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1 Abstract

This work derives and applies a method for estimating numerical accuracy in Computational
Fluid Dynamics. The method is used to investigate discretization errors in swirling flow in
water turbines. The work focuses on the conservation of a sub-set of the angular momentum
equations that is particularly important to swirling flow in water turbines. The method is based
on the fact that the discretized angular momentum equations are not necessarily conserved when
the discretized linear momentum equations are solved. The present method could however be
used to investigate the effect of discretization on any equation that should be conserved in the
correct solution, and the application is not limited to water turbines. The fundamental idea of the
method is to investigate the conservation of important equations that are not accounted for in the
solution process. When all important aspects of the flow are conserved the computational results
can be considered correct. The method can also be used to investigate the iterative convergence
of the solved equations, which reflects the iterative convergence limit of the computations.

Computations of two Kaplan water turbine runners and a simplified geometry of one of the
Kaplan runner ducts are investigated to highlight the general and simple applicability of the
method.

2 Background

The use of Computational Fluid Dynamics (CFD) in industry has increased dramatically during
the last decades. Today it is used in many fields as a complement to model testing. The indust-
rial computational results are usually claimed to be qualitatively correct, i.e. they can be used
to identify trends but not to get the quantitatively correct numbers. There are several reasons
that the industrial computational results are not quantitatively correct. First of all the physics
of the applications and the boundary conditions are approximated using more or less sophisti-
cated methods. Secondly the resulting approximated physical application is computed using a
numerical method with further approximations and computational limitations.

When CFD is applied to turbulent flow in complex geometries it is often difficult to obtain
an iteratively converged solution, i.e. a solution that satisfies the discretized equations. The
reason to this is that the preferred higher order discretization schemes are highly unstable if the
computational grid has very skew and flat control volumes. One way of dealing with this is
to use stable discretization schemes. A number of more or less stable discretization schemes
are available in the literature. Depending on the complexity of the flow and the geometry,
a discretization scheme that gives an iteratively converged solution usually has an observed
discretization order between first and second order. Figure 1 shows the computed flow above
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Figure 1: Circumferentially averaged velocity coefficients above and below a Kaplan runner (Kaplan 1).
Solid lines: tangential velocity; dashed lines: axial velocity. Markers: 4: hybrid; �: Van Leer. The
velocities are normalized by the runner radius and the runner angular velocity.

and below a Kaplan runner using the first order hybrid scheme and the second order Van Leer
scheme. The influence of the discretization scheme is striking. The reduced order of accuracy
of the stable discretization schemes introduces discretization errors that must be investigated
before the computational results can be relied on.

To study the accuracy of the numerical method one can assume that the physics of the appli-
cation and the boundary conditions are approximated correctly. The accuracy of a computation
then depends on the resolution of the discretized problem. A sufficiently fine resolution will
thus give the correct solution to the approximated problem if the iterative convergence and
round-off errors are small. Such fine resolutions can however not be used in industrial appli-
cations because of restrictions on computational power and time limitations. The resolutions
that are used in industrial applications are usually not even close to a sufficiently fine resolu-
tion. This has lead to an increased interest in methods for studying the level of accuracy in
CFD results [10, 14] and many scientific journals have adopted statement policies about this
subject [9, 23].

One general approach to study the accuracy of CFD results is by looking at the sensitivity
to grid refinement using the Richardson extrapolation concept [3, 4, 26]. The Richardson met-
hod uses the results from three grids of different refinement to estimate the grid convergence
error. If h is a geometric discretization parameter representative of the grid spacing of the fi-
nest grid (h1 = h) the subsequent grids are coarsened according to h2 = rh and h3 = r2h.
The refinement parameter can for instance be chosen to r = 2. The main requirement of the



Richardson method is that the solutions at all the grids must be in the asymptotic range. This
requirement can be met for some cases but for general 3D industrial computations, where it is
difficult to get even the finest solution in the asymptotic range, the method cannot be used to
the full extent [1, 2]. Another major drawback with the method is that time constraints do not
allow computations on several grids in industry. The original Richardson paper [25] examined
the difference between a low-order solution and a high-order solution on the same grid. This
requires computations of two solutions, which is time consuming, and that a high-order com-
putation can be obtained, which is not always the case in industrial CFD. A fast and simple
method that investigates the discretization error of a single solution on a single (coarse) grid is
therefore needed.

The present work uses an approach that investigates the conservation of quantities that are
not automatically conserved in the solution procedure. The method uses a single computational
result from a single grid to investigate the accuracy of the computational result. When all
aspects of the flow are conserved the computational results are exact [26] and the computational
results are thus grid independent. Most finite volume CFD codes use conservation of mass and
linear momentum to compute the flow. Hence, imbalances in angular momentum, kinetic energy
and higher moments can be expected to reflect numerical accuracy [5, 8]. The CFD codes
could be re-written to conserve other than mass and linear momentum, but in any numerical
approach there will be non-conserved quantities to serve as candidates for numerical accuracy
assessment. Since all aspects of the flow cannot be investigated one have to choose quantities
that are particularly important to the flow. For each industrial application a set of important
quantities can be specified. The method described in this work can be used to estimate the
accuracy with respect to those quantities. Angular momentum is such an important quantity in
swirling flow in water turbines.

3 Derivation of the angular momentum balance

The derivation of the angular momentum balance starts with the Reynolds transport theorem for
an arbitrarily moving deformable control volume [24, 29]
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where B is a property of the fluid, � = dB=dm is the intensive value or B per unit mass,
and dBsyst=dt is the rate of change of B of a system (material region) confined in a control
volume that instantaneously comprises the system. This expression is thus a conversion formula
between a system and a control volume that instantaneously occupies the same space and, in
other words, is a coupling between the Lagrangian and Eulerian descriptions. The velocity
relative to that of the control volume surface is Ur = U(r; t) � Us(r; t), where U(r; t) is
the fluid velocity, and Us(r; t) is the control volume surface velocity. The Reynolds transport
theorem can be used to write all the basic laws in control volume form. It can thus be used to
derive the mass balance (B = m, � = dm=dm = 1), the linear momentum balance (Navier
Stokes, B = mU, � = dmU=dm = U), the energy balance (B = E, � = dE=dm = e), and
the angular momentum balance (B=Ho =

R
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The angular momentum balance for an arbitrarily moving deformable control volume is
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According to the laws of mechanics, the rate of change of the angular momentum of the
system is equal to the sum of all the moments about an arbitrary point o acting on a control
volume that instantaneously comprise the system, yielding an expression for the left hand side
of Eq. (1) as [13]
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where Fs is the surface force (both viscous, turbulent shear and normal forces) per unit area
acting on the control volume surface, and Fb is the body force per unit mass acting inside the
control volume. The vector a is the acceleration of the coordinate system [29]
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where R is the position vector of the origin of the non-inertial coordinate system relative to an
inertial coordinate system, r is the position vector relative to the non-inertial coordinate system,
and 
 is the angular velocity of the non-inertial coordinate system. The terms correspond to
system acceleration, system angular acceleration, Coriolis acceleration and centripetal accele-
ration.

If the control volume is non-deformable and the flow is steady the time derivative of the
volume integral in Eq. (1) vanishes. Further, if the control volume is rotating at a constant 

about a stationary origin, the angular momentum balance (Eqs. (1) - (3)) reads
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This is an extremely complicated relation that contains all the features of the linear momen-
tum balance. In addition, it should be recalled that it was derived from the change in angular
momentum about the point o that has not yet been specified. Relation 4 is obviously valid for
all possible choices of o!

If the position vector r is constant over the volume of integration, the angular momentum
and linear momentum balances are equivalent in continuum mechanics [24] and the angular
momentum balance can be derived from the vector product of r and the linear momentum
balance. However, since the computational control volumes are not infinitesimal, the discretized
angular momentum balance is not necessarily satisfied simply because the discretized linear
momentum balance is satisfied. It is thus up to the discretization scheme to conserve both
angular and linear momentum.



3.1 Angular momentum balance in turbomachinery

In turbomachinery, the axial component of the angular momentum balance about the axis of
rotation transfers torque to the rotating shaft. Assuming that 
 = 
ez (ez is the unit vector in
the z direction) is aligned with the shaft, the axial component of the angular momentum balance
(Eq. (4)) about the axis of rotation reads
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where r is the cylindrical radial direction and � is the tangential direction. The term involving

 originates from the Coriolis term of the angular momentum balance. There is, however, no
effect of the centripetal term since the coordinate system rotation vector, 
, is aligned with the
axial component of the balance. Further, if gravity as in the present work is the only body force,R
CV

rFb�dV = 0. Equation 5 is the central equation of the present work.
Equation 5 can be further reduced for simple estimates of the flow in turbomachines. This

is done in the rest of this section. When applied to a thin stationary axi-symmetric stream tube
(r � const at inlet and outlet) with uniform inlet (index 1) and outlet (index 2) velocities and
negligible surface forces, it is reduced to

Z
CV

rFb�dV = � _m (r2U�2 � r1U�1)

where � _m is the mass flow through the stream tube. If Fb� includes all the tangential body
forces from the blades in a turbomachine, we get the power balance for the stream tube [13]

��Pshaft = � _m
 (r2U�2 � r1U�1) (6)

This is the general Euler equation [13] for turbomachinery relating the input shaft power to
the change in angular momentum for a thin axisymmetric stream tube, which highlights the
importance of the angular momentum balance in this kind of flow.

Equation 6 can be used to verify the numerical results to some extent. One can assume that
the thicknesses of the stream tubes through the domain is proportional to the channel width,
and that the mass flow through all the stream tubes is the same [11]. These are not accurate
assumptions, which is one of the reasons that this simplified method is not complete. Further,
the shaft power in each stream tube is difficult to obtain, and thus the general Euler equation is
not easily applicable in the region where the runner blades are located. However, the distribu-
tion of rU� should be approximately conserved in each stream tube in regions where there are
no runner blades (�Pshaft = 0). Figure 2 shows the angular momentum distribution of the cir-
cumferentially averaged flow at the inlet and a section above the runner of a Kaplan runner (the
Kaplan 1 runner described later) for both the first-order hybrid and the second-order Van Leer
discretization schemes (using the tangential velocities in Fig. 1(a)). It is obvious that the hybrid
computation does not satisfy the general Euler equation while the Van Leer computation works
well. The Van Leer computations were carried out and analysed by Nilsson and Davidson [20]
(the k15 case), where detailed information on the analysis in Fig. 2 can be found.
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Figure 2: Angular momentum distributions at the inlet and a section before the runner of a Kaplan
runner (Kaplan 1). The distribution at the inlet should be approximately conserved at the section before
the runner in a correct solution. �: inlet distribution; 4: hybrid, before the runner; �: Van Leer, before
the runner. The angular momentum is normalized by the runner radius and the runner angular velocity.

4 Implementation of the angular momentum balance met-
hod

The fundamental idea is to compute the flux of angular momentum (Eq. (5)) through all compu-
tational control volume faces using exactly the same discretization scheme as was used for the
linear momentum in the Navier-Stokes solver. These fluxes are then used to compute control
volume based balances by summing up the flux into the control volume and generation inside
the control volume. The control volume investigated can be the computational control volumes
or a control volume that comprises several of the computational control volumes. When ma-
king a balance over several computational control volumes a summation of the balances over
the computational control volumes cancels the fluxes through internal faces, which results in a
balance over the composite control volume. The result is normalized by the flux into the com-
putational domain. It is very important that this implementation is made correctly since small
errors in computing the balance make it impossible to investigate the balance error.

The angular momentum balance method can be applied for instance to through-flow inve-
stigations [27]. The balance between two cross-flow planes (axi-symmetric in turbomachine
runners) yields the angular momentum error between those planes. Since the fluxes between
two adjacent control volumes cancel upon summation, the sum of the balances over several
cross-flow planes yields the error between the first and the last cross-flow plane. Placing the
first cross-flow plane at the inlet and moving the second cross-flow plane from the inlet to outlet
(from plane 1 to plane 26 in Fig. 3(a)) yields a cumulative sum of the local angular momentum
errors along the flow path.

A general method for making the summation of the balances over a subdomain of the com-
putational domain is to save the computational control volume balances as an element based
(constant in each computational control volume) error density, i.e. the balances divided by the
volume of the computational control volume. Using a post-processing tool such as Ensight,
the sum over any subdomain can be derived by an element based volume integral of the error
density over the subdomain. There is then no need for explicit grid planes at the cross-flow sur-
faces and they can cut arbitrarily through the geometry (see Fig. 3(b,c)). The only requirements
on the post-processing tool are that it can cut out arbitrary parts of the computational domain
and compute the volumes of the computational control volumes correctly. The element based
volume integral is then obtained by multiplying by the local balance, which is constant in each
computational control volume. The overall balance and volume of the computational domain
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Figure 3: Definitions of the cumulative sums of the angular momentum balance through the domains.
The cumulative sum is taken from the inlet to each numbered axi-symmetric cross-flow grid surface for
the simplified case and to each numbered axi-symmetric cross-flow control surface (represented by thin
lines) for the Kaplan cases.



were conserved in the analysis by Ensight, which shows that no significant errors are introduced
in this operation.

The local error distribution itself can also be investigated by using iso-surfaces of the errors
to identify where the errors are greatest, which indicates where some extra discretization efforts
must be made.

The method can of course also be applied to the conservation of mass and linear momentum.
The information obtained from the angular momentum balance can however not be obtained
from the mass or linear momentum balances since the finite volume formulation conserves
mass and linear momentum when the residuals are small.

5 The computational method

The main features of the CALC-PMB finite volume CFD code are its use of conformal block
structured boundary fitted coordinates, a pressure correction scheme (SIMPLEC [7]), carte-
sian velocity components as the principal unknowns, and a collocated grid arrangement toget-
her with Rhie and Chow interpolation. The computational blocks are solved in parallel with
Dirichlet-Dirichlet coupling using PVM (Parallel Virtual Machine) or MPI (Message Passing
Interface). The parallel efficiency is excellent, with super scalar speedup for load balanced ap-
plications [17]. The ICEM CFD/CAE grid generator is used for grid generation and Ensight
and Matlab are used for post-processing.

Coriolis and centripetal effects are included in the momentum equations when the com-
putational domain is rotating, but the low-Reynolds k � ! turbulence model of Wilcox [30],
which can be integrated all the way to the wall, is used without terms for rotational effects. This
is common in turbomachinery computations for reasons of numerical stability and the small
impact of such terms in these kinds of industrial applications.

This work investigates the computational results obtained using two different discretization
schemes, the hybrid scheme and the Van Leer scheme. Equations and discretization schemes
are described in the following sections.

5.1 Equations

The steady Reynolds time-averaged continuity and Navier Stokes equations for incompressible
flow in a rotating frame of reference read [6, 12]
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lxm is the centripetal term and �2�ijk
jUk is the Coriolis term, owing to
the rotating coordinate system. Because of the potential nature of the pressure, gravitational and
centripetal terms [12], they are put together during the computations in what is often referred to
as a reduced pressure gradient
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Thus, a relation for the reduced pressure is

P � = P � �gixi + ��ijk�klm
j
lxmxi

In post-processing, the variation of the gravity term is assumed to be negligible and the centri-
petal term is simply subtracted from the reduced pressure.

The k � ! model of Wilcox [30] for the turbulent kinetic energy, k, and the specific dissi-
pation rate, !, reads
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where the turbulent viscosity, �t, is defined as
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The production term reads
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and the closure coefficients are given by

�? = 0:09, c!1 = 5
9
, c!2 = 3

40
, �k = 2 and �! = 2

A no-slip wall boundary condition is applied for the velocities and k = 0 at the walls. The
specific dissipation at the first node normal to the wall (at y+ < 2:5) is set to ! = 6�=(C!2n

2),
where n denotes the normal distance to the wall. For the pressure, @2P=@n2 = 0 at all bounda-
ries. Dirichlet boundary conditions are applied at the inlet and Neumann boundary conditions
are applied at the outlet for the velocity components and for the turbulent quantities.

5.2 Discretization schemes

To solve the discretized linear momentum equations, the fluxes through the faces of the compu-
tational control volumes must be known. Since all variables are calculated at the nodes, some
kind of interpolation must be used to get the fluxes through the computational control volume
faces. A number of ways of doing this are described in the literature. This work studies the nu-
merical solutions obtained when using the hybrid and the Van Leer [28] discretization schemes.
Both discretization schemes are bounded and use upwinding for the convective terms. They are
briefly described in the following sections.

5.2.1 The hybrid differencing scheme

The hybrid scheme is a combination of the central and the first-order upwind differencing sche-
mes. It uses central differencing if the magnitude of the Peclet number is below two and first-
order upwind differencing otherwise.

�e = �P for Ue > 0 and jPeej � 2
�e = �E for Ue < 0 and jPeej � 2
�e = fe�E + (1� fe)�P for jPeej < 2



The Peclet number reads

Pee =
Fe

De

where Fe is the convective mass flux and De is the diffusion flux at the computational control
volume faces. The factor fe appearing in the central differencing scheme is a linear interpo-
lation factor that allows the grid to be non-uniform; for uniform grids, fe = 0:5. The hybrid
differencing scheme thus uses the first-order upwind scheme if convection is dominant and the
central differencing scheme if diffusion is not negligible. The major drawback of the hybrid
scheme is that convection is dominant in most flows, and the scheme can thus be regarded as a
first-order upwind scheme.

The diffusion is discretized using central differencing for jPeej < 2 and is neglected other-
wise.

5.2.2 The Van Leer Scheme

The scheme of Van Leer [28] is of second-order accuracy except at local minima or maxima
where its accuracy is of the first order. One advantage of this scheme is that it is bounded. For
the east face, it can be written

Ue > 0)
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�e = �P + (�E��P )(�P��W )
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�e = �E + (�P��E)(�E��EE)
�P��EE

otherwise

The diffusion is discretized using central differencing.
This scheme is thus a bounded first-order upwind scheme with a correction term, which

makes it second-order accurate.

5.3 Convergence, verification and validation

An iteratively converged solution is assumed to be reached when the largest normalized residual
of the momentum equations, the continuity equation and the turbulence equations is reduced to
10�3 [15]. The residuals of the momentum equation are normalized by the sum of the mass
flow through the turbine and the mass flow through the periodic surfaces multiplied by the
largest velocity component in the computational domain. The residual of the continuity equation
is normalized by the sum of the mass flow through the turbine and the mass flow through
the periodic surfaces. The residuals of the turbulence equations are normalized by the largest
residual during the iterations.

The iteratively converged results of a correctly implemented finite volume method should
be conservative with respect to the computed equations. The computational results of the conti-
nuity and linear momentum equations have been verified by the method described in this work.
The result from this verification corresponds with the iterative convergence limit.

The CFD code has been extensively validated against the GAMM Francis runner [22], the
Hölleforsen (Turbine 99 - II) Kaplan runner [21], the Hölleforsen distributor [16] and academic
test cases [18]. The code is also used and validated in other industrial applications, such as: LES
of the flow around a simplified bus, LES of a high-lift air foil and heat transfer in gas turbines.

The code uses double precision real numbers to avoid numerical cancellation.



(a) The simplified geometry. (b) Kaplan 1. (c) Kaplan 2.

Figure 4: The three geometries studied in this work. In all cases the flow is swirling radially inwards at
the top and axially downwards at the bottom.

6 Cases

The method described in this work is applied to the flow in water turbines. There are numerous
types and configurations of water turbines, each optimized for the conditions of the specific
power plant. The water turbines studied in this work are low-head Kaplan turbines, which are
the most common water turbines in Sweden.

The geometry and flow features in the vicinity of a Kaplan runner comprises an axi-symmetric
duct with radial swirling inflow above the runner and axial (ideally non-swirling) flow through
a short axi-symmetric diffusor below the runner. The method is applied to two Kaplan runners
and a simplified geometry of the axi-symmetric duct of one of the Kaplan runners without the
runner blades (see Fig. 4).

The cases are briefly described in the following sections.

6.1 Simplified geometry

Figure 5 shows the meridional contour of the simplified geometry and two computational grids
with 14 378 and 31 521 control volumes. The complete geometry is the axisymmetric volume
obtained from revolving the shown geometry about the Z-axis. The grids have different grid
density in the through-flow direction and similar grid distributions in the other two directions.
There are seven computational control volumes in the periodic direction, covering 10o of the
total circumference. Periodic boundary conditions are used in the circumferential direction.
The velocity profile at the inlet is a turbulent 1/7 profile with a swirling component [15], and
the steady axi-symmetric flow in the inertial coordinate system is computed.

6.2 Kaplan runners

Two different Kaplan runners are investigated in this work. For both cases, the steady flow
is computed in a single rotating blade passage employing periodic boundary conditions. Inlet
boundary conditions are taken from separate computations of the flow in the upstream guide
vane passage.

Detailed information on the first Kaplan runner case (denoted Kaplan 1) can be found in
the literature [15, 19, 20], where it is denoted case k15. The simplified geometry in this work is
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Figure 5: Meridional view of the coarse (left) and fine (right) grid of the simplified geometry. The grid
densities and distributions differ mainly in the through-flow direction.

Simplified Van Leer Hybrid
case Coarse Fine Coarse Fine

Overall balance �6:93 � 10�4 �4:79 � 10�4 �1:92 � 10�3 1:77 � 10�2

Overall residual 9:66 � 10�2 5:32 � 10�2 1:49 � 10�1 8:13 � 10�2

Kaplan Van Leer Hybrid
cases Kaplan 1 Kaplan 2 Kaplan 1 Kaplan 2

Overall balance 5:41 � 10�3 6:86 � 10�3 1:41 � 10�1 1:47 � 10�1

Overall residual 1:45 � 10�1 1:35 � 10�1 1:89 � 10�1 2:70 � 10�1

Table 1: Angular momentum error estimations made over the entire computational domains.

the same as the upper part of the duct of this Kaplan runner, where the error is greatest for the
hybrid discretization scheme.

The computational results of the flow in the Hölleforsen Kaplan runner (denoted Kaplan 2)
were thoroughly investigated and validated against measurements at the Turbine 99 - II works-
hop. The investigations included in the present work use the computation that was denoted
the standard case in the workshop paper [21], which used the Van Leer discretization scheme.
In addition, a computation with the hybrid discretization scheme has been made to show the
difference in the angular momentum balance between the two schemes.

Both Kaplan cases include the clearance between the runner blade tips and the shroud,
which makes structured multiblock grid generation very complicated. The computational grid
topology, size and distribution are better (with respect to skewness, stretching etc.) for the
Kaplan 2 case, which should thus give the better results.

7 Results of the angular momentum balance method

Table 1 shows global estimations of the angular momentum error. The overall balance is defined
as the sum of the angular momentum balance in all computational control volumes divided by
the flux of angular momentum through the inlet. This method cancels errors at internal control
volume faces and thus gives the angular momentum balance over the entire domain. The overall
residual is defined as the sum of the absolute values of the angular momentum balance in all
computational control volumes divided by the absolute value of the flux of angular momentum
through the inlet. The overall balance in table 1 indicates that the Van Leer scheme is better
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Figure 6: Local and cumulative error distributions from inlet to outlet of the simplified geometry. Dashed
line: Van-Leer, local error; dotted line: hybrid, local error; solid line: Van-Leer, cumulative error;
dashed-dotted line: hybrid, cumulative error.

than the hybrid scheme. However, it also indicates that the hybrid scheme is better on the coarse
grid of the simplified geometry than on the fine grid and that the Kaplan 1 case (in which a grid
of poor quality is used) produces the better results in the Kaplan cases. The overall residual of
the simplified geometry indicates that the Van Leer scheme on the fine grid gives the best result,
followed by the hybrid grid on the fine grid. The overall residual of the Kaplan geometries
mainly indicates that the Van Leer scheme is only slightly better than the hybrid scheme. As
this makes no sense, a more detailed analysis is needed.

Figure 6 shows the local (between two neighbouring axi-symmetric surfaces) and cumu-
lative (from the inlet) angular momentum balance error distributions from inlet to outlet (see
section 4) in the simplified geometry. The errors are normalized by the inlet angular momen-
tum flux. Note that the final values (the balance from inlet to outlet) correspond to the balances
shown in table 1. The overall balance is obviously not necessarily representative of the accuracy
of the computations since the errors in different parts of the domain might cancel each other.
The coarse grid hybrid analysis in the figure highlights this problem, where the total error of
the domain is small but the error in different subdomains is large. Both the hybrid and Van Leer
discretization schemes yield small local errors. The cumulative errors show however that the
hybrid scheme obviously accumulates the local errors while the Van Leer scheme cancels the
local errors. Both schemes have problems at the inlet and at sharp geometric corners (located at
computational control volume planes 8, 12, 16 and 18 for the coarse grid and 17, 26, 35 and 40
for the fine grid).
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Figure 8: Cumulative error distributions from inlet to outlet of the Kaplan cases. Dashed line: Van-Leer,
Kaplan 1; dashed-dotted line: hybrid, Kaplan 1; solid line: Van-Leer, Kaplan 2; dotted line: hybrid,
Kaplan 2.

Another way to investigate the angular momentum error distribution is to compute the local
error in each computational control volume plane that is defined as a linear interpolation of the
hub and shroud contours. This yields the hub to shroud error distribution shown in Fig. 7, where
the error is normalized by the total angular momentum flux through the entire inlet. The Van
Leer scheme obviously gives the better results while there is an obvious risk of re-distribution
of angular momentum between the hub and shroud with the hybrid scheme. The results from
the hybrid scheme actually seem to get worse as the grid is refined.

Figure 8 shows the cumulative error distributions in the Kaplan runners from inlet to outlet
(see section 4). The errors are normalized by the inlet angular momentum flux. The angular
momentum balance method clearly shows the difference between the Van Leer scheme and the
hybrid scheme. The hybrid scheme obviously accumulates the local errors while the Van Leer
scheme cancels the local errors. Note that the final values (the balance from inlet to outlet)
correspond to the balances shown in table 1, with a total error of 0:5% and 0:7% for the Van
Leer scheme and 14% and 15% for the hybrid scheme. The global imbalances of the hybrid
scheme are thus about 30 times larger than for the Van Leer scheme. Figure 8 also shows that
both the Kaplan 1 computations are less accurate than the corresponding Kaplan 2 computations
since the cumulative error is much larger in all of the domain except at the outlet. This is the
reason for the confusing results in table 1, where the Kaplan 1 case seemed to be the better.
The analysis also shows that the hybrid scheme performs worst in the first part of the Kaplan
1 computational domain, while it performs best in the first part of the Kaplan 2 computational
domain.



Figure 9: Iso-surfaces of the absolute value of the computational control volume angular momentum
balance indicating where the largest errors are located. The Kaplan 2 case with the Van Leer scheme.

It may seem that a 0:7% angular momentum balance error is rather good, but there are at
least two reasons why the error should be reduced: 1) the linear momentum is better predicted
2) water turbine efficiencies are very high (about 95%) and the improvements that can be made
are in the range of 0:1% in efficiency. Since the efficiency is closely related to the angular
momentum balance it is interesting to further investigate the angular momentum balance for
the Van Leer scheme. Figure 9 shows iso-surfaces of the largest angular momentum balance
residuals for the Kaplan 2 Van Leer computations. This gives an indication of where to start the
quest for improved results with the Van Leer scheme and the present grid.

8 Conclusion

This work presents a method of investigating the discretization error in swirling flow computa-
tions. The method is based on the fact that the discretized angular momentum equations are not
necessarily conserved when the discretized linear momentum equations are solved. The met-
hod is applied to the first-order hybrid and the second-order Van Leer discretization schemes
in swirling flow in water turbines. It is shown that the hybrid scheme cannot be used and that
the Van Leer scheme needs improvement to give quantitatively correct results for these kinds
of applications. The global imbalances of the hybrid scheme are shown to be about 30 times
larger than for the Van Leer scheme.

This work has studied only a small part of the angular momentum balance that is important
to a single vortex with known features. There are, however, several vortices of unknown features
in turbomachinery flow (and most other flows as well) that must also be resolved. It is obvious
that a discretization scheme that simultaneously preserves both the linear momentum balance
and the general angular momentum balance is needed.
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