Stratified scavenging in two-stroke engines using OpenFOAM

Acknowledgements

I would like to thank

- Associate Professor Håkan Nilsson at the Division of Fluid Dynamics at the Department of Applied Mechanics.
- Erik Lindén and Johan Spång at Husqvarna AB.
- Tommaso Lucchini at Politecnico di Milano
- Mikael Bergman at Husqvarna AB.

Outline

- Aim and purpose.
- Approach.
- The two-stroke engine and the stratified charged two-stroke engine.
- CFD.
- Mesh operations.
- Boundary conditions.
- Results.
- Future work.

Aim and purpose

- Evaluate the scavenging performance of the Husqvarna H576X engine.
- Evaluate the use of OpenFOAM for two-stroke engine simulations.

Approach

- Determine interesting information.
- Limit the problem.
- Method to find the information.
- Possibilities in OpenFOAM.
- Set up the case.
- Extract the results.
- Validation.

The two-stroke engine

- The conventional two-stroke engine.
- The cycle of operation.
- Advantages and disadvantages.
- Trapping efficiency.

 $\eta_{tr} = \frac{\text{Mass of delivered air fuel mixture retained}}{\text{Mass of delivered air fuel mixture}}$

Expansion stroke

Compression stroke

The stratified charged two-stroke engine

- Reduction of emissions and a lowered fuel consumption.
- The cycle of operation.
- Trapping efficiency.

 $\eta_{tr,fuel} = \frac{\text{Mass of delivered fuel retained}}{\text{Mass of delivered fuel}}$

Expansion stroke

Compression stroke

Mikael Jönsson

The H576X geometry

The H576X geometry description

Mikael Jönsson

Geometry modifications

CFD and the Finite Volume Method

- The Reynolds-Averaged Navier-Stokes equations.
- Turbulence modelling using the standard $k \varepsilon$ turbulence model.
- Wall functions.

Fluids

- Approximation with air as the only fluid.
- No combustion, the combustion is modelled.
- Air fuel mixture for trapping efficiency
- Passive scalar transport

The passive scalar

- \bullet Adding a passive scalar, ϕ to represent the air fuel mixture.
- Convection dominated flow.
- The governing equations independent of the passive scalar.
- Volume concentration of ϕ in the cell.

The passive scalar, continued

• The passive scalar transport equation.

$$\frac{\partial(\rho\phi)}{\partial t} + \operatorname{div}(\rho \mathbf{U}\phi) = 0$$

• The cell volume passive scalar concentration.

 $0 \leq \phi \leq 1$

• A compressible flow requires the mass to be calculated

$$m_{fuel} = \rho * \phi * V_{cell}$$

Mesh operations

- The solver must manage some mesh operations.
- The cylinder volume is being compressed and expanded, layerAdditionRemoval.
- The cylinder and the ports must interact, slidingInterface.
- The twoStrokeEngine-library handle these features.

Layer addition

- Morphing to a certain limit.
- Layer addition.

Layer removal

- Compression to a certain limit.
- Layer removal.

Sliding interface

- Sliding interfaces.
- Ports, cylinder and piston pockets.

Mikael Jönsson

Sliding interface, continued

Boundary conditions, inlets and outlets

- Scavenging channel inlets.
- Exhaust outlet.
- Stratifying channel inlets.
- Flow both into and out of the domain.
- Adaptive B.C. for temperature, T, velocity ,U, turbulent kinetic energy, k, dissipation of turbulent kinetic energy, ε , and the passive scalar, ϕ .
- Flow into the domain, Dirichlet B.C.
- Flow out of the domain, homogenous Neumann B.C.

$$\frac{\partial \phi}{\partial x_n} = 0$$

Boundary conditions, inlets and outlets, continued

- Temperature set according to results from 1-d simulations.
- Pressure set according to results from 1-d simulations.
- Turbulent properties, k and ε are set to small values.
- The passive scalar is set to a 100% concentration in the scavenging channel inlet.

Boundary conditions, inlets and outlets, continued

- Isolated walls. Homogenous Neumann for temperature and pressure and the passive scalar
- No slip for velocity
- \bullet Wall functions used for k and ε

Combustion modelling

- No actual combustion. Modelled combustion.
- Cylinder pressure and temperature set before exhaust port opens.
- Pressure from 1-d simulations.
- Temperature from 1-d simulations exhaust channel.

Results, scavenging

- Trapping efficiency about 93%.
- Solution is periodic within four revolutions.
- Trapping efficiency from experiments 92%.

360 CAD	720 CAD	1080 CAD	1440 CAD
99.34 %	93.14~%	93.61~%	93.77~%

Results, validation

• Comparison in massflow over scavenging channel inlet with 1-d simulations.

Results, validation, continued

• Comparison in massflow over stratifying channel inlet with 1-d simulations.

Results, validation, continued

• Comparison in massflow over exhaust outlet with 1-d simulations.

Results, validation, continued

• Comparison in massflow over scavenging channel inlet with Fluent simulations.

Results, validation, continued

• Comparison in massflow over stratifying inlet with Fluent simulations.

Results, validation, continued

• Comparison in massflow over exhaust outlet with Fluent simulations.

Conclusions, OpenFOAM

- Useful for two-stroke engine simulations.
- Approximately 24h per revolution with checkMesh on 3 CPU:s. Periodic behavior within four revolutions.
- Results in correlation with commercial CFD-code and 1-d simulations.

Future work

- Non-modified geometry.
- Expand the geometry.
- The mesh impact on the solution.
- Add more species and combustion.
- Heat transfer with walls.