# A Numerical Investigation of the Turbulent Flow in a Kaplan Water Turbine Runner



http://www.tfd.chalmers.se/~ lada/projects/proind.html



H. Nilsson & L. Davidson — CHALMERS

# **Project**

- Started 1st of may 1997 as a part of the Swedish Hydraulic Turbine Research Programme, financed by a collaboration between the Swedish power industry via ELFORSK (Swedish Electrical Utilities Research and Development Company), the Swedish National Energy Administration and Kvaerner Turbin AB
- Title: A Numerical Investigation of the Turbulent Flow in a Kaplan Water Turbine Runner
- Supervisor: Professor Lars Davidson, CHALMERS
- Implementation of a parallel multiblock CFD solver for complex domains
- Runner calculations including tip clearance (licentiate thesis)
- Transient turbulent wakes after guide vanes (doctor thesis)



H. Nilsson & L. Davidson ---- CHALMERS

# **Outline of project and presentation**

#### Outline of project



# **Method**

- Finite volume method Boundary fitted coordinates Collocated, structured grid Rhie and Chow interpolation SIMPLEC (Pressure-velocity coupling)
- Parallel multiblock solver Conformal blocks Dirichlet-Dirichlet block coupling Parallel solver using message passing (PVM or MPI)
- Turbulence model
  Wilcox -88 standard k-ω





# A Kaplan water turbine geometry, generated in ICEM CFD/CAE





H. Nilsson & L. Davidson — CHALMERS



#### **Test cases supplied by Kvaerner Turbin AB**

A Kaplan test rig with four runner blades and 24 guide vanes

D = 0.5m (Runner diameter)

 $\alpha$  = 0 (Runner blade angle)

*H* =1m (Head)

| Case | $N_{11}$ | $Q_{11}$ | $\gamma$ | $\eta$ |
|------|----------|----------|----------|--------|
| k15  | 160.1    | 1.195    | 35.1     | 92.40  |
| k138 | 150.0    | 1.136    | 33.3     | 92.62  |
| k150 | 145.0    | 1.115    | 33.0     | 92.56  |
| k123 | 140.0    | 1.084    | 31.9     | 92.26  |

$$N_{11} = \frac{ND}{\sqrt{H}} \text{ (unit speed)}$$
$$Q_{11} = \frac{Q}{D^2\sqrt{H}} \text{ (unit flow)}$$
$$\gamma = \text{guide vane angle}$$
$$\eta = \text{efficiency}$$

H. Nilsson & L. Davidson ---- CHALMERS





#### **Stream ribbons from inlet to outlet**





#### **Flow details**

- Circumferentially averaged absolute velocity
- Runner blade static pressure distribution
- Tip clearance mass flow
- Tip clearance relative velocity



# The positions of the circumferential averaging



#### **Tip clearance mass flow**

| Case                          | k15                  | k138                 | k150                 | k123                 |
|-------------------------------|----------------------|----------------------|----------------------|----------------------|
| $\dot{m}_{tip}$               | $2.15 \cdot 10^{-4}$ | $2.12 \cdot 10^{-4}$ | $2.12 \cdot 10^{-4}$ | $2.08 \cdot 10^{-4}$ |
| $\dot{m}_{tip}/\dot{m}_{tot}$ | $2.88 \cdot 10^{-3}$ | $2.98 \cdot 10^{-3}$ | $3.04 \cdot 10^{-3}$ | $3.08 \cdot 10^{-3}$ |



# **Visualization of tip clearance effects**

Simple visualization

• Vector / contour / isosurface / streamline plot

Advanced visualization, for vortex identification

•  $\lambda_2$  method

Def.: Pressure minimum, discarding unsteady straining and viscous effects.

 $-\frac{1}{\rho}p_{,ij} = \Omega_{ik}\Omega_{kj} + S_{ik}S_{kj}$ 

 $\Rightarrow$  a vortex core is a region with two negative eigenvalues of  $\vec{S}^2 + \vec{\Omega}^2$ .

• Normalized helicity

**Def.**:  $H_n = \frac{\vec{\xi} \cdot \vec{u}}{|\vec{\xi}| |\vec{u}|}$ ,  $-1 \le H_n \le 1$ Where  $\vec{\xi}$  is the absolute vorticity and  $\vec{u}$  is the relative velocity.

• Absolute streamwise vorticity  $\vec{s}_{.\vec{n}}$ 

Def.:  $\xi_s = \frac{\vec{\xi} \cdot \vec{u}}{2\Omega |\vec{u}|}$ 

H. Nilsson & L. Davidson ---- CHALMERS



#### **Tip clearance flow in center of tip clearance, leading edge**





# Axial velocity and static pressure in a meridional plane through the center of the blade











Normalized helicity (
$$H_n = \frac{\vec{\xi} \cdot \vec{u}}{|\vec{\xi}||\vec{u}|} = 0.8$$
)



Absolute streamwise vorticity ( $\xi_s = \frac{\vec{\xi} \cdot \vec{u}}{2\Omega |\vec{u}|} = 30$ )



#### **Future work**

- Improve boundary conditions
- Include guide vanes (circumferential averaging / transient)
- Transient calculations
- Measurement comparison
- Verification of the code against the GAMM Francis turbine
- Further analysis of the results





# **The GAMM Francis water turbine geometry**



# **Discussion**

- An efficient and general parallel multiblock CFD code was developed
- Flow features captured by the calculations: The leading edge blade loading increases when  $N_{11}$  decreases The axial tip clearance flow increases with decreasing  $N_{11}$
- Further analysis of the results is needed
- Comparison with experiments is needed
- Advanced vortex identification methods are needed
- Grid generation is very important for convergence and accuracy, but also very time consuming

