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Project

� Started 1st of may 1997 as a part of the Swedish Hydraulic Turbine
Research Programme, financed by a collaboration between the Swedish
power industry via ELFORSK (Swedish Electrical Utilities Research
and Development Company), the Swedish National Energy
Administration and Kvaerner Turbin AB

� Title: A Numerical Investigation of the Turbulent Flow in a Kaplan
Water Turbine Runner

� Supervisor: Professor Lars Davidson,

� Implementation of a parallel multiblock CFD solver for complex
domains

� Runner calculations including tip clearance (licentiate thesis)

� Transient turbulent wakes after guide vanes (doctor thesis)
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Outline of project and presentation
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Method

� Finite volume method
Boundary fitted coordinates
Collocated, structured grid
Rhie and Chow interpolation
SIMPLEC (Pressure-velocity coupling)

� Parallel multiblock solver
Conformal blocks
Dirichlet-Dirichlet block coupling
Parallel solver using message passing (PVM or MPI)

� Turbulence model
Wilcox -88 standard k-!

H. Nilsson & L. Davidson
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Definition of the casing
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A Kaplan water turbine geometry,
generated in ICEM CFD/CAE

(Some of it is excluded in order to show the interior parts)
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Surface grid

H. Nilsson & L. Davidson



'''''''

%

A Numerical Investigation of the Turbulent Flow in a Kaplan Water Turbine Runner

Test cases supplied by Kvaerner Turbin AB

A Kaplan test rig with four runner blades and 24 guide vanes

D = 0.5m (Runner diameter)

� = 0 (Runner blade angle)

H =1m (Head)

Case N11 Q11  �

k15 160.1 1.195 35.1 92.40
k138 150.0 1.136 33.3 92.62
k150 145.0 1.115 33.0 92.56
k123 140.0 1.084 31.9 92.26

N11 =

NDp
H

(unit speed)

Q11 =

Q
D2
p

H

(unit flow)

 = guide vane angle

� = efficiency
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Stream ribbons from inlet to outlet
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Surface pressure distribution
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Flow details

� Circumferentially averaged absolute velocity
� Runner blade static pressure distribution

� Tip clearance mass flow

� Tip clearance relative velocity
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The positions of the circumferential averaging
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Tip clearance mass flow

Case k15 k138 k150 k123

_mtip 2:15 � 10�4 2:12 � 10�4 2:12 � 10�4 2:08 � 10�4

_mtip= _mtot 2:88 � 10�3 2:98 � 10�3 3:04 � 10�3 3:08 � 10�3
H. Nilsson & L. Davidson
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Visualization of tip clearance effects
Simple visualization

� Vector / contour / isosurface / streamline plot

Advanced visualization, for vortex identification
� �2 method

Def.: Pressure minimum, discarding unsteady
straining and viscous effects.

�1
�
p;ij = 
ik
kj + SikSkj

) a vortex core is a region with two negative
eigenvalues of ~S2 + ~
2.

� Normalized helicity
Def.: Hn =

~��~u
j~�jj~uj , �1 � Hn � 1

Where ~� is the absolute vorticity
and ~u is the relative velocity.

� Absolute streamwise vorticity
Def.: �s =

~��~u
2
j~uj
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Tip clearance flow in center of tip clearance, leading edge
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Meridional cut plane
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Axial velocity and static pressure in a meridional
plane through the center of the blade
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Tip flow streamlines
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The �2 method

Colored by velocity (Blue = 0 m/s, Red = 8 m/s)
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Normalized helicity (Hn =

~��~u

j~�jj~uj
= 0:8)
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Normalized helicity (Hn =

~��~u

j~�jj~uj
= 0:8)

Colored by absolute streamwise vorticity,

�s =

~��~u
2
j~uj, (Blue = 0, Red = 30)
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Absolute streamwise vorticity (�s =
~��~u

2
j~uj
= 30)

Colored by �2 (Blue = �5 � 106, Red =0)

H. Nilsson & L. Davidson



'''''''

%

A Numerical Investigation of the Turbulent Flow in a Kaplan Water Turbine Runner

Future work

� Improve boundary conditions
� Include guide vanes (circumferential averaging /

transient)

� Transient calculations

� Measurement comparison

� Verification of the code against the GAMM Francis
turbine

� Further analysis of the results

H. Nilsson & L. Davidson
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Distributor surface grid
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The GAMM Francis water turbine geometry
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Discussion

� An efficient and general parallel multiblock CFD code was developed

� Flow features captured by the calculations:
The leading edge blade loading increases when N11 decreases
The axial tip clearance flow increases with decreasing N11

� Further analysis of the results is needed

� Comparison with experiments is needed

� Advanced vortex identification methods are needed

� Grid generation is very important for convergence and accuracy, but
also very time consuming

H. Nilsson & L. Davidson


