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Aim and purpose
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• Evaluate the scavenging performance of the Husqvarna H576X engine.

• Evaluate the use of OpenFOAM for two-stroke engine simulations.
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Approach

Mikael Jönsson

• Determine interesting information.

• Limit the problem.

• Method to find the information.

• Possibilities in OpenFOAM.

• Set up the case.

• Extract the results.

• Validation.
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The two-stroke engine
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• The conventional two-stroke engine.

• The cycle of operation.

• Advantages and disadvantages.

• Trapping efficiency.

ηtr =
Mass of delivered air fuel mixture retained

Mass of delivered air fuel mixture
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Expansion stroke
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Compression stroke
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The stratified charged two-stroke engine
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• Reduction of emissions and a lowered fuel consumption.

• The cycle of operation.

• Trapping efficiency.

ηtr,fuel =
Mass of delivered fuel retained

Mass of delivered fuel
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Expansion stroke
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Compression stroke
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The H576X geometry
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The H576X geometry description
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Geometry modifications
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CFD and the Finite Volume Method
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• The Reynolds-Averaged Navier-Stokes equations.

• Turbulence modelling using the standard k − ε turbulence model.

• Wall functions.
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Fluids
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• Approximation with air as the only fluid.

• No combustion, the combustion is modelled.

• Air fuel mixture for trapping efficiency

• Passive scalar transport
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The passive scalar

Mikael Jönsson

• Adding a passive scalar, φ to represent the air fuel mixture.

• Convection dominated flow.

• The governing equations independent of the passive scalar.

• Volume concentration of φ in the cell.



Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 18

The passive scalar, continued
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• The passive scalar transport equation.

∂(ρφ)
∂t

+ div(ρUφ) = 0

• The cell volume passive scalar concentration.

0 ≤ φ ≤ 1

• A compressible flow requires the mass to be calculated

mfuel = ρ ∗ φ ∗ Vcell
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Mesh operations

Mikael Jönsson

• The solver must manage some mesh operations.

• The cylinder volume is being compressed and expanded, layerAdditionRemoval.

• The cylinder and the ports must interact, slidingInterface.

• The twoStrokeEngine-library handle these features.
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Layer addition
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• Morphing to a certain limit.

• Layer addition.
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Layer removal
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• Compression to a certain limit.

• Layer removal.
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Sliding interface
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• Sliding interfaces.

• Ports, cylinder and piston pockets.
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Sliding interface, continued
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Boundary conditions, inlets and outlets
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• Scavenging channel inlets.

• Exhaust outlet.

• Stratifying channel inlets.

• Flow both into and out of the domain.

• Adaptive B.C. for temperature, T , velocity ,U, turbulent kinetic energy, k, dissi-

pation of turbulent kinetic energy, ε, and the passive scalar, φ.

• Flow into the domain, Dirichlet B.C.

• Flow out of the domain, homogenous Neumann B.C.

∂φ
∂xn

= 0
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Boundary conditions, inlets and outlets, continued
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• Temperature set according to results from 1-d simulations.

• Pressure set according to results from 1-d simulations.

• Turbulent properties, k and ε are set to small values.

• The passive scalar is set to a 100% concentration in the scavenging channel inlet.
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Boundary conditions, inlets and outlets, continued

Mikael Jönsson

• Isolated walls. Homogenous Neumann for temperature and pressure and the

passive scalar

• No slip for velocity

• Wall functions used for k and ε
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Combustion modelling

Mikael Jönsson

• No actual combustion. Modelled combustion.

• Cylinder pressure and temperature set before exhaust port opens.

• Pressure from 1-d simulations.

• Temperature from 1-d simulations exhaust channel.
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Results, scavenging

Mikael Jönsson

• Trapping efficiency about 93%.

• Solution is periodic within four revolutions.

• Trapping efficiency from experiments 92%.

360 CAD 720 CAD 1080 CAD 1440 CAD

99.34 % 93.14 % 93.61 % 93.77 %
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Results, validation

Mikael Jönsson

• Comparison in massflow over scavenging channel inlet with 1-d simulations.
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Results, validation, continued

Mikael Jönsson

• Comparison in massflow over stratifying channel inlet with 1-d simulations.
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Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 31

Results, validation, continued

Mikael Jönsson

• Comparison in massflow over exhaust outlet with 1-d simulations.
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Results, validation, continued

Mikael Jönsson

• Comparison in massflow over scavenging channel inlet with Fluent simulations.
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Results, validation, continued

Mikael Jönsson

• Comparison in massflow over stratifying inlet with Fluent simulations.
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Results, validation, continued

Mikael Jönsson

• Comparison in massflow over exhaust outlet with Fluent simulations.
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Conclusions, OpenFOAM

Mikael Jönsson

• Useful for two-stroke engine simulations.

• Approximately 24h per revolution with checkMesh on 3 CPU:s. Periodic behav-

ior within four revolutions.

• Results in correlation with commercial CFD-code and 1-d simulations.
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Future work

Mikael Jönsson

• Non-modified geometry.

• Expand the geometry.

• The mesh impact on the solution.

• Add more species and combustion.

• Heat transfer with walls.


