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Abstract

This work presents results from OpenFOAM simulations conducted on a swirl generator
designed to give similar flow conditions to those of a Francis turbine operating at partial
load. Francis turbines are one of the most commonly used water turbines. In these tur-
bines, there is however a frequent problem occuring at part load. Due to a swirling flow
in the draft tube, a transient helical vortex rope builds up and creates severe pressure
fluctuations in the system that increase the risk for fatique. To predict and control such
flow features is therefore critical. A test rig was developed at the ”Politehnica” University
of Timisoara, Romania, to provide a detailed experimental database of such flow features.
This test rig has four parts: leaning strout vanes, stay vanes, a rotating runner which is
designed to have zero torque, and a convergent divergent draft tube.

In this work, numerical results are compared and validated against measurements real-
ized on the swirling flow test rig at the Polytechnica University of Timisoara in Romania.
The computational mesh is created with ICEM-Hexa and the parts have been meshed
separately and then merged together, using General Grid Interfaces (GGI) to couple them
numerically. The finite volume method is used to solve both the unsteady and steady state
Reynolds Averaged Navier Stokes equations and the standard k-ε model is used to close
the turbulence equations. Steady-state simulations is a preliminary method, which is less
time-consuming and predicts the general behavior of the flow field. It also provides good
initial conditions for the unsteady simulations. For the unsteady simulations, the mesh of
the rotating part of the domain is rotating and the coupling between the stationary and
rotating parts is handled by a sliding GGI interface.

The simulation results shows a developing vortex rope in the draft tube which gives rise
to oscillations of flow properties in the system. The size and shape of this vortex rope, as
well as the frequency of the oscillations it gives rise to, is highly dependent on the rota-
tional speed of the free runner. The results show that a rotational speed of 920 rpm on
the runner, corresponds best with the measurements out of the three rotational speeds 870
rpm, 890 rpm and 920 rpm. The rotational speed of 870 rpm gives a positive moment on
the runner, an rpm of 890 of almost zero moment, and a speed of 920 rpm gives a positive
moment on the runner. Fourier analysis of the pressure fluctuations show that several new
frequencies has been introduced compared to a previous OpenFOAM study which was only
made on the draft tube. The main frequencies for a rotational speed of 920 rpm have been
estimated to 3.0 Hz corresponding to an extraction/retraction of the vortex rope, 18.02 Hz
which comes from the rotation of the vortex rope and 153.19 Hz which is caused by the
rotor stator interaction. Furthermore, the amplitudes of the fourier spectra have shown
good agreement with the previous study.
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1 Introduction

Sweden has a good access to water power. With the Norwegian mountains in the north-
west, the rivers through Sweden provide the way for the water to reach Östersjön. During
spring, the snow melts on the mountaintops and the water finds its way to the surface of
the ocean. Almost all electric energy in Sweden is supplied by water power and nuclear
power. These days however, when a lot of resources are put to alternative energy sources,
water turbines are often turned on and off and used for filling in when the energy demand
is high. Wind power is for example sensitive to weather, and can often fail to deliver the
power quota which it is set to provide, thus creating a gap in the electric grid. During the
conditions of starting and stopping the water turbines, an unwanted phenomenon occurs.
Some of the water turbines used today are Francis turbines. They are radial and mixed
flow turbines. When these turbines operate at partial load, the flow in the draft tube gets
a swirling flow profile. This is due to the fact that the runner is designed to neutralize the
swirl created by the guide vanes at the best efficiency point. If the turbine is operating
away from the effiency point, this swirl will not be neutralized to the same extent. This
may then cause a transient helical vortex rope to build up and create pressure fluctuations
which greatly increases the risk of fatigue damage on the turbines. Solving this problem is
crucial, and knowing more about the flow features of a swirling flow will help development
of techniques that can prevent these problems to occur.

This work presents numerical investigations of a swirl generator test rig installed at the
Polytehnica University of Timisoara, Romania. The swirl generator is designed to give
similar flow features to that of a Francis turbine operating at part load. That is, at certain
flow discharge, a vortex rope builds up and creates pressure fluctuations which affects the
stresses on the runner. The swirl generator consists of strout blades, stayvanes, a free
runner and a convergent divergent draft tube.

Figure 1.1: A precessing vortex rope, created by the swirling flow in the test rig.

Figure 1.1 shows the phenomenon which is studied in this work. A precessing helical
vortex rope caused by the flow conditions created in the swirl generator.
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1.1 Experimental rig

The swirl generator is shown in Figure 1.2. It consists of four parts: a strout, a free runner
with 10 blades, 13 guide vanes and a draft tube with a swirlcone nozzle. The inlet is located
at the strout section of Figure 1.2 and shown as an arrow in the figure. The purpose of
the free rotating runner is just to redistribute the total pressure to obtain a more similar
distribution to that of a Francis turbine at partial discharge. The experimental rig is built
with a draft tube in plexiglass in order to better vizualize the flow, as well as to enable
velocity measurements with LDV at the three windows seen to the left in Figure 1.2.

Figure 1.2: General sketch of the swirlgenerator test rig (left) and the dimensions and
cross-sections (right).

The leaning strout blades seen to the left in Figure 1.2 holds up the stayvanes, run-
ner and swirlcone. The guide vanes and the free runner have the purpose to direct the
flow and create a swirling flow profile. The guide vanes produce a swirling flow that has
almost constant total pressure and the runner then redistributes the total pressure by ac-
cumulating energy near the hub and thus acting like a turbine, and consume energy at
the tip i.e. acting like a pump. This results in zero torque which enables the runner to
rotate freely and redistribute the total pressure without changing the kinetic energy of the
flow. The draft tube is a diffuser which purpose is to decelerate the flow coming from the
runner and recover the static pressure. To the right of Figure 1.2, the dimensions of the
swirl generator are shown. The z-axis is defined in the flow direction, and the origin is at
the throat. The test rig has an inner hub radius of 45 mm and an inner case radius of
75 mm and its total axial length is 481 mm. Both guide vanes and runner have an ax-
ial length of 60 mm. The wall of the draft tube has an angle of 8.5◦ at the divergent section.

Measurements and simulation results are validated at cross-sections 1 and 2, against a

2 , Applied Mechanics, Master’s Thesis 2010:25



theoretical design model, which was used when designing the swirl generator. The cross-
sections are seen in the right of Figure 1.2. Cross-section 1 is located between the stay vanes
and the runner and cross-section 2 is located just downstream the runner. Cross-sections
3 and 4 are not used in this work.

1.2 Measurements

The LDV measurements were made at the Politehnica University of Timisoara and pre-
sented by Bosioc et al. [6]. They were made with two-component LDV and with 10 µm
aluminium particles inserted into the flow to reflect the laser beams. The meridional and
tangential velocity is then measured at the three survey axes shown on the left in Figure
1.3. The arrows indicates the start of the survey lines, that is, where x = 0 in the plots.
Survey axes 1 and 2 have the same angle to the radial axis as the draft tube wall has to the
z-axis, which is 8.5◦. Survey axis 0 has an angle of 25◦ to the radial axis. All measurements
were made at a total flow discharge of 30 l/s, which corresponds to 80 % of the maximum
power of the used pump.

Figure 1.3: The three survey lines(left) and location of pressure transducers (right).

The unsteady static pressure is measured with pressure transducers at MG0, MG1,
MG2 and MG3 which are located at 0, 50, 100, and 150 mm downstream the throat, seen
to the right of Figure 1.3.

1.3 Previous studies

There have been many studies on swirling flows and on the problems caused by precessing
vortices. One early study, made in year 2000, was the Flow Investigation in Draft Tubes
(FLINDT) research project [2]. This study provided a large experimental database on
the swirling flow phenomenons. Unfortunately, the FLINDT data is available only to the
partners of that project. The complexity of these large scale experimental projects makes
them difficult and costful to realize, which is why measurements of this type usually is
made on smaller scaled models. The design of the swirl generator testrig in Timisoara has
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similar goals to that of the FLINDT project. The optimal number of blades have been
estimated for creating similar swirling profiles to that of Francis turbines at part load,
and the dimensions of the stay vanes and runner blades have been designed using a quasi-
3D inverse design method for turbomachinery blades [15] to create a precessing vortex
rope [16]. The convergent divergent draft tube have been designed with a beneficial shape
for swirling flows [5] and 2D Laser Doppler Velometry measurements have been made for
investigating the flow at different parts of the swirl generator. Resiga [17] introduced a
technique to control the instabilities by using axial jet control in the discharge cone. In
later studies [10], it was shown that at a jet discharge corresponding to 10% of the total
turbine discharge neutralizes the pressure oscillations the most. Muntean and Resiga later
confirmed this in a 3D unsteady numerical investigation [4]. Using this technique would
however require a to large fraction of the discharging flow to be bypassed, so Resiga and
Muntean later showed that such a jet control can instead be obtained by using a flow
feedback method downstream the cone [14]. In a study by Muntean et al. [11], only the
draft tube was used when simulating the unsteady flow in 3D. Petit [13] extended the
studies by including all parts of the swirl generator test rig, which makes the draft tube
inlet conditions different from those applied by Muntean et al. [11]. This project aims at
creating a database of simulation results which can be used for further studies in attempts
to solve this problem.
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2 Theory

When numerically simulating a flow field, the techniques and methods for this can be of
many different kinds. The most used technique is based on the finite volume method which
uses small control volumes to discretise the governing differential equations.

2.1 Governing Equations

The equations that describe a fluid in motion are derived from the conservation of mass,
momentum and energy. The motion of an incompressible fluid is described by the Navier-
Stokes equations, which state that changes in momentum of a fluid only depends on the
surrounding pressure and the internal viscous fources acting on the fluid:

ρ

(
∂ui
∂t

+ vj
∂ui
∂xj

)
︸ ︷︷ ︸

ρ
Dui
Dt

= − ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))
+ ρfi (2.1)

Where ρ is the density, D
Dt

the material derivative, u is the velocity, t is time, p is the static
pressure, µ is the dynamic viscosity and f is the body force acting on the fluid. Body
forces can be for example gravity, centrifugal or Coriolis forces.

The Navier-Stokes equations are complemented with the continuity equations, which is
a statement of conservation of mass:

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (2.2)

Dealing with water, this equations can be simplified due to the assumption of incompress-
ibility, which means that density is independent of the pressure, and so the continuity
equation becomes:

∂uj
∂xj

= 0 (2.3)

Inserting into the Navier-Stokes equations we get:

ρ

(
∂ui
∂t

+ vj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ

∂2ui
∂x2

j

+ ρfi (2.4)

where the first term from the left is the unsteady term, the second term is the convection
term. The sum of these two represents the inertia of the fluid. The third is the pressure
gradient, the fourth is the viscosity term, and the last is again body forces acting on the
fluid. Body forces like centrifugal or Coriolis forces appear when solving the equations in
a rotating frame of reference.

2.1.1 Reynolds-Averaged Navier-Stokes equations (RANS)

The Reynolds-Averaged Navier-Stokes equations are the time averaged equations of the
Navier-Stokes equations. They are obtained by decomposing the instantenous velocity
vectors into one averaged part and one fluctuation part , i.e.

u(x, t) = Ū(x) + u′(x, t) (2.5)

inserting into the Navier-Stokes equations and time averaging yields :

ρ
∂ŪjŪi
∂xj

= ρf̄i +
∂

∂xj

[
−P̄ δij + µ

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
− ρu′iu′j

]
(2.6)
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In the unsteady RANS equations, an additional time dependant term is added on the left
hand side: ρ∂Ūi

∂t
.

As this averaging is performed, the new term u′iu
′
j appears. This is the Reynolds stress

tensor. It is an additional symmetric stress tensor that is added due to turbulence and
which represents the correlations between fluctuating velocities. This stress tensor is un-
known and it makes the system of equations unsolvable, as we have more unknowns than
equations. The equations can then be closed using a turbulence model for the Reynolds
stresses.

2.1.2 Eddy viscosity models

In eddy viscosity models, the closure problem is solved by introducing a linkage between
the Reynolds stresses and the velocity gradients, using an eddy viscocity µt. The diffusion
term then becomes:

∂

∂xj

[
µ

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
− ρu′iu′j

]
=

∂

∂xj

[
(µ+ µt)

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)]
(2.7)

which gives us

ρu′iu
′
j = −µt

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
(2.8)

if we set i=j, the reynolds stress becomes

u′iu
′
j ≡ 2k (2.9)

where k is the turbulent kinetic energy. Setting i=j however, the continuity equation would
imply that u′iu

′
j = 0. So in order to set i=j, we need to add 2/3ρδi,jk to the equation, i.e.

u′iu
′
j = −µt

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
+

2

3
ρδi,jk (2.10)

This relation is called the Boussinesq Assumption and the idea of this is to model the
small-scale eddies with a viscosity term, similar to the way the momentum friction forces
in a fluid are modeled with a molecular viscosity.

2.1.3 k − ε turbulence model

The k−ε turbulence model is a two-equation eddy viscosity model that uses two transport
equations to represent the turbulent properties of the flow. The equation of turbulent
kinetic energy is derived from the Navier-Stokes equation. It includes convection terms,
production terms, turbulent diffusion terms and dissipation. The turbulent dissipation
term ε, represents the transformation of kinetic energy at smaller scales into internal en-
ergy. However, there are many unknowns in the k-equation, dissipation being one amongst
them. And so the k-equation is complemented with the dissipation-equation.

Turbulent kinetic energy-equation:

∂(ρk)

∂t
+
∂ρkUj
∂xj

=
∂

∂xj

[
(µ+

µt
σk

)
∂k

∂xj

]
+ Pk − ρε (2.11)

Dissipation -equation:

∂(ρε)

∂t
+
∂(ρεUj)

∂xj
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Pk − C2ερ

ε2

k
(2.12)
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µt = ρCµ
k2

ε
, Pk = −ρu′iu′j

∂uj
∂xi

= µt2SijSij, Sij =
1

2

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
Here we have µt as the eddy viscosity and Pk as the production of turbulent kinetic energy.
The model constants are given by:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3

The k-ε model uses wall functions to resolve the turbulence close to the wall. The mesh
is thus generated to give y+ values in the range from 30 to 300. The k − ε model is a
stable turbulence model which often is referred to as the industry standard model. The
downsides can be that it is bad at predicting normal stresses which means that it can’t
take effects of streamline curvature into account or predict stagnation flows.

2.2 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD), is nowadays an important tool for simulating flows
of all kinds. In the finite volume method the computational domain is divided into a large
number of control volumes. The general transport equation

∂ρφ

∂t
+∇ · (ρuφ) = ∇ · (Γ∇φ) + Sφ (2.13)

with φ beeing the quantity needed, ρ the density, u the velocities, Γ is a diffusivity constant
and Sφ is a source term. Integrated over each control volume (CV) and time interval ∆t,
it can be rewritten using Gauss’s divergence theorem to a surface integral:∫ t+∆t

t

[∫
CV

∂ρφ

∂t
dV +

∫
A

ρu · ndA
]
dt =

∫ t+∆t

t

[∫
A

Γ∇φ · ndA+

∫
CV

SφdV

]
dt (2.14)

where n is an outward pointing unit normal of the boundary of the control volume. The
first term on the left hand side represents the rate of change of the fluid property φ in
the control volume and the second term represents the net rate transport of property φ
out of the volume due to convection. The first term on the right hand side is the net rate
transport of property φ into the control volume due to diffusion and the last term on the
right hand side is the net rate of increase of φ due to sources inside the control volume.

In order to then solve the equations, a discretisation of the different terms is needed.
This discretisation can be done in different ways, dependent on the physics of the term
being discretized. The convection term could for example be discretized with a range of
different schemes such as the second order central differencing scheme, first and second
order upwind scheme etc.. These schemes are just ways to interpolate the information that
is being transported between the cells and the order of each discretization scheme is just a
measure of its efficiency and accuracy.

As there is no explicit pressure equation included in the calculations, some type of pro-
cedure is needed to couple the pressure with the velocity equations. The SIMPLE and
PISO algorithms are methods of dealing with this. These procedures are well covered in
literature [18].
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3 Method

The case setup is based on the swirl generator developed and created at the Polytech-
nica University of Timisoara in Romania. A mesh was created with the dimensions of the
test rig, and then both steady and unsteady simulations were conducted using the Open-
FOAM CFD toolbox. The results were later viewed in the visual tool kit Paraview and
postprocessed using Matlab and the two free softwares Gnuplot and Octave.

3.1 Description of the OpenFOAM CFD toolbox

OpenFOAM is an open source CFD software that has the advantage of beeing open for
changes and development. The users can contribute with new ideas and help with ex-
tending the software features. OpenFOAM consists of a C++ library, which foremost is
used to create applications. These applications consist of solvers and utilities. The solvers
are used for solving continuum mechanics problems, and the utilities are mostly used to
manipulate data in different forms. The main advantage with OpenFOAM however, is the
ease with which you can create and customize solvers. The solver applications are written
with OpenFOAM classes, which simplifies the syntax to resemble the partial differential
equations that is being used. To be able to make this happen, the programming language
needs to have properties such as inheritance, template classes, virtual functions and oper-
ator overloading. This is not found in many languages except for a few such as C++ and
Fortran-90 [1].

The solvers and utilities are controlled through the use of dictionaries. These are files
where specifications of the applications are accessed and controlled. Specificiations such
as disctretisations methods, Courant number, start and end time, divergence scheme, tur-
bulenced method, pressure corrector settings, linear solver settings and many more are all
controlled and accessed through these sets of dictionaries. Running the solvers in parallell,
on several processors simultaneously, is done by decomposing the case into as many parts as
processors intended for the job. This is easily done in OpenFOAM with the decomposePar
utility. This utility is also controlled by a dictionary where you can specify in which way
to decompose your computational mesh.
When the solver is finally running it will initiate the computations with the values given
in a folder named 0, as in time 0. Then it will print the quantity fields in time folders,
with a time interval specified in the dictionary controlDict. Residuals are printed in the
prompt during computations unless they are specified to be logged in a log file. When the
simulations are finished, the case can be reconstructed with the utility reconstructPar and
postprocessed through the VTK visualization application paraFoam.

8 , Applied Mechanics, Master’s Thesis 2010:25



3.2 Numerical Setup

The mesh of the swirl generator, seen in Figure 3.1, is made in ANSYS ICEM CFD with
the dimensions given from the test rig. The mesh is made by constructing the four sections:
strout blade section, stay vanes section, free runner section and the draft tube section. The
parts are then merged together in OpenFOAM with the utility mergeMeshes.

Figure 3.1: Outline of computational domain(bottom) and the merged strout-nozzle,
guide vanes, runner and swirl cone (top).

The mesh consists of 2.3 million hexahedral cells where the different parts are coupled
through General Grid Interfaces (GGI) [3]. The runner is rotating in the direction shown
in the top figure of Figure 3.1 which also show the interfaces which handles the interaction
between the rotating part (runner) and the stationary parts (draft tube and guide vanes).
At the outlet, the boundary conditions for velocity and turbulence equations are set as
a homogeneous Neumann boundary condition. The pressure equation uses a zero mean
pressure at the outlet and homogenous Neumann at all other boundaries. For discretizing
the convection terms, a second-order upwind scheme is used. In the unsteady simulations,
the time derivative terms are discretized using a second-order backward scheme.

3.2.1 Steady-State simulations

The inlet flow profile is set as uniform with a volume flow at 30 l/s. To estimate other
parameters such as kinetic energy and dissipation, it is usually necessary to estimate the
turbulence intensity at the inlet. High turbulence cases usually have a turbulence intensity
of 5 % to 10 %. In this case the turbulence intensity is set to 10 % at the inlet. This
estimation along with a turbulent viscosity ratio νt/ν set to 14.504 is taken from the
ERCOFTAC conical diffuser-study [12]. With a general flow discharge of 30 l/s and an
inlet area with radius 0.075 m, the inlet boundary conditions becomes:
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Table 3.1: Inlet boundary conditions for steady state simulations on the swirl generator.

Variable Expression Value Dimension Description

Uz V̇ /πr2 1.6985 m
s

Axial Velocity

k 3
2
(Uz · I)2 0.043274 m2

s2
Kinetic energy

ε (Cµk
2)/(ν · νt/ν) 11.623 m2

s3
Dissipation

νt/ν (k2Cµ)/(εν) 14.504 [-] Viscosity ratio
I - 10 % [-] Turbulence intensity

A SIMPLE pressure correcting solver with 3 nonorthogonal pressure correctors and
relaxation factors set to 0.1 was used in this case. The solver uses a “frozen rotor” approach,
which means that for a mesh with rotating parts, the rotating and stationary parts are
fixed in relation to eachother and the rotation is realized through the use of different frames
of reference for the rotating and stationary parts respectively.

3.2.2 Unsteady Simulations

The unsteady simulations is the preferred approach in resolving the vortex phenomenon. In
order to run unsteady simulations, good initial conditions is needed which can be retrieved
by using the results from the steady-state simulations. The URANS equations are then
solved and the solver uses a sliding grid approach for the rotor stator interaction, which
means that the rotational part of the mesh is actually moving, and the interaction between
the moving parts and the stationary parts is made possible with the help of sliding GGI
interfaces. The solver uses the PISO pressure correction method, which gives accurate
transient solutions but which also is sensitive to the timestep length. Therefore another
solver was tested which uses the SIMPLE pressure correction method, and which is far less
sensitive to the time step.

4 Results and Discussion

The results from the steady-state and unsteady simulations are presented and discussed in
the following sections.

4.1 Steady-State Simulations

The simulations at steady-state were made at both 870 rpm and 920 rpm. The first
rotational speed is because that was obtained when the measurements were conducted. The
other rotational speed is because this corresponded to zero torque on the runner, according
to Fluent simulations made by Muntean et.al [11]. Both of the cases were initiated using
the first-order Upwind scheme until computations were stable, and then continued with the
second-order linear Upwind scheme to improve accuracy. The theoretical design profiles
used for comparison is based on a theoretic model which should give similar flow conditions
to those of a Francis turbine operating at part load. All of the velocity profiles have been
circumferentially averaged in order to remove effects of the unsteadiness in the solution.
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4.1.1 Comparison with theoretical design profiles
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Figure 4.1: Meridional (left) and tangential (right) velocities at cross-sections 1 (top)
and 2 (bottom), compared with the theoretical design profile for each section.

Figure 4.1 show the velocity profiles at cross-sections 1 and 2, with section 1 located
between the guide vanes and the runner and section 2 located downstream the runner.
The results are compared with the theoretical design profiles from the blade design study
by Resiga et.al [15]. The numerical results show a good agreement with the design profiles.
In the case with a rotational speed of 870 rpm, the tangential velocity at cross-section
2 is in good agreement with the theoretical design profile. However, it is not reaching
its intended value near the shroud, and in the case of 920 rpm, the tangential velocity is
overestimated compared to the theoretical profile design. This means that a rotational
speed of 920 rpm is too high and that 870 rpm will more accurately create a swirling flow
that corresponds to the flow estimated by the theoretical model. As seen in Figure 4.1,
the two numerical velocity profiles show a very similar shape to eachother. This similarity
indicates that the deviation at the shroud is not dependent of the rotational speed, and
that it’s more likely caused by the computational model.
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4.1.2 Comparison with LDV measurements

Comparison with LDV measurements for both rotational speeds is shown in Figure 4.2.
The data is presented in dimensionless values where the used references are the minimum
radius of the throat and the mean velocity at the throat. (see Figure 1.3 to see where the
location of the survey axes are)

Rthroat = 0.05 [m], vthroat =
V̇

π ·R2
throat

[m/s]
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Figure 4.2: Comparison with meridional and tangential velocities between simulations
at 870 rpm (left) and 920 rpm (right). Velocities are compared at survey axis 0 (top
plots), survey axis 1 (middle plots), and survey axis 2 (bottom plots).
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At survey axis 0 in the top left plot of Figure 4.2, a good agreement with the mea-
surements is shown for the meridional velocity. The tangential velocity is however under-
estimated, which indicates that the rotational speed of 870 rpm is erroneous. The shape
of the predicted velocity profile is very similar to that of the measurements which means
that the solution method still works well for that part of the swirl generator and that
the lack of fit are due to the incorrect rotational speed. This conclusion is strengthened
by the top right plot of Figure 4.2, where the resulting tangential velocity from a rota-
tional speed of 920 rpm on the runner show much better agreement with the measurements.

At survey axis 1, the meridional velocity profile (middle left plot of Figure 4.2) for the
rotational speed 870 rpm, is shown to deviate alot from the measurements. Why it looks
like this is hard to tell, since there’s not even a stagnation region for the meridional velocity
which can be seen in the measurements. However, it is clear that the rotational speed has
a big impact on the swirl profile. The tangential velocity is in good agreement with the
measurements. There are some deviations close to the walls of the draft tube, which prob-
ably comes from the error in rotational speed and perhaps also the same source of error
discussed for the design profile plot in Figure 4.1. The correctness of these results can
however be discussed, since the prediction of the meridional velocity makes little sense,
which means that the tangential velocity could be erroneously predicted as well. For a
rotational speed of 920 rpm at survey axis 1 (middle, right plot of Figure 4.2), there is
a quite large deviation for the numerical tangential velocity profile, and for the measure-
ments there is a stagnation region in the center of the draft tube. This stagnation region is
predicted to be a recirculating region in the simulations. One probable cause of this could
a misprediction of the turbulence in that part of the draft tube. Since the k− ε turbulence
model has trouble predicting streamline curvature effects in the flow, it is possible that this
causes the stagnation region to be overpredicted and instead become a recirculating region.

Further downstream the draft tube, at survey axis 2, the deviation of the numerical tan-
gential velocity is again very large and it seems that a lot of swirl have been lost this far
down the draft tube. The error in tangential velocity is reduced some when the rotational
speed is increased from 870 rpm to 920 rpm, but this causes the meridional velocity to
deviate even more.

The results so far, have shown that the flow seem to have unsteady flow properties which
cannot be resolved by the steady-state simulations. At survey axis 0 for example, the ef-
fects of the vortex rope are small, which also reduce the importance of the transient term.
Therefore the results fit quite well with the LDV measurements. At the survey axes 1 and
2, there are significant differences and it seems that the steady-state solver cannot handle
what is happening downstream the throat. The most lack of fit occurs at survey axis 1,
where the unsteady vortex rope has most influence on the flow.
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4.1.3 Comparing moment forces
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Figure 4.3: Moment acting on the runner at 870 rpm (left) and 920 rpm (right).

Figure 4.3 shows the axial moment acting on the runner during the simulations at 870 rpm
and 920 rpm. For a rotational speed of 870 rpm, the mean moment acting on the runner
is about -0.5536 Nm (with the z-axis as the reference direction) whereas the results for a
rotational speed of 920 rpm gives a mean moment of about 0.1121 Nm. Since the z-axis
is directed downwards, a negative moment indicates that the runner is spinning too fast
and that it is consuming (at the tip) more energy than it is extracting (at the hub) from
the flow. The moment is therefore directed in the negative z-direction to make the runner
rotate slower. A positive moment is implying the opposite, which means that the moment
is directed in the positive z-direction to make the runner rotate faster. Seen from another
perspective, this also means that in order to maintain the rotational speed, it is either
needed to add power (if the moment is positive), or in some way apply a breaking force
to stop the runner from accelerating (if the moment is negative). In order to make a good
comparison with measurements later, it is desired to not need any interference, which is
the case when the runner is rotating completely free.

The fluctuations in Figure 4.3 is caused by a small vortex rope in the draft tube. As
can be seen in the figure, the simulations for the rotational speeds 870 rpm and 920 rpm
takes about 120000 and 80000 iterations respectively, which is quite alot when running
steady-state cases. The cause of this could be that since there is a developing disturbance
in the system, the flow conditions are constantly changing and thus causing the global
premise for solution to change as well. The flow is inherently unsteady, and it makes it
impossible for the solution to converge into a steady-state solution.

Summarizing this, it is seen that for 870 rpm, both the moment acting on the runner and
the comparison with measurements indicates that the rotational speed is erronous. For 920
rpm, the comparing with the measurements implies almost correct rotational speed and
the moment acting on the runner implies an incorrect rotational speed. These results are
in conflict with eachother, and together with the misprediction shown for both cases, it can
be concluded that this method for solution is unacccurate and insufficient when resolving
the flow in the swirl generator.
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4.2 Unsteady Simulations

The solver for the unsteady simulations uses the feature of a sliding grid to simulate the
rotor stator interaction and the PISO algorithm for coupling the pressure with the velocity
equations. The simulations are made at a rotational speed of 870 rpm, 920 rpm and 890
rpm, where 890 rpm is obtained from linear interpolation of the results of 870 rpm and
920 rpm. A solver which uses the SIMPLE algorithm is tested and compared to the PISO
based solver. The initial conditions for all cases, are taken from the results of the steady
state simulations. For the case at 890 rpm, the steady-state results from the 870 rpm
simulations was used.

The simulations at 870 rpm were realized using a time step of 1.3e-4 s, yielding a maximum
Courant number of 2.79. For the simulations with 920 rpm and 890 rpm, the timestep was
1.4e-4 s and 1.2e-4 s respectively, giving a maximum Courant number of 3 at 920 rpm and
2.5 at 890 rpm. The numerical velocity profiles are all averaged circumferentially and in
time.

4.2.1 Comparison with theoretical design profiles
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Figure 4.4: Meridional (left) and tangential (right) velocities at cross-sections 1 (top)
and 2 (bottom), compared with the theoretical design profile for each section.

Figure 4.4 show the comparison at cross sections 1 and 2 (see Figure 1.2). The averaged
velocity profiles for all rotational speeds are compared with the theoretical design profile
for the swirl generator. The plots in Figure 4.4 show very similar results to those of

, Applied Mechanics, Master’s Thesis 2010:25 15



the steady-state simulations. The numerical velocity profiles are in good agreement with
the theoretical design profiles and the tangential velocities at cross-section 2 are again
deviating close to the shroud. The fact that the velocity profiles show these similarities
with the steady-state results means that unsteady effects in this part of the flow is very
small, and so the unsteady term in the equations gives little change to the solution. As
for the steady-state results, simulation with the rotational speed of 870 rpm gives the best
agreement. When the rotational speed is increased, so is also the error in tangential speed.

4.2.2 Comparison with LDV measurements
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Figure 4.5: Comparison for meridional and tangential velocities between simulations
at 870 rpm (left) and 920 rpm (right).
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Figure 4.5 shows the comparison with LDV measurements for the cases of 870 rpm and 920
rpm. It is shown that both tangential and meridional velocity show much better agreement
with the measurement values than the steady state simulations. The velocity profiles at
survey axis 0 (top of Figure 4.5) is as in the steady-state case, in good agreement with the
measurements. The shape of the tangential velocity profile is somewhat more accurately
resolved, and the main error is the magnitude of the velocity which is caused by an error in
rotational speed. At survey axis 1, the results show a deviating tangential velocity at the
wall, and a recirculating region for the meridional velocity in the center of the draft tube.
When the rotational speed is increased from 870 rpm to 920 rpm, this recirculating region is
reduced to some extent, however not enough to conclude this to be the only source of error.
Instead, it is more likely that the computational model is the main cause of this deviation.
The tangential velocity at survey axis 1 reveals the same deviation close to the wall for
both rotational speeds. The error is reduced when increasing the rotational speed to 920
rpm, as shown when comparing the middle plots of Figure 4.5. The tangential velocity at
survey axis 2 (bottom plots) is shown to be greatly influenced by the rotational speed on
the runner, and the error is reduced substantially for the same change in rotational speed.
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4.2.3 Comparison between the PISO based solver and a SIMPLE based solver
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Figure 4.6: Comparings with tangential and meridional velocities between SIMPLE
and PISO based solver (left), and comparings of SIMPLE with measurements(right).
Velocities are compared at survey axis 0 (top), 1 (middle) and 2 (bottom).

Figure 4.6 shows the results of simulations made with the SIMPLE based solver. It is
shown in comparison to the PISO based solver used in the previous simulations and the
comparison reveales a distinct difference between the solvers. Noticeable here is that the
SIMPLE based solver don’t give any recirculating area where the PISO based solver do.
Also the tangential velocity profile in the top of Figure 4.6 seems more similar to that
of measurements than the PISO based solver. For the results of the PISO based solver,
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the tangential velocity in the center part of the draft tube looks more like a straight line,
and it seems that the solver don’t predict this “s”-shape, shown in the measurements.
The SIMPLE based solver seems to be resolving this. The comparison with measurements
downstream the throat, at survey axis 1 and 2, show a very good agreement. There is
still a deviation close to the wall, but this has been concluded to be caused by an error
in rotational speed rather than the computational model, which makes these results the
best so far. The SIMPLE method for coupling the pressure with the velocity equations
are usually considered the more stable method out of the two. This stability is often
achieved at the expense of accuracy, and so the results from using this method should
be less accurate than using PISO. The results are interesting, but further investigation is
needed in order to conclude that the SIMPLE based solver really gives a better prediction
and that these results are not caused by “inaccuracy“ instead of accuracy.

4.2.4 Comparison of moment forces and pressure fluctuations
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Figure 4.7: Moment acting on the runner at 870 rpm (top left), 920 rpm (top right)
and 890 rpm (bottom).

Figure 4.7 show the moment acting on the runner for the three cases 870 rpm, 920 rpm
and 890 rpm at stabilized unsteady simulations. The results from 870 rpm show a positive
mean moment of about 0.343, and the results from 920 rpm show a negative mean moment
of -0.294, which indicates that the rotational speed corresponding to a torque equal to
zero lies between 920 rpm and 870 rpm. Linear interpolation of the results from these two
rotational speeds with respect to the forces acting on the runner, gives a rotational speed
of 890 rpm which should correspond to zero axial moment. The velocity profiles of the sim-
ulations at 890 rpm don’t show anything of interest. The only interesting results from that
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simulation is the moment acting on the runner, shown in the bottom plot in Figure 4.7. It
is seen that for 890 rpm, the mean moment acting on the runner is approximately 0.088
Nm. This is not sufficient to conclude that 890 rpm is the correct rotational speed, but it
is however a close value and it should give very similar flow conditions as the rotational
speed that do give a torque equal to zero. The rotational speed could be better estimated
doing one additional linear interpolation, or maybe use another method to pinpoint where
the moment will be zero.

Several frequencies can be observed in the plots of Figure 4.7. At least 3 frequencies
can be seen: One low frequency, one intermediate frequency and one high frequency which
all are caused by the pressure fluctuations in the system. Therefore, the pressure is anal-
ysed in the following section to see where these frequencies originates from.

Figure 4.8: Pressure at MG0 for rotational speeds of 870 rpm (top left), 890 rpm (top
right) and 920 rpm (bottom).

Figure 4.8 show the pressure oscillations at the throat (MG0, see Figure 1.3) for the the
rotational speeds 870 rpm, 890 rpm and 920 rpm. The intermediate frequency, that can be
clearly seen in all three plots, is caused by the vortex rope in the draft tube which is rotating
at almost the same rotational velocity as the runner. A rotational speed of 920 rpm is the
same as 15.33 turns/second which should correspond to a pressure frequency of 15.33 Hz.
The higher frequency is caused by the rotor stator interaction. With 13 guide vanes and
10 runner blades rotating at a velocity of 15.33 turns/second (920 rpm), the number of
runner blades that passes one guide vane per second is 15.33 · 10 = 153.3 blades/second,
which should correspond to a frequency of 153.3 Hz in the pressure fluctuations. The lower
frequency, here only seen in the plot for 920 rpm, is caused by axial movement of the vortex
rope. In the bottom plot of Figure 4.8 it can be seen that one period of this low frequency,
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corresponds to 5 periods of the intermediate frequency, which is the same as 5 turns of
the runner, with each turn having a period of 1/15.33 = 0.0652 s, the period for the lower
frequency would be 5 · 0.0652 = 0.326 s. These periods are just the time intervals that
the pressure fluctuations should have, if it was following the motion of the runner directly,
and the simulation show that they almost do. The definite frequencies of the predicted
pressure fluctuations are estimated in the fourier analysis in section 4.3.

Figure 4.9: Vortex rope at a rotational speed of 920 rpm at 1.17 s(left), and 1.3 s(right).

Figure 4.9 show the vortex rope of the 920 rpm- simulations at two different time steps.
It shows the retraction and extraction of the vortex rope that is causing the low frequency
seen in the pressure fluctuations. Comparing with the bottom plot in Figure 4.8, it can
be seen that the amplitude has reached its min value when the vortex rope has extended
itself to a maximum (1.17 s). When retracted to max (1.3 s), the fluctuations reaches its
maximum value. This movement have not been seen in the measurements, so even if there
is a good agreement at 920 rpm for the velocity profiles in the draft tube, the simulations
seems to be predicting a different movement of the vortex rope compared to what is seen
in the measurements. It is hard to tell why this is, but as this low frequency is not seen
for the simulations at 870 rpm or 890 rpm, it seems that something is happening between
890 rpm and 920 rpm that highly influences the movement of the vortex rope. Another
thing to notice in Figure 4.9 is that the simulations are resolving the wakes coming from
the runner into the convergent part of the draft tube. These wakes are resolved on the
isosurface as well, seen as small ripples in the throat region of the draft tube. In the center
of the draft tube, the reciculation region can be seen. This region is extended almost all
the way up to the throat.
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4.3 Fourier Analysis

An analysis of the pressure fluctuations at MG0, MG1, MG2 and MG3 will be covered
in the following section. Muntean et al. [11] made a fourier analysis on Fluent and
OpenFOAM simulations and compared them with measurements. The present analysis
is made in Matlab using the built-in Fast Fourier Transform algorithm and the pressure
values are taken at the transducer locations (see Figure 1.3) for the best fitted results,
which was the unsteady 920 rpm simulation.(with the PISO-based solver)

4.3.1 Fourier analysis theory

Given periodic function f(t) with period T = 2L seconds, then the function f(t) can be
decomposed into a sum of components of sine and cosine functions as:

g(t) =
a0

2
+
∞∑
n=1

[
ancos

(
πnt

L

)
+ bnsin

(
πnt

T

)]
(4.1)

where

a0 =
1

2L

∫ L

−L
f(t)dt, an =

1

L

∫ L

−L
f(t)cos

(
nπt

L

)
dt,

bn =
1

L

∫ L

−L
f(t)sin

(
nπt

L

)
dt

and a0 is the mean value of f(t). an and bn are the sine and cosine mode amplitudes,
respectively, for the angular frequency πn

L
. This can also be expressed in the complex form:

g(t) =
∞∑
−∞

cne
iπnt
L (4.2)

cn =
1

2L

∫ L

−L
f(t)e−i

πnt
L dt, n = 0, 1, 2, 3, ...N − 1 (4.3)

A vector with N complex numbers xn = [x0, x1, ..., xN−1] can then be transformed into a fre-
quency domain representation, Xk = [X0, X1, ..., XN−1] by the Discrete Fourier Transform
(DFT), defined as:

Xk =
N−1∑

0

xne
−2πi
N

kn, k = 0, 1, ..., N − 1 (4.4)

and transformed back again using its inverse (IDFT), which is defined as:

xn =
1

N

N−1∑
0

Xke
2πi
N
kn, n = 0, 1, ..., N − 1 (4.5)

The DFT can be calculated using a Fast Fourier Transform algorithm.
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4.3.2 Fourier algorithm in Matlab

Matlab uses a FFT algorithm called the Cooley- Tukey Fast Fourier Transform algo-
rithm [7]. From the definition of eq. (4.2) it can be seen that the calculation of Xk

requires N operations that involves multiplication of two complex numbers followed by the
addition of two complex numbers. The transformation of the vector xn = [x0, x1, ..., xN−1],
requires a total of N2 of these operations. If N is large , which usually is the case in
numerical investigations, N2 is a lot higher, which makes the calculations hard to manage.
Then, if N is not a prime, it can be decomposed into N = N1N2 and then N1 transforms
of size N2 can be computed, followed by a computation of N2 transforms of size N1 and so
on until the problem can be solved [8, 9]. This is what the Cooley- Tukey FFT algorithm
does. It computes the fft and inverse fft pair for given vectors of length N by:

fft(xj) = Xk =
N∑
j=1

xje
−2π
N

(j−1)(k−1) (4.6)

ifft(Xk) = xj =
1

N

N∑
k=1

Xke
2π
N

(j−1)(k−1) (4.7)

for each number xj and each transformed number Xk.

The fourier transformed values can then be plotted in a power spectrum where the squared
absolute value of the coefficients are plotted against the frequencies. The absolute values
of the coefficients are the distance of the complex number to the origin, and since each
complex number produced by the FFT has a complex conjugate, the power and frequency
is calculated using only half of the transformed values.

power = |Xk|2 k = 1, 2, 3, ..., (N − 1)/2 (4.8)

f = nj/∆t j = 1, 2, 3, ..., (N − 1)/2 (4.9)

where nj is the j:th sample on the sampling time interval ∆t.

To compare the pressure fluctuations dimensionally, the Strohaul number can be calcu-
lated:

St =
f · l
V

=
f ·D(

4·Q
π·D2

) (4.10)

where D is the the reference length, i.e. the throat diameter = 100mm, Q is the total
discharge of 30 l/s, and f is the fundamental frequency, in this case the vortex frequency.

, Applied Mechanics, Master’s Thesis 2010:25 23



4.3.3 Results of fourier analysis

Plots of the pressure history at locations MG0, MG1, MG2 and MG3 are shown in Figure
4.10. The plots show the signal plotted against time for two periods of the lowest frequency,
which is 2 · 0.326 s = 0.652 s . The FFT reconstructioned signal is also shown for the same
time period.
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Figure 4.10: Unsteady pressure at pressure transducers MG0, MG1, MG2 and MG3,
and fourier reconstructions.

24 , Applied Mechanics, Master’s Thesis 2010:25



Figure 4.10 shows the fluctuating static pressure at the locations of the transducers seen
in Figure 1.3. Both the lower and intermediate frequency can be seen in all of the plots.
The higher frequency, which comes from the rotor stator interaction, is mostly resolved
at the throat (MG0). At MG1 and MG2, the high frequency can be seen as well, even
though its amplitude is not of the same order of magnitude. The pressure fluctuations
below the throat is dominated by the low and intermediate frequencies, which is caused
by the rotation and axial movement of the vortex rope. Reconstruction of the signals was
done using 72 modes for MG0, 100 modes for MG1, 130 modes for MG2 and 90 modes for
MG3. The reconstruction was done by applying the Matlab ifft algorithm, and including
the fourier coefficients which was shown to have the highest power in order of magnitude.
So if a signal is reconstructed using 10 modes, this means that only the 10 coefficients
that have the highest absolute values is included in the reconstruction. In this way, the
fundamental frequencies of the signal will be included first so that the amount of modes
needed for reconstruction can be estimated effectively.

Comparisons are made with a previous OpenFOAM simulation made by Muntean et.al [11]
which was made only on the draft tube. The pressure fluctuations for this study is shown
in Figure 4.11. Here the same matlab FFT and IFFT algorithm have been used to recon-
struct the pressure signal, with 7 modes for MG0, 20 modes for MG1, 44 modes for MG2
and 50 modes for MG3.
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Figure 4.11: Unsteady pressure from the previous study at pressure transducers MG0,
MG1, MG2 and MG3, and fourier reconstructions.
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The pressure oscillations shown in Figure 4.11 has no lower or higher frequencies in-
cluded in the pressure fluctuations, which is because this case was run on the draft tube
only, without the effects of the runner included in the simulations.
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Figure 4.12: Frequency spectra at transducer locations MG0, MG1, MG2 and MG3.

The frequency spectra in Figure 4.12 show a comparison with the previous OpenFOAM
simulation made by Muntean et.al. [11]. That study showed results that was in good agree-
ment with the measurements, even though the harmonics were slightly overestimated. At
MG0, the amplitude of the 1st harmonic is almost in the same order of magnitude as the
previous study. It is seen at a frequency of 18.02 Hz, which is the same as the interme-
diate frequency for 920 rpm shown in the bottom of Figure 4.8. Also, the low and high
frequencies discussed previously can be seen as the harmonics at 3.0 Hz and 153.19 Hz
respectively. At MG1, the difference in amplitude for the 1st harmonic has increased and
the present study show an amplitude about 1/3 part higher than the previous study. The
harmonics for the higher frequency harmonic at 153.19 Hz is not seen any more, and the
low frequency harmonic has been elevated. At MG2, the amplitude of the 1st harmonic is
again in good agreement with the previous study. The low frequency harmonic at 3 Hz is
shown here as well with a slightly lower amplitude than at MG1. Good agreement is also
shown at MG3 for the 1st harmonic amplitude. The vortex ropes frequency is 18.02 Hz,
which corresponds to a Strohaul number of 0.480. The Strohaul number of the previous
study was 0.427.
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5 Conclusion

Meshing, steady and unsteady state simulations have been conducted on a swirl generator.
The meshing have been made with ANSYS ICEM-Hexa, and the computational domain
have been aknowledged for running simulations that can be compareble with LDV data.
Then steady state simulations at two different rotational speeds have been made, using
the standard k − ε model to close the equations. The steady state simulations from both
rotational speeds are not accurately resolving the flow profiles. They serve as a good
initial conditions for unsteady simulations, but can’t be used alone to predict the flow
features. Unstedy state simulations were conducted at three rotational speeds in order to
find the one corresponding to zero torque on the runner, and to compare the results from
that rotational speed with LDV measurements. The results showed that unsteady CFD
simulations accurately predicts the flow field of the swirl generator. It was also seen, that
a rotational speed of 920 rpm gives the best compareble results with LDV measurements,
and that a rotational speed of 890 rpm gives almost zero torque on the runner, given
that we don’t have any frictional forces acting on the runner. Further investigation of the
pressure oscillations were conducted, which at a rotational speed of 920 rpm revealed 3
distinct frequencies. One low frequency corresponding to an axial extraction/retraction of
the vortex rope, one intermediate frequency corresponding to the rotation of the vortex
rope, and one high frequency caused by the rotor stator interaction. Fourier analysis of the
pressure history recorded at the wall of the draft tube showed that several new frequencies
have been introduced compared to a previous study which was made on only the draft
tube.

6 Future work

Future work for this case study could be to continue investigation of the SIMPLE based
solver and try another turbulence models such as LES or DES. This could better predict
the stagnation region seen for the meridional velocities in the draft tube. Since there has
been alot of time spent on finding the “correct” rotational speed for this particular setup,
one idea could be to customize a solver to adjust the rotational speed in accordance to
the moment acting on the runner. This would make comparison with measurements alot
easier as it would be easier to get the definite rotational speed corresponding to zero torque
or if needed, any torque that is desired. This would also contribute to the OpenFOAM
community.
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