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Abstract

Abdominal aortic aneurysm, a disorder involving a local dilatation of the ab-
dominal aortic vessel, is a disease common among males in their late sixties and a
major cause of death in case of rupture. An aneurysm can be treated with major
open surgery or with minimally invasive techniques. One such treatment, called En-
dovascular Aortic Repair (or EVAR), is the insertion of stent grafts redirecting the
blood flow through a bifurcating tube consisting of a special fabric supported by a
reinforcing metallic mesh. This procedure is preferrable in the sense that it does not
require an open surgery. However, there are some problems arising from the fact that
the stent graft is not fixated at its lower extremities. When subjected to a pulsating
blood flow the bifurcating portions of stent graft may thus experience detachment
from the vessel walls (commonly referred to as stent graft migration), leading to fatal
blood leakage. The forces causing such detachments are therefore of great interest.

The development of numerical methods for Fluid-Structure Interaction (FSI)
analyses provides possibilities to study the flow through a stent graft and the forces
it exerts on the attachment regions. This report presents the results from FSI sim-
ulations using the two softwares LS-DYNA and OpenFOAM. The scenarios studied
in this work include a steady flow of water and a sinusoidal flow of water through a
bent, flexible tube resembling one of the lower extremities of a stent graft. The dif-
ferent softwares utilize different numerical approaches to formulate the FSI problem.
LS-DYNA uses a Finite Element (FE) based Arbitrary Lagrangian-Eulerian (ALE)
formulation, while OpenFOAM uses the Finite Volume (FV) method. In addition to
the flow analysis and extraction of the forces, the use of the different softwares allows
for a comparison between the two numerical approaches.

For both scenarios, the flow characteristics in the different softwares show fair cor-
respondence and the extracted forces are of the same orders of magnitude. However,
some previous studies, such as the work performed by Li and Kleinstreuer [1], point
towards larger forces than those extracted in this work. These differenes are likely
to originate from the differences in geometries, material properties and boundary
conditions. Nonetheless, the results show good promise for continuation of similar
studies in the future.
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Göteborg June 2011
Patrik Andersson, Johan Pilqvist

, Applied Mechanics, Master’s Thesis 2011:23 iii



iv , Applied Mechanics, Master’s Thesis 2011:23



Nomenclature

αei Volume fraction in element e of material i [-]

a Acceleration [m/s2]

b Vectorial body force [N/kg]

B̃ Referential domain [-]

B Spatial domain [-]

B0 Material domain [-]

d Contact penetration depth [m]

η Poisson’s ratio [-]

E Green-Lagrangian strain tensor [-]

ϕ Material map [-]

ϕ∗ Particle map [-]

ϕ̃ Mesh map [-]

Fcontact Contact force between fluid and solid nodes [N]

f Control volume face [-]

h Thickness [m]

K Bulk modulus [Pa]

kd Damping coefficient [N·s/m]

ks Stiffness coefficient [N/m]

µ Dynamic viscosity [N·s/m2]

nf Control volume face unit normal [-]

∇ Vector gradient operator [-]

∇X Material gradient operator [-]

ν Kinematic viscosity [m2/s]

ω Angular velocity [rad/s]

P 1st Piola-Kirchhoff stress tensor [N/m2]

p Pressure [Pa]

ρ Continuum density [kg/m3]

rf Radius of fluid particle [m]

rs Radius of solid particle [m]
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Σ 2nd Piola-Kirchhoff stress tensor [N/m2]

Sf Control volume face area [m2]

τ Viscous stress tensor [N/m2]

t Vectorial force per unit surface area (traction) [N/m2]

u Vectorial displacement [m]

v Vectorial velocity [m/s]

vsound Speed of sound [m/s]

wpc Interpolation weighting factor [-]

X̃ Referential coordinate [m]

X Material coordinate [m]

x Spatial coordinate [m]

ζ Arbitrary function [-]
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Acronyms

ALE Arbitrary Lagrangian-Eulerian. Page 2

CFL Courant-Friedrichs-Lewy. Page 16

CV Control volume. Page 6

EVAR Endovascular Aortic Repair. Page 1

EVG Endovascular Graft. Page 4

FE Finite Element. Page 2

FSI Fluid-Structure Interaction. Page 2

FV Finite Volume. Page 2

HIS Half Index Shift. Page 16

LD LS-DYNA. Page 2

MMALE Multi Material ALE. Page 8

MUSCL Monotone Upwind Schemes for Conservation Laws. Page 16

OF OpenFOAM. Page 2

PISO Pressure-Implicit Split-Operator. Page 16
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1 Introduction

Abdominal aortic aneurysm is a localized dilatation of the abdominal aortic vessel and is a
disorder common for males of 65 years of age and older. The aneurysm, or dilatation of the
aorta, increases the tension (and hence yields a weakening) of the vessel wall, according to
the law of Laplace [2]. This significantly increases the risk of rupture on the aorta which, if
remained untreated, is highly lethal. To prevent rupture, aneurysms are generally treated
with a prophylactic operation. The classical treatment of abdominal aortic aneurysm
consists of a major open operation, where the aim is to replace the affected vessel wall
with a prosthesis, i.e. a tube consisting of Dacron or e-PTFE (gore-tex) as shown in Figure
1.1a. Such tubes are called grafts. An alternative treatment, which is well established and
used in practice worldwide, is to adopt an internal reinforcement of the aneurysm, relining
the vessel using so-called stent grafts. The stent grafts are inserted percutaneously1 using
x-ray technique, and consists of a special fabric supported by a metallic mesh covered by a
skin, see Figure 1.1b and Figure 1.2. This treatment is named Endovascular Aortic Repair
(EVAR).

(a)

Abdominal Aortic
Aneurysm

Stent graft

(b)

Figure 1.1: a) Schematic illustration of a dacron tube used in open surgery and b) a reinforced
aneurysm using a stent graft (EVAR treatment).

1.1 Problem description

The method of using stent grafts as a treatment involves some difficulties regarding attach-
ment of the reinforcing structure. As opposed to an open surgery procedure, where the
structure is stitched together with the blood vessel at all extremeties, the standard proce-
dure is to anchor hooks at the upper attachment point of the stent graft, while the lower
bifurcating extensions are kept in place only by self expansion against the vessel walls (see
Figure 1.2). The fact that the bifurcating portions of the stent graft are not fixated gives
rise to a risk of detachment when subjected to a pulsating blood flow. Such a detachment
is often referred to as stent graft migration, consequently leading to a pressurized blood
flow in the aneurysm which increases the risk of rupture.

1i.e. by piercing the skin with a needle catheter, followed by insertion of a wire through the needle
pathway.
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Figure 1.2: Stent graft used in EVAR with distal attachment.

1.2 Purpose

In 1999 Resch et al. [3] reported that 26 out of 58 patients (45%) showed distal migration
of stent grafts during a mean follow-up time of thirteen months. Four years later, Zarins
et al. [4] instead reported that 18.8% of 1119 patients experienced stent graft migration
within a follow-up period of three years. The percental decrease of patients suffering from
stent graft migration is promising, but the amount of patients experiencing migration is
still considered problematic.

The main purpose of this work is to investigate the possibilities of using Fluid-Structure
Interaction (FSI) simulations on stent grafts to assess the forces causing migration of the
non-fixated distal attachments when subjected to a pulsating flow. A study performed by
Malina et al. [5] demonstrates that these forces range between 2 and 3.4 N.

Two different numerical approaches are applied in the FSI simulations; one based on
the Finite Element (FE) method and another based on the Finite Volume (FV) method. A
second purpose is thus the comparison between these two approaches, which is considered
to be highly interesting from an academical point of view and is expected to give further
input for evaluation of the results.

1.3 Method

The computational work is divided into two parallel studies using two different softwares.
The softwares, OpenFOAM-1.6-ext and LS-DYNA 971 R5.1.1, use different numerical
approaches for simulating the flow, the structural behavior and the coupling between the
two phases. The OpenFOAM (OF) solver is based on FV discretization and the method
used in LS-DYNA (LD) is an FE based Arbitrary Lagrangian-Eulerian (ALE) formulation.
To gain confidence in the results the same simulations are set up in both codes and the
results are compared.

The first case is a straight, rigid cylindrical pipe subjected to a steady, laminar flow
of water. This is done in order to compare the flow characteristics when solving with OF
(FV formulation) and LD (FE formulation), respectively. Furthermore, both numerical
solutions are validated against the analytical solution for a laminar fully developed pipe
flow (see Appendix A).

The second case is a coupled FSI analysis, simulating a flow of water within a lightweight,
flexible, thin-walled pipe with a diameter of d = 0.014 m and a predefined angle of 90 de-
grees between the inlet and outlet normal vectors, see Figure 1.3. Also, in attachment with
the bent pipe there are rigid inlet and outlet sections. The flexible pipe is given material
properties extracted from the work done by Li and Kleinstreuer [1, 6], which corresponds
to a real stent graft.

2 , Applied Mechanics, Master’s Thesis 2011:23



Rigid outlet pipe

Rigid inlet pipe

Flexible bend

Outlet

Inlet

d = 0.014 m

Figure 1.3: The geometry of the setup.

Two different flow scenarios are studied; a steady inlet velocity and a sinusoidal inlet
velocity. The analyses are performed using the FSI modules included in both OF and
LD. As indicated in Section 1.2, the main goal is to determine the forces arising in the
attachments of the flexible, bent pipe due to the mechanical interaction between the fluid
flow and the structure. For the steady case an additional simple momentum balance
calculation (see Appendix B) is performed to obtain estimates of the forces. This is done
in order to gain further confidence in the results. Also, since using two different softwares
with two different numerical approaches, a comparison is made to highlight differences and
similarities between the different solution procedures.

Since the FV discretization in OF requires volume elements in both the fluid and
structural domain, the simulations in OF necessitates the use of a certain material thickness
for the part of the pipe corresponding to a stent graft. In LD, however, the FE formulation
allows the use of shell elements to simulate the thin-walled structure. The virtual material
thickness is here set in correspondence to the element thickness used in OF.

The forces induced by the Fluid-Structure Interaction are extracted as normal forces at
the inflow and at the outflow of the flexible bend section. In OF this is done by multiplying
the normal stress with respective area for each cell and summarizing them. In LD they are
extracted as nodal forces at each shell element and then summarized.

1.4 Limitations

• The software modules used in this study do not provide the possibility of using a
turbulence model for the calculation of the fluid flow. Since the grids used are too
coarse to fully resolve the smallest scales of any possible occurrence of turbulence, un-
certainties arise concerning the accuracy of the flow field simulations. Consequently,
this may affect the calculation of the forces acting on the graft attachments and has
to be considered as an additional source of error.

• A reasonable gauge pressure corresponds to a blood pressure of 80 mmHg. That is,
the internal pressure causes the bent portion of the pipe to experience stresses (and
possible expansion) already in a static state. However, due to convergence problems,
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this pressure condition is not taken into account in the simulations. Hence, the forces
extracted from the computational analyses are induced only by the fluid motion.

1.5 Assumptions and simplifications

• In order to achieve managable calculation times, a symmetry condition is introduced
for the setups in both softwares. The use of symmetry is argued to be applicable
since the solution for a laminar pipe flow should be symmetric. Moreover, in case
of occurence of turbulence the symmetry condition is considered not to give rise to
more sources of errors than the already insufficiently resolved turbulence.

• The calculations are performed using water as the fluid medium.

• A bulk modulus for water of the magnitude 106 is assumed to be adequate to avoid
compressibility effects in LD.

• Only one of the distal extensions is simulated.

• The geometry is generalized in such a way that the curvature of the bent pipe is
assumed to be circular and, as mentioned in Section 1.3, the angle between the inlet
and outlet normal vectors is set to 90 degrees.

• The sinusoidal flow is assumed to pulsate with a frequency corresponding to a heart
rate of 60 bpm.

• The structure is considered to be in an initial stressfree state. That is, stresses that
arise due to the initial bending of the pipe are neglected in the analysis.

• The flexible pipe material is assumed to have a constant density, i.e. not dependent
upon the stretching or compression of the material.

• Modelling a woven stent graft material with a reinforcing structure is considered
too complex and time consuming. Hence, the pipe walls are modelled as smooth.
Moreover, the material is considered both isotropic and homogeneous, disregarding
any anisotropy present due to a stented structure. For this reason, the flexible pipe
is from now on referred to as an Endovascular Graft (EVG).

1.6 Sustainability and environmental aspects

If the knowledge from this project (as well as subsequent ones) leads to improvements
lowering the percentage of patients experiencing stent graft migration and reducing the
number of fatalities, this is of great weight from a sustainability point of view. With
further confidence in the stent graft’s performance, there can be a reduced amount of
follow up sessions and emergency surgeries, lowering the overall material cost and in the
long run lessening the impact on the environment.
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2 Theory

This section presents a general overview of some fundamental concepts of continuum me-
chanics along with basic notations, followed by more detailed explanations of the theory
behind the FE based ALE approach used in LD as well as the FV formulation used in the
OF solver.

2.1 Notations

Consider three domains (see Figure 2.1), the spatial domain (B), the material domain (B0)
and the arbitrary referential domain (B̃). Let t denote the open time interval t ∈ ]0, T [ and
let X, X̃ and x denote the material, referential and spatial coordinates. A time derivative
of some function ζ is required in order to describe the continuum, where ζ can be defined
as a function of previous mentioned coordinates. Hence [7]:
The spatial time derivative

dζ

dt
=
∂ζ(x, t)

∂t
|x (2.1)

The material time derivative

ζ̇ =
dζ(X, t)

dt
|X (2.2)

The referential time derivative

ζ̃ =
dζ(X̃, t)

dt
|X̃ (2.3)

The spatial domain, and the image of Bo at time t, is defined through the material map
ϕ. Assume B to be the image of B̃ at time t under the mesh map ϕ̃. The material motion
is characterized through the material map ϕ from the material configuration B0 to spatial
configuration B with:

x = ϕ(X, t) : B0 → B,

its linear tangent map:

F = ∇Xϕ(X, t) : TB0 → TB,

and its Jacobian:

J = det F.

The Jacobian define the following relations between spatial and material vectorial area
elements and infinitesimal volume elements respectively:

da = JF−T · dA, dv = JdV.

Similarly, the vector map ϕ̃ from the referential B̃ to the spatial B configuration, with
the mesh motion characterized by:

x = ϕ̃(X̃, t) : B̃ → B

and its related linear tangent map and Jacobian:

F̃ = ∇X̃ϕ̃(X̃) : TB̃ → TB, J̃ = det F̃.
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The Jacobian is used to define the following relations between spatial and referential vec-
torial area and volume elements as:

da = J̃F̃−T · dÃ, dv = J̃dṼ .

Transformation between the different formulations are based on pull-back and push-
forward operations in terms of the material deformation gradient F, the mesh deformation
gradient F̃ and their Jacobians J and J̃ , see Figure 2.1.

B0

Material

X

dA

dV

Particle map

ϕ∗ = ϕ̃−1 ◦ϕ

B̃

X̃

Referential

dÃ = J∗F∗−T · dA
dṼ = J∗dV

Mesh map

ϕ̃ = ϕ ◦ϕ∗−1

Material map

ϕ = ϕ̃ ◦ϕ∗

F∗ = ∇Xϕ
∗ F̃ = ∇X̃ϕ̃

J∗ = detF∗ B

Spatial

x

da = JF−T · dA
da = J̃F̃−T · dÃ

dv = JdV

dv = J̃dṼ

J̃ = det F̃

F = ∇Xϕ

J = detF

Figure 2.1: Material, referential and spatial domains with corresponding mappings.

With the mappings x = ϕ(X, t) and x = ϕ̃(X̃, t) one thus find that the material time
derivatives of the quantity ζ = ζ(x, t) (see equation (2.2)-(2.3)), can be related via:

ζ̇ =
∂ζ

∂t
+∇ · v, ζ̃ =

∂ζ

∂t
+∇ · vG

where vG is sometimes named the ”grid velocity”. Upon eliminating the spatial time
derivative in equation (2.1) one obtains the relationships between material velocities in the
different domains

ζ̇ = ζ̃ +∇ · (v − vG) = ζ̃ +∇ · c, (2.4)

with
c = v − vG (2.5)

where c is commonly called the ”convective velocity”. For example it is now possible to
immediately express the acceleration, appearing in the momentum balance relation, as:

a = v̇ = vG +∇ · c

2.1.1 ALE, Lagrangian and Eulerian descriptions

Three descriptions can be defined by relating the reference coordinate with the material
or spatial coordinate. Firstly, for Lagrangian description (see Figure 2.3a), X̃ = X, hence
the convective velocity c = 0 and the mesh motion is equal to the velocity of the material.
With X = x, the mapping function ϕ̃ becomes an identity map and the grid velocity,
vG = 0. The mesh is then fixed and corresponds to the Eulerian description (the fixed
background grid see Figure 2.3a). When X̃ 6= x and X̃ 6= X, the mesh moves with an
arbitrary velocity in space. This is the ALE description [7, 8].

6 , Applied Mechanics, Master’s Thesis 2011:23



2.2 Physical conservation principles

Consider an isothermal continuum element in an arbitrary volume V bounded by a surface
S at a time t. The continuum is then governed by the fundamental conservation laws for
mass and linear momentum [9], i.e:

d

dt

∫

V

ρ dV = 0, (2.6)

d

dt

∫

V

ρv dV =

∫

V

ρb dV +

∫

S

t(nf ) dS (2.7)

where ρ is the continuum density (whether it is a fluid or solid constituent), v is the
constituent velocity which, pertinent to a Cartesian coordinate system with basis vectors
in the Eulerian frame [ei]i=x,y,z, take on the components [vi]i=x,y,z. Moreover, b is the body
force vector with components [bi]i=x,y,z and t(nf ) is the vectorial force per unit surface area
acting on the boundary S.

By using Reynold’s transport theorem, i.e.

d

dt

∫

V

φ dV =

∫

V

(
∂φ

∂t
+∇ · (φv)

)
dV (2.8)

with φ = φ(x, t) being an arbitrary spatial quantity, the law of mass conservation (2.6) can
be written as ∫

V

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0 (2.9)

where ∇ is the spatial vector gradient operator with components [∇i]i=x,y,z =
[
∂
∂x
, ∂
∂y
, ∂
∂z

]
.

The Cauchy stress theorem states that there exists a second order tensor σ related to the
traction such that

t(nf ) = σ · nf (2.10)

where nf is the outwards pointing unit normal vector of the outer surface. The tensor σ
is called the Cauchy stress tensor. By using relation (2.10) together with the divergence
theorem, the right hand side of the momentum conservation law (equation (2.7)) can be
rewritten. By also introducing Reynold’s transport theorem and cancelling out the zero
value terms due to mass conservation (equation (2.9)), the momentum equation can be
expressed as

d

dt

∫

V

ρv dV =

∫

V

(σ · ∇+ ρb) dV. (2.11)

2.2.1 Viscous fluids

For an infinitesimal fixed isothermal Control volume (CV) dV , (see Figure 2.2) localization
of equation (2.9) yields that

∂ρ

∂t
+∇ · (ρv) = 0 (2.12)

Equation (2.12) is the continuum version of the mass conservation equation and is often
referred to as the equation of continuity.
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y

z

x

Control volume

dy

dx

dz

Figure 2.2: An infinitesimal control volume dV .

By using a similar reasoning for the conservation of momentum, the differential mo-
mentum equation for an infinitesimal CV (in vector form) read

d

dt
(ρv) = σ · ∇+ ρb (2.13)

where dv
dt

= ∂v
∂t

+ v · ∇v is the material derivative.
The general assumption for fluids is that the stress is a function of pressure and the

velocity gradient [9], i.e.
σ = σ(p,∇v)

and the constitutive relation for a viscous fluid is usually assumed to be additatively
decomposed according to

σ = −pI + τ . (2.14)

Introducing (2.14) into (2.13) yields the differential momentum equations for a viscous
fluid as

d

dt
(ρv) = −∇p+∇ · τ + ρb (2.15)

where ∇p is the pressure gradient across the CV and τ is the viscous stress tensor defined
as

τ =



τxx τxy τxz
τyx τyy τyz
τzx τzy τzz


 . (2.16)

The viscous stresses can be written as [10]

τxx = 2µ∂vx
∂x
, τyy = 2µ∂vy

∂y
, τzz = 2µ∂vz

∂z
,

τxy = τyx = µ
(
∂vx
∂y

+ ∂vy
∂x

)
, τxz = τzx = µ

(
∂vz
∂x

+ ∂vx
∂z

)
, τyz = τzy = µ

(
∂vy
∂z

+ ∂vz
∂y

)

(2.17)
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where µ is the coefficient of dynamic viscosity. Substituting (2.17) into (2.15) gives the
differential momentum equation for a Newtonian fluid2 as

d

dt
(ρv) = −∇p+ µ∇2v + ρb. (2.18)

Equation (2.18) is more commonly known as the Navier-Stokes equation.

2.2.2 Elastic solids

For an elastic solid the Cauchy stress is a function of the displacement gradient [9], i.e.

σ = σ(∇u)

where u = r − r0 denotes the displacement vector relating the current material point
position, r, to the initial material point position, r0. Since the solid is assumed to be
elastically compressible, the pressure is also a function of ∇u and is hence not needed as
an argument for the stress.

When considering finite deformations, alternatives to the Cauchy stress tensor are often
used. The Piola-Kirchhoff stress tensors are examples of such alternatives. They express
the stress relative to a reference configuration, whereas the Cauchy stress tensor expresses
the stress in relation to the present configuration.

The first Piola-Kirchhoff stress tensor, P , relates forces in the present configuration
with areas in the reference (”material”) configuration. The first Piola-Kirchhoff stress
tensor is related to the Cauchy stress tensor as

P = Jσ · F−T (2.19)

where F is the deformation gradient tensor defined as

F = I + (∇Xu)T (2.20)

where ∇X = ∇ · F−T is the material gradient operator.
The second Piola-Kirchhoff stress tensor, Σ, is further defined in terms of the first

Piola-Kirchhoff stress tensor as
Σ = F−1 ·P (2.21)

and the relation between the second Piola-Kirchhoff stress tensor and the Green-Lagrangian
strain tensor is governed by the constitutive equation for a St. Venant-Kirchhoff material,
i.e.

Σ = 2GE + λ tr (E)I (2.22)

where G and λ are the Lamé’s coefficients and E is the Green-Lagrangian strain tensor
defined as

E =
1

2
(FT · F− I). (2.23)

Once again, using localization, equation (2.11) can now be expressed in terms of the first
or the second Piola-Kirchhoff stress tensor as

ρ0
dv

dt
= P · ∇X + ρ0b (2.24)

and

ρ0
dv

dt
= (F ·Σ) · ∇X + ρ0b. (2.25)

2i.e. a fluid that follows the linear law of resistance, τ = µdvx

dy , postulated by Sir Isaac Newton in 1687.
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2.3 Numerical approaches in LS-DYNA and OpenFOAM

As stated in Section 1.3 the two softwares are based on two different numerical approaches
for solving the interaction between the solid and fluid phases. The case in LD was set
up using an FE based Multi Material ALE (MMALE) formulation where a Lagrangian
structure is constrained within a fixed, independent Eulerian mesh (see Figure 2.3a). In
contrast, the solver used in OF is fully based on an FV formulation where the solid and
fluid meshes are allowed to share nodes (see Figure 2.3b).

α1

α2

Lagrangian structure

Eulerian domain

(a) ALE, constrained Lagrangian in solid method

Fluid domain Structural domain

(b) FV

Figure 2.3: Schematic figures of MMALE and FV formulation. In a) the shaded
areas denote the Eulerian domain and the circle denotes the Lagrangian structure.
In b) the darker shaded area indicates structural elements while the brighter area
denotes fluid elements.

The FE and FV methods are numerical techniques for solving partial differential equa-
tions. Both approaches use a meshed geometry to calculate values in a finite number of
discrete locations (called elements or cells), but the calculation procedure differs between
the two methods. The main idea in the FE method is to establish, so called, shape functions
v(x) that element-wise approximate the continuous function u(x) which is the solution to
the partial differential equation formulated in weak form. The approximation v(x) is usu-
ally a polynomial describing how u(x) varies across the element, and the approximation
can be regarded as some kind of interpolation. It is assumed that the values are known at
certain points of the element and these points are called nodes. In the FE method these
are usually located at the element vertices [11], see Figure 2.4a.

In the FV method, the computational nodes are instead enclosed by a finite number
of infinitesimal control volumes. Figure 2.4b shows an example of a two-dimensional FV
mesh, where nodes are denoted by a •-symbol and upper case letters while CV face centers
are denoted by a ×-symbol and lower case letters. Using the divergence theorem, the
volume integrals of the partial differential equations containing a divergence term may be
converted into surface integrals. This way the fluxes of the quantities can be evaluated
at each control volume face. Considering the laws of conservation (see Section 2.2.1), the
flux leaving a certain CV has to be identical to the flux entering an adjacent one. By
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discretizing the surface integrals [12], and assuming that the rate of change is polynomial
across the cell, the fluxes can then be used to evaluate the sought after variables in each
node.

(i, j + 1) (i+ 1, j + 1)

(i, j) (i+ 1, j)

x, y,v

p, V, ρ,m
(
i+ 1

2
, j + 1

2

)

(a) Four-noded FE element: variable positions
corresponding to the ALE formulation.

PW E

N

S SESW

NENW

w e

n

s

(b) Structured 2D FV mesh: velocities and pres-
sure computed in nodes (•), fluxes computed at
control volume surfaces (×).

Figure 2.4: Schematic figures of FE and FV formulation.

Since the applied ALE formulation is based on an FE approach the element nodes
are positioned at the element vertices (see Figure 2.4a). These nodes contain the mesh
coordinates, x and y, and the velocity, v. The mass, m, and volume, V , are instead defined
in the center of the element,

(
i+ 1

2
, j + 1

2

)
, where also the pressure, p, and the material

density, ρ, are calculated.
Each of the element solution variables have to be transported. Since the velocities are

stored in the element vertices and the density is stored in the element center, this gives
rise to difficulties of advecting the momentum (which is a product of density and velocity).
In this ALE approach these difficulties are overcome by advecting the nodal momentum
instead of the velocity, in order to ensure conservation of momentum [13]. The procedure
is to modify an element-centered advection algorithm to advect the node-centered momen-
tum. This is done by constructing auxiliary sets of element-centered variables from the
(nodal) momentum, advect them and then reconstruct the new (nodal) velocities from the
auxiliary variables.

The chosen ALE method (MMALE, see Section 2.4) demands two or more materials
to be defined within the Eulerian mesh; the first one, α1, in the elements constrained by
the Lagrangian structure and a second one, α2, in the surronding elements. This is not
the case in OF where the calculations are performed for a single fluid material.

Since the Eulerian and Lagrangian meshes are not coupled nodewise in LD, a coupling
algorithm is needed to define the contact interfaces between the Lagrangian mesh and the
materials defined in the Eulerian mesh. There are several coupling methods applicable for
the ALE formulation. In LD both penalty based and constraint based coupling methods
are available. Thus, a brief description of the two approaches is provided in Section 2.4.

In OF the coupling between the phases is governed by a traction vector, consisting
of the fluid pressure and the shear stresses arising from the fluid-structure interaction.
The traction vector is obtained by calculating the flow field and is then introduced into
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the equations for the structure. Subsequently, the structural displacements are solved for
and both the fluid and solid meshes are deformed accordingly. The displacement of the
fluid-structure interface then appears as a boundary condition for the fluid phase in the
following time step and the solution procedure is repeated.

2.4 The Arbitrary Lagrangian-Eulerian formulation in LS-DYNA

In fluid-structure interaction problems where the fluid mesh, if treated as Lagrangian,
would undergo massive deformation near the structure, causing the timestep to take an
unacceptable small value, ALE is of great use [13]. The method is sometimes used to create
a new undistorted mesh for the deforming domain which makes it possible to continue the
calculations. In the case of the EVG, the structure is treated as a Lagrangian and the fluid
as a fixed Eulerian mesh. This way any distortions of the fluid mesh due to displacement
of the EVG structure is completely avoided. The details of LD’s ALE implementation are
not fully available. Nevertheless, a conceptual overview is provided in this section.

2.4.1 Governing equations

The chosen method in LD solves the isothermal fluid problem using Eulerian descrip-
tions of the continuity equation and the Navier-Stokes equations (see equation (2.12) and
(2.18)) discussed in section 2.2.1. That is, the grid velocity is zero and hence, according to
equation (2.5), the convective velocity equals the material velocity, i.e. c = v. Neglecting
all the body forces, the governing equations for the compressible fluid problem then become

Continuity equation
∂ρ

∂t
+∇ · (ρv) = 0 (2.26)

Momentum equation
d

dt
(ρv) = −∇p+ µ∇2v in B (2.27)

The governing equation for the structural behavior, expressed in the Lagrangian framework,
is the conservation of momentum:

ρ0
dv

dt
= P · ∇X + ρ0b in B0 (2.28)

where P is the first Piola-Kirchhoff stress tensor (see equation (2.19) in Section 2.2.2).

2.4.2 Multi Material ALE

In Eulerian and ALE-formulation it is possible to allow two or more materials in one
element in a fixed mesh. In LD this is refereed to as the Multi Material ALE (MMALE)
method where the elements contain a certain volume fraction of each material. The volume
fraction represented by αei in element e of material i is expressed as:

αei =
V e
i

V e
(2.29)

where V e
i represents the material volume and Vi the element volume. Furthermore the sum

of the volume fractions must always equal 1 within one element such that:

n∑

i=1

αei = 1 (2.30)
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As the mass fluxes between elements, the initially well defined material boundary is re-
placed by a transition region where αei drops from 1 to 0. If the interface was to be tracked
by either the donor cell or van Leer advection scheme, it would be severely smeared [14].
Instead interface reconstruction is used, where the mixed elements are cut with a plane
separating the materials (see Figure 2.5). The orientation of the plane is controlled by the
gradient of the volume fraction field, which is governed by the Lagrangian structure. When
the structure moves, the volume fractions are updated and the interface plane is recon-
structed accordingly. The movement of the structure is determined by the fluid structure
interaction, for which a coupling algorithm is needed.

ᾱn=3
1 = 0.7 ᾱn=4

1 = 0.5

ᾱn=1
1 = 0.5 ᾱn=2

1 = 0.2

α1 = 0.8

α2 = 0.2 V

n̂

α1V

α2V

n̂ =
∣∣∣
∣∣∣∂ᾱ1
∂x

∣∣∣
∣∣∣ · ∂α1

∂x = 1√
2

{
1
1

}

Figure 2.5: MMALE with two materials.

2.4.3 Fluid-structure interaction

The most fundamental question when dealing with fluid-structure interaction is arguably
whether the fluid and structural parts are in contact with eachother. This section presents
the basics of the contact based methods, regarding the fluids and solids as compounds of
particles. LD does not treat the phases as compounds of particles; instead the coupling
is handled by nodal contacts. However, the concept of the coupling is similar, considering
the nodes as particles. Hence, the following reasoning is considered valid for explaining the
main idea behind the coupling methods.

The conditions for finding possible collisional contacts between particles can be written
as [15]

||Xf −Xs|| ≤ rf + rs (2.31)

and
n · (vf − vs) ≤ 0 (2.32)

where Xf and Xs denote the positions of the fluid and solid particles, respectively, rf and
rs denote their radii, n is the unit surface normal at the contact point and vf and vs
represent the fluid and solid velocities, respectively.
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Figure 2.6: Collision between fluid and solid particles.

Figure 2.6 shows a collision between a fluid and solid particle. The solid particle velocity
is expressed as vs = vpar +ω× r, where vpar and ω are the linear and angular velocities of
the corresponding solid particle, respectively.

From Figure 2.6 and equation (2.31) it can be concluded that the fluid and solid particles
overlap eachother at the contact point Xp = Xs + rsn. Equation (2.32) then implies that
the relative velocity of the fluid particle with respect to the solid particle along the normal
direction is less than zero. A positive value of the relative velocity would instead mean that
the particles are no longer interpenetrated. This would be the case in a future time step
when the particles would be separated and hence not in contact with eachother anymore.

To resolve all contacts between the fluid and solid phases a coupling algorithm is needed.
LD offers a penalty based coupling method as well as a constraint based one. The penalty
based method computes contact forces, Fcontact, between the fluids and solids to prevent
the interpenetration of the phase surfaces. The contact force is defined as

Fcontact = ksdn + kd(vrel · n)n (2.33)

where ks and kd represent the stiffness and damping coefficients respectively, d denotes
the penetration depth or the overlap between the colliding surfaces, n is the unit surface
normal at the contact point and vrel is the relative velocity between the fluid and solid
nodes.

Finding a suitable value for the stiffness parameter can be somewhat troublesome and
is a matter of trial and error. Another shortcoming with the penalty based method is that
it requires very small time steps to stably resolve collisions.

The constraint based coupling method provides another way to resolve the fluid-solid
contacts. This method connects the velocities of the fluid and solid bodies through an
impulse description, rather than affecting their accelerations through a contact force. Un-
like the penalty based method, the constraint based method does not conserve the kinetic
energy [14]. Figure 2.7 shows a conceptual explanation of the constraint based coupling
method used in LD where a collision between the phases is considered perfectly inelastic.

m m

vfluid solid

(a) Before impact

1
2v

1
2v

(b) After impact

Figure 2.7: Schematic figures of a fluid particle a) before and b) after colliding with
a solid particle for the constraint based coupling method used in LD.
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Before impact of the fluid and solid particles (see Figure 2.7a) the momentum, p̂, and
kinetic energy, Wk, are

p̂0 = mv (2.34)

Wk0 =
1

2
mv2 (2.35)

where subscripts 0 refers to values at time t = 0, i.e. before impact.
After a perfectly inelastic collision (see Figure 2.7b), the particles stick together with

a conserved momentum

p̂1 =
1

2
mv +

1

2
mv = mv = p̂0, (2.36)

but with a loss in kinetic energy

Wk1 =
1

4
mv2 < Wk0 . (2.37)

2.4.4 Solution procedure of the LS-DYNA solver

A non-symmetric convective term, stemming from the convective velocity c, poses major
difficulties associated with time integration. If considering a Lagrangian description the
relative motion is zero due to the material and referential systems being identical and thus
the convective term would disappear. In order to solve the ALE equations LD applies the
Operator Split method. The approach is used in order to achieve less complex problems,
divided into two or more sets which are solved sequentially.

The structural equations (2.28) are solved with the fluid pressure and shear stresses
from equation (2.27) on the interface as a Neumann boundary condition. The solution
gives the structural velocities which are equal to the grid velocity, vG. The structure’s new
position updates the interface with the volume fractions for the fluid materials.

1. Perform a Lagrangian time step

2. Perform an advection step.

i) Move the material interface.

ii) Calculate the transport of element-centred variables

iii) Calculate the momentum transport and update the velocity.

In the first substep, the mesh moves with the material and the changes in velocity and
internal energy due to internal and external forces are calculated. When the new configura-
tion for the Lagrangian substep is reached the advection (or Eulerian) substep takes place.
Now a new nodal pattern has to be defined, unless it has been predefined by the user, as
is the case for this study, where Eulerian formulation is used and the mesh displacements
set to zero. When the nodal pattern has been defined, the solutions variables need to be
remapped to the arbitrary position with an advection algorithm, computing the transport
of mass, internal energy and momentum across cell boundaries.

2.4.5 Advection method

When the nodal repositioning has been performed, the solution from the previous, distorted
configuration need to be mapped onto the new one [14]. This is known as the advection
step. Two assumptions are made for the remap step, first of all, the topology of the mesh
is fixed and secondly, during a step, the mesh motion is less than the characteristic lengths
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of the neighbouring elements, i.e the Courant-Friedrichs-Lewy (CFL) number, should be
less than one [13]. The algorithms used to perform the remap step are called advection
algorithms referring to the scalar conservation equation (2.38):

∂φ

∂t
+ a(x)

∂φ

∂t
= 0 (2.38)

A beneficial advection algorithm is stable, conservative, accurate and monotonic. Al-
though several of the solution variables are not governed by conservation equations, it is
vital that they remain unchanged during the remap step. Conservation of mass and energy
is particularly important since negative values would lead to non-physical results. The cal-
culations for the transport of element centered variables (such as internal energy, the stress
tensor, density and history variables) in LD is performed in accordance with the SALE3D
strategy [16], and in this work using the Monotone Upwind Schemes for Conservation Laws
(MUSCL) Van Leer scheme to achieve second order accurate monotonic results.

The fact that the velocities are located at the nodal points and not centered in the
element (see Section 2.3), means that they must be advected separately. Furthermore, the
momentum has to be conserved during this process and is a product of the element centered
density and the nodal velocities. For the momentum transport, a more expensive method
than SALE, the Half Index Shift (HIS) algorithm is used. This method was developed by
D. J. Benson [17] in order to overcome the dispersion problems with the SALE strategy
[13].

2.5 The Finite Volume Method formulation in OpenFOAM

The solver used in the OF simulations is an extension of the icoFsiFoam solver and uses an
FV formulation for both the fluid and the structural solution of the coupled FSI analysis.
The part of the FSI solver that handles the calculation of the flow is based on the standard
OF solver icoFoam, which solves the incompressible laminar Navier-Stokes equations using
the Pressure-Implicit Split-Operator (PISO) algorithm, while the mathematical description
behind the structural solution procedure is based on an updated Lagrangian formulation.

2.5.1 Mathematical formulation of the fluid analysis

The mathematical description behind the fluid analysis in OF is based on the Eulerian
differential approach for fluid flow described in Section 2.2.1. However, some assumptions
and simplifications are made for the equations that are worth mentioning. First of all, any
effects of gravity or other body forces are neglected throughout the entire analysis, making
the body force vector disappear from the momentum equations. Secondly, the solver used
in OF assumes that the fluid is incompressible. Hence the density is moved out of the
convective term of equation (2.18), giving

dv

dt
= −1

ρ
∇p+ ν∇2v. (2.39)

where ν = µ/ρ is the kinematic viscosity. Equations (2.39) are the incompressible Navier-
Stokes equations that are solved in OF.

2.5.2 Mathematical formulation of the structural analysis

The majority of the changes in the extension of icoFsiFoam concerns the description of
the solid phase. This is because the extended version is based on the updated Lagrangian
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formulation and the mathematical description of this approach is thoroughly explained
in the work done by Tuković and Jasak [18]. In order to provide a good insight to this
formulation the main contents of their work is also included in this section.

The mathematical description of the structural analysis is based on the conservation
principles introduced in Section 2.2. Moreover, solving flow problems in a deforming control
volume requires a mathematical description of the relationship between the rate of change
of the volume V and the motion of its surface, vs. This definition is called the space
conservation law and is defined as

d

dt

∫

V

dV −
∮

S

n · vs dS = 0 (2.40)

Considering an isothermal continuum in an arbitrary volume V bounded by a surface S,
the motion is hence governed by the conservation laws of mass and linear momentum, i.e:

d

dt

∫

V

ρ dV +

∮

S

n · ρ(v − vs) dS = 0 (2.41)

d

dt

∫

V

ρv dV +

∮

S

n · ρ(v − vs)v dS =

∮

S

σ · n dS +

∫

V

ρb dV (2.42)

where n is the outward pointing unit normal to the surface S, v is the velocity of the
continuum, vs is the velocity of the surface S, σ is the Cauchy stress tensor and b is the
resulting body force. The difference v − vs can be compared to the convective velocity c
(equation (2.5)) discussed in Section 2.1, indicating that the mathematical formulation is
in line with an ALE description taking into account the deforming mesh motion.

Assuming an elastic, isothermal structure the dynamic behavior can be described by
considering only the linear momentum conservation law in Lagrangian formulation, i.e.

D

Dt

∫

V

ρv dV =

∮

S

σ · n dS +

∫

V

ρb dV (2.43)

This can also be expressed in terms of the initial, undeformed control volume as

∫

V0

ρ0
∂v

∂t
dV0 =

∫

S0

(F ·Σ) · n0 dS0 +

∫

V0

ρ0b dV0 (2.44)

where the subscripts 0 denote quantities related to the initial, undeformed control volume,
Σ is the second Piola-Kirchhoff stress tensor (see equation (2.21)) and F is the deformation
gradient tensor (see Section 2.2.2).

Equation (2.44), which describes the total linear momentum conservation in Lagrangian
formulation, can be written in an incremental form as

∫

V0

ρ0
∂δv

∂t
dV0 =

∫

S0

(δF ·Σ + F · δΣ) · n0 dS0 +

∫

V0

ρ0δb dV0 (2.45)

where δ represents the increment of the corresponding variables and the deformation gra-
dient tensor increment reads δF = (∇δu).

As previously mentioned, the mathematical approach is based on an updated Lagrangian
formulation. This means that the reference configuration is continuously updated to (repli-
cate) the latest calculated configuration. The corresponding incremental version of equa-
tion (2.22) becomes

δΣ = 2GδE + λ tr (δE)I (2.46)
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where δE is the increment of the Green-Lagrangian strain tensor for the total Lagrangian
description and is defined as

δE =
1

2
(δFT · F + FT · δF). (2.47)

Finally, it appears that the linear momentum conservation equation for an elastic solid
in the updated Lagrangian description, with the displacement vector increment δu as the
primitive variable, can be obtained as:

∫

Vu

ρu
∂δv

∂t
dVu −

∮

Su

nu · (2G+ λ)∇δu dSu =

∮

Su

nu · q dSu +

∫

Vu

ρuδb dVu (2.48)

where the subscript u corresponds to the updated variables and

q = G(∇δu)T + λ tr (δu)I− (G+ λ)∇δu +G∇δu · (∇δu)T

+
1

2
λ(∇δu : ∇δu)I + Σu · δuT

u + δΣu · δFT
u . (2.49)

The tensor q consists of nonlinear and coupling terms. In order to solve the discretized
equation using a segregated algorithm, these terms are treated explicitly after the dis-
cretization. Jasak and Weller [19] claims that the efficiency of the segregated solution
procedure can be improved by using the diffusivity (2G + λ) in the Laplacian at the left-
hand side of equation (2.48).

For a fully defined problem description the domain needs to be specified in both space
and time, as well as being given proper initial and boundary conditions. The initial condi-
tion is simply the specified distribution of δu and δv at time zero, while there are several
types of boundary conditions (which can be either constant or time-dependent); fixed dis-
placement increment, plane of symmetry, fixed pressure increment, fixed traction increment
and free surface.

The boundary conditions for fixed pressure increment and fixed traction increment
are both implemented as a fixed normal derivative Neumann boundary condition on the
displacement increment.

2.5.3 Solution procedure of the OpenFOAM solver

The analysis using the FV method requires a discretization of the computational domain
in both time and space. The simulation time is split into a finite number of time steps, δt,
and the discretized equations are solved in a stepwise manner, time step by time step. The
computational space is discretized by splitting it into a finite number of control volumes.

The fluid and structural systems of equations are solved separately and sequentially for
each time step. As previously mentioned, the solution of the flow field is calculated using
the PISO algorithm; an iterative procedure for solving equations for velocity and pressure
for transient problems [20]. The process is based on first evaluating initial guesses of the
pressure and velocity fields using discretized equations of momentum3 and then correcting
them (at least) twice using a discretized pressure correction equation (derived from the
equation of continuity). In this work, the discretization of the advection term (in OF) is
done using the linear upwind scheme; a second-order extension of the standard upwind
scheme [12]. Once the solution of the flow field has converged the pressure and shear

3There are several numerical schemes available to discretize the momentum equations. The details
about these schemes are extensive and hence not provided in this report, but can be found in e.g. Versteeg
& Malalasekera [12].
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stresses are assembled into the traction vector. As described in Section 2.3 the traction
is then introduced into the structural equations. The following numerical evaluation of
the structural displacements is similarly obtained by solving the system of discretized
linear momentum conservation equations for an elastic solid in the updated Lagrangian
description. Finally, the fluid and structural meshes are both moved in accordance with
the calculated displacements. The steps of the solution procedure can be summarized as
follows:

1. Guess velocity and pressure fields

2. Evaluate the guesses of velocity and pressure and correct them until convergence

i) Extract traction vector from the converged flow equation system

ii) Introduce traction vector into structural equations

3. Evaluate the incremental displacements of the structure

4. Move meshes in accordance with structural displacements

i) Extract incremental displacement velocity from the structural solution

ii) Introduce incremental displacement velocity into flow equations

y

z

x

Control volume

dy

dx

dz

P

nffrp
E

df

Sf

Figure 2.8: Hexahedral control volume.

Figure 2.8 shows an example of a hexahedral control volume around the computational
point P located in the center of the control volume, its face f , its face area Sf , the face
unit normal vector nf and the center point E of the neighboring control volume sharing
the face f .

Since the conservation of linear momentum is described by the incremental updated
Lagrangian formulation (equation (2.48)), the computational mesh has to be moved at
the beginning of each time step. This is done by using the displacement increment vector
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obtained from the previous time step. The cell-centered FV method that is used in OF
calculates the displacement increment at the control volume center. Thus the calculated
displacement increment must be interpolated onto the control volume vertices to enable
the dynamic mesh movement. This interpolation is done using a weighted averaging inter-
polation given by

δup =

∑
cwpc

[
δuc + (rp − rc) · (∇δu)c + 1

2
(rp − rc)

2:(∇∇δu)c
]

∑
cwpc

, (2.50)

where δup is the displacement increment of vertex p and δrc denotes the displacement
increment at the center of the control volume. The summation is done over all control
volumes sharing the p vertex and the weighting factor wpc is defined as

wpc =
1

|rp − rc|
, (2.51)

where rc denotes the position vector of the control volume center and rp is the position
vector of the vertex p.
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3 Simulation setups

As stated in Section 1.3, the computational work consists of two parallel studies which are
performed using OF and LD. Due to the different numerical approaches the domains have
to differ in some aspects. The following section presents the different setups (e.g. domains,
boundary conditions etc.) for the different analyses.

3.1 Material properties

As indicated in Section 1.3 and 1.4 the fluid medium used in the simulations is water.
Some properties of interest of water at 20◦C are listed in Table 3.1.

Table 3.1: Some properties of water at room temperature (20◦C) [21, 22].

Density (ρ) Dynamic viscosity (µ) Kinematic viscosity (ν) Speed of sound (vsound)
998.2 [kg/m3] 1.005 · 10−3 [kg/(m·s)] 1.004 · 10−6 [m2/s] 1492 [m/s]

The value for speed of sound is used to calculate the bulk modulus (K) of water. The
bulk modulus describes a material’s resistance to undergo compression, i.e. a high bulk
modulus relates to a low compressibility. The speed of sound can be related to the bulk
modulus as [23]

vsound =

√
K

ρ
(3.1)

and hence the bulk modulus of water at 20◦C becomes

K = ρv2sound ≈ 2.2 · 109 [Pa]. (3.2)

The solver used in LD does not assume an incompressible fluid (as opposed to the solver
used in OF). Thus, in order to omit compressibility a bulk modulus is needed to explicitly
command the LD solver to treat water as an incompressible fluid. Unfortunately, a bulk
modulus as high as in (3.2) results in extensive calculation times. Hence the assumption is
made that a bulk modulus of the magnitude 106 is adequate to avoid any compressibility
effects in LD.

The material properties for the EVG are more troublesome to determine. No such
information is available from the manufacturer. Hence, the material properties has to be
extracted and approximated via literature from similar studies. Two such studies were
performed by Li and Kleinstreuer [1, 6] from which the properties of the EVG material in
the present study are extracted. These are summarized in Table 3.2.

Table 3.2: Material properties of the EVG.

Thickness (h) Young’s modulus (E) Poisson’s ratio (η) Density (ρ)
0.003 [m] 10 [MPa] 0.27 [-] 6000 [kg/m3]
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3.2 Laminar flow in a rigid pipe

To evaluate the two software modules ability to simulate a flow field, a study of a straight,
rigid cylindrical pipe subjected to a steady, laminar flow of water is conducted. To gain
further confidence in the simulations, the results of the study are validated against the
analytical solution for a laminar fully developed pipe flow (see Appendix A).

3.2.1 Geometry

The analysis is performed on a straight, rigid pipe with diameter d = 0.014 m, i.e. the
same diameter as the subsequently analyzed EVG. The length of the pipe is chosen due to
the requirement that the flow has to be fully developed for a certain interval of the pipe
length. This requirement has to be fulfilled in order to compare the simulations with the
analytical solution for a laminar fully developed pipe flow. According to [10], the pipe
length needed for the flow to reach a fully developed profile, Le, can be related to the pipe
diameter, d, and the Reynolds number, Red, as

Le ≈ 0.06dRed. (3.3)

The commonly accepted design value for pipe flow transition from laminar to turbulent
flow is [10]

Red,crit ≈ 2300. (3.4)

In order to ensure a laminar flow, the inlet velocity condition for the simulations is chosen
to be v = 0.12 m/s. Considering water (at room temperature) as the fluid medium, this
give a Reynolds number of

Red =
vd

ν
≈ 1673. (3.5)

According to equation 3.3 this requires a pipe length, Le, of approximately 1.4 meters for
the flow to reach a fully developed profile. To enable a comparison with the analytical
solution the pipe length was set to 2 meters.

3.2.2 Mesh

To save computational time, the simulation is done for half the pipe by making use of
symmetry the same way as for the final EVG case. The mesh topology used is an o-grid
which is commonly used for pipe flow simulations thanks to its capability of resolving the
boundary layer, see Figure 3.1a. The flow is simulated using the FSI solvers (in uncoupled
mode). This is because the main reason of the analysis is to compare the solvers and the
way they solve the flow field.
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(a)

Volume fraction
of water

(b)

Figure 3.1: Cross-section of the fluid and structural mesh used in OF, but also the
Eulerian mesh used in LD. In (a) white segment denotes the fluid domain containing
water and the shaded segment denotes the structural mesh in OF or the outer
Eulerian mesh in LD. In (b) the volume fraction of water in LD is seen.

In OF the FV approach requires the structural mesh to be three-dimensional, i.e. it had
to consist of volume elements. In LD, however, the ALE approach allows for shell elements
to be used for the structure. Moreover, the ALE formulation (used in LD) necessitates for
the Lagrangian (i.e. structural) mesh to be fully enclosed by the Eulerian (i.e. fluid) mesh.
This is partly because the Lagrangian-Eulerian interfaces are not allowed to share nodes
(as opposed to the fluid-structure interface in OF). Consequently, the Eulerian mesh has
to exceed the structural geometry to prevent any possible voids between the Lagrangian
and Eulerian meshes, so that the interface reconstruction (see Section 2.4.2) can function
properly. Furthermore, the subsequent coupled FSI analysis is based on the MMALE
formulation. This means that the Eulerian domain has to consist of (at least) two different
materials; in this case water (inside the EVG) and a dummy material, given the density
of air (outside the EVG), see Figure 3.1b. This further calls for the Eulerian mesh to fully
enclose the structural geometry. An initialization of the volume fractions (see Appendix
C) with the structural geometry as container is made to further ensure the correct material
distribution.

Conveniently, the outer part of the Eulerian mesh in LD is used as the structural mesh
in OF (or vice versa). The final mesh is made up entirely of hexahedrons and is generated
using ANSYS ICEM CFD, giving a total cell count of 734, 510.

3.2.3 Boundary conditions

The boundary conditions for the rigid pipe simulation are summed up in Table 3.3.
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Table 3.3: Boundary conditions for the rigid, straight pipe simulation.

Boundary Type Value
Inlet Steady, uniform velocity 0.12 [m/s]
Outlet Mean pressure 0 [Pa]
Wall No-slip 0 [m/s]
Symmetry plane Symmetry -

3.3 Coupled analysis of the EVG

The coupled FSI analysis is performed using two different flow scenarios; first off a steady
flow with 0.5 m/s uniformly distributed across the inlet, followed by a pulsating, sinusoidal
flow fluctuating from 0 to 1 m/s. The frequency of the sinusoidal flow corresponds to a
heart rate of 60 bpm.

3.3.1 Geometry

The pipe is given the diameter d = 0.014 meters and the length L = 0.160 meters (see
Figure 3.2). The pipe is also given a predefined angle between the inlet and outlet normal
vectors. Since this angle4 is dependent on, for example, the specific patients anatomy and
the shape of the aortic aneurysm, there is no preferred angle from a medical point of view.
Thus the angle is set to 90 degrees.

The computational domains are extended with straight inlet and outlet regions before
and after the EVG. The reason for having an inlet extension is mainly to allow for the flow
to develop a boundary layer before entering the flexible EVG. The purpose of the outlet
extension is to minimize the effects from the prescribed pressure at the outlet. Ideally,
these extensions would be infinitely long. However, to ensure reasonable calculation times
the lengths of the extensions has to be limited. Accordingly, the extensions are both given
the length li,o = L/2 = 0.08 meters.

z

x
y

R = 2L
π

L/2

L/2

d = 0.014 m

Figure 3.2: The geometry of the setup.

4i.e. angle of a surgically inserted stent graft
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3.3.2 Mesh

The simulations for the two software modules are performed on two different mesh setups.
In LD a cartesian Eulerian mesh is used, divided into two parts (see Figure 3.3) enabling
the definition of two different materials.

Outer Eulerian part

Inner Eulerian part

Lagrangian structure

Figure 3.3: The fluid and structural meshes used in LD.

The initialization (as described in Section 3.2.2) of the volume fractions for the two
materials, recently associated with the mesh, is made such that water is enclosed by the
Lagrangian structure, with the dummy material surrounding it (see Figure 3.4).

Volume fraction
of water

Figure 3.4: The initial volume fraction of water at t = 0.

The OF mesh (see Figure 3.5) differs drastically from the LD mesh (see Figure 3.6).
In OF the flow is resolved using an o-grid. Once again, the requirement of using volume
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elements in OF necessitates a certain thickness of material for the structure. Since the
structural solver in OF is highly unstable for very thin walls the structure is given a
thickness of 3 millimeters, which is made up by a layer of additional cells surrounding the
o-grid.

Structural mesh
Fluid mesh

︸ ︷︷ ︸
︸ ︷︷ ︸

Figure 3.5: The fluid and structural meshes used in OF.

26 , Applied Mechanics, Master’s Thesis 2011:23



Structure

︸ ︷︷ ︸

Fluid domain

Figure 3.6: The inner Eulerian (fluid) mesh and the structural mesh used in LD.

Additionally, the numerical approach in OF makes it possible to set a wall no-slip
condition directly on the fluid mesh at the inlet and outlet extensions. This makes it
possible to define a structural domain only for the bend (see Figure 3.7), which consequently
reduces the calculation time. On the other hand, the MMALE approach used in LD requires
for the structure to stretch through the entire Eulerian domain. This is necessary in order
to numerically separate the two materials and reconstruct the interface.

The final meshes in OF are made up entirely of hexahedrons and have a total cell count
of 108, 360. The LD meshes consist of a total of 285, 768 fluid (hexahedral) elements and
13, 616 structural (shell) elements. All meshes are generated using ANSYS ICEM CFD.
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Structural mesh

Fluid mesh

Figure 3.7: The fluid and structural meshes used in OF.

3.3.3 Boundary conditions

The boundary conditions used in the coupled analysis are summed up in Table 3.4. The
inlet boundary has been given two different conditions corresponding to the steady-state
flow and the pulsating flow, respectively.

Table 3.4: Boundary conditions for the coupled analysis.

Software Boundary Type Value
OF Inlet Steady-state velocity 0.5 [m/s]

Periodic velocity 0.5 + 0.5sin(2πft) [m/s]
Outlet Mean pressure 0 [Pa]
Rigid walls No-slip -
Flexible walls Moving wall velocity -
Symmetry plane Symmetry -

LD Inlet Steady-state velocity 0.5 [m/s]
Periodic velocity 0.5 + 0.5sin(2πft) [m/s]

Outlet Zero traction 0 [N/m2]
Rigid walls No-slip -
Flexible walls Moving wall velocity -
Symmetry plane Symmetry -
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4 Results

This section covers the results of both the LD and the OF simulations. The simulations
consist of three groups: firstly the flow solution comparison for a straight rigid pipe,
secondly a steady flow through the bent EVG and finally a pulsating flow through the
bent EVG. Pressure and velocity distribution at selected locations (see Figure 4.1) as well
as normal forces at the upstream and downstream attachments of the EVG are presented.

r Exit

(a) Straight setup

z

x
y

R

Entrance
(Upstream attachment)

Exit
(Downstream attachment)

r

(b) Bent EVG setup

Figure 4.1: Setup overviews. Pressure and velocity cross-section profiles extracted
at ”Entrance” and ”Exit” and normal forces in the coupled analysis extracted at
the upstream and downstream attachments, respectively.

4.1 Validation of laminar flow in a rigid pipe

The data from the straight rigid pipe simulations are sampled at the outlet (or ”Exit”,
see Figure 4.1a) cross-section, after a simulated time of 14 seconds. At this point the flow
is considered to be fully developed for both solvers. Figure 4.2a shows the cross-section
velocity profiles for OF, LD and the analytical solution (see Appendix A). The cross-section
pressure profiles for OF and LD is plotted in Figure 4.2b.

For the OF simulation the velocity profiles at the outlet show great correspondence
with the analytical solution. The LD simulation seems to give a generally lower velocity
than both OF and the analytical solution, with the exception of the near wall regions (i.e.
−0.007 m < r ≤ −0.006 m and 0.006 m ≤ r < 0.007 m).

For the pressure (see Figure 4.2b) some characteristic similarities can be seen between
the OF and LD results. However, the pressure at the outlet is lower in LD (though only
with 0.01 Pa) and shows a more distinct variation of pressure across the pipe. Recall that
the outlet boundary condition in OF was set to a mean pressure of 0 Pa (see Section 3.2).
If assembling the OF pressure in Figure 4.2b, the mean value is not 0 Pa. This is because
the pressure from the OF simulation is sampled in the cell-centers (i.e. slightly upstream
of the outlet boundary), while the pressure from the LD simulation is sampled directly on
the boundary. This most certainly contributes to the differences in pressure. Moreover, OF
solves for an incompressible flow while LD solves for a compressible fluid with a high bulk
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modulus. This ought to further contribute to the differences for the pressure calculation.

(a) (b)

Figure 4.2: Plots showing a) velocity profiles of analytical solution, OF simulation
and LD simulation and b) pressure profiles of OF simulation and LD simulation.

4.2 Steady flow with FSI

This section presents the results from the simulations using a steady inlet flow boundary
condition with the velocity 0.5 m/s, also taking into account the coupling between the fluid
flow and the structure. Figure 4.3 shows comparisons of the cross-sectional velocity and
pressure profiles in the symmetry plane. The profiles in Figure 4.3a and Figure 4.3c are
extracted at the entrance of the bent EVG (i.e. upstream) and the profiles in Figure 4.3b
and Figure 4.3d at the exit of the bent EVG (i.e. downstream).

The pressure and velocity profiles from the two softwares are plotted at different times,
i.e. t = 2 s for LD and t = 3 s for OF. This is because the LD simulation is run with
activated coupling from t = 0 s, while the coupling in OF is not activated until the flow has
been stabilized (e.g. at t = 2 s). The reason for this is the OF solver’s sensitivity to the
large, transient forces that occur during the development of the flow field. An example of
such large force transients, extracted from the LD simulation, can be seen in Figure 4.5a.

Figure 4.4 shows the velocity and pressure fields in the symmetry plane obtained at
t = 2 s (LD) and t = 3 s (OF), respectively. Figure 4.5c and Figure 4.5d show comparisons
of the normal forces in the upstream and downstream attachments of the bent EVG for
the last 0.5 s of each simulation. As can be seen in Figure 4.5b, the structure in the OF
simulation still experience a ”shock” when the coupling is activated, requiring some time
for the forces to stabilize. However, the magnitudes of these force transients are much
lower than those experienced when activating the coupling already from t = 0 s.

The velocity results for OF and LD (see Figure 4.3) show that the flow is not fully
developed before entering the EVG, although a boundary layer is starting to develop. The
boundary layer seems to be further developed in OF than in LD, yielding velocity peaks
near the walls in the LD velocity profile. The reason for the less developed boundary layer
in LD is most certainly due to the lower mesh density close to the walls (in comparison
with the mesh in used in OF).

For both softwares there is a slightly higher velocity towards the leftmost wall (i.e.
−0.006 m < r < −0.003 m). This makes sense since the flow is forced by the pressure
gradient to ”turn” into the bent EVG, causing the flow to accelerate in this region. This
is further validated by the pressure profiles in Figure 4.3c. It should be noted that the
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volume fraction method used in LD (see Section 2.4.2) creates uncertainties regarding
the accurateness of the near wall solution variables. Even though the velocities are of
similar magnitude here, the impact of the transition region between the dummy material
and the water can not be disregarded. Furthermore, severe leakage of the water into the
outer domain (see Figure 4.6) occur at the inlet boundary as well as local pressure and
velocity peaks. This affects the whole solution and is most probably the reason for the large
differences between the two solver simulations. Hence, the velocity and pressure profiles for
OF and LD, in this section, show less correspondence than the results from the validation
of laminar flow in a rigid pipe (see Section 4.1).

The acceleration near the leftmost wall causes the flow to separate when entering the
EVG (as clearly indicated in Figure 4.4a and 4.4b). The separation gives rise to a large
decrease in pressure near the innermost wall (see Figure 4.3d and Figure 4.4c - 4.4d).
Worth noting is that Figure 4.4a indicates that the flow field is laminar, while Figure 4.4b
implies occurence of turbulence. This partly originates from the use of different meshes,
but also from the use of different numerical advection schemes in the two softwares. The
presence of turbulence in LD is further indicated by the randomness of the velocity profile
at the exit of the EVG (see Figure 4.3b).

When further comparing the pressure profiles at the entrance and exit of the EVG
(Figure 4.3c and 4.3d) it is evident that the pressure drop through the pipe is larger in
LD than in OF. This is, again, validated by the pressure fields in Figure 4.4c and 4.4d.
Consequently, the velocities are somewhat higher in the LD simulations, as well as the
normal forces in both the upstream and downstream attachments (see Figure 4.5). The
different coupling methods may contribute to these differences, even though their impact
is probably lesser than the two softwares’ ways of solving the flow field. Moreover, in both
solvers the normal force in the upstream attachment is larger than the downstream normal
force. This is likely to originate from the separation of the flow, yielding a steep pressure
gradient in the lower half of the EVG (see e.g. Figure 4.7e).

From the momentum balance calculations, (see Appendix B) a rough estimate is given
for the upstream and downstream forces where Fx = Fy ≈ 0.03841 N. For OF the upstream
force fluctuates around 0.0375 N and for LD around 0.0625 N. The downstream force for
OF fluctuates around 0.0315 N and LD around 0.0465 N. For both forces, OF is slightly
lower than the estimates. This is due to the calculations being performed for a streamtube
where the streamlines are the same throughout the tube and no losses are considered. In
the EVG there are frictional losses which reduces the force acting on the structure. For LD
the forces are higher than the estimated forces, in line with previously discussed pressure
and leakage related reasons.
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(a) Entrance velocity profiles (b) Exit velocity profiles

(c) Entrance pressure profiles (d) Exit pressure profiles

Figure 4.3: Plots showing b,c) cross-section velocity profiles and d,e) cross-section
pressure profiles at the entrance and exit of the bent EVG at t = 2 s (LD) and
t = 3 s (OF). Inlet velocity: vz = −0.5 m/s.
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(a) Velocity field, OF (t = 3 s)
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p [Pa]

150

120

80

40

0

−1.2

(c) Pressure field, OF (t = 3 s)
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(d) Pressure field, LD (t = 2 s)

Figure 4.4: a,b) showing velocity fields and c,d) showing pressure fields for OF and
LD respectively.
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(a) Normal forces (LD) (b) Normal forces (OF)

(c) Upstream attachment, last 0.5 s (OF, LD) (d) Downstream attachment, last 0.5 s (OF, LD)

Figure 4.5: Plots a,b) showing force transients and c,d) showing comparisons of nor-
mal forces at upstream and downstream attachments for the last 0.5 s, respectively.

(a) Volume fraction t = 0 s (b) Volume fraction t = 0.1 s

Figure 4.6: a) showing initial volume fraction and b) the volume fraction after 0.1
s, illustrating the leakage for the steady flow case in LD.
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4.3 Pulsating flow with FSI

This section presents the results from the simulations using a sinusoidal velocity inlet flow
boundary condition. The velocity and pressure results are presented at five different times
and at each time the results are accompanied by a plot showing the current stage of the
inlet pulse. Figure 4.7-4.11 show the velocity and pressure fields in the symmetry plane at
five different stages of the inlet pulse. The reason for the different sampling times is again
the OF solver’s sensitivity to the initial force instabilities (see Section 4.2). Figure 4.12 -
4.16 show velocity and pressure fields in the symmetry plane at five different stages of the
sinusoidal inlet flow condition.

Figure 4.17 shows comparisons of the normal forces in the upstream and downstream
attachments of the EVG. The forces extracted from LD are sampled from t = 0 s, including
the initial instabilities. This is not the case for OF where the simulation is split into three
stages (see Appendix D) due to the solver sensitivity. Hence the normal forces are extracted
and plotted only for the last stage, when the forces have been stabilized.

In Figure 4.7 and 4.8 it can be seen that the first 0.5 seconds of the sampled pulses show
great similarities with the profiles from the simulations using a steady inlet flow condition
(see Section 4.2). This is the case also for the last sampling point (see Figure 4.11). As for
the steady flow simulation, the flow characteristics correspond fairly well between the two
numerical solutions, though the magnitudes of pressure and velocity deviate here as well.
This is most likely due to the inlet boundary leakage in LD (see Figure 4.18), discussed in
Section 4.2.

The greatest differences between the solvers occur when approaching zero inlet velocity,
hence between 0.5 s ≤ t ≤ 1 s (see Figure 4.8 - 4.10 and 4.13 - 4.15). The decreasing
inlet velocity induces turbulence and since using different grids and advection schemes, the
turbulence is not resolved equally. The two advection schemes handle the flux over each
cell differently, leading to a deviation in transport of the solution variables. Since neither
of the grids are fine enough to fully resolve the smallest scales, none of the solutions can.
in this sense, be said to be more accurate. However, OF offers a finer mesh close to the
structure, yielding a better resolved boundary layer. Nonetheless, the results within this
interval must be considered more uncertain.

The normal forces (see Figure 4.17) show fair correspondence with the sinusoidal inlet
pulse, though the forces are not entirely sinusoidal. What may be noted is the phase shift
of the forces in comparison to the sinusoidal inlet velocity, i.e. the forces reach their critical
values before the inlet velocity, but to clarify the reasons for this behavior more extensive
simulations are required. Again, as for the steady state analysis, the forces are consistently
larger in LD than in OF, and the force at the upstream attachment is generally larger than
the downstream force in both solvers. Also, the tugging (i.e. positive) forces that arise
from the stretching of the EVG are slightly larger than the compressive (i.e. negative)
forces that arise when the structure retracts from a stretched state.
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(a) Stage of inlet pulse (denoted by •)

(b) Entrance velocity profiles (c) Exit velocity profiles

(d) Entrance pressure profiles (e) Exit pressure profiles

Figure 4.7: Plots showing a) the stage of the inlet pulse, b,c) cross-section velocity
profiles and d,e) cross-section pressure profiles at the entrance and exit of the bent
EVG. Inlet velocity: vz = −1 m/s.
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(a) Stage of inlet pulse (denoted by •)

(b) Entrance velocity profiles (c) Exit velocity profiles

(d) Entrance pressure profiles (e) Exit pressure profiles

Figure 4.8: Plots showing a) the stage of the inlet pulse, b,c) cross-section velocity
profiles and d,e) cross-section pressure profiles at the entrance and exit of the bent
EVG. Inlet velocity: vz = −0.5 m/s.
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(a) Stage of inlet pulse (denoted by •)

(b) Entrance velocity profiles (c) Exit velocity profiles

(d) Entrance pressure profiles (e) Exit pressure profiles

Figure 4.9: Plots showing a) the stage of the inlet pulse, b,c) cross-section velocity
profiles and d,e) cross-section pressure profiles at the entrance and exit of the bent
EVG. Inlet velocity: vz = 0 m/s.
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(a) Stage of inlet pulse (denoted by •)

(b) Entrance velocity profiles (c) Exit velocity profiles

(d) Entrance pressure profiles (e) Exit pressure profiles

Figure 4.10: Plots showing a) the stage of the inlet pulse, b,c) cross-section velocity
profiles and d,e) cross-section pressure profiles at the entrance and exit of the bent
EVG. Inlet velocity: vz = −0.5 m/s.
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(a) Stage of inlet pulse (denoted by •)

(b) Entrance velocity profiles (c) Exit velocity profiles

(d) Entrance pressure profiles (e) Exit pressure profiles

Figure 4.11: Plots showing a) the stage of the inlet pulse, b,c) cross-section velocity
profiles and d,e) cross-section pressure profiles at the entrance and exit of the bent
EVG. Inlet velocity: vz = −1 m/s.
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(a) Stage of inlet pulse (denoted by •)

Software Upstream force [N] Downstream force [N]
OF 0.1298 0.1058
LD 0.2286 0.1756

(b) Normal forces at current stage
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(f) Pressure field, LD

Figure 4.12: a) shows the stage of the inlet pulse, b) shows the normal forces at the
current stage, c,d) show velocity fields from OF and LD, respectively, and e,f) show
pressure fields from OF and LD, respectively.
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(a) Stage of inlet pulse (denoted by •)

Software Upstream force [N] Downstream force [N]
OF -0.0644 -0.0721
LD -0.0060 -0.0213

(b) Normal forces at current stage
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Figure 4.13: a) shows the stage of the inlet pulse, b) shows the normal forces at the
current stage, c,d) show velocity fields from OF and LD, respectively, and e,f) show
pressure fields from OF and LD, respectively.
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(a) Stage of inlet pulse (denoted by •)

Software Upstream force [N] Downstream force [N]
OF -0.0420 -0.0452
LD -0.0019 -3.6300e-04

(b) Normal forces at current stage
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Figure 4.14: a) shows the stage of the inlet pulse, b) shows the normal forces at the
current stage, c,d) show velocity fields from OF and LD, respectively, and e,f) show
pressure fields from OF and LD, respectively.
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(a) Stage of inlet pulse (denoted by •)

Software Upstream force [N] Downstream force [N]
OF 0.0807 0.0639
LD 0.1441 0.1174

(b) Normal forces at current stage
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Figure 4.15: a) shows the stage of the inlet pulse, b) shows the normal forces at the
current stage, c,d) show velocity fields from OF and LD, respectively, and e,f) show
pressure fields from OF and LD, respectively.
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(a) Stage of inlet pulse (denoted by •)

Software Upstream force [N] Downstream force [N]
OF 0.1279 0.1039
LD 0.2278 0.1751

(b) Normal forces at current stage
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Figure 4.16: a) shows the stage of the inlet pulse, b) shows the normal forces at the
current stage, c,d) show velocity fields from OF and LD, respectively, and e,f) show
pressure fields from OF and LD, respectively.
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(a) Upstream normal forces (b) Downstream normal forces

Figure 4.17: Comparisons of upstream and downstream attachment normal forces
for a sinusoidal inlet flow boundary condition.

(a) Volume fraction t = 0 s (b) Volume fraction t = 0.1 s

Figure 4.18: a) showing initial volume fraction and b) the volume fraction after 0.1
s, illustrating the leakage for the pulsating flow case in LD.
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5 Conclusions

As stated in Section 1.2, one of the main goals of this project is to investigate the possibil-
ity of using FSI simulations to assess the forces causing stent graft migration. Prior work,
such as the ones performed by Li and Kleinstreuer [1, 24] and Molony et al. [25], demon-
strate rather successful results from FSI simulations applying an FE approach and a mixed
FE/FV approach, respectively. The force estimations in [1, 24] are the most relevant for
comparison, since they are extracted at the bifurcating region of the EVG, and are in line
with the forces estimated in the work by Malina et al. [5]. However, the forces extracted
in the present study are inferior to the ones obtained by Li and Kleinstreuer. These differ-
ences most certainly originate from the dissimilarities in numerical approaches, boundary
conditions, geometry and fluid medium. Furthermore, the forces are not extracted at the
same locations.

Based on the work done by Li and Kleinstreuer [1, 24] and Molony et al. [25], the
conclusion is that FSI simulations are realizable and possible to perform in such manner
that a fair evaluation of the forces causing stent graft migration is achieved. However,
this project does only offer results from further simplified simulations of the problem (see
Section 1.4 and 1.5), also using different softwares than in prior studies. Nonetheless, the
results show good promise of utilizing both LD and OF for more complex studies similar
to those previously discussed. With this said, there are still several aspects that need to be
improved and further tested to reach a more satisfactory level of complexity that further
resembles an in vivo5 stent graft. Examples of such improvements are a more aggressive
(in terms of a steeper gradient), and hence more realistic, inlet pulse and a non-zero gauge
pressure.

An additional purpose of this project is to compare the numerical approaches used in
LD and OF. This is done by studying the velocity, pressure and resulting forces. Overall,
LD gives higher magnitudes for these variables and this is mainly believed to be caused
by the leakage of material and peaks in pressure and velocity at the inlet. Hence the
credibility of these results is arguable. It is, however, likely that LD performs well with
a finer tuned setup. For example, the constraint based coupling algorithm used in the
present setup performs poorly for the rigid parts (i.e. the inlet and outlet) [26], though a
penalty based coupling algorithm would instead require an extensive process of trial and
error to establish important coupling parameters.

The approach used in OF does not suffer from any problems related to material mix-
ing, since the different materials are separated into two different meshes. Instead, the
largest difficulties are related to the remeshing procedure that follows a deformation of
the structural mesh (and hence the displacement of the fluid-structure interface). The
remeshing requirement leads to a sensitivity to large distortions, yielding an unstable and
time consuming solution procedure (see Appendix D.2). Another drawback with the FV
formulation is the requirement of volume elements, making it difficult to simulate very thin
structures. On a more positive note, OF offers full insight to the source code, providing
possibilities to investigate the implementation of the mathematical formulations and to
implement modifications of the solver.

As a final remark, the authors believe that further testing and tuning of the modules
used in this project can be of great interest, with the long-term objective of providing alter-
natives to the softwares used in prior studies. Since the setups used in this project partly
lack complexity, it should be clearly stated that the forces extracted are not to be consid-
ered as guiding values in terms of in vivo stent graft migration. Nonetheless, the study
provides helpful information about the functionalities of the two numerical approaches.

5i.e. within a living organism

, Applied Mechanics, Master’s Thesis 2011:23 47



6 Recommendations

As mentioned in Section 5, several improvements are to be considered for future studies.
First and foremost, it is recommended to apply a more aggressive and realistic inlet pulse,
similar to the ones used by e.g. Li and Kleinstreuer [1, 6, 24] and Molony et al. [25].
Additionally, a more representative gauge pressure is recommended in order to regard a
larger inflation of the EVG, possibly contributing to larger forces. To gain further confi-
dence in future studies it is recommended to perform parallel experimental and numerical
studies, enabling comparisons of the results. Experimental studies may also be used to
ensure proper material properties.

Furthermore, parametric studies of alternate geometries (e.g. EVG diameter and cur-
vature) and alternate heart rates, possibly corresponding to patients suffering from hyper-
tension6, can be of great interest. In the long run it may also be meaningful to model a
non-newtonian blood flow rather than water, since it impacts the flow behavior and hence
the interaction with the EVG. Last, but not least, performing longer simulations would
give the possibility to further investigate phenomenas such as the phase shift of forces in
the pulsating case.

6i.e. elevated blood pressure
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A Analytical solution of laminar fully developed pipe

flow

For a laminar, incompressible and fully developed flow through a straight circular pipe
it is possible to find the exact solution of the Navier-Stokes equations. Considering a
straight circular pipe of radius R, the governing equations can be rewritten in cylindrical
coordinates by defining an arbitrary point P by a distance z along the central axis, a radial
distance r from the central axis and a rotation angle θ about the same axis (cf. Figure
A.1).

r

z
θ

R

vz(r)

Figure A.1: A fully developed laminar velocity profile in a straight pipe.

The transformation from cartesian into cylindrical coordinates is governed by the fol-
lowing relations [10]:

r =
√
x2 + y2, θ = tan−1

(y
x

)
, z = z (A.1)

Using (A.1) in equations (2.18) gives the Navier-Stokes equations in cylindrical coordi-
nates:

r : ρ
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∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2θ

r

)

= −∂p
∂r

+ µ

[
1

r

∂

∂r

(
r
∂vr
∂r

)
+

1

r2
∂2vr
∂θ2

+
∂2vr
∂z2
− vr
r2
− 2

r2
∂vθ
∂θ

]
+ ρgr (A.2)
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z : ρ
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The equation of continuity transformed into cylindrical coordinates reads

∂ρ

∂t
+

1

r

∂

∂r
(ρrvr) +

1

r

∂ (ρvθ)

∂θ
+
∂ (ρvz)

∂z
= 0. (A.5)

The concept fully developed means that the flow region studied is far enough from the pipe
entrance to be considered purely axial, i.e. vz 6= 0 and vθ = vr = 0. By neglecting gravity
and assuming axial symmetry (i.e. ∂/∂θ = 0), it then follows from (A.5) that

∂vz
∂z

= 0 or vz = vz(r) only. (A.6)
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This holds provided that the flow is steady and incompressible. Similarly, the r-momentum
equation, eq. (A.2), simplifies to

∂p

∂r
= 0 or p = p(z) only. (A.7)

Consequently, equation (A.4) reduces to

− ∂p

∂z
+
µ

r

∂

∂r

(
r
∂vz
∂r

)
= 0. (A.8)

Equation (A.8) is linear and may be integrated twice yielding the result

vz =
∂p

∂z

r2

4µ
+ C1ln (r) + C2 (A.9)

where C1 and C2 are constants. The boundary conditions are no-slip at the wall and
maximum velocity at the centerline (cf. Figure A.1):

r = 0;
∂vz
∂r

= 0

r = R; vz = 0.
(A.10)

The constants in equation (A.9) can then be obtained as

C1 = 0 and C2 = −∂p
∂z

(
R2

4µ

)
. (A.11)

The final expression for laminar fully developed pipe flow is now obtained as

vz(r) = −∂p
∂z

(
1

4µ

)(
R2 − r2

)
. (A.12)
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B Simple force estimation for a steady flow

In order to establish confidence in the extracted forces, a simple calculation is performed
to estimate the force needed to balance the change in momentum of an inviscid fluid as it
is deflected in a bent streamtube (see Figure B.1a). Consider a fixed CV of a streamtube
with the same steady, uniform inlet flow boundary condition and geometry as for the EVG
(see Figure B.1b). The diameter d = 0.014 m yields a circular area of A = π · (d/2)2 m2.
Together with the density of water ρ = 998 kg/m3 and the velocity

VIn = [0 0 − 0.5], VOut = [0.5 0 0] and |V| = |VIn| = |VOut| = 0.5 m/s

yields a mass flow of

ṁ = ṁIn = ṁOut = ρA|V| ≈ 0.07682 kg/s.

For a one dimensional cross section, where V and ρ is uniform over the area and with the
conservation of mass, the linear momentum equation reads [10]

F =
d

dt

(∫

CV

Vρ dV

)
+ (ṁV)Out − (ṁV)In (B.1)

The volume integral vanishes for a steady flow, such that the force becomes

F = ṁ(VOut −VIn). (B.2)

This yields the x and y force components

Fx = Fz ≈ 0.03841 N.

ṁVIn

ṁVOut z

x y

F = ṁ(VOut −VIn)

(a)

VOut

d = 0.014 m

VIn

ṁ = constant

(b)

Figure B.1: a) shows a vector diagram for force calculation and b) a streamtube in
steady flow.
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C LS-DYNA implementation

The ALE method in LS-DYNA demands several important input cards in order to get a
correct case setup (see Table C.1 below). This section presents the used cards and offers
some explanation regarding their function. The reader is recommended to only read this
text as a complement to the LS-DYNA manual.

Table C.1: Important input cards in the LS-DYNA setup

Input card name
*CONTROL ALE Card to define for example number of

advection cycles and whether or not
mesh smoothing should be performed

*CONTROL TERMINATION Set termination time.
*CONTROL TIMESTEP Contains parameters for timestep con-

trol
*CNSTRND LAGRANGE IN SOLID Card to define Lagrangian and Eule-

rian coupling. Coupling can either be
of penalty or constrained type (cf. sec-
tion 2.4.3). If penalty method, param-
eters such as damping and penalty fac-
tor can be set.

*ALE MULTI-MATERIAL GROUP Card used to associate material, de-
fined via part, with its respective vol-
ume fraction, referred to as AMMG.

*INITIAL VOLUME FRACTION GEOMETRY Initializes the volume fraction con-
strained by selected container geom-
etry. Here the AMMG-cards are con-
figured to fill within the set container
or to be the background material.

*MAT ALE VISCOUS Defines the viscous material given the
properties of chosen fluid. Demands
an equation of state card (see below).

*MAT ALE VACUUM Material card for defining ”dummy”
material for non computational fluid
domain.

*EOS LINEAR POLYNOMIAL Used to define the bulk viscosity by
only setting C1 equal to value of
choice.

*DBASE NODAL FORCE GROUP Group card to define from which
nodes to collect the nodal forces.
Output controlled from ASCII option
card.

*SOLID ALE Card to set element formulation op-
tions, associated with Eulerian part in
their respective part card.
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D OpenFOAM implementation

As mentioned in Section 2.5 the simulation in OpenFOAM was performed using an ex-
tended version of the icoFsiFoam solver. This section covers the case setup, as well as the
steps which the FSI simulations are divided into.

D.1 Case setup

The file structure for cases run with this solver differs somewhat from the typical standard
(single-phase) cases in OpenFOAM. First off, the case is divided into two separate sub-
folders; one for the fluid simulation and one for the structural simulation. These folders
are, from now on, referred to as fluid and solid, respectively. The file structures for the
fluid and solid directories look as follows:

fluid solid

|-- 0 |-- 0

| |-- motionU | ‘-- DU

| |-- p |-- constant

| |-- solid -> ../../solid/0 | |-- polyMesh

| ‘-- U | | |-- boundary

|-- constant | | |-- cellZones

| |-- couplingProperties | | |-- faces

| |-- dynamicMeshDict | | |-- faceZones

| |-- polyMesh | | |-- neighbour

| | |-- boundary | | |-- owner

| | |-- cellZones | | |-- points

| | |-- faces | | |-- pointZones

| | |-- faceZones | | |-- sets

| | |-- neighbour | | | ‘-- interfaceSolidZone

| | |-- owner | | ‘-- zoneToPatchName

| | |-- points | ‘-- rheologyProperties

| | |-- pointZones |-- system

| | |-- sets | |-- controlDict

| | | ‘-- interfaceFluidZone | |-- decomposeParDict

| | ‘-- zoneToPatchName | |-- fvSchemes

| |-- solid -> ../../solid/constant | |-- fvSolution

| ‘-- transportProperties

|-- system

| |-- controlDict

| |-- decomposeParDict

| |-- fvSchemes

| |-- fvSolution

| |-- sampleDict

| |-- solid -> ../../solid/system

| ‘-- tetFemSolution

The initial and boundary conditions are defined in the 0 directories located directly
under the fluid and solid directories. The pressure and velocity conditions for the fluid
are defined in p and U, respectively, while the displacement increment condition for the
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structure is defined in DU. The file motionU contains the conditions for the deforming mesh
motion, which is a requirement for the FSI analysis. The motion of the mesh at the
fluid-structure interface has to be implemented as a Dirichlet boundary condition for the
fluid velocity. This is done using movingWallVelocity as the boundary condition in U

at the interface.The constant subdirectories (i.e. polyMesh, transportProperties and
rheologyProperties) contain information about the meshes and the material properties
(e.g. density, viscosity, Young’s modulus etc.) for the different phases. Most of the
settings governing the fluid-structure interaction are defined in couplingProperties and
the settings for the solution of the mesh motion are defined in dynamicMeshDict. The
system directories are where the solution procedure is setup. Settings such as end time,
time step and time interval for output to be written are all defined in the file controlDict.
The files fvSchemes and fvSolution contain information about which differencing schemes
to use and settings for convergence tolerances. The decomposeParDicts describe how the
computational domains should be decomposed for cases that are to be run in parallel. The
branches of the type solid -> are, so-called, soft links linking together the settings for
the fluid phase with the solid phase. These links are necessary in order for the solver to
get input to the solution of both the fluid and structural equation systems.

The fluid-structure interface is defined after the fluid and solid meshes have both been
created. This is done by typing

setSet -case fluid

faceSet <fluidInterfaceName> new patchToFace <fluidInterfacePatchName>

quit

setsToZones -case fluid -noFlipMap

setSet -case solid

faceSet <solidInterfaceName> new patchToFace <solidInterfacePatchName>

quit

setsToZones -case solid -noFlipMap

when standing in the main case folder. The interface could then be used for the settings
in the file couplingProperties located in the subdirectory fluid/constant. This file
contained the residual tolerance for the FSI.

Since the straight pipe in the first study (see Section 3.2) are to be given rigid walls,
the coupling implementation of the solver has to be turned off, making it solve only for
the flow. This is done by setting

fsi no;

in couplingProperties.

VI , Applied Mechanics, Master’s Thesis 2011:23



D.2 Simulation steps

Due to convergence problems, the OF FSI simulations have to be split into three stages.
They are

1. Perform an initial, uncoupled steady flow simulation. Run until stabilized.

2. Perform an uncoupled, pulsating flow simulation. Run for a few pulses.

3. Perform a coupled, pulsating flow simulation.

i) Calculate normal forces in EVG attachments.

Thanks to this procedure, large initial instabilites (which causes the solution to diverge)
can be avoided.
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