

CFD OF AIR FLOW IN HYDRO POWER GENERATORS

Pirooz Moradnia

Göteborg-Sweden

2010-12-17

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 1/34

Problem Definition

- Half of the electricity generation in Sweden from hydroelectric power generation
- $\bullet\,$ Modifications to the existing units $\rightarrow\,$ significant contributions to the total energy production
- \bullet Increased power output \rightarrow more heat to be removed
- Two large sources of energy losses in the generators: thermal and ventilation losses
 - The electric resistance in the generator coils
 - \rightarrow heat to be removed
 - Air cooling of the rotor and the stator
 - \rightarrow ventilation losses
- The stator should be cooled by air flowing through the stator air channels
- Focus of the present work: axially cooled generators

Generator

- Rotor The rotating part:
 - Magnetic poles with coils
 - Driven by the turbine
- Stator The stationary part:
 - Windings
 - Cooling channels

The electric current is induced in the stator windings by the relative motion of the rotor poles

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 3/34

Case study

Generator at Uppsala University (SVANTE)

- Previously an electric motor
- 4 axial rows of stator cooling channels
- 108 cooling channels in each row
- 12 rotor poles
- Rotational speed: 500 rpm
- Inner radius of the stator: 36.5 cm
- Outer radius of the stator: 43.7 cm

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 4/34

Geometry in OpenFOAM

- \bullet A 1/12 sector in the tangential direction
- Symmetri-plane in the middle
- 2 channel rows
- 9 channels in each row
- 1 pole
- Low-Re Launder-Sharma turbulence model
- No inlet and outlet boundaries \rightarrow no prescribed mass flow
- Air recirculating in an extra space \rightarrow computed mass flow

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 5/34

Stator cooling channels

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 6/34

Cases

• Frozen rotor concept: MRFSimpleFOAM (MRF = Multiple Reference Frames)

$$\frac{\partial \vec{u}_I}{\partial t} + \nabla \cdot (\vec{u}_R \otimes \vec{u}_I) + \vec{\Omega} \times \vec{u}_I = -\nabla(p/\rho) + \nu \nabla \cdot \nabla(\vec{u}_I)$$
$$\nabla \cdot \vec{u}_I = 0$$

• Low-Re Launder-Sharma turbulence model

$$\frac{\partial k}{\partial t} + \nabla \cdot (Uk) - \nabla \cdot D_{k,eff} \nabla k = G - (\tilde{\varepsilon} + D)$$
$$\frac{\partial \tilde{\varepsilon}}{\partial t} + \nabla \cdot (U\tilde{\varepsilon}) - \nabla \cdot D_{\varepsilon,eff} \nabla \tilde{\varepsilon} = C_{\varepsilon 1} G \frac{\tilde{\varepsilon}}{k} - C_{\varepsilon 2} f_2 \frac{\tilde{\varepsilon}^2}{k} + E$$

- Mesh generated with blockMesh (parameterized m4 script)
- A total of 21 cases: 7 rotor designs, each with
 - a base stator, C#
 - a baffled stator, C#S
 - a baffled stator and fan blades on the rotor, C#F

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 7/34

Pole and stator design in all test cases

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 8/34

Volume Flow Distributions

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 9/34

Remarsk About Volume Flow Distributions

- Volume flows:
 - smallest in cases without stator baffles, C#
 - largest in cases with both stator baffles and fan blades, C#F
- $\bullet\ C1 \rightarrow {\rm negative\ volume\ flows} \rightarrow {\rm air\ sucked\ in\ the\ channels\ from\ outside\ the\ stator}$

Case Specifications and Rotor Axial Power

Case	Pole	remarks	Rotor axial power (W) $(\dot{E} = \dot{E}_{press} + \dot{E}_{visc})$					
name	design		Base Case		Stator Baffle		Fan Blade	
			\dot{E}_{press}	\dot{E}_{visc}	\dot{E}_{press}	\dot{E}_{visc}	\dot{E}_{press}	\dot{E}_{visc}
C1			4.45	0.30	3.62	0.25	7.07	0.24
C2		Reduced areas	2.42	0.34	2.29	0.31	7.59	0.11
C3	E	Pole supports	2.24	0.34	1.94	0.28	6.00	0.19
C4	Н	Rounded pole front	2.27	0.32	1.98	0.28	6.01	0.22
C5	Ŀ	Rounded pole edges	4.04	0.28	2.82	0.26	5.97	0.23
C6	E	More rounded pole edges	3.73	0.23	3.25	0.26	6.30	0.25
C7	E	Half planned top front	4.03	0.29	2.94	0.24	6.50	0.23

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 11/34

Rotor axial Power vs volume flow

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 12/34

Remarks About Rotor Axial Power

- The rotor power divided into:
 - viscous part, \dot{E}_{visc}
 - pressure part, \dot{E}_{press}
- $\dot{E}_{press} >> \dot{E}_{visc}$
- C# requiring more axial power than C#S (larger volume flows) \rightarrow The stator baffles reduce the losses
- The highest rotor axial power required by C#F

Recirculation Zones in the Upper Stator Channels

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 14/34

Recirculation Zones in the Lower Stator Channels

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 15/34

Remarks About Recirculation Zones in the Stator Channels

- The shaded areas show the recirculation zones in the stator channels
- Cases without fan blades:
 - a large recirculation zone at the downstream of the stator windings
 - air sucked in from one side of the stator windings and pushed out from the other side
- Cases with fan blades:
 - considerably smaller recirculation zones
 - air sucked in the from both sides, caused by the large pressure build-up

Unit Vectors of the Flow Between the Poles, $(\vec{V}/|\vec{V}|)$

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 17/34

Remarks About Unit Vectors of the Flow Between the Poles

- Thin red curves showing the regions with 0-axial velocity
- Regions of upward velocities near the stator inner wall
 - \rightarrow impossible to use boundary conditions at the inlet
 - \rightarrow not desirable
- Stator baffles:
 - separation just under the edge of the baffle
 - purely downward velocities at the inlet to the machine
- Fan blades:
 - strong pressure build up
 - \rightarrow driving the flow more downwards
 - \rightarrow reducing the regions with upward velocities
 - minimizing separation region under the stator baffle

Contour Lines of Axial Velocity 0.2mm Above the Pole

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 19/34

Remarks About Axial Velocity Above the Pole

- The axial velocities shown in the boundary layer region just above the poles
- \bullet Positive sign \rightarrow upward velocities \rightarrow not desirable
- Upward velocity regions in the air gap between The rotor and the stator
- Stator baffle
 - weaker upward velocities near the rotor pole (larger pressure build-up)
- Fan blades
 - reducing the upward velocities even more (even larger pressure build-up)
 - \rightarrow higher volume flows

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 20/34

Contour Lines of Radial Velocity 0.2mm Above the Pole

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 21/34

Remarks About Radial Velocity Above the Pole

- The radial velocities shown in the boundary layer region just above the pole
- Negative radial velocities in the gap between the rotor and the stator \rightarrow recirculation area between the poles
- Cases with fan blades
 - \rightarrow recirculation area between the fan blades

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 22/34

Contour Lines of tangential Velocity 0.2mm Above the Pole

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 23/34

Remarks About Tangential Velocity Above the Pole

- Tangential velocities shown in the boundary layer region just above the pole
- \bullet Negative sign \rightarrow clockwise rotation in the picture
- Stator baffle
 - increased tangential velocitiez
- Fan blades
 - largest tangential velocities
- Rounding the pole edges
 - larger tangential velocities above the rotor

Contour Lines of $(\frac{p_{stat}-p_{stat,ref}}{\rho})$ on Topf of the Pole

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 25/34

Contour Lines of $(\frac{p_{stat}-p_{stat,ref}}{\rho})$ on the Front Side of the Pole

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 26/34

Contour Lines of ($\frac{p_{stat}-p_{stat,ref}}{\rho}$) on the Pole Pressure Side

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 27/34

Contour Lines of $(\frac{p_{stat}-p_{stat,ref}}{\rho})$ on the Pole Suction Side

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 28/34

Contour Lines of $(\frac{p_{stat}-p_{stat,ref}}{\rho})$ Inside the Stator

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 29/34

Remarks About Pressure Distributions

- The quantities p_{stat} , $p_{stat,ref}$ and ρ referring to the static pressure in each cell, static pressure in a reference cell, and density
- The contour lines plotted with respect to the reference values in a reference cell (same position in all cases)
- Lower $\left(\frac{p_{stat}-p_{stat,ref}}{\rho}\right)$ near the rotor body
 - \rightarrow lower static pressure
 - \rightarrow stronger suction near the rotor body

Conclusions

- Complex flow
 - non-uniform
 - separation
 - recirculation
- Stator baffles
 - increasing volume flow
 - eliminating outward flow at the inlet
 - reducing losses
- Rotor fan blades and stator baffles
 - increasing volume flow
 - minimizing recirculation in the channels
 - high rotor axial power required

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 31/34

Parallel projects

- \bullet Incompressible RAS turbulence models in OpenFOAM-1.5.x
 - models investigated
 - implementations compared to the original models
 - results verified in a backward-facing step case and compared to the experimental results
 - led to the choice of Launder-Sharma $k-\varepsilon$ model
- Laminar couette flow
 - velocity and pressure distributions compared to the analytical resutls

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 32/34

Future Work

- Measurements at Uppsala University
- Modifications to the geometry
- Building a rig at CHALMERS
- Running unsteady simulations with mesh motion

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 33/34

Thank you!

Pirooz Moradnia, Chalmers / Applied Mechanics / Fluid Dynamics 34/34