-9

• I don’t have MPI. Hence, I must use the command cmake -D
CMAKE NO MPI="TRUE" ../

• When running cmake ../ I had to change the file
../examples/CMakeLists.txt. I replaced the line

i n c l u d e d i r e c t o r i e s (” ${CMAKE CURRENT SOURCE DIR } / . . / i n c l u d e ” \\
” ${CMAKE CUDA TOOLKIT INCLUDE DIRECTORIES}”)

by

i n c l u d e d i r e c t o r i e s (” . . / i n c l u d e ” ” / u s r / l i b / cuda / ”)

On Ubuntu, I had to download and install Nvidia drivers. I did that by using Ubuntu’s
Software updater. Then I chose Settings/Additional Drivers/ and ticked ’Using
NVIDIA driver metapackage . . . ’.
Now download pyAMGx and install it. You find instructions here.
On my Ubuntu 23.4, I had to set

export C_INCLUDE_PATH=$AMGX_DIR/include:$C_INCLUDE_PATH
export LD_LIBRARY_PATH=$AMGX_DIR/build:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$C_INCLUDE_PATH
export LIBRARY_PATH=$LD_LIBRARY_PATH

before installing pyamgx
To select the pyamgx solver in pyCALC-LES, set

solver_p=’pyamgx_p’
solver_vel=’pyamgx’
solver_turb’pyamgx’

in setup_case.

https://github.com/NVIDIA/AMGX
https://pyamgx.readthedocs.io/en/latest/install.html

C. Using pyAMGx on GPU 86

References
[1] L. N. Olson and J. B. Schroder. PyAMG: Algebraic multigrid solvers in Python

v4.0, 2018. URL https://github.com/pyamg/pyamg. Release 4.0.

[2] J. Hansson. Implementing GPU acceleration into the pyCALC-LES code using
CuPy. Phd course report, Division of Fluid Dynamics, Department of Mechanics
and Maritime Sciences, Chalmers University of Technology, Göteborg, Sweden,
2023.

[3] B. P. Leonard. A stable and accurate convective modelling based on quadratic
upstream interpolation. Computational Methods in Applied Mechanical Engi-
neering, 19:59–98, 1979.

[4] L. Davidson. LES of recirculating flow without any homogeneous direction: A
dynamic one-equation subgrid model. In K. Hanjalić and T. W. J. Peeters, editors,
2nd Int. Symp. on Turbulence Heat and Mass Transfer, pages 481–490, Delft,
1997. Delft University Press.

[5] A. Srinath. pyamgx – GPU accelerated multigrid library for PythonÃ, 2018.

[6] J. Smagorinsky. General circulation experiments with the primitive equations.
Monthly Weather Review, 91:99–165, 1963.

[7] F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of
the velocity gradient tensor. Flow, Turbulence and Combustion, 62(3):183–200,
1999.

[8] J. Ma, S.-H. Peng, L. Davidson, and F. Wang. A low Reynolds number partially-
averaged Navier-Stokes model for turbulence. In 8th International ERCOFTAC
Symposium on Engineering Turbulence, Modelling and Measurements, Marseille,
France, 9-11 June, 2010.

[9] J. Ma, S.-H. Peng, L. Davidson, and F. Wang. A low Reynolds number variant of
Partially-Averaged Navier-Stokes model for turbulence. International Journal of
Heat and Fluid Flow, 32(3):652–669, 2011. doi: 10.1016/j.ijheatfluidflow.2011.
02.001. URL http://dx.doi.org/10.1016/j.ijheatfluidflow.
2011.02.001. 10.1016/j.ijheatfluidflow.2011.02.001.

[10] K. Abe, T. Kondoh, and Y. Nagano. A new turbulence model for predicting
fluid flow and heat transfer in separating and reattaching flows - 1. Flow field
calculations. Int. J. Heat Mass Transfer, 37(1):139–151, 1994.

[11] L. Davidson and C. Friess. A new formulation of fk for the PANS model. Journal
of Turbulence, pages 1–15, 2019. doi: 10.1080/14685248.2019.1641605. URL
http://dx.doi.org/10.1080/14685248.2019.1641605.

[12] R. Schiestel and A. Dejoan. Towards a new partially integrated transport model
for coarse grid and unsteady turbulent flow simulations. Theoretical and Com-
putational Fluid Dynamics, 18(6):443–468, 2005. URL https://doi.org/
10.1007/s00162-s̄004-s̄0155-s̄z.

[13] B. Chaouat and R. Schiestel. A new partially integrated transport model for
subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics
of Fluids, 17(065106), 2005.

https://github.com/pyamg/pyamg
https://pyamgx.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.02.001
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.02.001
http://dx.doi.org/10.1080/14685248.2019.1641605
https://doi.org/10.1007/s00162-004-0155-z
https://doi.org/10.1007/s00162-004-0155-z

C. Using pyAMGx on GPU 87

[14] D. C. Wilcox. Reassessment of the scale-determining equation. AIAA Journal,
26(11):1299–1310, 1988.

[15] L. Davidson. Inlet boundary conditions for embedded LES. In First CEAS Euro-
pean Air and Space Conference, 10-13 September, Berlin, 2007.

[16] L. Davidson. Hybrid LES-RANS: Inlet boundary conditions for flows including
recirculation. In 5th International Symposium on Turbulence and Shear Flow
Phenomena, volume 2, pages 689–694, 27-29 August, Munich, Germany, 2007.

[17] N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser. A synthetic-eddy-
method for generating inflow conditions for large-eddy simulations. International
Journal of Heat and Fluid Flow, 27(4):585–593, 2006.

[18] M. Billson. Computational Techniques for Turbulence Generated Noise. PhD
thesis, Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology,
Göteborg, Sweden, 2004.

[19] M. Billson, L.-E. Eriksson, and L. Davidson. Jet noise prediction using stochastic
turbulence modeling. AIAA paper 2003-3282, 9th AIAA/CEAS Aeroacoustics
Conference, 2003.

[20] L. Davidson and M. Billson. Hybrid LES/RANS using synthesized turbulent
fluctuations for forcing in the interface region. International Journal of Heat and
Fluid Flow, 27(6):1028–1042, 2006.

[21] L. Davidson. Hybrid LES-RANS: Inlet boundary conditions. In B. Skallerud and
H. I. Andersson, editors, 3rd National Conference on Computational Mechanics
– MekIT’05 (invited paper), pages 7–22, Trondheim, Norway, 2005.

[22] L. Davidson. Hybrid LES-RANS: Inlet boundary conditions for flows with re-
circulation. In Second Symposium on Hybrid RANS-LES Methods, Corfu island,
Greece, 2007.

[23] L. Davidson. Using isotropic synthetic fluctuations as inlet boundary conditions
for unsteady simulations. Advances and Applications in Fluid Mechanics, 1(1):
1–35, 2007.

[24] L. Davidson. Fluid mechanics, turbulent flow and turbulence modelingÃ.
eBook, Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences,
Chalmers University of Technology, Gothenburg, 2021.

[25] J. O. Hinze. Turbulence. McGraw-Hill, New York, 2nd edition, 1975.

[26] J. R. Welty, C. E. Wicks, and R. E. Wilson. Fundamentals of Momentum, Heat,
and Mass Transfer. John Wiley & Sons, New York, 3 edition, 1984.

[27] L. Davidson. HYBRID LES-RANS: Inlet boundary conditions for flows with re-
circulation. In Advances in Hybrid RANS-LES Modelling, volume 97 of Notes on
Numerical Fluid Mechanics and Multidisciplinary Design, pages 55–66. Springer
Verlag, 2008.

[28] S. Wallin and A. V. Johansson. A new explicit algebraic Reynolds stress model
for incompressible and compressible turbulent flows. Journal of Fluid Mechanics,
403:89–132, 2000.

http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf

C. Using pyAMGx on GPU 88

[29] M. Irannezhad. DNS of channel flow with finite difference method on a staggered
grid. Msc thesis, Division of Fluid Dynamics, Department of Applied Mechanics,
Chalmers University of Technology, Göteborg, Sweden, 2006.

[30] L. Davidson. Two-equation hybrid RANS-LES models: A novel way to treat k
and ω at inlets and at embedded interfaces. Journal of Turbulence, 18(4):291–
315, 2017. doi: 10.1080/14685248.2017.1281417. URL http://dx.doi.
org/10.1080/14685248.2017.1281417.

[31] S. Arvidson, L. Davidson, and S.-H. Peng. Interface methods for grey-area miti-
gation in turbulence-resolving hybrid RANS-LES. International Journal of Heat
and Fluid Flow, 73:236–257, 2018.

[32] L. Davidson and C. Friess. Detached eddy simulations: Analysis of a limit on
the dissipation term for reducing spectral energy transfer at cut-offÃ. In 13th
International ERCOFTAC Symposium on Engineering Turbulence Modelling and
Measurements (ETMM13), Rhodes/Digital, Greece 15-17 September, 2021.

[33] L. Davidson and C. Friess. Detached eddy simulations: Analysis of a limit on
the dissipation term for reducing spectral energy transfer at cut-off (in review).
International Journal of Heat and Fluid Flow, 2022.

[34] M. Shur, P.R. Spalart, M.K. Strelets, and A.K. Travin. Synthetic turbulence gen-
erators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroa-
coustic problems. Flow, Turbulence and Combustion, 93:69–92, 2014.

[35] M. Carlsson, L. Davidson, S.-H. Peng, and S. Arvidson. Investigation of tur-
bulence injection methods in large eddy simulation using a compressible flow
solver. In AIAA Science and Technology Forum and Exposition, AIAA SciTech
Forum, 2022.

[36] L. Davidson. An introduction to turbulence modelsÃ. Technical Report 97/2,
Dept. of Thermo and Fluid Dynamics, Chalmers University of Technology,
Gothenburg, 1997.

[37] Bastian Nebenführ and Lars Davidson. Large-eddy simulation study of thermally
stratified canopy flow. Boundary-Layer Meteorology, pages 1–24, 2015. ISSN
0006-8314. doi: 10.1007/s10546-s̄015-s̄0025-s̄9. URL http://dx.doi.
org/10.1007/s10546-s̄015-s̄0025-s̄9.

[38] L. Davidson. Using Machine Learning for formulating new wall functions for
Large Eddy Simulation: A second attemptÃ. Technical report, Division of Fluid
Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers University of
Technology, Gothenburg, 2022.

http://dx.doi.org/10.1080/14685248.2017.1281417
http://dx.doi.org/10.1080/14685248.2017.1281417
http://www.tfd.chalmers.se/~lada/postscript_files/paper-iddes-pc-etmm13.pdf
http://www.tfd.chalmers.se/~lada/postscript_files/kompendium-turb.pdf
http://dx.doi.org/10.1007/s10546-015-0025-9
http://dx.doi.org/10.1007/s10546-015-0025-9
http://www.tfd.chalmers.se/~lada/postscript_files/Using-Machine-Learning-for-formulating-new-wall-functions-for-Large-Eddy-Simulation-A-Second-Attempt.pdf

	Geometrical details of the grid
	Grid
	Nomenclature for the grid
	Area calculation of control volume faces
	Interpolation

	Gradient

	Diffusion
	Unsteady diffusion
	 Crank-Nicolson

	Convergence criteria
	2D Diffusion
	3D diffusion

	Convection – diffusion
	Central Differencing scheme (CDS)
	First-order upwind scheme
	Hybrid scheme
	MUSCL
	Blended CDS and MUSCL
	Inlet boundary conditions using source term
	Wall boundary conditions using source term

	The Fractional-step method
	Boundary condition for "7016p

	Boundary Conditions
	Outlet velocity, small outlet
	Outlet velocity, large outlet
	Remaining variables

	The Smagorinsky Model
	The WALE model
	The PANS Model
	The PITM Model
	The k- DES model
	Inlet boundary conditions
	Synthesized turbulence
	Random angles
	Highest wave number
	Smallest wave number
	Divide the wave number range
	von Kármán spectrum
	Computing the fluctuations
	Introducing time correlation

	Procedure to generate anisotropic synthetic fluctuations
	Flow Chart
	Modules
	bc_outlet_bc
	calceps
	calck_kom
	calck
	calcom
	calcp
	calcu
	calcv
	calcw
	coeff
	compute_face_phi
	compute_fk
	compute_inlet_fluct
	conv
	correct_conv
	fix_eps, fix_k, fix_omega
	crank_nicol
	dphidx, dphidy, dphidz
	init
	modify_eps, modify_k, modify_om, modify_u, modify_v, modify_w
	modify_case.py
	modify_init
	print_indata
	read_restart_data
	save_data
	save.file
	save_time_aver_data
	save_vtk
	setup_case.py
	solve_amg
	solve_amgx
	solve_3d
	solve_p
	solve_px
	solve_tdma
	synt_fluct
	time_stats
	update
	vist_kom
	vist_pans
	vist_smag
	vist_wale

	DNS of fully-developed channel flow at Re=500
	setup_case.py
	Section 1
	Section 3
	Section 4
	Section 6
	Section 7
	Section 8
	Section 9
	Section 10

	modify_case.py
	modify_u

	Run the code

	Fully-developed channel flow at Re=5200 using k- DES
	setup_case.py
	Section 1
	Section 2
	Section 5
	Section 6
	Section 10

	modify_case.py

	RANS of channel flow at Re=5200 using k-
	setup_case.py
	Section 1
	Section 2
	Section 3
	Section 8
	Section 10

	modify_case.py

	Periodic flow over a 2D hill using PANS
	setup_case.py
	Section 1
	Section 2
	Section 4
	Section 6
	Section 8

	modify_case.py
	modify_u
	fix_eps

	Synthetic turbulence at inlet: Channel flow at Re=395
	setup_case.py
	Section 2
	Section 3
	Section 4
	Section 6
	Section 10

	modify_case.py
	modify_init
	modify_inlet
	modify_u
	modify_v
	modify_w
	modify_outlet

	Synthetic turbulence at inlet using commutation terms: Channel flow
	setup_case.py
	Section 2
	Section 4
	Section 6
	Section 10

	modify_case.py
	modify_init
	modify_inlet
	modify_k
	modify_om

	RANS of boundary layer flow using k-
	setup_case.py
	Section 1
	Section 2
	Section 4
	Section 6
	Section 8
	Section 10

	modify_case.py
	modify_init

	RANS of hump flow using the AKN k- model
	setup_case.py
	Section 2
	Section 6
	Section 8

	modify_case.py
	modify_inlet
	fix_eps

	Using the GPU to solve the equations

	IDDES of hump flow using the k- model
	setup_case.py
	Section 6

	modify_case.py
	modify_inlet
	modify_fk
	modify_k

	Using the GPU to solve the equations

	IDDES of hump flow running 100% on the GPU
	setup_case.py
	Section 0
	Section 6

	Developing boundary layer
	Workshop
	Getting started
	Channel flow, RANS
	New grid
	Boundary wall conditions on
	k- model

	Boundary layer flow, RANS
	Channel flow, inlet-outlet, Re=395
	Channel flow, inlet-outlet with heat transfer, Re=395
	Adding buoyancy

	RANS of channel flow at Re=5200: k- and wall functions
	Channel flow, inlet-outlet, Re=5 200
	Neumann boundary condition on k
	No commutation terms
	No commutation terms in URANS region

	Channel flow, inlet-outlet, Re=5 200, using wall functions
	Channel flow, fully developed, Re=5 200
	Wall boundary condition of
	RANS-LES Interface
	Change turbulence model

	Machine Learning for improving wall functions
	Directory 1
	Directory 2

	Variables in pyCALC-LES
	Sparse matrix format in Python
	2D grid, ninj=(3,4)
	2D grid, ninj=(3,2)
	3D grid, ninjnk=(3,2,2), cyclic in x,i
	3D grid, ninjnk=(2,2,3), cyclic in z,k

	Using pyAMGx on GPU

