Numerical investigation of the flow in a swirl generator, using OpenFOAM

Oscar Bergman

Outline

Outline

- Introduction
- Purpose and goal
- Experimental rig and measurements
- Numerical setup
- Results
- Conclusions
- Future work

Introduction

Introduction

Purpose and goal

Purpose and goal

- Conduct steady-state and unsteady 3D simulations on a swirl generator.
- Compare with measurements and theoretical design data from previous studies.
- Provide results for helping future studies in solving the problem with precessing vortex ropes in water turbines.
- Provide a tutorial of the case to the OpenFOAM community.

- Strout
 - Holds up the nozzle

- Strout
- Guide vanes
 - creates a swirling profile

- Strout
- Guide vanes
- Free runner

- redistributes the total pressure

- rotates freely

- Strout
- Guide vanes
- Free runner
- Draft tube
 - plexiglass walls
 - windows for LDV measurements

- Strout
- Guide vanes
- Free runner
- Draft tube

- Theoretical design profile
 - Cross-section 1 & 2

Measurements

• Total volume flow: 30 l/s

Measurements

- Total volume flow: 30 l/s
- Runner rotating at 870 rpm

Measurements

- Total volume flow: 30 1/s
- Runner rotating at 870 rpm

Laser Doppler Velocimetry
measuring the meridional and tangential velocities

Measurements

- Total volume flow: 30 1/s
- Runner rotating at 870 rpm

- Laser Doppler Velocimetry
- Pressure transducers
 - measuring the static pressure at the wall

- The grid
 - 2.3 million hexahedral cells
 - Coupled parts by General Grid interfaces (GGI)

- The grid
- Solvers
 - For steady-state:
 - » SIMPLE pressure corrector
 - » Rotation through different frames of reference

- The grid
- Solvers
 - For steady-state:
 - » SIMPLE pressure corrector
 - » Rotation through different frames of reference
 - For unsteady:
 - » PISO pressure corrector
 - » Real rotation with a sliding grid at the interface

Numerical setup

- The grid
- Solvers
 - For steady-state:
 - » SIMPLE pressure corrector
 - » Rotation through different frames of reference
 - For unsteady:
 - » PISO pressure corrector
 - » Real rotation with a sliding grid at the interface

Turbulence model: standard k-ε model with wall-functions

- The grid
- Solvers
- Boundary conditions
 - Velocities and turbulence: Homogenous Neumann at outlet
 - Pressure: Zero mean pressure at outlet and homogenous Neumann at all other boundaries

- The grid
- Solvers
- Boundary conditions
- Convection scheme
 - − 1st order upwind at startup
 - 2nd order linear upwind when stable

- Rotational speeds
 - 870 rpm (runner rotates freely)
 - 920 rpm (runner rotates freely according to fluent simulations)
 - 890 rpm (linearly interpolated)

- Rotational speeds
- Initial boundary condition
 - Results from the steady-state simulations

Design profiles

Comparison with LDV at 870 rpm

Comparison with LDV at 920 rpm

Comparison with LDV at 890 rpm

Moment acting on the runner

SIMPLE based solver vs. PISO based solver

SIMPLE based solver compared to measurements

Pressure at MG0 (at the throat of the draft tube)

Fourier analysis of results from 920 rpm

Unsteady results

Conclusions

Conclusions

- Unsteady simulations accurately predicts the flow
- 920 rpm was corresponding most with the measurements
- 870 rpm was corresponding most with the theoretical design profiles
- The inclusion of all parts of the swirl generator have added more frequencies to the flow.

• Moment on the runner:	Rotational speed	Moment on runner
	920 rpm	-0.55 Nm
	870 rpm	0.23 Nm
	890 rpm	0.08 Nm

Future work

Future work

- Further investigation of the SIMPLE based solver
- Other turbulence model such as LES or DES
- Customize a solver for adjusting the rotational speed in accordance to the moment acting on the runner

Acknowledgement

Acknowledgements

I would like to give my thanks to:

- Department of Applied Mechanics
- Supervisors Håkan Nilsson and Olivier Petit